EP4108918B1 - Device and method for controlling hydraulic instabilities in a two-phase fluid loop with mechanical pumping - Google Patents

Device and method for controlling hydraulic instabilities in a two-phase fluid loop with mechanical pumping Download PDF

Info

Publication number
EP4108918B1
EP4108918B1 EP22180652.4A EP22180652A EP4108918B1 EP 4108918 B1 EP4108918 B1 EP 4108918B1 EP 22180652 A EP22180652 A EP 22180652A EP 4108918 B1 EP4108918 B1 EP 4108918B1
Authority
EP
European Patent Office
Prior art keywords
fluid
evaporator
closed circuit
condenser
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22180652.4A
Other languages
German (de)
French (fr)
Other versions
EP4108918A1 (en
EP4108918C0 (en
Inventor
Giacomo SACCONE
Rémi DOMPNIER
Anthony DELMAS
Kevin MIGNON
Alain Chaix
Julien Hugon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP4108918A1 publication Critical patent/EP4108918A1/en
Application granted granted Critical
Publication of EP4108918C0 publication Critical patent/EP4108918C0/en
Publication of EP4108918B1 publication Critical patent/EP4108918B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine

Definitions

  • the present invention lies in the field of thermal control of sets of dissipative equipment.
  • the invention relates to a device and method for controlling hydraulic instabilities in a two-phase fluid loop with mechanical pumping. It is described in the field of satellite-type spacecraft but it applies to any two-phase fluid loop system with mechanical pumping.
  • a two-phase fluid loop with mechanical pumping comprises a closed circuit in which a heat transfer fluid circulates, at least one evaporator, through which the fluid circulates in predominantly liquid form at the inlet of the evaporator, the evaporator being configured to transform the fluid in liquid form into fluid in partially gaseous form, at least one condenser, through which the fluid in partially gaseous form circulates at the inlet of the condenser, the condenser being configured to transform the fluid in partially gaseous form into fluid in liquid form, a pump, arranged between the outlet of the condenser and the inlet of the evaporator, intended to set in motion the fluid in the closed circuit from the evaporator towards the condenser in partially gaseous form and from the condenser towards the evaporator in liquid form , a fluid reservoir connected to the closed circuit, intended to compensate for variations in fluid volume in the closed circuit.
  • thermo-fluidic systems aiming to produce steam to be spread in a turbine, can set the thermal power at the input of the thermo-fluidic system. They can therefore set the sizing parameters of the problem (in particular pressure, flow and thermal power) as best as possible before opening the path to the turbine.
  • thermo-fluidics This type of application can be classified as: “Thermal power serving thermo-fluidics”.
  • thermo-fluidics serving thermal power a two-phase loop for the thermal management of satellites.
  • the optimization of the mentioned parameters becomes more difficult: power plants work at constant power while a satellite constantly changes its thermal power depending on the environment (exposure to the sun), user traffic and the mode of operation. use of equipment.
  • the thermo-hydraulics of the loop are constantly changing while the land applications mentioned work at constant thermal power and therefore in constant hydraulic conditions as well.
  • the accumulator or expansion tank
  • the evaporator form a single component. This is a notable difference from MPL, where the pressure is managed elsewhere relative to the boiling location.
  • the accumulator expansion tank or reservoir
  • the evaporator are two separate components for the MPL.
  • the invention aims to manage violent transients and design a two-phase fluid loop serving the equipment to be cooled.
  • the invention aims to overcome all or part of the problems cited above by proposing thermal control of a two-phase fluid loop with mechanical pumping, in particular for a space application.
  • Thermal control here is a control of hydraulic instabilities in the two-phase fluid loop with mechanical pumping. This thermal control makes it possible to guarantee stable hydraulic behavior of the loop, to guarantee the health of the pump, guarantee the health of the product itself and optimize system performance.
  • the dynamic two-phase thermal management device is the fluid reservoir connected to the closed circuit downstream of the pump and upstream of the evaporator.
  • the dynamic two-phase thermal management device may include a restriction of the conduit.
  • the device for adjusting the pressure in the closed circuit is a mechanical pressure control device or a device for heating the fluid in the tank.
  • the MPL can find itself faced with the problem of absorbing up to 100% power variation of the spacecraft equipment, located at the evaporators.
  • the invention therefore aims to provide good management of transients.
  • FIG. 1 schematically represents a device for thermal control of a heat transfer fluid in a two-phase fluid loop with mechanical pumping according to the invention.
  • the two-phase fluid loop with mechanical pumping comprises a closed circuit 11 in which a heat transfer fluid 20 circulates.
  • the loop comprises at least one evaporator 12 comprising an inlet 13 and an outlet 14, through which the fluid circulates from the inlet 13 of the evaporator 12 in liquid form 20-liq towards the outlet 14 of the evaporator 12, the evaporator 12 being configured to transform the fluid in liquid form 20-liq into fluid in partially gaseous form 20-g.
  • the fluid circulates from the inlet 13 of the evaporator 12 in mainly liquid form, that is to say that it is not necessarily only in liquid form, towards the outlet 14 of the evaporator 12.
  • the evaporator is configured to recover and capture a certain quantity of thermal energy from outside the loop, in particular from dissipative equipment on the satellite.
  • the loop comprises at least one condenser 15 comprising an inlet 16 and an outlet 17, through which the fluid in partially gaseous form 20-g circulates from the inlet 16 of the condenser 15 towards the outlet 17 of the condenser 15, the condenser 15 being configured to transform the fluid in partially gaseous form 20-g into fluid in liquid form 20-liq.
  • the condenser is configured to return a certain quantity of thermal energy to the outside of the loop, for example to the cold space around the satellite.
  • the loop comprises a pump 18, arranged between the outlet 17 of the condenser 15 and the inlet 13 of the evaporator 12, intended to set in motion the fluid in the closed circuit 11 from the evaporator 12 towards the condenser 15 in partially gaseous form 20 -g, and from the condenser 15 to the evaporator 12 in liquid form 20-liq.
  • the loop comprises a fluid reservoir 19 connected to the closed circuit 11, intended to compensate for variations in fluid volume in the closed circuit 11, in connection with the quantity of vapor, due to evaporation, present in the closed circuit .
  • the pump can be a centrifugal pump. More generally, the term pump is used to designate a fluid circulation device. A person skilled in the art will understand that any fluid circulation device is possible, for example a compressor. The invention is described in the case of a pump, but it applies similarly to the case with a compressor.
  • control device 10 comprises a dynamic two-phase thermal management device 80 capable of absorbing variations in thermal power to which the mechanically pumped two-phase fluid loop is subjected without any constraint on the use of the dissipative equipment or on the variation in their dissipation and therefore without constraint on operational performance.
  • the device according to the invention makes it possible to control a two-phase fluid loop during thermal power transients.
  • the goal is achieved thanks to the invention by stabilizing the hydraulic parameters in order to respect certain operational constraints of the installed dissipative equipment and the constituent elements of the loop. This guarantees the proper functioning of the pump, one of the critical components of the MPL, over the lifespan of the satellite. Indeed, thanks to the invention, the pump can operate within a narrow range of its point of maximum efficiency.
  • dissipative equipment also has certain operational constraints, such as a maximum temperature. The invention also allows to ensure the operation of this equipment within its optimal operating range.
  • FIG. 2 schematically represents an embodiment of a thermal control device 50 of a fluid in a two-phase fluid loop with mechanical pumping according to the invention.
  • the dynamic two-phase thermal management device 80 is the fluid reservoir 19 connected to the closed circuit 11 downstream of the pump 18 and upstream of the evaporator 12.
  • FIG. 3 schematically represents another embodiment of a device 60 for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention.
  • the tank 19 being connected to the closed circuit 11 by a conduit through which fluid passes between the tank 19 and the closed circuit, the dynamic two-phase thermal management device comprises a restriction 81 of the conduit.
  • the restriction 81 can be a butterfly valve, a micrometric valve, a manual valve, a reduction in the section of the conduit or any other device for restricting the conduit.
  • FIG. 4 schematically represents another embodiment of a device 60 for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention.
  • This embodiment is identical to the embodiment presented in Figure 3 , except that the tank 19, the conduit of which includes a restriction, is connected to the closed circuit 11 downstream of the evaporator 12 and upstream of the condenser 15.
  • restriction 81 The role of restriction 81 is to prevent, or at least limit, the entry of fluid into the reservoir.
  • FIG. 5 schematically represents another embodiment of a device 60 for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention.
  • This embodiment is identical to the embodiment presented in figure 2 , except that the tank conduit 19 also includes a restriction.
  • the reservoir 19 is connected to the closed circuit 11 downstream of the pump 18 and upstream of the evaporator 12.
  • FIG. 6 schematically represents another embodiment of a device 70 for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention.
  • the thermal management device 80 further comprises a fluid temperature measuring device 21 capable of providing a measured value 22 of fluid temperature.
  • the thermal management device 80 comprises a device 25 for adjusting the pressure in the closed circuit 11.
  • the thermal management device 80 comprises a means 26 for controlling the device 25 for adjusting the pressure as a function of the measured value 22 of fluid temperature.
  • the control means 26 is configured to activate the device 25 for adjusting the pressure in the closed circuit 11 if the measured value 22 of fluid temperature is greater than a threshold value 43 previously defined.
  • the device 25 for adjusting the pressure in the closed circuit 11 can be a mechanical pressure control device or a device for heating the fluid in the tank 19.
  • the thermal management device 80 corresponds to an anticipatory regulator of the state of the payload. This is an active control law which anticipates the transient phase of the payload. On the basis of a temperature measurement, the comparison between the measured value 22 of fluid temperature and a threshold value 43 (which can be variable depending on the phases of use of the dissipative equipment) gives an indication of the occurrence of a transitional phase. It can also be a comparison between a calculated temperature variation and a threshold value 43 of authorized variation. If this is the case, the reservoir 19 is then put under pressure for a transitional phase increasing in power. Pressurizing the reservoir prevents the fluid from entering the liquid form into the reservoir.
  • a threshold value 43 which can be variable depending on the phases of use of the dissipative equipment
  • the invention is therefore based on the anticipation of transient phases and thus makes it possible to adapt the behavior of the device 70 for thermal control of the loop.
  • the comparison between the measured value 22 of the current and a threshold value 43 gives a indication of the occurrence of a transitional phase.
  • the device 21 is a current measuring device 21.
  • the reservoir 19 is then put under pressure for a transitional phase increasing in power.
  • the device 21 is configured to calculate a variation of temperature or current, in particular to carry out a differential calculation of temperature variation with respect to the temporal variation and/or a differential calculation of the variation of the current intensity with respect to the temporal variation .
  • it is the variation in temperature or current which is used in comparison with a threshold value. Indeed, a sudden variation in this value, for example of the order of 30%, must cause the device 25 for adjusting the pressure in the closed circuit 11 to be activated.
  • two or three embodiments of the invention can be combined to include both a reservoir positioned downstream of the pump, a restriction at the inlet of the reservoir and the active control law dedicated to the reservoir pressure in relation to the planned transient.
  • FIG. 7 represents the evolution of the maximum thermal power (denoted Pth, curve 91), of the pressure (denoted P, curve 92) in the loop and the activation of the reservoir (curve 93) as a function of time according to the invention.
  • This graph makes it possible to visualize the activation of the reservoir (that is to say the heating of the fluid in the reservoir 19 or the pressurization through a membrane under pressure) during the rising power transients.
  • the break in slope for the pressure rise is linked to boiling: a considerable volume of liquid enters the tank making the heating of the tank less effective. We see that by activating the tank, it is possible to absorb the thermal power while maintaining the pressure at a certain level.
  • the triggering of tank activation can be adapted depending on the use cases. As a non-limiting example, it is possible to consider a variation of 30% of the current consumed by the payload to initiate heating of the fluid in the tank.
  • the invention makes it possible to manage more severe ignition transients, therefore configuring the payload faster and more safely.
  • the invention also allows flexibility in the use of the payload without precedent in the history of two-phase loops while guaranteeing the NPSHR (abbreviation of “Net Positive Suction Head Required” for minimum difference required between the total absolute pressure of the liquid at this point and its saturated vapor pressure This is a limit to guarantee the absence of cavitation) and hydraulic stability.
  • the solutions proposed by the invention also have the advantage of offering a system controlled by the use made of it by guaranteeing the good health of the loop and the dissipative equipment mounted on the evaporators. Indeed, thanks to the invention, it is no longer necessary to set strict thermal power variation constraints, or even no variation, as is the case in the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Reciprocating Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

La présente invention se situe dans le domaine du contrôle thermique d'ensembles d'équipements dissipatifs. L'invention se rapporte à un dispositif et procédé de contrôle des instabilités hydrauliques dans une boucle fluide diphasique à pompage mécanique. Elle est décrite dans le domaine d'engin spatial de type satellite mais elle s'applique à n'importe quel système de boucle fluide diphasique à pompage mécanique.The present invention lies in the field of thermal control of sets of dissipative equipment. The invention relates to a device and method for controlling hydraulic instabilities in a two-phase fluid loop with mechanical pumping. It is described in the field of satellite-type spacecraft but it applies to any two-phase fluid loop system with mechanical pumping.

Traditionnellement, une boucle fluide diphasique à pompage mécanique comprend un circuit fermé dans lequel circule un fluide caloporteur, au moins un évaporateur, à travers lequel le fluide circule sous forme majoritairement liquide en entrée de l'évaporateur, l'évaporateur étant configuré pour transformer le fluide sous forme liquide en fluide sous forme partiellement gazeuse, au moins un condenseur, à travers lequel le fluide sous forme partiellement gazeuse circule en entrée du condenseur, le condenseur étant configuré pour transformer le fluide sous forme partiellement gazeuse en fluide sous forme liquide, une pompe, disposée entre la sortie du condenseur et l'entrée de l'évaporateur, destinée à mettre en mouvement le fluide dans le circuit fermé depuis l'évaporateur vers le condenseur sous forme partiellement gazeuse et depuis le condenseur vers l'évaporateur sous forme liquide, un réservoir de fluide relié au circuit fermé, destiné à compenser les variations de volume de fluide dans le circuit fermé.Traditionally, a two-phase fluid loop with mechanical pumping comprises a closed circuit in which a heat transfer fluid circulates, at least one evaporator, through which the fluid circulates in predominantly liquid form at the inlet of the evaporator, the evaporator being configured to transform the fluid in liquid form into fluid in partially gaseous form, at least one condenser, through which the fluid in partially gaseous form circulates at the inlet of the condenser, the condenser being configured to transform the fluid in partially gaseous form into fluid in liquid form, a pump, arranged between the outlet of the condenser and the inlet of the evaporator, intended to set in motion the fluid in the closed circuit from the evaporator towards the condenser in partially gaseous form and from the condenser towards the evaporator in liquid form , a fluid reservoir connected to the closed circuit, intended to compensate for variations in fluid volume in the closed circuit.

Historiquement, les systèmes diphasiques par excellence sont les centrales électriques traditionnelles (qui utilisent des cycles Rankine ou Rankine Hirn) et les réacteurs nucléaires à eau bouillante.Historically, the two-phase systems par excellence are traditional power plants (which use Rankine or Rankine Hirn cycles) and boiling water nuclear reactors.

En général, ces systèmes, ayant comme but de produire de la vapeur à épandre dans une turbine, peuvent fixer la puissance thermique en entrée du système thermo-fluidique. Ils peuvent donc fixer les paramètres dimensionnant du problème (notamment pression, débit et puissance thermique) au mieux avant d'ouvrir l'allée vers la turbine.In general, these systems, aiming to produce steam to be spread in a turbine, can set the thermal power at the input of the thermo-fluidic system. They can therefore set the sizing parameters of the problem (in particular pressure, flow and thermal power) as best as possible before opening the path to the turbine.

Ce type d'application peut être classifié comme : «Puissance thermique au service de la thermo-fluidique».This type of application can be classified as: “Thermal power serving thermo-fluidics”.

Au contraire, une boucle diphasique pour la gestion thermique des satellites, est conçue plutôt comme : «Thermo-fluidique au service de la Puissance thermique». Dans ce cadre, l'optimisation des paramètres mentionnés devient plus difficile : les centrales électriques travaillent à puissance constante alors qu'un satellite change constamment sa puissance thermique selon l'environnement (exposition au soleil), le trafic des utilisateurs et le mode d'utilisation des équipements. Dans ce contexte, la thermo-hydraulique de la boucle est en constant changement alors que les applications terrestres mentionnées travaillent à puissance thermique constante et donc en condition hydraulique constante aussi.On the contrary, a two-phase loop for the thermal management of satellites is designed more like: “Thermo-fluidics serving thermal power”. In this context, the optimization of the mentioned parameters becomes more difficult: power plants work at constant power while a satellite constantly changes its thermal power depending on the environment (exposure to the sun), user traffic and the mode of operation. use of equipment. In this context, the thermo-hydraulics of the loop are constantly changing while the land applications mentioned work at constant thermal power and therefore in constant hydraulic conditions as well.

Dans le cadre des applications terrestres connues de l'art antérieur, les procédures de mise en configuration et d'allumage sont très strictes et la puissance thermique, ainsi que son changement dans le temps, sont dimensionnés pour relaxer les contraintes thermo-hydrauliques. Normalement la séquence d'allumage est la suivante :

  • Allumage du système de pompage (pas forcement au niveau nominal) ;
  • Montée en pression (en général par réchauffage de la zone diphasique, pas forcément au niveau nominal) ;
  • Admission de la vapeur en turbine ;
  • Montée en puissance progressive (limitée entre 2% de la puissance nominale par minute et 5% de la puissance nominale par minute) jusqu'à une valeur constante.
In the context of terrestrial applications known from the prior art, the configuration and ignition procedures are very strict and the thermal power, as well as its change over time, are sized to relax the thermo-hydraulic constraints. Normally the ignition sequence is as follows:
  • Switching on the pumping system (not necessarily at the nominal level);
  • Pressure rise (generally by reheating the two-phase zone, not necessarily to the nominal level);
  • Admission of steam to turbine;
  • Progressive increase in power (limited between 2% of the nominal power per minute and 5% of the nominal power per minute) up to a constant value.

En général, pour l'allumage des réacteurs nucléaires à eau bouillante, des cartographies, des consignes de dimensionnement et des procédures d'allumages ont été standardisées.In general, for the ignition of boiling water nuclear reactors, maps, sizing instructions and ignition procedures have been standardized.

Avec les solutions proposées, la séquence d'allumage d'une boucle fluide diphasique à pompage mécanique (ou MPL pour Mechanically Pumped Loop) est la suivante :

  • Montée en pression (par réchauffage de la zone diphasique, au niveau minimum pour gagner en rapidité) ;
  • Allumage du système de pompage (au niveau nominal) ;
  • Montée en puissance progressive (sans limite temporelle) ;
  • Après cette phase d'initialisation, la puissance thermique pourra varier de 100% de façon instantanée.
With the proposed solutions, the ignition sequence of a mechanically pumped two-phase fluid loop (or MPL for Mechanically Pumped Loop) is as follows:
  • Increase in pressure (by reheating the two-phase zone, to the minimum level to gain speed);
  • Switching on the pumping system (at nominal level);
  • Gradual increase in power (without time limit);
  • After this initialization phase, the thermal power can vary by 100% instantly.

On notera de plus que dans le cadre des applications terrestres citées, l'accumulateur (ou vase d'expansion) et l'évaporateur forment un seul et même composant. Il s'agit là d'une différence notable avec la MPL, où la pression est gérée ailleurs par rapport à l'endroit d'ébullition. En d'autres termes, l'accumulateur (vase d'expansion ou réservoir) et l'évaporateur sont deux composants distincts pour la MPL.It should also be noted that in the context of the land applications mentioned, the accumulator (or expansion tank) and the evaporator form a single component. This is a notable difference from MPL, where the pressure is managed elsewhere relative to the boiling location. In other words, the accumulator (expansion tank or reservoir) and the evaporator are two separate components for the MPL.

Les solutions techniques connues de l'art antérieur ne sont pas conçues pour gérer des transitoires de puissance thermique importantes. Au mieux, les solutions de l'art antérieur sont conçues pour des variations de puissance thermique très faibles. Dans le cadre du monde spatial, la dissipation des équipements peut varier de façon importante. Les agences de télécommunications ayant des spécifications d'allumage de plus en plus contraignantes, il est nécessaire de gérer les transitoires de puissance thermique.The technical solutions known from the prior art are not designed to manage significant thermal power transients. At best, the solutions of the prior art are designed for very low thermal power variations. In the space world, the dissipation of equipment can vary significantly. As telecommunications agencies have increasingly restrictive ignition specifications, it is necessary to manage thermal power transients.

L'art antérieur est représenté par WO 2013/034170 .The prior art is represented by WO 2013/034170 .

Les solutions actuelles consistent à donner des contraintes de variation thermique très strictes, voire aucune variation thermique.Current solutions consist of giving very strict thermal variation constraints, or even no thermal variation.

Dans le passé, les boucles diphasiques servaient à produire de l'énergie, donc la puissance thermique était au service de la fluidique. L'invention se propose de gérer des transitoires violentes et concevoir une boucle fluide diphasique au service des équipements à refroidir.In the past, two-phase loops were used to produce energy, so thermal power was at the service of fluidics. The invention aims to manage violent transients and design a two-phase fluid loop serving the equipment to be cooled.

L'invention vise à pallier tout ou partie des problèmes cités plus haut en proposant un contrôle thermique d'une boucle fluide diphasique à pompage mécanique, notamment pour une application spatiale. Le contrôle thermique est ici un contrôle des instabilités hydrauliques dans la boucle fluide diphasique à pompage mécanique Ce contrôle thermique permet de garantir un comportement hydraulique stable de la boucle, pour garantir la santé de la pompe, garantir la santé du produit lui-même et optimiser les performances du système.The invention aims to overcome all or part of the problems cited above by proposing thermal control of a two-phase fluid loop with mechanical pumping, in particular for a space application. Thermal control here is a control of hydraulic instabilities in the two-phase fluid loop with mechanical pumping. This thermal control makes it possible to guarantee stable hydraulic behavior of the loop, to guarantee the health of the pump, guarantee the health of the product itself and optimize system performance.

A cet effet, l'invention a pour objet un dispositif de contrôle thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique, la boucle fluide diphasique à pompage mécanique comprenant :

  • un circuit fermé dans lequel circule un fluide caloporteur ;
  • au moins un évaporateur comprenant une entrée et une sortie, à travers lequel le fluide circule depuis l'entrée de l'évaporateur sous forme liquide vers la sortie de l'évaporateur, l'évaporateur étant configuré pour transformer le fluide sous forme liquide en fluide sous forme partiellement gazeuse ;
  • au moins un condenseur comprenant une entrée et une sortie, à travers lequel le fluide sous forme partiellement gazeuse circule depuis l'entrée du condenseur vers la sortie du condenseur, le condenseur étant configuré pour transformer le fluide sous forme partiellement gazeuse en fluide sous forme liquide ;
  • une pompe, disposée entre la sortie du condenseur et l'entrée de l'évaporateur, destinée à mettre en mouvement le fluide dans le circuit fermé depuis l'évaporateur vers le condenseur sous forme partiellement gazeuse et depuis le condenseur vers l'évaporateur sous forme liquide ;
  • un réservoir de fluide relié au circuit fermé, destiné à compenser les variations de volume de fluide dans le circuit fermé ;
le dispositif de contrôle étant caractérisé en ce qu'il comprend un dispositif de gestion thermique diphasique dynamique apte à absorber des variations de puissance thermique auxquelles la boucle fluide diphasique à pompage mécanique est soumise.To this end, the subject of the invention is a device for thermal control of a fluid in a two-phase fluid loop with mechanical pumping, the two-phase fluid loop with mechanical pumping comprising:
  • a closed circuit in which a heat transfer fluid circulates;
  • at least one evaporator comprising an inlet and an outlet, through which fluid flows from the inlet of the evaporator in liquid form to the outlet of the evaporator, the evaporator being configured to transform the fluid in liquid form into fluid in partially gaseous form;
  • at least one condenser comprising an inlet and an outlet, through which the fluid in partially gaseous form flows from the inlet of the condenser to the outlet of the condenser, the condenser being configured to transform the fluid in partially gaseous form into fluid in liquid form ;
  • a pump, arranged between the outlet of the condenser and the inlet of the evaporator, intended to set in motion the fluid in the closed circuit from the evaporator towards the condenser in partially gaseous form and from the condenser towards the evaporator in liquid ;
  • a fluid reservoir connected to the closed circuit, intended to compensate for variations in fluid volume in the closed circuit;
the control device being characterized in that it comprises a dynamic two-phase thermal management device capable of absorbing variations in thermal power to which the mechanically pumped two-phase fluid loop is subjected.

Avantageusement, le dispositif de gestion thermique diphasique dynamique est le réservoir de fluide relié au circuit fermé en aval de la pompe et en amont de l'évaporateur.Advantageously, the dynamic two-phase thermal management device is the fluid reservoir connected to the closed circuit downstream of the pump and upstream of the evaporator.

Avantageusement, le réservoir étant relié au circuit fermé par un conduit à travers lequel du fluide transite depuis le réservoir vers le circuit fermé, le dispositif de gestion thermique diphasique dynamique peut comprendre une restriction du conduit.Advantageously, the tank being connected to the closed circuit by a conduit through which fluid passes from the tank to the closed circuit, the dynamic two-phase thermal management device may include a restriction of the conduit.

Avantageusement, le dispositif de gestion thermique peut comprendre en outre :

  • un dispositif de mesure de la température du fluide à la sortie de l'évaporateur apte à fournir une valeur mesurée de température du fluide; et/ou
  • un dispositif de mesure d'un courant utilisé par une charge utile à laquelle le dispositif de contrôle est relié, le dispositif de mesure étant apte à fournir une valeur mesurée de courant ; le dispositif de mesure étant configuré pour calculer une variation de température ou de courant à partir des valeurs mesurées ; et
  • un dispositif d'ajustement de la pression dans le circuit fermé ; et
  • un moyen d'asservissement du dispositif d'ajustement de la pression en fonction de la valeur mesurée et dans lequel le moyen d'asservissement est configuré pour activer le dispositif d'ajustement de la pression dans le circuit fermé si la valeur mesurée ou la variation calculée est supérieure à une valeur seuil préalablement définie.
Advantageously, the thermal management device can further comprise:
  • a device for measuring the temperature of the fluid at the outlet of the evaporator capable of providing a measured value of fluid temperature; and or
  • a device for measuring a current used by a payload to which the control device is connected, the measuring device being able to provide a measured current value; the measuring device being configured to calculate a variation in temperature or current from the measured values; And
  • a device for adjusting the pressure in the closed circuit; And
  • means for controlling the pressure adjustment device as a function of the measured value and in which the control means is configured to activate the pressure adjustment device in the closed circuit if the measured value or the variation calculated is greater than a previously defined threshold value.

Avantageusement, le dispositif d'ajustement de la pression dans le circuit fermé est un dispositif mécanique de contrôle de pression ou un dispositif de chauffage du fluide dans le réservoir.Advantageously, the device for adjusting the pressure in the closed circuit is a mechanical pressure control device or a device for heating the fluid in the tank.

L'invention concerne aussi un procédé de contrôle thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique, la boucle fluide diphasique à pompage mécanique comprenant:

  • un circuit fermé dans lequel circule un fluide caloporteur ;
  • au moins un évaporateur comprenant une entrée et une sortie, à travers lequel le fluide circule depuis l'entrée de l'évaporateur sous forme liquide vers la sortie de l'évaporateur, l'évaporateur étant configuré pour transformer le fluide sous forme liquide en fluide sous forme partiellement gazeuse ;
  • au moins un condenseur comprenant une entrée et une sortie, à travers lequel le fluide sous forme partiellement gazeuse circule depuis l'entrée du condenseur vers la sortie du condenseur, le condenseur étant configuré pour transformer le fluide sous forme partiellement gazeuse en fluide sous forme liquide ;
  • une pompe, disposée entre la sortie du condenseur et l'entrée de l'évaporateur, destinée à mettre en mouvement le fluide dans le circuit fermé depuis l'évaporateur vers le condenseur sous forme partiellement gazeuse et depuis le condenseur vers l'évaporateur sous forme liquide ;
  • un réservoir de fluide relié au circuit fermé, destiné à compenser les variations de volume de fluide dans le circuit fermé ;
le procédé de contrôle étant caractérisé en ce qu'il comprend :
  • une étape de mesure de la température du fluide à la sortie de l'évaporateur dans le circuit fermé et/ou de mesure d'un courant utilisé par une charge utile à laquelle la boucle fluide diphasique à pompage mécanique est reliée ;
  • optionnellement, une étape de calcul d'une variation de température ou de courant à partir des valeurs mesurées ;
  • si la valeur mesurée de température du fluide et/ou de courant et/ou de variation soit de la température du fluide en sortie de l'évaporateur, soit du courant utilisé par la charge utile est supérieure à une valeur seuil préalablement définie, une étape d'ajustement de la pression dans le circuit fermé.
The invention also relates to a method of thermal control of a fluid in a two-phase fluid loop with mechanical pumping, the two-phase fluid loop with mechanical pumping comprising:
  • a closed circuit in which a heat transfer fluid circulates;
  • at least one evaporator comprising an inlet and an outlet, through which fluid flows from the inlet of the evaporator in liquid form to the outlet of the evaporator, the evaporator being configured to transform the fluid in liquid form into fluid in partially gaseous form;
  • at least one condenser comprising an inlet and an outlet, through which the fluid in partially gaseous form flows from the inlet of the condenser to the outlet of the condenser, the condenser being configured to transform the fluid in partially gaseous form into fluid in liquid form ;
  • a pump, arranged between the outlet of the condenser and the inlet of the evaporator, intended to set in motion the fluid in the closed circuit from the evaporator towards the condenser in partially gaseous form and from the condenser towards the evaporator in liquid ;
  • a fluid reservoir connected to the closed circuit, intended to compensate for variations in fluid volume in the closed circuit;
the control method being characterized in that it comprises:
  • a step of measuring the temperature of the fluid at the outlet of the evaporator in the closed circuit and/or measuring a current used by a payload to which the mechanically pumped two-phase fluid loop is connected;
  • optionally, a step of calculating a temperature or current variation from the measured values;
  • if the measured value of fluid temperature and/or current and/or variation either of the temperature of the fluid leaving the evaporator or of the current used by the payload is greater than a previously defined threshold value, a step for adjusting the pressure in the closed circuit.

L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, description illustrée par le dessin joint dans lequel :

  • [Fig.1] La figure 1 représente schématiquement un dispositif de contrôle thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique selon l'invention ;
  • [Fig.2] La figure 2 représente schématiquement un mode de réalisation d'un dispositif de contrôle thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique selon l'invention ;
  • [Fig.3] La figure 3 représente schématiquement un autre mode de réalisation d'un dispositif de contrôle thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique selon l'invention ;
  • [Fig.4] La figure 4 représente schématiquement un autre mode de réalisation d'un dispositif de contrôle thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique selon l'invention ;
  • [Fig.5] La figure 5 représente schématiquement un autre mode de réalisation d'un dispositif de contrôle thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique selon l'invention ;
  • [Fig.6] La figure 6 représente schématiquement un autre mode de réalisation d'un dispositif de contrôle thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique selon l'invention ;
  • [Fig.7] La figure 7 représente l'évolution de la puissance thermique maximale, de la pression dans la boucle et l'activation du réservoir en fonction du temps selon l'invention ;
  • [Fig.8] La figure 8 représente schématiquement un organigramme des étapes du procédé de contrôle thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique selon l'invention.
The invention will be better understood and other advantages will appear on reading the detailed description of an embodiment given by way of example, description illustrated by the attached drawing in which:
  • [ Fig.1 ] There figure 1 schematically represents a device for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention;
  • [ Fig.2 ] There figure 2 schematically represents an embodiment of a device for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention;
  • [ Fig.3 ] There Figure 3 schematically represents another embodiment of a device for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention;
  • [ Fig.4 ] There Figure 4 schematically represents another embodiment of a device for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention;
  • [ Fig.5 ] There Figure 5 schematically represents another embodiment of a device for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention;
  • [ Fig.6 ] There Figure 6 schematically represents another embodiment of a device for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention;
  • [ Fig.7 ] There figure 7 represents the evolution of the maximum thermal power, the pressure in the loop and the activation of the tank as a function of time according to the invention;
  • [ Fig.8 ] There figure 8 schematically represents a flowchart of the steps of the process for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention.

Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures. Pour une meilleure visibilité et dans un souci de compréhension accrue, les éléments ne sont pas toujours représentés à l'échelle.For the sake of clarity, the same elements will carry the same references in the different figures. For better visibility and for the sake of increased understanding, the elements are not always represented to scale.

Comme expliqué dans l'introduction, la MPL peut se retrouver face à la problématique d'absorber jusqu'à 100% de variation de puissance des équipements de l'engin spatial, situés au niveau des évaporateurs. L'invention vise donc à apporter une bonne gestion des transitoires.As explained in the introduction, the MPL can find itself faced with the problem of absorbing up to 100% power variation of the spacecraft equipment, located at the evaporators. The invention therefore aims to provide good management of transients.

La figure 1 représente schématiquement un dispositif de contrôle 10 thermique d'un fluide caloporteur dans une boucle fluide diphasique à pompage mécanique selon l'invention. La boucle fluide diphasique à pompage mécanique comprend un circuit fermé 11 dans lequel circule un fluide caloporteur 20. La boucle comprend au moins un évaporateur 12 comprenant une entrée 13 et une sortie 14, à travers lequel le fluide circule depuis l'entrée 13 de l'évaporateur 12 sous forme liquide 20-liq vers la sortie 14 de l'évaporateur 12, l'évaporateur 12 étant configuré pour transformer le fluide sous forme liquide 20-liq en fluide sous forme partiellement gazeuse 20-g. On peut préciser que le fluide circule depuis l'entrée 13 de l'évaporateur 12 sous forme majoritairement liquide, c'est-à-dire qu'il n'est pas nécessairement uniquement sous forme liquide, vers la sortie 14 de l'évaporateur 12. Cet état est bien connu de l'Homme du métier. Dans la suite, pour faciliter la compréhension, nous parlerons de fluide sous forme liquide. L'évaporateur est configuré pour récupérer, capter une certaine quantité d'énergie thermique extérieure à la boucle, notamment issue des équipements dissipatifs sur le satellite. Le fluide caloporteur 20, alors sous forme liquide 20-liq en entrée de l'évaporateur, reçoit cette énergie thermique et s'évapore partiellement pour se transformer en fluide sous forme partiellement gazeuse 20-g dans l'évaporateur, et quitter l'évaporateur en fluide sous forme partiellement gazeuse 20-g. La boucle comprend au moins un condenseur 15 comprenant une entrée 16 et une sortie 17, à travers lequel le fluide sous forme partiellement gazeuse 20-g circule depuis l'entrée 16 du condenseur 15 vers la sortie 17 du condenseur 15, le condenseur 15 étant configuré pour transformer le fluide sous forme partiellement gazeuse 20-g en fluide sous forme liquide 20-liq. Le condenseur est configuré pour restituer une certaine quantité d'énergie thermique vers l'extérieur de la boucle, par exemple vers l'espace froid autour du satellite. Le fluide caloporteur 20, alors sous forme partiellement gazeuse 20-g en entrée du condenseur, perd cette énergie thermique et se condense partiellement pour se transformer en fluide sous forme liquide 20-liq dans le condenseur, et quitter le condenseur en fluide sous forme liquide 20-liq. La boucle comprend une pompe 18, disposée entre la sortie 17 du condenseur 15 et l'entrée 13 de l'évaporateur 12, destinée à mettre en mouvement le fluide dans le circuit fermé 11 depuis l'évaporateur 12 vers le condenseur 15 sous forme partiellement gazeuse 20-g, et depuis le condenseur 15 vers l'évaporateur 12 sous forme liquide 20-liq. Enfin, la boucle comprend un réservoir de fluide 19 relié au circuit fermé 11, destiné à compenser les variations de volume de fluide dans le circuit fermé 11, en lien avec la quantité de vapeur, due à l'évaporation, présente dans le circuit fermé.There figure 1 schematically represents a device for thermal control of a heat transfer fluid in a two-phase fluid loop with mechanical pumping according to the invention. The two-phase fluid loop with mechanical pumping comprises a closed circuit 11 in which a heat transfer fluid 20 circulates. The loop comprises at least one evaporator 12 comprising an inlet 13 and an outlet 14, through which the fluid circulates from the inlet 13 of the evaporator 12 in liquid form 20-liq towards the outlet 14 of the evaporator 12, the evaporator 12 being configured to transform the fluid in liquid form 20-liq into fluid in partially gaseous form 20-g. It can be specified that the fluid circulates from the inlet 13 of the evaporator 12 in mainly liquid form, that is to say that it is not necessarily only in liquid form, towards the outlet 14 of the evaporator 12. This state is well known to those skilled in the art. In the following, to facilitate understanding, we will talk about fluid in liquid form. The evaporator is configured to recover and capture a certain quantity of thermal energy from outside the loop, in particular from dissipative equipment on the satellite. The heat transfer fluid 20, then in liquid form 20-liq at the inlet of the evaporator, receives this thermal energy and partially evaporates to transform into fluid in partially gaseous form 20-g in the evaporator, and leaves the evaporator in fluid in partially gaseous form 20-g. The loop comprises at least one condenser 15 comprising an inlet 16 and an outlet 17, through which the fluid in partially gaseous form 20-g circulates from the inlet 16 of the condenser 15 towards the outlet 17 of the condenser 15, the condenser 15 being configured to transform the fluid in partially gaseous form 20-g into fluid in liquid form 20-liq. The condenser is configured to return a certain quantity of thermal energy to the outside of the loop, for example to the cold space around the satellite. The heat transfer fluid 20, then in partially gaseous form 20-g at the entrance to the condenser, loses this thermal energy and partially condenses to transform into fluid in liquid form 20-liq in the condenser, and leave the condenser as fluid in liquid form 20-liq. The loop comprises a pump 18, arranged between the outlet 17 of the condenser 15 and the inlet 13 of the evaporator 12, intended to set in motion the fluid in the closed circuit 11 from the evaporator 12 towards the condenser 15 in partially gaseous form 20 -g, and from the condenser 15 to the evaporator 12 in liquid form 20-liq. Finally, the loop comprises a fluid reservoir 19 connected to the closed circuit 11, intended to compensate for variations in fluid volume in the closed circuit 11, in connection with the quantity of vapor, due to evaporation, present in the closed circuit .

Dans le dispositif de l'invention, la pompe peut être une pompe centrifuge. De manière plus générale, le terme pompe est utilisé pour désigner un dispositif de circulation du fluide. Un Homme du métier comprendra que tout dispositif de circulation du fluide est envisageable, par exemple un compresseur. L'invention est décrite dans le cas d'une pompe, mais elle s'applique similairement au cas avec un compresseur.In the device of the invention, the pump can be a centrifugal pump. More generally, the term pump is used to designate a fluid circulation device. A person skilled in the art will understand that any fluid circulation device is possible, for example a compressor. The invention is described in the case of a pump, but it applies similarly to the case with a compressor.

Selon l'invention, le dispositif de contrôle 10 comprend un dispositif 80 de gestion thermique diphasique dynamique apte à absorber des variations de puissance thermique auxquelles la boucle fluide diphasique à pompage mécanique est soumise sans aucune contrainte sur l'utilisation des équipements dissipatifs ni sur la variation de leur dissipation et donc sans contrainte sur la performance opérationnelle.According to the invention, the control device 10 comprises a dynamic two-phase thermal management device 80 capable of absorbing variations in thermal power to which the mechanically pumped two-phase fluid loop is subjected without any constraint on the use of the dissipative equipment or on the variation in their dissipation and therefore without constraint on operational performance.

Grâce au dispositif 80 de gestion thermique diphasique dynamique, il n'y a plus de contraintes opérationnelles pour les utilisateurs. En effet, il n'est pas nécessaire de fixer des contraintes thermiques, comme cela apparaîtra plus clairement à l'aide des exemples de réalisation décrits ci-dessous.Thanks to the dynamic two-phase thermal management device 80, there are no longer any operational constraints for users. In fact, it is not necessary to set thermal constraints, as will appear more clearly using the embodiment examples described below.

Le dispositif selon l'invention permet de contrôler une boucle fluide diphasique lors des transitoires de puissance thermique. Le but est atteint grâce à l'invention par la stabilisation des paramètres hydrauliques afin de respecter certaines contraintes opérationnelles des équipements dissipatifs installés et des éléments constitutifs de la boucle. On garantit ainsi le bon fonctionnement de la pompe, un des organes critique de la MPL, sur la durée de vie du satellite. En effet, grâce à l'invention, la pompe peut fonctionner dans une gamme étroite de son point d'efficacité maximale. En outre, les équipements dissipatifs ont eux aussi certaines contraintes opérationnelles, comme une température maximale. L'invention permet aussi d'assurer le fonctionnement de ces équipements dans leur gamme optimale de fonctionnement.The device according to the invention makes it possible to control a two-phase fluid loop during thermal power transients. The goal is achieved thanks to the invention by stabilizing the hydraulic parameters in order to respect certain operational constraints of the installed dissipative equipment and the constituent elements of the loop. This guarantees the proper functioning of the pump, one of the critical components of the MPL, over the lifespan of the satellite. Indeed, thanks to the invention, the pump can operate within a narrow range of its point of maximum efficiency. In addition, dissipative equipment also has certain operational constraints, such as a maximum temperature. The invention also allows to ensure the operation of this equipment within its optimal operating range.

La figure 2 représente schématiquement un mode de réalisation d'un dispositif de contrôle 50 thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique selon l'invention. Dans ce mode de réalisation, le dispositif 80 de gestion thermique diphasique dynamique est le réservoir de fluide 19 relié au circuit fermé 11 en aval de la pompe 18 et en amont de l'évaporateur 12.There figure 2 schematically represents an embodiment of a thermal control device 50 of a fluid in a two-phase fluid loop with mechanical pumping according to the invention. In this embodiment, the dynamic two-phase thermal management device 80 is the fluid reservoir 19 connected to the closed circuit 11 downstream of the pump 18 and upstream of the evaporator 12.

Il en résulte une compensation des variations de volume de fluide dans le circuit fermé 11 en aval de la pompe, c'est-à-dire sans impact destructeur sur la pompe, même lorsque la boucle doit absorber une grande quantité de contraintes thermiques.This results in compensation for variations in fluid volume in the closed circuit 11 downstream of the pump, that is to say without destructive impact on the pump, even when the loop must absorb a large quantity of thermal stresses.

La figure 3 représente schématiquement un autre mode de réalisation d'un dispositif de contrôle 60 thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique selon l'invention. Dans ce mode de réalisation, le réservoir 19 étant relié au circuit fermé 11 par un conduit à travers lequel du fluide transite entre le réservoir 19 et le circuit fermé, le dispositif de gestion thermique diphasique dynamique comprend une restriction 81 du conduit. La restriction 81 peut être une vanne papillon, une vanne micrométrique, une vanne manuelle, une diminution de la section du conduit ou tout autre dispositif de restriction du conduit.There Figure 3 schematically represents another embodiment of a device 60 for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention. In this embodiment, the tank 19 being connected to the closed circuit 11 by a conduit through which fluid passes between the tank 19 and the closed circuit, the dynamic two-phase thermal management device comprises a restriction 81 of the conduit. The restriction 81 can be a butterfly valve, a micrometric valve, a manual valve, a reduction in the section of the conduit or any other device for restricting the conduit.

La figure 4 représente schématiquement un autre mode de réalisation d'un dispositif de contrôle 60 thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique selon l'invention. Ce mode de réalisation est identique au mode de réalisation présenté à la figure 3, à ceci près que le réservoir 19, dont le conduit comprend une restriction, est relié au circuit fermé 11 en aval de l'évaporateur 12 et en amont du condenseur 15.There Figure 4 schematically represents another embodiment of a device 60 for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention. This embodiment is identical to the embodiment presented in Figure 3 , except that the tank 19, the conduit of which includes a restriction, is connected to the closed circuit 11 downstream of the evaporator 12 and upstream of the condenser 15.

La restriction 81 a pour rôle d'empêcher, ou tout du moins de limiter, l'entrée du fluide dans le réservoir.The role of restriction 81 is to prevent, or at least limit, the entry of fluid into the reservoir.

La figure 5 représente schématiquement un autre mode de réalisation d'un dispositif de contrôle 60 thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique selon l'invention. Ce mode de réalisation est identique au mode de réalisation présenté à la figure 2, à ceci près que le conduit du réservoir 19 comprend en plus une restriction. Comme sur la figure 2, le réservoir 19 est relié au circuit fermé 11 en aval de la pompe 18 et en amont de l'évaporateur 12.There Figure 5 schematically represents another embodiment of a device 60 for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention. This embodiment is identical to the embodiment presented in figure 2 , except that the tank conduit 19 also includes a restriction. As on the figure 2 , the reservoir 19 is connected to the closed circuit 11 downstream of the pump 18 and upstream of the evaporator 12.

La figure 6 représente schématiquement un autre mode de réalisation d'un dispositif 70 de contrôle thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique selon l'invention. Dans ce mode de réalisation, le dispositif 80 de gestion thermique comprend en outre un dispositif de mesure 21 de la température du fluide apte à fournir une valeur mesurée 22 de température du fluide. Le dispositif 80 de gestion thermique comprend un dispositif d'ajustement 25 de la pression dans le circuit fermé 11. Enfin, le dispositif 80 de gestion thermique comprend un moyen d'asservissement 26 du dispositif d'ajustement 25 de la pression en fonction de la valeur mesurée 22 de température du fluide. Selon l'invention, le moyen d'asservissement 26 est configuré pour activer le dispositif d'ajustement 25 de la pression dans le circuit fermé 11 si la valeur mesurée 22 de température du fluide est supérieure à une valeur seuil 43 préalablement définie.There Figure 6 schematically represents another embodiment of a device 70 for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention. In this embodiment, the thermal management device 80 further comprises a fluid temperature measuring device 21 capable of providing a measured value 22 of fluid temperature. The thermal management device 80 comprises a device 25 for adjusting the pressure in the closed circuit 11. Finally, the thermal management device 80 comprises a means 26 for controlling the device 25 for adjusting the pressure as a function of the measured value 22 of fluid temperature. According to the invention, the control means 26 is configured to activate the device 25 for adjusting the pressure in the closed circuit 11 if the measured value 22 of fluid temperature is greater than a threshold value 43 previously defined.

Le dispositif d'ajustement 25 de la pression dans le circuit fermé 11 peut être un dispositif mécanique de contrôle de pression ou un dispositif de chauffage du fluide dans le réservoir 19.The device 25 for adjusting the pressure in the closed circuit 11 can be a mechanical pressure control device or a device for heating the fluid in the tank 19.

Dans ce mode de réalisation, le dispositif 80 de gestion thermique correspond à un régulateur anticipatif de l'état de la charge utile. Il s'agit d'une loi de contrôle actif qui anticipe la phase transitoire de la charge utile. Sur la base d'une mesure de la température, la comparaison entre la valeur mesurée 22 de température du fluide et une valeur seuil 43 (qui peut être variable selon les phases d'utilisation des équipements dissipatifs) donne une indication sur l'occurrence d'une phase transitoire. Il peut aussi s'agir d'une comparaison entre une variation de température calculée et une valeur seuil 43 de variation autorisée. Si tel est le cas, le réservoir 19 est alors mis sous pression en vue d'une phase transitoire montante en puissance. La mise en pression du réservoir empêche l'entrée du fluide sous forme liquide dans le réservoir. L'invention repose donc sur l'anticipation des phases transitoires et permet ainsi d'adapter le comportement du dispositif 70 de contrôle thermique de la boucle. Alternativement et/ou en complément, sur la base d'une mesure du courant consommé par la charge utile (c'est-à-dire les équipements dissipatifs), la comparaison entre la valeur mesurée 22 du courant et une valeur seuil 43 (qui peut être variable selon les phases d'utilisation des équipements dissipatifs) donne une indication sur l'occurrence d'une phase transitoire. Dans ce cas, le dispositif 21 est un dispositif de mesure 21 de courant. De façon similaire, si tel est le cas, le réservoir 19 est alors mis sous pression en vue d'une phase transitoire montante en puissance. Le dispositif 21 est configuré pour calculer une variation de température ou de courant, notamment faire un calcul différentiel de variation de températures par rapport à la variation temporelle et/ou un calcul différentiel de variation de l'intensité de courant par rapport à la variation temporelle. Avantageusement, c'est la variation de température ou de courant qui est utilisée en comparaison avec une valeur seuil. En effet, une variation brutale de cette valeur, par exemple de l'ordre de 30%, doit faire que le dispositif d'ajustement 25 de la pression dans le circuit fermé 11 est actionné.In this embodiment, the thermal management device 80 corresponds to an anticipatory regulator of the state of the payload. This is an active control law which anticipates the transient phase of the payload. On the basis of a temperature measurement, the comparison between the measured value 22 of fluid temperature and a threshold value 43 (which can be variable depending on the phases of use of the dissipative equipment) gives an indication of the occurrence of a transitional phase. It can also be a comparison between a calculated temperature variation and a threshold value 43 of authorized variation. If this is the case, the reservoir 19 is then put under pressure for a transitional phase increasing in power. Pressurizing the reservoir prevents the fluid from entering the liquid form into the reservoir. The invention is therefore based on the anticipation of transient phases and thus makes it possible to adapt the behavior of the device 70 for thermal control of the loop. Alternatively and/or in addition, on the basis of a measurement of the current consumed by the payload (i.e. the dissipative equipment), the comparison between the measured value 22 of the current and a threshold value 43 (which can be variable depending on the phases of use of the dissipative equipment) gives a indication of the occurrence of a transitional phase. In this case, the device 21 is a current measuring device 21. Similarly, if this is the case, the reservoir 19 is then put under pressure for a transitional phase increasing in power. The device 21 is configured to calculate a variation of temperature or current, in particular to carry out a differential calculation of temperature variation with respect to the temporal variation and/or a differential calculation of the variation of the current intensity with respect to the temporal variation . Advantageously, it is the variation in temperature or current which is used in comparison with a threshold value. Indeed, a sudden variation in this value, for example of the order of 30%, must cause the device 25 for adjusting the pressure in the closed circuit 11 to be activated.

Selon la sévérité des transitoires de puissance en phase de conception du design, deux ou trois modes de réalisation de l'invention peuvent être combinés pour comprendre à la fois un réservoir positionné en aval de la pompe, une restriction à l'entrée du réservoir et la loi de contrôle active dédiée à la pression du réservoir par rapport à la transitoire prévue.Depending on the severity of the power transients in the design concept phase, two or three embodiments of the invention can be combined to include both a reservoir positioned downstream of the pump, a restriction at the inlet of the reservoir and the active control law dedicated to the reservoir pressure in relation to the planned transient.

Il faut également noter que ces implémentations spécifiques du dispositif de l'invention concernent tous les réservoirs qui contrôlent la pression du circuit fermé dans le cas où la boucle comprend une pluralité de réservoirs.It should also be noted that these specific implementations of the device of the invention concern all the tanks which control the pressure of the closed circuit in the case where the loop comprises a plurality of tanks.

La figure 7 représente l'évolution de la puissance thermique maximale (notée Pth, courbe 91), de la pression (notée P, courbe 92) dans la boucle et l'activation du réservoir (courbe 93) en fonction du temps selon l'invention. Ce graphique permet de visualiser l'activation du réservoir (c'est-à-dire le chauffage du fluide dans le réservoir 19 ou la pressurisation à travers une membrane sous pression) lors des transitoires montants en puissance. La rupture de pente pour la montée en pression est liée à l'ébullition : un volume considérable de liquide entre dans le réservoir rendant moins efficace le réchauffement du réservoir. On voit qu'en activant le réservoir, il est ainsi possible d'absorber la puissance thermique avec maintien de la pression à un certain niveau.There Figure 7 represents the evolution of the maximum thermal power (denoted Pth, curve 91), of the pressure (denoted P, curve 92) in the loop and the activation of the reservoir (curve 93) as a function of time according to the invention. This graph makes it possible to visualize the activation of the reservoir (that is to say the heating of the fluid in the reservoir 19 or the pressurization through a membrane under pressure) during the rising power transients. The break in slope for the pressure rise is linked to boiling: a considerable volume of liquid enters the tank making the heating of the tank less effective. We see that by activating the tank, it is possible to absorb the thermal power while maintaining the pressure at a certain level.

Le déclenchement de l'activation du réservoir peut être adapté selon les cas d'utilisation. A titre d'exemple non-limitatif, il est possible de considérer une variation de 30% du courant consommé par la charge utile pour initier le réchauffement du fluide dans le réservoir.The triggering of tank activation can be adapted depending on the use cases. As a non-limiting example, it is possible to consider a variation of 30% of the current consumed by the payload to initiate heating of the fluid in the tank.

La figure 8 représente schématiquement un organigramme des étapes du procédé de contrôle thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique selon l'invention. Le procédé de contrôle thermique d'un fluide dans une boucle fluide diphasique à pompage mécanique telle que décrite précédemment, comprend les étapes suivantes :

  • une étape (101) de mesure de la température du fluide dans le circuit fermé 11 et/ou une mesure du courant consommé par la charge utile (les équipements dissipatifs);
  • si la valeur mesurée 22 de température du fluide ou de courant est supérieure à une valeur seuil 43 ou si la variation de température (ou de courant) calculée a varié plus que une valeur seuil 43 préalablement définie pendant un ou plusieurs échantillons, une étape (103) d'ajustement de la pression dans le circuit fermé 11.
There figure 8 schematically represents a flowchart of the steps of the process for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention. The method of thermal control of a fluid in a two-phase fluid loop with mechanical pumping as described above, comprises the following steps:
  • a step (101) of measuring the temperature of the fluid in the closed circuit 11 and/or measuring the current consumed by the payload (the dissipative equipment);
  • if the measured value 22 of fluid temperature or current is greater than a threshold value 43 or if the calculated variation in temperature (or current) has varied more than a threshold value 43 previously defined during one or more samples, a step ( 103) for adjusting the pressure in the closed circuit 11.

L'invention permet de gérer des transitoires d'allumage plus sévères, donc une mise en configuration de la charge utile plus vite et plus sûre. L'invention permet aussi une flexibilité dans l'utilisation de la charge utile sans précédent dans l'histoire des boucles diphasiques tout en garantissant le NPSHR (abréviation de « Net Positive Suction Head Required » pour différence minimal requise entre la pression absolue totale du liquide en ce point et sa pression de vapeur saturante. C'est une limite pour garantir l'absence de cavitation) et une stabilité hydraulique.The invention makes it possible to manage more severe ignition transients, therefore configuring the payload faster and more safely. The invention also allows flexibility in the use of the payload without precedent in the history of two-phase loops while guaranteeing the NPSHR (abbreviation of “Net Positive Suction Head Required” for minimum difference required between the total absolute pressure of the liquid at this point and its saturated vapor pressure This is a limit to guarantee the absence of cavitation) and hydraulic stability.

Les solutions proposées par l'invention présentent en outre l'avantage de proposer un système asservi à l'utilisation qui en est faite en garantissant la bonne santé de la boucle et des équipements dissipatifs montés sur les évaporateurs. En effet, grâce à l'invention, il n'est plus nécessaire de fixer des contraintes de variation de puissance thermique stricte, voire aucune variation, comme c'est le cas de l'art antérieur.The solutions proposed by the invention also have the advantage of offering a system controlled by the use made of it by guaranteeing the good health of the loop and the dissipative equipment mounted on the evaporators. Indeed, thanks to the invention, it is no longer necessary to set strict thermal power variation constraints, or even no variation, as is the case in the prior art.

Il apparaîtra plus généralement à l'Homme du métier que diverses modifications peuvent être apportées aux modes de réalisation décrits ci-dessus, à la lumière de l'enseignement qui vient de lui être divulgué. Dans les revendications qui suivent, les termes utilisés ne doivent pas être interprétés comme limitant les revendications aux modes de réalisation exposés dans la présente description, mais doivent être interprétés pour y inclure tous les équivalents que les revendications visent à couvrir du fait de leur formulation et dont la prévision est à la portée de la personne du métier se basant sur ses connaissances générales.It will appear more generally to those skilled in the art that various modifications can be made to the embodiments described above, in light of the teaching which has just been disclosed to them. In the claims which follow, the terms used should not be construed as limiting the claims to the embodiments set forth in the present description, but must be interpreted to include all equivalents that the claims are intended to cover by virtue of their formulation and the prediction of which is within the ability of a person skilled in the art based on general knowledge.

Claims (5)

  1. A device (10, 50, 60, 70) for thermally controlling a fluid in a mechanically pumped two-phase fluid loop, the mechanically pumped two-phase fluid loop comprising:
    - a closed circuit (11), in which a heat-transfer fluid (20) flows;
    - at least one evaporator (12) comprising an inlet (13) and an outlet (14), through which the fluid flows from the inlet (13) of the evaporator (12) in liquid form (20-liq) towards the outlet (14) of the evaporator (12), the evaporator (12) being configured to convert the fluid in liquid form (20-liq) into fluid in partially gaseous form (20-g);
    - at least one condenser (15) comprising an inlet (16) and an outlet (17), through which the fluid in partially gaseous form (20-g) flows from the inlet (16) of the condenser (15) towards the outlet (17) of the condenser (15), the condenser (15) being configured to convert the fluid in partially gaseous form (20-g) into fluid in liquid form (20-liq);
    - a pump (18), disposed between the outlet (17) of the condenser (15) and the inlet (13) of the evaporator (12), intended to move the fluid in the closed circuit (11) from the evaporator (12) to the condenser (15) in partially gaseous form (20-g) and from the condenser (15) to the evaporator (12) in liquid form (20-liq);
    - a fluid reservoir (19) connected to the closed circuit (11), intended to compensate for the variations in volume of fluid in the closed circuit (11);
    the control device (10) being characterised in that it comprises a dynamic two-phase thermal management device (80) suitable for absorbing variations in thermal power experienced by the mechanically pumped two-phase fluid loop, the dynamic two-phase thermal management device (80) being the fluid reservoir (19) connected to the closed circuit (11) downstream of the pump (18) and upstream of the evaporator (12).
  2. The control device (60) according to claim 1, the reservoir (19) being connected to the closed circuit (11) by a duct, through which fluid passes from the reservoir (19) to the closed circuit, wherein the dynamic two-phase thermal management device comprises a restriction (81) of the duct.
  3. The control device (70) according to any one of claims 1 to 2, the thermal management device (80) further comprising:
    - a device (21) for measuring the temperature of the fluid at the outlet of the evaporator that is suitable for providing a measured value (22) of a temperature of the fluid; and/or
    - a device (21) for measuring a current used by a payload to which the control device is connected, the measurement device (21) being suitable for providing a measured value (22) of a current; the measurement device (21) being configured to compute a variation in temperature or current based on the measured values (22);
    - a device (25) for adjusting the pressure in the closed circuit (11);
    - a means (26) for controlling the device (25) for adjusting the pressure as a function of the measured value (22) and wherein the control means (26) is configured to activate the device (25) for adjusting the pressure in the closed circuit (11) if the measured value (22) or the computed variation is greater than a previously defined threshold value (43).
  4. The control device (10, 50, 60) according to claim 3, wherein the device (25) for adjusting the pressure in the closed circuit (11) is a mechanical pressure control device or a device for heating the fluid in the reservoir (19).
  5. A method for thermally controlling a fluid in a mechanically pumped two-phase fluid loop, the mechanically pumped two-phase fluid loop comprising:
    - a closed circuit (11), in which a heat-transfer fluid (20) flows;
    - at least one evaporator (12) comprising an inlet (13) and an outlet (14), through which the fluid flows from the inlet (13) of the evaporator (12) in liquid form (20-liq) towards the outlet (14) of the evaporator (12), the evaporator (12) being configured to convert the fluid in liquid form (20-liq) into fluid in partially gaseous form (20-g);
    - at least one condenser (15) comprising an inlet (16) and an outlet (17), through which the fluid in partially gaseous form (20-g) flows from the inlet (16) of the condenser (15) towards the outlet (17) of the condenser (15), the condenser (15) being configured to convert the fluid in partially gaseous form (20-g) into fluid in liquid form (20-liq);
    - a pump (18), disposed between the outlet (17) of the condenser (15) and the inlet (13) of the evaporator (12), intended to move the fluid in the closed circuit (11) from the evaporator (12) to the condenser (15) in partially gaseous form (20-g) and from the condenser (15) to the evaporator (12) in liquid form (20-liq);
    - a fluid reservoir (19) connected to the closed circuit (11), intended to compensate for variations in volume of fluid in the closed circuit (11);
    - a dynamic two-phase thermal management device (80) suitable for absorbing variations in thermal power experienced by the mechanically pumped two-phase fluid loop, the dynamic two-phase thermal management device (80) being the fluid reservoir (19) connected to the closed circuit (11) downstream of the pump (18) and upstream of the evaporator (12);
    the control method being characterised in that it comprises:
    - a step (101) of measuring the temperature of the fluid at the outlet of the evaporator (12) in the closed circuit (11) and/or of measuring a current used by a payload to which the mechanically pumped two-phase fluid loop is connected;
    - optionally, a step of computing a variation in temperature or current based on the measured values;
    - a step (103) of adjusting the pressure in the closed circuit (11), if the measured value (22) of a temperature of the fluid and/or a current and/or a variation, either of the temperature of the fluid at the outlet of the evaporator or of the current used by the payload, is greater than a previously defined threshold value (43).
EP22180652.4A 2021-06-24 2022-06-23 Device and method for controlling hydraulic instabilities in a two-phase fluid loop with mechanical pumping Active EP4108918B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2106765A FR3124552B1 (en) 2021-06-24 2021-06-24 Device and method for controlling hydraulic instabilities in a two-phase fluid loop with mechanical pumping

Publications (3)

Publication Number Publication Date
EP4108918A1 EP4108918A1 (en) 2022-12-28
EP4108918C0 EP4108918C0 (en) 2024-05-01
EP4108918B1 true EP4108918B1 (en) 2024-05-01

Family

ID=77821848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22180652.4A Active EP4108918B1 (en) 2021-06-24 2022-06-23 Device and method for controlling hydraulic instabilities in a two-phase fluid loop with mechanical pumping

Country Status (3)

Country Link
EP (1) EP4108918B1 (en)
FR (1) FR3124552B1 (en)
PL (1) PL4108918T3 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6087359B2 (en) * 2011-09-09 2017-03-01 セルン − ヨーロピアン オーガナイゼーション フォー ニュークリア リサーチCERN − European Organization for Nuclear Research Mini cooling system and method for accurate temperature control
US10591221B1 (en) * 2017-04-04 2020-03-17 Mainstream Engineering Corporation Advanced cooling system using throttled internal cooling passage flow for a window assembly, and methods of fabrication and use thereof
US10775110B2 (en) * 2018-04-12 2020-09-15 Rolls-Royce North American Technologies, Inc. Tight temperature control at a thermal load with a two phase pumped loop, optionally augmented with a vapor compression cycle
IT201800009390A1 (en) * 2018-10-12 2020-04-12 Francesco Romanello FORCED CONVECTION TWO-PHASE COOLING SYSTEM

Also Published As

Publication number Publication date
EP4108918A1 (en) 2022-12-28
FR3124552B1 (en) 2023-10-06
PL4108918T3 (en) 2024-07-01
FR3124552A1 (en) 2022-12-30
EP4108918C0 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
EP2802834B1 (en) Cooling device suitable for regulating the temperature of a heat source of a satellite, and method for producing the associated cooling device and satellite
FR2721353A1 (en) Returnless fuel system for an internal combustion engine.
WO2021240111A1 (en) Installation for heating a cryogenic fuel
EP2961966A1 (en) Method and device for regulating the cooling of oil in a turbomachine
EP0006040B1 (en) Process for regulating the water level in steam boilers or steam generators
EP4108918B1 (en) Device and method for controlling hydraulic instabilities in a two-phase fluid loop with mechanical pumping
FR2519793A1 (en) METHOD AND APPARATUS FOR SUPPRESSION OF A REFRIGERANT OVERPRESSURIZATION IN A NUCLEAR ELECTRIC ENERGY GENERATION APPARATUS WHEN THE PRESSURIZER IS FULLY IN WATER
EP1970649A1 (en) Device for adjusting the subcooling of the coolant downstream from the condenser of a refrigeration system and system including this device
WO2018055307A1 (en) System for cooling a circuit of a first fluid of a turbomachine
WO2017129906A1 (en) Pressure control system, fuel cell assembly and use of said control system
EP2791595B1 (en) Method for regulating a cryogenic cooling system
FR2934890A1 (en) Thermodynamic heat pump installation for heating room, has secondary compressor in which secondary heat transfer fluid is reheated by compression before ceding fluid by condensing calories of secondary fluid accumulated by compression
EP4108917B1 (en) Device and method for controlling the pressure of a fluid in a two-phase fluid loop with mechanical pumping
EP0040160B1 (en) Primary circuit pressure-control method during the shut-down period of a pressurised water nuclear reactor
FR2537707A1 (en) Refrigeration circuit regulating system
EP2618038B1 (en) Facility and method for supplying liquid xenon
FR2935749A1 (en) Fuel circuit for use in jet engine of airplane, has hydraulic cylinders supplied with fuel through servo valves, and fuel line including electrical fuel heating device arranged in upstream of servo valves
EP2981781B1 (en) Heat pipe comprising a cut-off gas plug
FR2775339A1 (en) Compression type refrigerating system.
FR3038656A1 (en) TURBOMACHINE ASSEMBLY FOR COOLING AND CONTROLLING THE IMPROVED PERFORMANCE GAME
FR3009630A1 (en) METHOD AND MODULE FOR FILTERING A RAW POINT
FR2986849A1 (en) Device for limiting flow of fluid circulating between high temperature and low-temperature zones of pneumatic circuit in engine of aircraft, has thermosensitive device whose deformation limits flow of fluid according to fluid temperature
EP3044521B1 (en) Solar energy system for domestic hot water production and cooling
FR2496240A1 (en) Air to water heat pump - has evaporator pre-heater with heat exchanger connected parallel to radiators
EP3746647B1 (en) Degassing vessel for motor vehicle cooling circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230628

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602022003174

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20240530

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240607

U20 Renewal fee paid [unitary effect]

Year of fee payment: 3

Effective date: 20240607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240604

Year of fee payment: 3