EP4107450B1 - Verdünnungskühlvorrichtung und verfahren - Google Patents

Verdünnungskühlvorrichtung und verfahren Download PDF

Info

Publication number
EP4107450B1
EP4107450B1 EP21702045.2A EP21702045A EP4107450B1 EP 4107450 B1 EP4107450 B1 EP 4107450B1 EP 21702045 A EP21702045 A EP 21702045A EP 4107450 B1 EP4107450 B1 EP 4107450B1
Authority
EP
European Patent Office
Prior art keywords
dilution
refrigeration device
working
fluid
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21702045.2A
Other languages
English (en)
French (fr)
Other versions
EP4107450A1 (de
Inventor
Simon CRISPEL
Alain Ravex
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP4107450A1 publication Critical patent/EP4107450A1/de
Application granted granted Critical
Publication of EP4107450B1 publication Critical patent/EP4107450B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/12Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using 3He-4He dilution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Definitions

  • the invention relates to a dilution refrigeration device and method.
  • the invention relates more particularly to a dilution refrigeration device for obtaining very low temperatures, particularly in the range between milliKelvin and hundreds of milliKelvin, comprising a loop working circuit containing a cycle fluid comprising a mixture of isotope 3 helium and isotope 4 helium, the working circuit comprising, arranged in series and fluidly connected via a first set of pipes, a mixing chamber, a boiler and a transfer member, the first set of pipes being configured to transfer cycle fluid from an outlet of the mixing chamber to an inlet of the boiler and from an outlet of the boiler to an inlet of the transfer member, the working circuit comprising a second set pipe connecting an outlet of the transfer member to an inlet of the mixing chamber, the working circuit comprising at least a first heat exchange portion between at least a part of the first pipe assembly and the second set of pipe, the first heat exchange portion being located between the boiler and the mixing chamber, the device further comprising at least one cooling member in thermal exchange with the working circuit and configured to transfer frigories to
  • Quantum phenomena give rise to theoretical and technological developments likely to be used to carry out operations (“quantum computing”) for the development of supercomputers (for example carrying out a billion billion calculations every second) by manipulating “qubits”. » superconductors at temperatures close to milliKelvin or based on silicon at a few hundred milliKelvin.
  • the traditional means of obtaining refrigeration power at temperatures of the order of milliKelvin to hundreds of milliKelvin is the refrigerator with dilution of helium3 in helium4.
  • JP 2001 304709 A discloses a dilution refrigeration device according to the preamble of claim 1.
  • An aim of the present invention is to overcome all or part of the disadvantages of the prior art noted above.
  • the device according to the invention is essentially characterized in that it comprises at least one cryogenic pumping member located in the working circuit between the boiler and the transfer member.
  • a dilution refrigeration device and its method according to the invention are defined in claims 1 and 20, respectively.
  • the invention may also relate to any alternative device or method comprising any combination of the characteristics above or below within the scope of the claims.
  • the dilution refrigeration device 1 shown in [ Fig. 1 ] comprising a loop working circuit 20 containing a cycle fluid comprising a mixture of isotope helium 3 ("3He” or “helium 3”) and isotope helium 4 ("4He” or “helium 4”) ").
  • This working circuit 20 comprises, arranged in series and fluidly connected via a first set of pipes 2, 4, a mixing chamber 3, a boiler 5 and a transfer member 6.
  • the first set of pipes 2, 4 is configured to transfer cycle fluid from an outlet of the mixing chamber 3 to an inlet of the boiler 5 and from an outlet of the boiler 5 to an inlet of the transfer member 6 .
  • the working circuit 20 comprises a second conduit assembly 7 connecting an outlet of the transfer member 6 to an inlet of the mixing chamber 3.
  • the boiler 5 (or evaporator) conventionally ensures phase separation between helium 3 and helium 4 (the bath, which contains for example 1% by mole of helium 3 is for example at a temperature between 0.7 and 1K).
  • the boiler 5 supplies the helium 3 transfer member 6 via the first conduit assembly 4.
  • the temperature can be of the order for example of 5 to 300mK and in particular between 5 and 150mK.
  • the concentrated liquid helium 3 returned by the transfer member 6 into the mixing chamber 3 can be located in the upper part of this chamber 3, above a diluted liquid phase (containing for example 6 to 7% of helium 3).
  • One end of the first pipe assembly 7 opens for example into this upper concentrated phase.
  • the injected concentrated helium 3 phase is diluted in the diluted phase; it is this endothermic dilution process which produces the refrigerating power at the temperature of the mixing chamber 3.
  • the cold produced can be used to cool a user (symbolized by the reference 24 in [ Fig. 1 ]).
  • the working circuit 20 comprises at least a first heat exchange portion 9 between at least part of the first pipe assembly 2, 4 and the second pipe assembly 7.
  • the first heat exchange portion 9 is located between the boiler 5 and the mixing chamber 3.
  • This heat exchange portion 9 uses for example at least one counter-current heat exchanger which makes it possible to pre-cool the concentrated Helium3 phase reinjected into the mixing box 3 by the diluted Helium3 phase which rises from this box. 3 to mix towards the boiler 5.
  • the efficiency of the counter-current heat exchangers 9 between the diluted phases and the concentrated phase is the critical point of these dilution refrigerators.
  • the so-called Kapitza thermal resistances which appear at very low temperatures between helium and solid materials and increase as the inverse of the square of the temperature make the sizing of these exchangers very difficult and critical.
  • the transfer member 6 comprises for example a cycle fluid compressor.
  • this compressor 6 operates at ambient temperature (for example outside a cold box 29 which contains the rest of the device). That is to say that this compressor 6 can be at a non-cryogenic temperature in the operating configuration of the dilution refrigeration device 1.
  • the device 1 further comprises at least one cooling member 22 in thermal exchange with the working circuit 20 and configured to transfer frigories to the cycle fluid, that is to say to cool the cycle fluid.
  • the cooling member 22 comprises a heat exchange with the working circuit 20 (second pipe assembly 7) to cool the fluid at the outlet of the transfer member 6 (for example to 1.3 to 1, 4K).
  • the working circuit 20 further comprises a cryogenic pumping member 8 located between the boiler 5 and the transfer member 6.
  • the device 1 therefore comprises at least one thermally insulated cold box 29 which contains all or part of the cold (cryogenic) components of the device 1.
  • the pumping member 8 is located in the cold box 29.
  • This cryogenic pumping member 8 thus operates preferably at cold temperatures between the temperature of the boiler and the ambient temperature (ambient temperature excluded).
  • the transfer member 6 is preferably located outside the cold box 29 (for example at room temperature) but could also be located in the cold box 29 in certain variants.
  • This cryogenic pumping member 8 is configured to pump the fluid for example at a temperature of 1.8K to 4K.
  • This pumping member 8 comprises for example a turbo type pump molecular, “Holweck”, centrifugal wheel or any combination of these technologies.
  • This pumping member 8 is configured for a low pressure (around 0.1 millibar for example) and a low temperature (for example around 700/850mK) consistent with the operation of the boiler 5.
  • This cryogenic pumping member 8 is preferably configured to pump helium3 having a pressure of approximately 0.1mbar or less.
  • This architecture with a pumping member 8 in the cold part of the circuit 20 makes it possible to increase the cycle fluid flow and therefore the cold power produced.
  • This arrangement makes it possible in particular to achieve cold powers produced which could not be achieved by known systems (in particular due to the sizes of the compressors 6 required and the expected efficiency).
  • the device comprises several counter-current heat exchangers 9 in the circuit 20 between the mixing chamber 3 and the boiler 5.
  • the device 1 comprises a second portion 10 for heat exchange between at least one part of the first pipe assembly 2, 4 and the second pipe assembly 7 and located between the boiler 5 and the transfer member 6.
  • This second exchange portion 10 can comprise a counter-current heat exchanger between the two sets of pipes 2, 7.
  • This heat exchanger 10 can be in heat exchange with a cooling member 12 which thus ensures a pre- cooling of the cycle fluid (for example at a temperature of around 4K).
  • Another (third) heat exchange portion 23 can be provided (in addition or alternatively) between the pumping member 8 and the boiler 5.
  • This third heat exchange portion 23 can be provided for example to ensure a pre-cooling of the cycle fluid (for example to a temperature of around 1.8K).
  • the third heat exchange portion 23 can receive cold from a cooling member 22.
  • the circuit 20 can include a heat exchange portion 11 between the second pipe assembly 7 and the boiler 5. This heat exchange can for example bring the cycle fluid to a temperature of the order of 0, 6 to 1K for example.
  • the fluid can reach a temperature lower than 20mK, for example up to 5mK.
  • the fluid in the boiler 5 has for example a pressure of between 0.05 and 0.1 mbar.
  • This architecture allows pumping in line 4, 2 rising to ambient temperature at a higher pressure than in the configuration of known systems. This architecture makes it possible to limit the problems of pressure losses in the pumping line up to ambient and a reduction in the volume flow in the compression member 6. This pumping member 8 ensures cold compression which increases the flow rate while drastically reducing the size and energy required for pumping (compared to architectures with compressions at room temperature).
  • This pumping member 8 can pump the fluid for example with a discharge pressure of between 10 and 500 mbar, in particular 300 mbar.
  • cryogenic pumping member 8 can be located at any cycle temperature 20 between the boiler 5 and the transfer member 6 (case of the compressor in particular) which is at ambient temperature.
  • This pumping member 8 can, where appropriate, be thermalized (that is to say, cooled or kept cold) by the aforementioned cooling member 22 (or another cooling member 12 of the device).
  • the transfer member 6 comprises or is made up of a heat exchanger 26 which is preferably also in the cold part of the device 1. That is to say, at the outlet of the cryogenic pumping member 8 , the pumped fluid is kept cold before being returned to the second assembly 7 for driving the circuit 20.
  • This configuration can be obtained after starting the device which includes a hot transfer member 6 such as a compressor as described below -above. That is to say that the device is started for example in the configuration of the [ Fig. 2 ] then the compressor 6 is switched off or bypassed by a cold exchanger 6 and the entire device 1 is cold (in a cold box for example).
  • the exchanger 26 of the transfer member 6 can be configured to exchange thermally with a cold source (a cooling member 22 for example) with a view to pre-cooling, for example at a temperature of 4K.
  • the at least one cooling member 22, 12 which is provided to cool or pre-cool the cycle fluid preferably comprises a cryogenic refrigerator (and/or liquefier).
  • FIG. 4 An example of a combination of such a refrigerator and a dilution refrigeration device is shown in [ Fig. 4 ] (or more schematically at [ Fig. 8 ]).
  • the refrigerator 12 generally comprising a working circuit 13 forming a loop and containing a working fluid (preferably comprising helium and possibly at least one other gas: hydrogen, nitrogen, argon, etc.) cf. [ Fig. 4 ] .
  • a working fluid preferably comprising helium and possibly at least one other gas: hydrogen, nitrogen, argon, etc.
  • At least one cold compressor 25 can be provided in the circuit before the counter-current exchanger 15 and before the return to the compression mechanism 14.
  • the working gas is subjected in the circuit to an inverse Claude or Ericsson type thermodynamic cycle.
  • the refrigerator 12 has at least one heat exchange portion 18, 27 between the working fluid expanded in the expansion mechanism 16 and at least part of the cycle fluid of the dilution refrigeration device 1, to cool and/or pre-cool.
  • the cryogenic refrigerator 12 preferably comprises at least one tank 19 for storing liquefied working gas downstream of the working fluid expansion mechanism 16, 17.
  • the refrigerator 12 is configured to liquefy working fluid in the tank(s) 19.
  • the heat exchange portion(s) 18, 27 between the expanded working fluid and at least part of the cycle fluid of the dilution refrigeration device 1 preferably comprises a heat exchange between the liquefied working fluid located in the at less a tank 19 and the cycle fluid of the dilution refrigeration device 1.
  • the cryogenic refrigerator 12 comprises two tanks 19 for storing liquefied working gas located at separate locations in the working circuit.
  • the refrigerator 12 is configured to liquefy cycle fluid in said tanks 19 at distinct respective cycle temperatures (for example, according to the direction of circulation of the working fluid respectively liquid helium at 4K and liquid at 1, 8K).
  • the liquefied working fluids located in said tanks 19 are put into thermal exchange with the cycle fluid of the dilution refrigeration device at respective distinct locations 18, 27 of the working circuit of the dilution refrigeration device 1.
  • the heat exchange between the liquefied fluid and the cycle fluid of the dilution refrigeration device 1 is symbolized by a heat exchange portion of the circuit 20 working with the bath of the tanks. More precisely, a first portion 27 of the second set of pipes 7 (and/or portion 18 of the first set of pipes) is in direct heat exchange with the interior of a tank 19 and a second portion 27 of the second set 7 pipe (and/or portion 18 of the first pipe assembly 2) is in direct heat exchange with the interior of the other tank 19).
  • all cold (cryogenic) parts of the installation can be arranged in a thermally and vacuum insulated cold box 29. That is to say that only the transfer member 6 (compressor) and the mechanism 14 of compression, which are at a non-cryogenic temperature (for example ambient) are outside the cold box 29.
  • cooling and/or pre-cooling system can be applied to the dilution refrigeration device 1 of the embodiment of the [ Fig. 3 ].
  • the cooling/pre-cooling member(s) 12, 22 of the device of the [ Fig. 3 ] may include or be made up of the same refrigeration device of the [ Fig. 4 ] described above, for example a Claude cycle pre-cooling refrigerator having a cold power available at 4 to 5 K and 1 to 2K for example.
  • a liquefier or refrigerator 12 can provide all or part of the cold power to the refrigeration device 1 to dilute the [ Fig. 3 ] .
  • the cold transfer member 6 (cold heat exchanger 26) could also be in the cold box 29 (only the compression mechanism 14 would be placed outside).
  • the dilution cooling device 1 may comprise several dilution loops each comprising a respective mixing chamber 3 and a boiler 5.
  • the circuit 20 for working the cycle fluid can thus comprise several first sets of distinct lines 2, 4 and several second separate sets of lines 7. That is to say that the production of cold can include several dilution systems which preferably share at least part of the constituent organs.
  • This is schematized in particular in [ Fig. 5 ] where two dilution loops have been represented and two other potential loops have been symbolized by dotted lines.
  • the elements already described are designated by the same numerical references and are not explained in detail a second time. To the [ Fig. 9 ] only three dilution loops were represented.
  • At least part of the several dilution loops can comprise a common transfer member 6 (compressor and/or exchanger as described previously). That is to say that the cycle fluid circulating in several dilution loops passes through the same shared transfer member 6.
  • the first sets of pipes 2, 4 and second corresponding sets of pipes 7 can thus be connected in parallel to the common transfer member 6.
  • the several dilution loops may comprise a common pumping member 8, that is to say that the cycle fluid circulating in several dilution loops passes (is pumped) in the same member 8 of shared pumping in a common collecting pipe.
  • the first sets of pipes 2, 4 and/or the corresponding second sets of pipes 7 can then be connected in parallel to said common pumping member 8.
  • one or more or all of the different dilution loops may comprise one or more own pumping members 8 which are not shared. That is to say, in addition to the shared pumping member(s) 8, one or more dilution loops may include one or more pumping members 8 located on a pipe which is not shared with another loop. dilution.
  • all or part of these multiple dilution refrigeration systems can be pre-cooled and/or cooled by the same cooling/pre-cooling member 12, 22.
  • the common cooling device can thus comprise a cryogenic refrigerator 12 as described above (comprising a working circuit 13 forming a loop and containing a working fluid containing for example helium, the working circuit 13 forming a cycle comprising in series: a mechanism 14 for compressing the working fluid, a mechanism 15 for cooling the working fluid, a mechanism 16, 17 for expanding the working fluid and a mechanism 15 for heating the working fluid).
  • This refrigerator 12 comprises at least one heat exchange portion 18 between the working fluid expanded in the expansion mechanism 16 and at least part of the cycle fluid of the several distinct dilution loops of the dilution refrigeration device.
  • the cryogenic refrigerator forming the common cooling device may include at least one tank 19 for storing liquefied working gas (in particular two tanks).
  • the device comprising a transfer pipe 21 connecting each storage tank 19 to at least one portion 18 of at least part of the several distinct dilution loops of the dilution refrigeration device to ensure heat exchange between the working fluid and the cycle fluid in each of said dilution loops of the dilution refrigeration device.
  • the fluid used to cool/pre-cool the dilution loops is returned to the working circuit 13 via a respective return pipe 121.
  • FIG. 6 represents a schematic view of a part possible example of structure of a part of one of the dilution loops of the [ Fig. 5 ].
  • the cryogenic pumping member 8 is shared (and is not shown). That is to say that the fluid leaving the boiler 5 is returned to the common pumping member 8.
  • the pre-cooling of the dilution loop comprises a first reserve 18 of liquefied cooling fluid (for example at a temperature of 4K) in thermal exchange with the dilution loop (the second pipe assembly 7 in particular) before the boiler 5.
  • the pre-cooling of the dilution loop includes a second reserve 18 of liquefied cooling fluid (for example at a temperature of 1.8K) in thermal exchange with the dilution loop (the second pipe assembly 7 in particular) between the first reserve and the boiler 5.
  • a second reserve 18 of liquefied cooling fluid for example at a temperature of 1.8K
  • Each of the reserves 18 is connected to the common refrigerator 12 via transfer pipes 21 and respective liquid return pipes 121.
  • Fig. 7 represents the possible arrangement of the fluidic connections of the different dilution loops to the common refrigerator.
  • the transfer pipes 21 respectively supplying the reserves 18 of six liquefaction loops with a view to their pre-cooling and the six respective return pipes 121 returning the liquefied cryogenic fluid having been used to pre-cool six dilution loops .
  • the transfer pipes 21 can each include a valve 28 for controlling or stopping the flow.
  • the transfer pipes 21 are connected to a first tank 19 for storing liquefied working gas.
  • the return pipes 121 are connected to the working circuit.
  • the ends of the first sets 2 of pipes are connected to a collecting pipe comprising the common cryogenic pumping member 8.
  • the transfer pipes 21 are connected to a second tank 19 for storing liquefied working gas.
  • the return pipes 121 are connected to the working circuit.
  • the device 1 allows a distributed architecture comprising several (six in this example but which could be quite different, for example ten or more) distinct dilution loops producing cold and cooled by a member 12 or central cryostat ensuring pre-cooling cycle fluids from ambient temperature to a target cryogenic temperature (for example 4K and/or 1.8K)
  • a target cryogenic temperature for example 4K and/or 1.8K
  • the cryogenic pumping member 8 of the boiler 5 of the cold stages of the satellite dilutions is shared.
  • this architecture with multiple dilution loops allows, in addition to its modularity, to isolate one or more loops for repair while the other dilution loops are active.
  • the common cooling member 12 makes it possible to efficiently cool the various components.
  • the invention makes it possible to increase the pumping flow capacity which increases the cold power produced by dilution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Claims (20)

  1. Verdünnungskühlvorrichtung zum Erreichen von sehr niedrigen Temperaturen, insbesondere im Bereich zwischen einem Millikelvin und etwa hundert Millikelvin, umfassend einen geschlossenen Arbeitskreis (20), der ein Zyklusfluid enthält, das ein Mischung aus Helium-Isotop 3 (3He) und Helium-Isotop 4 (4He) umfasst, wobei der Arbeitskreis (20), in Reihe angeordnet und fluidisch über eine erste Leitungsanordnung (2, 4) verbunden, eine Mischungskammer (3), einen Verdampfer (5) und ein Übertragungsorgan (6) umfasst, wobei die erste Leitungsanordnung (2, 4) dazu ausgestaltet ist, Zyklusfluid von einem Auslass der Mischungskammer (3) zu einem Einlas des Verdampfers (5) und von einem Auslass des Verdampfers (5) zu einem Einlass des Übertragungsorgans (6) zu übertragen, wobei der Arbeitskreis (20) eine zweite Leitungsanordnung (7) umfasst, die einen Auslass des Übertragungsorgans (6) mit einem Einlass der Mischungskammer (3) verbindet, wobei der Arbeitskreis (20) mindestens einen ersten Wärmeaustauschabschnitt (9) zwischen mindestens einem Teil der ersten Leitungsanordnung (2, 4) und der zweiten Leitungsanordnung (7) umfasst, wobei sich der erste Wärmeaustauschabschnitt (9) zwischen dem Verdampfer (5) und der Mischungskammer (3) befindet, wobei die Vorrichtung ferner mindestens ein Kühlorgan (22, 12) umfasst, das im Wärmeaustausch mit dem Arbeitskreis (20) ist und dazu ausgestaltet ist, Frigorien an das Zyklusfluid zu übertragen, wobei die Vorrichtung (1) mindestens eine thermisch isolierte Kältekammer (29) umfasst, die die kryogenen kalten Teile enthält, dadurch gekennzeichnet, dass sie mindestens ein kryogenes Pumporgan (8) umfasst, das sich in dem Arbeitskreis (20) in der mindestens einen Kältekammer (29) zwischen dem Verdampfer (5) und dem Übertragungsorgan (6) befindet.
  2. Verdünnungskühlvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Übertragungsorgan (6) einen Kompressor für das Zyklusfluid umfasst.
  3. Verdünnungskühlvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Übertragungsorgan (6) einen Wärmetauscher (26) umfasst.
  4. Verdünnungskühlvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sich das mindestens eine kryogene Pumporgan (8) in der ersten Leitungsanordnung (2, 4) des Arbeitskreises (20) befindet und dass, in der Betriebskonfiguration der Kühlvorrichtung, das Zyklusfluid darin mit einer kryogenen Temperatur eingelassen wird, insbesondere zwischen 0,5 K und 80 K.
  5. Verdünnungskühlvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das mindestens eine kryogene Pumporgan (8) dazu ausgestaltet ist, das Zyklusfluid zu pumpen, das einen Einlassdruck zwischen 0,01 mbar und 100 mbar hat.
  6. Verdünnungskühlvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sie einen zweiten Wärmeaustauschabschnitt (10) zwischen mindestens einem Teil der ersten Leitungsanordnung (2, 4) und der zweiten Leitungsanordnung (7), der sich zwischen dem Verdampfer (5) und dem Übertragungsorgan (6) befindet, aufweist, und dadurch, dass sich das mindestens eine kryogene Pumporgan (8) zwischen dem zweiten Wärmeaustauschabschnitt (10) und dem Verdampfer (5) und/oder zwischen dem zweiten Wärmeaustauschabschnitt (10) und dem Übertragungsorgan (6) befindet.
  7. Verdünnungskühlvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das mindestens eine Kühlorgan (22, 12) ein Kühlgerät (12) im Wärmeaustausch mit der zweiten Leitungsanordnung (7) zwischen dem Übertragungsorgan (6) und dem Mischungsorgan (3) aufweist, wobei das Kühlorgan (12, 22) dazu ausgestaltet ist, das Zyklusfluid der Verdünnungskühlvorrichtung (1) zu kühlen.
  8. Verdünnungskühlvorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sie einen Wärmeaustauschabschnitt (11) zwischen der zweiten Leitungsanordnung (7) und dem Verdampfer (5) aufweist.
  9. Verdünnungskühlvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das mindestens eine Kühlorgan (22, 12) eine kryogene Kältemaschine (12) umfasst, die einen Arbeitskreis (13) umfasst, der einen Kreislauf bildet und ein Arbeitsfluid enthält, das Helium umfasst, wobei der Arbeitskreis (13) einen Zyklus bildet, der in Reihe umfasst: einen Arbeitsfluid-Kompressionsmechanismus (14) einen Arbeitsfluid-Kühlmechanismus (15), einen Arbeitsfluid-Entspannungsmechanismus (16, 17) und einen Arbeitsfluid-Erwärmungsmechanismus (15), wobei die Kältemaschine (12) mindestens einen Wärmeaustauschabschnitt (18) zwischen dem in dem Entspannungsmechanismus (16) entspannten Arbeitsfluid und mindestens einem Teil des Zyklusfluids der Verdünnungskühlvorrichtung (1) umfasst.
  10. Verdünnungskühlvorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die kryogene Kältemaschine (12) mindestens einen Behälter (19) zur Speicherung von verflüssigtem Arbeitsgas stromab des Arbeitsfluid-Entspannungsmechanismus (16, 17) umfasst, wobei die Kältemaschine (12) dazu ausgestaltet ist, Arbeitsfluid in dem Behälter (19) zu verflüssigen, und dadurch, dass der mindestens eine Wärmeaustauschabschnitt (18) zwischen dem entspannten Arbeitsfluid und mindestens einem Teil des Zyklusfluids der Verdünnungskühlvorrichtung einen Wärmeaustausch zwischen dem verflüssigten Arbeitsfluid, das sich in dem mindestens einen Behälter (19) befindet, und dem Zyklusfluid der Verdünnungskühlvorrichtung (1) umfasst.
  11. Verdünnungskühlvorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die kryogene Kältemaschine mindestens zwei Behälter (19) zur Speicherung von verflüssigtem Arbeitsgas umfasst, die sich an verschiedenen Stellen des Arbeitskreises befinden, wobei die Kältemaschine dazu ausgestaltet ist, Zyklusfluid in den Behältern (19) bei verschiedenen jeweiligen Temperaturen zu verflüssigen, und dadurch, dass die verflüssigten Arbeitsfluids, die sich in den Behältern (19) befinden, mit dem Zyklusfluid der Verdünnungskühlvorrichtung an jeweiligen verschiedenen Stellen des Arbeitskreises der Verdünnungskühlvorrichtung in Wärmeaustausch gebracht werden.
  12. Verdünnungskühlvorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Arbeitskreis (20) mehrere Verdünnungskreisläufe umfasst, die jeweils eine Mischungskammer (3) und einen Verdampfer (5) aufweisen, das heißt, dass der Arbeitskreis (20) des Zyklusfluids mehrere verschiedene erste Leitungsanordnungen (2, 4) und mehrere verschiedene zweite Leitungsanordnungen (7) umfasst.
  13. Verdünnungskühlvorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass mindestens ein Teil der mehreren Verdünnungskreisläufe ein gemeinsames Übertragungsorgan (6) umfasst, das heißt, dass das in mehreren Verdünnungskreisläufen zirkulierende Zyklusfluid ein selbes gemeinsam genutztes Übertragungsorgan (6) durchquert, wobei die ersten Leitungsanordnungen (2, 4) und zweiten Leitungsanordnungen (7) parallel an das gemeinsame Übertragungsorgan (6) angeschlossen sind.
  14. Verdünnungskühlvorrichtung nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass mindestens ein Teil der mehreren Verdünnungskreisläufe ein gemeinsames Pumporgan (8) umfasst, das heißt, dass das in mehreren Verdünnungskreisläufen zirkulierende Zyklusfluid ein selbes gemeinsam genutztes Pumporgan (8) durchquert, wobei die ersten Leitungsanordnungen (2, 4) und/oder die zweiten Leitungsanordnungen (7) parallel an das gemeinsame Pumporgan (8) angeschlossen sind.
  15. Verdünnungskühlvorrichtung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass mindestens ein Teil der mehreren Verdünnungskreisläufe jeweils ein verschiedenes jeweiliges Pumporgan (8) umfasst.
  16. Verdünnungskühlvorrichtung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass das mindestens eine Kühlorgan (22, 12) ein gemeinsames Kühlgerät (12) aufweist, um mindestens einen Teil der mehreren verschiedenen Verdünnungskreisläufe zu kühlen.
  17. Verdünnungskühlvorrichtung nach Anspruche 16, dadurch gekennzeichnet, dass das gemeinsame Kühlgerät (12) eine kryogene Kältemaschine umfasst, die einen Arbeitskreis (13) umfasst, der einen Kreislauf bildet und ein Arbeitsfluid enthält, das Helium enthält, wobei der Arbeitskreis (13) einen Zyklus bildet, der in Reihe umfasst: einen Arbeitsfluid-Kompressionsmechanismus (14) einen Arbeitsfluid-Kühlmechanismus (15), einen Arbeitsfluid-Entspannungsmechanismus (16, 17) und einen Arbeitsfluid-Erwärmungsmechanismus (15), wobei die Kältemaschine mindestens einen Wärmeaustauschabschnitt (18) zwischen dem in dem Entspannungsmechanismus (16) entspannten Arbeitsfluid und mindestens einem Teil des Zyklusfluids der mehreren verschiedenen Verdünnungskreisläufe der Verdünnungskühlvorrichtung umfasst.
  18. Verdünnungskühlvorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass die kryogene Kältemaschine, die das gemeinsame Kühlgerät (12) bildet, mindestens einen Behälter (19) zur Speicherung von verflüssigtem Arbeitsgas stromab des Arbeitsfluid-Entspannungsmechanismus (16, 17) umfasst, wobei die Kältemaschine dazu ausgestaltet ist, Arbeitsfluid in dem mindestens einen Behälter (19) zu verflüssigen, wobei die Kühlvorrichtung eine Übertragungsleitung (21) umfasst, die den mindestens eine Behälter (19) zur Speicherung mit mindestens einem Abschnitt (18) mindestens eines Teils der mehreren verschiedenen Verdünnungskreisläufe der Verdünnungskühlvorrichtung verbindet, um einen Wärmeaustausch zwischen dem Arbeitsfluid und dem Zyklusfluid in jedem der Verdünnungskreisläufe der Verdünnungskühlvorrichtung zu gewährleisten.
  19. Verdünnungskühlvorrichtung nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass die kryogene Kältemaschine, die das mindestens eine gemeinsame Kühlorgan (22, 12) bildet, mindestens zwei Behälter (19) zur Speicherung von verflüssigtem Arbeitsgas umfasst, die sich an verschiedenen Stellen des Arbeitskreises befinden, wobei die Kältemaschine dazu ausgestaltet ist, Zyklusfluid in den Behältern (19) bei verschiedenen jeweiligen Temperaturen zu verflüssigen, und dadurch, dass die Kühlvorrichtung eine Anordnung von Übertragungsleitungen (21) aufweist, die die Behälter (19) zur Speicherung mit verschiedenen Abschnitten mindestens eines Teils der mehreren Verdünnungskreisläufe der Verdünnungskühlvorrichtung verbinden, um Wärmeaustausche zwischen dem Arbeitsfluid und dem Zyklusfluid in den Verdünnungskreisläufen der Verdünnungskühlvorrichtung zu gewährleisten.
  20. Verfahren zur Kühlung mindestens eines Verbraucherorgans (24) mittels einer Verdünnungskühlvorrichtung nach einem der Ansprüche 1 bis 19, bei dem das Zyklusfluid in dem Arbeitskreis (20) durch das mindestens eine kryogene Pumporgan (8) bewegt wird.
EP21702045.2A 2020-02-21 2021-02-03 Verdünnungskühlvorrichtung und verfahren Active EP4107450B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2001727A FR3107586B1 (fr) 2020-02-21 2020-02-21 Dispositif et procédé de réfrigération à dilution
PCT/EP2021/052495 WO2021165042A1 (fr) 2020-02-21 2021-02-03 Dispositif et procédé de réfrigération à dilution

Publications (2)

Publication Number Publication Date
EP4107450A1 EP4107450A1 (de) 2022-12-28
EP4107450B1 true EP4107450B1 (de) 2024-04-03

Family

ID=71111536

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21702045.2A Active EP4107450B1 (de) 2020-02-21 2021-02-03 Verdünnungskühlvorrichtung und verfahren

Country Status (6)

Country Link
US (1) US20230107973A1 (de)
EP (1) EP4107450B1 (de)
CA (1) CA3168530A1 (de)
FI (1) FI4107450T3 (de)
FR (1) FR3107586B1 (de)
WO (1) WO2021165042A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3099818B1 (fr) * 2019-08-05 2022-11-04 Air Liquide Dispositif de réfrigération et installation et procédé de refroidissement et/ou de liquéfaction
WO2023077222A1 (en) * 2021-11-02 2023-05-11 Anyon Systems Inc. Dilution refrigerator with continuous flow helium liquefier
FR3129201B1 (fr) * 2021-11-16 2024-01-19 Air Liquide Système de pompage cryogénique et intégration innovante pour la cryogénie Sub Kelvin inférieure à 1,5K
FR3129465B1 (fr) * 2021-11-19 2024-06-14 Air Liquide Dispositif de réfrigération à dilution
WO2023147671A1 (en) * 2022-02-07 2023-08-10 Anyon Systems Inc. Multi-cryostat dilution refrigerator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2574914B1 (fr) * 1984-12-17 1987-03-06 Centre Nat Rech Scient Cryostat a dilution
JP3580531B2 (ja) * 2000-04-20 2004-10-27 大陽東洋酸素株式会社 希釈冷凍機
JP3644683B2 (ja) * 2003-02-28 2005-05-11 大陽日酸株式会社 希釈冷凍機
JP4791894B2 (ja) * 2006-06-14 2011-10-12 大陽日酸株式会社 希釈冷凍機

Also Published As

Publication number Publication date
FI4107450T3 (fi) 2024-05-15
FR3107586B1 (fr) 2022-11-18
US20230107973A1 (en) 2023-04-06
CA3168530A1 (fr) 2021-08-26
FR3107586A1 (fr) 2021-08-27
EP4107450A1 (de) 2022-12-28
WO2021165042A1 (fr) 2021-08-26

Similar Documents

Publication Publication Date Title
EP4107450B1 (de) Verdünnungskühlvorrichtung und verfahren
FR3022233B1 (fr) Dispositif et procede de fourniture de fluide
FR2471567A1 (fr) Procede et systeme de refrigeration d'un fluide a refroidir a basse temperature
US20190309996A1 (en) Autogenous Cooling Method for In Space Storage and Transfer of Cryogenic Rocket Propellants
FR3047551A1 (fr) Dispositif de refrigeration cryogenique
FR2743140A1 (fr) Procede et dispositif de liquefaction en deux etapes d'un melange gazeux tel qu'un gaz naturel
FR3090756A1 (fr) Dispositif de pompage, installation et procédé de fourniture d’hydrogène liquide
WO2021023457A1 (fr) Procédé et installation de refroidissement et/ou de liquéfaction
WO2021023459A1 (fr) Dispositif et installation de réfrigération
EP2936006B1 (de) Kühlanlage und/oder verflüssigungsanlage und verfahren dafür
WO2023279907A1 (en) System and method with boil-off management for liquefied gas storage
FR2775518A1 (fr) Procede et installation de production frigorifique a partir d'un cycle thermique d'un fluide a bas point d'ebullition
EP4010644A1 (de) Kühlvorrichtung und anlage
WO2021209231A1 (fr) Installation de stockage de gaz liquéfié
WO2023088607A1 (fr) Système de pompage cryogénique et intégration innovante pour la cryogénie sub kelvin inférieure à 1,5k
WO2023088648A1 (fr) Dispositif de réfrigération à dilution
FR3145599A1 (fr) Installation et procédé de réfrigération cryogénique
EP2444759B1 (de) Verfahren und Vorrichtung zur Niedrigtemperaturkühlung/-verflüssigung
FR3145600A1 (fr) Installation et procédé de réfrigération
FR3068771A1 (fr) Dispositif et procede de liquefaction d’un gaz naturel ou d’un biogaz
WO2024008434A1 (fr) Dispositif et procédé de liquéfaction d'un fluide
FR3133075A1 (fr) Système de refroidissement cryogénique
WO2022253847A1 (fr) Dispositif et procede de pre-refroidissement d'un flux d'un fluide cible a une temperature inferieure ou egale a 90 k
EP4433759A1 (de) Kryogene kühlvorrichtung
FR3068772A1 (fr) Dispositif et procede de liquefaction d’un gaz naturel ou d’un biogaz

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220921

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021011252

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1672735

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240403