EP4101553A1 - Cooling of a rolled stock upstream of a finishing train of a hot rolling plant - Google Patents
Cooling of a rolled stock upstream of a finishing train of a hot rolling plant Download PDFInfo
- Publication number
- EP4101553A1 EP4101553A1 EP21178033.3A EP21178033A EP4101553A1 EP 4101553 A1 EP4101553 A1 EP 4101553A1 EP 21178033 A EP21178033 A EP 21178033A EP 4101553 A1 EP4101553 A1 EP 4101553A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- rolling stock
- section
- cooling device
- coolant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 450
- 238000005098 hot rolling Methods 0.000 title claims abstract description 16
- 238000011144 upstream manufacturing Methods 0.000 title abstract description 3
- 238000005096 rolling process Methods 0.000 claims abstract description 291
- 239000002826 coolant Substances 0.000 claims abstract description 179
- 238000000034 method Methods 0.000 claims abstract description 96
- 238000004088 simulation Methods 0.000 claims abstract description 34
- 238000009826 distribution Methods 0.000 claims description 76
- 230000005855 radiation Effects 0.000 claims description 5
- 239000012080 ambient air Substances 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 11
- 238000011161 development Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000004781 supercooling Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 229910000742 Microalloyed steel Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/74—Temperature control, e.g. by cooling or heating the rolls or the product
- B21B37/76—Cooling control on the run-out table
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/60—Aqueous agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/667—Quenching devices for spray quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
- C21D11/005—Process control or regulation for heat treatments for cooling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2201/00—Special rolling modes
- B21B2201/06—Thermomechanical rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2261/00—Product parameters
- B21B2261/20—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
- B21B45/0209—Cooling devices, e.g. using gaseous coolants
- B21B45/0215—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
- B21B45/0218—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
- B21B45/0209—Cooling devices, e.g. using gaseous coolants
- B21B45/0215—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
- B21B45/0233—Spray nozzles, Nozzle headers; Spray systems
Definitions
- the invention relates to a method and a cooling line for cooling a rolling stock before a finishing train of a hot rolling mill.
- a metallic rolling stock for example a steel strip
- a hot rolling mill often has a so-called roughing train and a so-called finishing train.
- the rolling stock is rolled into a so-called pre-strip with a pre-strip thickness.
- the pre-strip is fed via a so-called intermediate roller table to the finishing train, in which the thickness of the rolling stock is further reduced from the pre-strip thickness to a final thickness.
- the rolling stock is fed to the roughing train, for example at a temperature in the range from 1100°C to 1200°C.
- the rolling stock is heated to this temperature in front of the roughing train with a heating furnace, or the already heated rolling stock is delivered directly to the roughing train.
- the rolling stock is not deformed, i.e. its thickness is not reduced by rolling, but the rolling stock is merely cooled, i.e. the temperature of the pre-strip is lowered, for example to a temperature in the range between 700°C and 900°C.
- the cooling of the rolling stock in the intermediate roller table serves to limit the inlet temperature of the rolling stock when it enters the finishing mill.
- the inlet temperature is limited for metallurgical reasons, e.g. to suppress recrystallization in the rolling stock during transport of the rolling stock through the finishing train, especially in the production of so-called thermomechanically rolled products such as pipe steel or micro-alloyed steel, and/or to achieve a high surface quality , for example in the production of automobile outer skin or can sheet metal.
- EP 2 873 469 A1 discloses an operating method for cooling a flat rolled stock in a cooling section with cooling devices arranged along the cooling section, from which a coolant can be discharged onto the rolled stock when the rolled stock is transported through the cooling section. Cooling capacities are determined for the cooling devices by means of a simulation of the transport of rolled material points through the cooling section, and the cooling devices are controlled according to these cooling capacities during transport of the rolled material through the cooling section.
- the invention is based on the object of specifying a method and a cooling section for cooling a rolled stock upstream of a finishing train of a hot rolling mill, with which the rolled stock is cooled without a surface temperature of a rolled stock surface of the rolled stock falling below a predetermined minimum value.
- the object is achieved according to the invention by a method having the features of claim 1 and a cooling line having the features of claim 13 .
- a rolled stock is cooled in a cooling section arranged in front of a finishing train of a hot rolling mill, through which the rolled stock is transported along a cooling section path once at a predetermined transport speed or several times in alternating directions, each with a predetermined transport speed.
- the specified transport speed can vary over time. However, it can also be constant over time.
- the cooling line has a cooling device with an effective area or several cooling devices arranged one behind the other along the cooling line path, each with an effective area, the effective areas of mutually adjacent cooling devices directly adjoining one another and with each cooling device in whose effective area a coolant flow of a coolant can be discharged onto a rolling stock surface of the rolling stock is adjustable between the value zero and a maximum value specific to the cooling device.
- a minimum value for a surface temperature of the rolling stock surface is accepted during the transport of the rolling stock through the cooling section.
- each cooling device is assigned a setting value for the coolant flow for each cooling section run through the cooling line, and by means of each cooling device a coolant flow is output onto the surface of the rolling stock during each cooling section run, which is set to the setting value assigned to the respective cooling device for the cooling section run.
- the enthalpy distribution calculated for the first active section passed through and/or the calculated temperature distribution at the exit from the first active section passed through is used as the initial enthalpy distribution and/or initial temperature distribution in the other active section for two active areas that are passed through immediately one after the other during the cooling section run by the rolling stock section entry assigned to the other effective range.
- An original initial enthalpy distribution and/or original initial temperature distribution is assumed for the first cooling device through which the rolling stock section passes during the passage through the cooling section.
- each passage of the rolling stock through the cooling section is first simulated at least once for a rolling stock section of the rolling stock, with the simulation setting values for the coolant flows of all cooling devices being determined.
- the cooling devices are then controlled with these setting values when the rolling stock actually passes through the cooling section.
- the setting value for a cooling device is determined in a simulation of a cooling section run in such a way that the coolant flow determined by the setting value is quasi-maximum under the secondary conditions that the setting value does not exceed a default value and a surface temperature of the rolling stock surface determined during the simulation when exiting the effective area of the cooling device does not fall below a minimum value.
- the default value for the coolant flow of a cooling device is either determined during the simulation or, for example, received from a higher-level controller.
- the quasi-maximum coolant flow is understood here to mean a coolant flow which is maximum under the specified secondary conditions or which approximates the maximum coolant flow within the framework of a control engineering design. This takes into account that an exact maximization of the coolant flow is not necessary in practice, since a simulation is based on a mathematical model that only models the cooling section and therefore does not depict it exactly, so that there are small deviations in the simulation from the real cooling process in the cooling section anyway have to be accepted. In addition, an exact maximization of the coolant flow can require an unreasonably high computational effort and stand in the way of performing the simulation as quickly as possible.
- the quasi-maximization of the coolant flows advantageously enables optimized cooling of the rolling stock during transport through the cooling section. Due to the default values for the setting values of the coolant flows, a Target temperature at the end of the cooling section of the rolling stock are specified, which is adapted to a desired inlet temperature of the rolling stock when it enters the finishing train.
- the secondary condition that the surface temperatures of the rolling stock surface determined in the simulation do not fall below the minimum value for the surface temperature when exiting the effective areas of the cooling devices advantageously prevents the above-mentioned supercooling of the rolling stock surface, which reduces product quality, during the transport of the rolling stock through the cooling section.
- the minimum value is accordingly specified in such a way that such undercooling of the rolling stock surface is avoided.
- w i V is the default value for the coolant flow to be output by the cooling device
- T i in (0) is a surface temperature of the rolling stock surface derived from the initial enthalpy distribution and/or initial temperature distribution when it enters the effective range of the cooling device
- T min is the minimum value for the surface temperature the rolling stock surface
- ⁇ T i res is a definable reserve temperature difference.
- f i ( T ) is a function that is zero for T ⁇ T min , unity for T ⁇ T min + ⁇ T i res , and strictly monotonically increasing in the interval [ T min ,T min + ⁇ T i res ].
- the secondary condition that the setting value does not exceed the default value is implemented in that the function f i ( T ) does not exceed the value one.
- the constraint that the surface temperature of the Rolling stock surface does not fall below the minimum value when exiting the effective range of the cooling device can be achieved by a suitable choice of the reserve temperature difference ⁇ T i res .
- the quasi-maximization of the coolant flow is achieved by the monotonic increase of the function f i ( T ) from zero to one.
- the setting value for at least one cooling device is determined for each simulated passage through the cooling section by first comparing the surface temperature of the rolling stock surface when it exits the effective range of the cooling device for the default value for the coolant flow of the cooling device is calculated.
- the setting value is set equal to the default value if the surface temperature calculated for the default value does not fall below the minimum value. Otherwise, the calculation of the surface temperature at the exit from the effective range is iterated for at least one coolant flow that is smaller than the default value, in order to determine a set value of the coolant flow for which the calculated surface temperature at the exit from the effective range corresponds to the minimum value with sufficient accuracy .
- a sufficiently precise match is understood to mean, for example, a match apart from an absolute or relative deviation, the amount of which does not exceed a specified tolerance value.
- the aforementioned configuration of the method according to the invention also implements the above-mentioned secondary conditions.
- This refinement realizes an exact maximization of the coolant flow if the surface temperature actually corresponds to the minimum value after its iterated calculation. However, slightly exceeding the minimum value is acceptable for the reasons given above and represents a quasi-maximization of the coolant flow.
- the maximum value of the coolant flow specific to the respective cooling device is accepted for each cooling device as the default value for the coolant flow during each simulated cooling section run.
- the aforementioned embodiment of the method according to the invention enables the rolling stock to be cooled as quickly as possible during a cooling section run, in that each default value is set to the maximum value of the coolant flow specific to the respective cooling device.
- a total amount of coolant is determined for a simulation of a cooling section run through a rolling stock section, which is to be dispensed at most in total on the surface part of the rolling stock surface that belongs to the rolling stock section during the cooling section run, and the default values for the coolant flows of the simulated cooling line passage are determined depending on the total amount of coolant and the transport speed specified for the cooling line passage.
- the designation coolant quantity always means the integral over a coolant flow during the running time of the considered section of rolling stock through the effective range of one or more cooling devices. It can also happen that a coolant flow acting on a rolling stock section does not always have the same effect.
- the amount of coolant means an integral weighted according to the cooling effect of the coolant flow.
- the physical unit of the coolant flow is, for example, m 2 /s corresponding to a specific coolant flow in m 3 /s per m width of the cooling device.
- the physical unit of the amount of coolant is then m 2 corresponding to an amount of coolant in m 3 per m width of the cooling device.
- a cooling effect of the entire passage through the cooling section and thus a target temperature of the rolling stock after passage through the cooling section can be specified by the total amount of coolant.
- the default values for the coolant flows of the simulated cooling line run are then determined as a function of the total amount of coolant, so that the total amount of coolant is distributed to the cooling devices by the default values.
- a target average temperature of the rolling stock is received after it has passed through a cooling section.
- an average temperature of the rolled stock section is calculated at the end of the cooling line run and, if the calculated average temperature does not correspond sufficiently exactly to the target average temperature, the total amount of coolant is changed for a subsequent simulation of a cooling line run of a rolled stock section by the calculated average temperature of the target average temperature to adjust
- This advantageously makes it possible to change the total amount of coolant iteratively in order to reach the setpoint average temperature with sufficient accuracy at the end of a cooling section run.
- a sufficiently precise match between the calculated average temperature and the setpoint average temperature is understood to mean, for example, a match apart from an absolute or relative deviation, the magnitude of which does not exceed a specified tolerance value.
- a target average temperature of the rolling stock is specified as the target temperature of the rolling stock after it has passed through the cooling section, and the total amount of coolant is adjusted to the target average temperature.
- Cooling device is assigned a residual amount of coolant.
- the total quantity of coolant as the residual quantity of coolant is assigned to the first cooling device of the passage through the cooling section.
- Each additional cooling device is assigned as the residual coolant quantity the residual coolant quantity of the preceding cooling device of the cooling section run minus the coolant quantity that would be output by the preceding cooling device according to the coolant flow setting value determined for it onto the surface part of the rolling stock surface belonging to the rolling stock section.
- min(1 ,W R / W i max ) designates the minimum of the two values 1 and W R / W i max .
- the default values for the coolant flows of the cooling device are thus determined during the simulation of a cooling section run, in that each cooling device is assigned a residual coolant quantity and the default value for the cooling device is determined as a function of the residual coolant quantity.
- a setting value is determined for a cooling device that is smaller than a default value accepted for the cooling device, and if there is at least one subsequent cooling device that is reached later during the cooling line run and for which an accepted setpoint is less than the maximum value of the coolant flow of that cooling device, the setpoint for at least one such subsequent cooling device is increased by to adjust the total amount of coolant to be dispensed during the passage of the cooling section onto the part of the surface of the rolling stock surface belonging to the section of rolling stock to the total quantity of coolant determined for the passage through the cooling section.
- This embodiment of the method according to the invention is based on default values received at the beginning of a simulation.
- the default values are adjusted during the simulation if the setting value determined for a cooling device during the simulation falls below the associated default value.
- default values for subsequent cooling devices are increased as far as possible in order to adapt the cooling effect of the cooling section run to the cooling effect corresponding to the total amount of coolant.
- a one-dimensional heat conduction equation is solved during a simulation of a cooling section run through of the rolling stock section, which equation calculates the enthalpy distribution and/or temperature distribution in the rolling stock section along a Rolled stock thickness direction describes.
- boundary conditions are taken into account, for example, which parameterize cooling of the rolling stock section by thermal radiation, coolant emitted onto the rolling stock surface, heat dissipated to the ambient air and heat dissipated to the transport rollers transporting the rolling stock.
- the rolling stock thickness direction is a direction from a top surface to a bottom surface of the rolling stock or conversely from the bottom surface to the top surface of the rolling stock.
- the aforementioned embodiment of the method according to the invention takes into account that a heat flow in the longitudinal or transverse direction within the rolling stock compared to a Heat flow in the rolling stock thickness direction of the rolling stock is negligible.
- a one-dimensional heat conduction equation which describes the enthalpy distribution and/or temperature distribution in the rolling stock section along the rolling stock thickness direction, can therefore be used to calculate the enthalpy distribution and/or temperature distribution in the rolling stock section with sufficient accuracy. This significantly reduces the computational effort and computation time compared to using a two- or three-dimensional heat conduction equation.
- the boundary conditions mentioned take into account the main influences on the development of the enthalpy distribution and temperature distribution in the rolling stock.
- the surface temperature of a surface part of the rolling stock surface belonging to the rolling stock section is measured at at least one measuring point, which is passed by a rolling stock section before a cooling section runs through it, and the original initial enthalpy distribution and/or original initial temperature distribution for a simulation of a cooling section run through of the rolling stock section are determined as a function of the at least one measured surface temperature.
- the method according to the invention can also be carried out for an upper-side rolling stock surface or a lower-side rolling stock surface or separately for the upper-side rolling stock surface and the underside rolling stock surface of the rolling stock.
- the cooling devices are arranged along the cooling section path according to their maximum values of the coolant flows that can be discharged, so that the maximum values decrease monotonically towards the finishing train. This advantageously enables rapid cooling of the rolling stock at the beginning of the cooling section. Furthermore, the cooling devices in the rear part of the cooling section can be simpler and less expensive than the cooling devices in the front part of the cooling section, since the surface temperature of the rolling stock surface has usually already reached the minimum value in the rear part of the cooling section and therefore only requires a low cooling capacity there becomes.
- FIG 1 shows a schematic of a hot rolling mill 1.
- the hot rolling mill 1 comprises a heating furnace 3, a roughing train 5, an intermediate roller table 7, a finishing train 9, an outlet cooling area 11 and a coiler area 13.
- the hot rolling mill 1 turns a rolling stock 15 in the direction from the heating furnace 3 to transported to the coiler area 13.
- the heating furnace 3 is arranged in front of the roughing train 5 and is set up to heat the rolling stock 15 to a specific temperature, for example in the range from 1100° C. to 1200° C.
- the roughing train 5 has at least one roughing train rolling stand 17 .
- the rolling stock 15 is rolled into a pre-strip with a pre-strip thickness which is, for example, in the range between 30 mm and 170 mm.
- the rolling stock 15 is transported by the intermediate roller table 7 from the roughing train 5 to the finishing train 9 at a predetermined transport speed.
- the intermediate roller table 7 has an embodiment of a cooling section 19 according to the invention.
- the cooling section 19 comprises a plurality of cooling devices 21, 22, 23 arranged one behind the other along a cooling section path through the cooling section 19, a plurality of transport rollers 25 which are set up to transport the rolling stock 15 along the cooling section path through the cooling section, and a control unit 27 which is set up to operate the cooling section 19 according to an exemplary embodiment of the method according to the invention for cooling the rolling stock 15.
- Embodiments of the method according to the invention are described below with reference to the Figures 2 to 6 described.
- a cooling section 19 with three cooling devices 21, 22, 23 is shown as an example.
- the cooling section 19 can also have a different number of cooling devices 21, 22, 23.
- a coolant stream of a coolant 35 can be output onto a rolling stock surface 29 of the rolling stock 15, which has a value between zero and one for the cooling device 21, 22, 23 specific maximum value is adjustable.
- the coolant 35 is water, for example.
- the rolling stock surface 29 is an upper surface of the rolling stock 15.
- the rolling stock surface 29 can be an underside surface of the rolling stock 15, with the cooling devices 21, 22, 23 then being arranged below the rolling stock 15.
- the cooling section 19 can have cooling devices 21, 22, 23 both for the upper side and for the lower side surface of the rolling stock 15. In the latter case, the method according to the invention is carried out separately for the upper side and for the lower side surface of the rolling stock 15.
- Each cooling device 21, 22, 23 is designed, for example, as a cooling beam which extends along a width of the rolling stock 15 and has a plurality of nozzles with which coolant 35 can be discharged onto the surface 29 of the rolling stock is.
- the effective areas 31, 32, 33 are assigned to the cooling devices 21, 22, 23 in such a way that the effective areas 31, 32, 33 of adjacent cooling devices 21, 22, 23 directly adjoin one another.
- the cooling devices 21, 22, 23 are arranged along the cooling section path according to their maximum values of the coolant flows that can be discharged, so that the maximum values decrease monotonically towards the finishing train 9.
- a measuring device 37 is also arranged at a measuring point 39 in the intermediate roller table 7 in front of the cooling section 19 and is set up to record a surface temperature of the rolling stock surface 29 .
- the measuring device 37 has a pyrometer for this purpose.
- the finishing train 9 comprises a plurality of finishing train rolling stands 41 and finishing train cooling devices 43 which are each arranged between two finishing train rolling stands 41 and with which the finishing train coolant 45 can be discharged onto the surface 29 of the rolling stock.
- the thickness of the rolling stock 15 is reduced to a final thickness with the finishing train rolling stands 41.
- Outlet cooling devices 47 , 49 are arranged in the outlet cooling area 11 , with which outlet coolant 51 can be discharged onto the surface 29 of the rolling stock.
- the rolling stock 15 is cooled downstream of the finishing train 9 in the outlet cooling area 11 .
- At least one rolled stock coiler 53 is arranged in the coiler area 13 and is set up to wind up the rolled stock 15 .
- FIG 2 shows a flowchart of the method according to the invention with method steps 100, 200, 300 for cooling the rolling stock 15 in the cooling section 19.
- a minimum value T min for a surface temperature of the rolling stock surface 29 is received by the control unit 27 during the transport of the rolling stock 15 through the cooling section 19 .
- the minimum value T min is specified, for example, by a higher-level controller (not shown) or by an operator of the hot rolling mill 1 .
- the minimum value T min is a surface temperature of the rolling stock surface 29 which should not be fallen below during the transport of the rolling stock 15 through the cooling section 19 .
- each cooling device 21, 22, 23 is assigned a setting value for the coolant flow to be output by the cooling device 21, 22, 23 onto the rolling stock surface 29.
- Exemplary embodiments of the second method step 200 are described below with reference to FIG Figures 3 to 6 described in more detail.
- each cooling device 21, 22, 23 is used to discharge a coolant flow onto the rolling stock surface 29 as it passes through the cooling section.
- the method steps 200 and 300 can also be carried out several times, so that the setting values of the cooling devices 21, 22, 23 can be changed during the transport of the rolling stock 15 through the cooling section 19, if necessary. This is in figure 2 indicated by the arrow symbols shown in dashed lines.
- the rolling stock 15 is divided into a plurality of rolling stock sections, which run through the active areas 31, 32, 33 of the cooling devices 21, 22, 23 in succession, and the method steps 200 and 300 are successively for every rolling stock section.
- the second method step 200 for the cooling line passage of a rolling stock section through the cooling line 19 of each cooling device 21, 22, 23, a setting value for the coolant flow to be output by the cooling device 21, 22, 23 onto the part of the rolling stock surface 29 belonging to the rolling stock section assigned.
- each cooling device 21, 22, 23 is used to discharge a coolant flow onto that part of the rolling stock surface 29 that belongs to the rolling stock section during the cooling section run through of a rolling stock section in the second method step 200 associated setting value is set.
- a delay time is preferably taken into account for each cooling device 21, 22, 23, which elapses between the changing of the setting value of the cooling device 21, 22, 23 and the change in the coolant flow actually output by the cooling device 21, 22, 23 to the changed setting value by the setting value of the cooling device 21, 22, 23 is changed at a point in time which is the delay time before the point in time at which the rolling stock section enters the effective region 31, 32, 33 of the cooling device 21, 22, 23.
- FIG 3 shows a first exemplary embodiment of the second method step 200 with sub-steps 201 to 216 for determining the setting values of the cooling devices 21, 22, 23 for a cooling section run of the rolling stock 15 through the cooling section 19.
- the cooling section run with the simulated the transport speed specified for it.
- a target average temperature T ⁇ S of the rolling stock section after the passage through the cooling section that is to say after passing through all active regions 31, 32, 33.
- a second sub-step 202 is carried out.
- a total coolant quantity W of coolant 35 is received, which is to be dispensed at most in total during the passage through the cooling section onto the surface part of the rolled-stock surface 29 belonging to the rolled-stock section.
- a third sub-step 203 is carried out.
- the total coolant quantity W is assigned to a residual coolant quantity W R as an initial value, and the running index i is assigned the value 1 as an initial value.
- an initial temperature distribution T i in ( x ) in the rolling stock section along a rolling stock thickness direction upon entry into the effective region 31, 32, 33 is received or accepted with the respective current value of the running index i .
- the rolled stock thickness direction is perpendicular to a transporting direction of transporting the rolled stock 15 through the cooling line 19 from the top surface to the bottom surface of the rolled stock 15.
- an original initial temperature distribution is accepted as the initial temperature distribution T 1 in ( x ), which is derived, for example, from a surface temperature of the rolling stock surface 29, which was detected by the measuring device 37, and/or from a heating temperature of the heating furnace 3.
- the initial temperature distribution T 1 in ( x ) is modeled as a parabolic temperature distribution in the rolling stock thickness direction between an assumed core temperature in the middle between a top and a bottom surface of the rolling stock 15 and the surface temperature recorded by the measuring device 37, the core temperature being, for example, the heating temperature of the heating furnace 3 is derived.
- an initial enthalpy distribution h i in ( x ) can be received or adopted in sub-step 204 in an analogous manner for the current running index value i .
- a fifth sub-step 205 is carried out.
- a default value w i V for the coolant flow of the cooling device 21, 22, 23 is determined with the respective current value of the running index i .
- a maximum amount of coolant w i max is determined, for example, with the cooling device 21, 22, 23 to the Rolling stock section belonging surface part of the rolling stock surface 29 can be output during the cooling section run.
- the maximum amount of coolant w i max depends in particular on the maximum value w i max of the coolant flow that can be dispensed, which is specific to the cooling device 21, 22, 23, and on the specified transport speed.
- w i V w i Max at least 1 , W R / W i Max
- the default value w i V corresponds to the maximum value w i max of the coolant flow that can be dispensed, which is specific to the cooling device 21, 22, 23, if the current value of the residual coolant quantity W R is greater than the maximum coolant quantity w i max or equal to the maximum coolant quantity w i is max . Otherwise, the default value w i V is the quotient of the current value of the residual coolant quantity W R and an effective throughput time W i max / wi max of the rolling stock section through the effective area 31, 32, 33 with the current value of the running index i .
- a sixth sub-step 206 is carried out.
- the setting value w i of the coolant flow for the cooling device 21, 22, 23 with the current value of the running index i as the initial value is assigned the default value w i V determined for this coolant flow in the previous execution of the fifth sub-step 205.
- a seventh sub-step 207 is carried out.
- a temperature distribution T i out ( x ) in the rolling stock section along the rolling stock thickness direction upon exit from the effective region 31, 32, 33 is calculated with the respective current value of the running index i .
- the temperature distribution T i out ( x ) is calculated using a physical model that shows the time development of the temperature distribution in the rolled section described by a one-dimensional heat conduction equation.
- the heat conduction equation is solved for the boundary conditions mentioned below with the associated initial temperature distribution T i in ( x ) as the temperature distribution when entering the respective effective region 31, 32, 33.
- an enthalpy distribution h i out ( x ) in the rolling stock section when exiting the effective area 31, 32, 33 can be calculated with the respective current value of the running index i , if in the previous execution of the fourth partial step 204 an associated initial enthalpy distribution h i in ( x ) was received or taken over upon entry into this active region 31, 32, 33.
- v is the average transport speed during passage through the effective area, henceforth referred to simply as the transport speed
- ⁇ o is an emission coefficient of thermal radiation from the top surface
- ⁇ u is an emission coefficient of thermal radiation from the underside surface, which is smaller due to the reflection of thermal radiation on the transport rollers 25 than ⁇ is o
- f L ( T o ,T e ,v ) and f L (T u ,T e ,v ) are functions that describe the cooling effect of the ambient air as a function of the surface temperature T o of the rolling stock 15 on the top surface and the surface temperature T u of the rolling stock 15 on the underside surface, the ambient temperature T e and the transport speed v .
- f R ( T u ,T e ,v ) is a function that describes the cooling effect of the transport rollers 25 as a function of the surface temperature T u , the ambient temperature T e and the transport speed v.
- f w ( T o ,v,T w ,w oi ) is a function relating the cooling effect of a top-side cooler 21, 22, 23, that is, a cooler 21, 22, 23 cooling the top-side surface of the rolled material 15, with the running index value i as a function of the surface temperature T o , the transport speed v , the coolant temperature T w and the coolant flow of the cooling device 21, 22, 23 given by the setting value w oi .
- f w ( T u ,v,T w ,w ui ) is accordingly a function that describes the cooling effect of a bottom cooling device 21, 22, 23 with the running index value i as a function of the surface temperature T u , the transport speed v , the coolant temperature T w and the coolant flow of the cooling device 21, 22, 23 given by the setting value w ui .
- f w ( T o , v, T w , w oi ) 0 applies.
- f w ( T u , v,T w ,w ui ) 0 at points along the cooling path where no coolant flow is discharged onto the rolling stock 15 from a cooling device 21, 22, 23 on the underside.
- the running range of the running index i for the top-side cooling devices 21, 22, 23 can differ from the running range of the running index i for the underside cooling devices 21, 22, 23.
- the phase components are always non-negative and their sum is one.
- T k T k ( h k )
- T k T k ( h k )
- the function T ( h,p 1 ,...,p m ) can be calculated by solving this system of equations.
- the thermal conductivity ⁇ can be expressed as a function of the enthalpy density h and the phase fractions p 1 ,...,p m .
- the variable ⁇ denotes the density of the rolling stock 15 assumed to be the same for all phase fractions.
- phase fractions can be calculated as required, in particular coupled with the solution of the heat conduction equation.
- Equation (3) or equations (5) and (6) are calculated using the boundary conditions according to equations (4a) and (4b) for an initial temperature distribution T i in ( x ) or an initial enthalpy distribution h i in ( x ) and initial phase components p 1 i ,...,p mi solved for a temperature distribution T i out ( x ) or an enthalpy distribution h i out ( x ) and phase components p 1 i out , ... , p wed out in the rolling stock section when exiting the active area 31, 32, 33 with the respective current value of the running index i .
- Equation (6) the functions f L , f w , f R are each applied as the product of a heat flow constant Q ⁇ t and dimensionless correction functions f i , where the index i stands for the respective type of cooling (by air, coolant or transport rollers), see also, for example, equations (7) to (9) the aforesaid publication for air cooling, equations (11) to (14) for (various types of) coolant cooling and equation (10) for transport roller cooling.
- an eighth partial step 208 is carried out.
- the ninth sub-step 209 is therefore always carried out when the calculated surface temperature of the rolling stock surface 29 falls below the minimum value T min when exiting the active area 31, 32, 33 with the current value of the running index i , i.e. when the current setting value w i is too high for this value of running index i .
- this setting value w i is therefore assigned a new (smaller) value, for example using a Newton method such that the surface temperature calculated for the new setting value w i is approximated to the minimum value T min .
- the seventh partial step 207 and the eighth partial step 208 are then carried out again, ie the surface temperature at the outlet from the effective range 31, 32, 33 with the current value of the running index i is calculated for the new setting value w i . This is repeated until the calculated surface temperature matches the minimum value T min or slightly exceeds it, for example by no more than 10°C, preferably by no more than 5°C.
- the tenth partial step 210 is then carried out.
- the value of the residual coolant quantity W R is changed by subtracting the coolant quantity W i corresponding to the setting value w i from the previous value, which the cooling device 21, 22, 23 with the current value of the running index i on the to the part of the surface of the rolling stock surface 29 belonging to the rolling stock section would be output.
- the eleventh partial step 211 it is checked whether the current value of the running index i has reached the end value n , ie whether the simulated cooling section run has ended. If this is not the case, a twelfth sub-step 212 is carried out. Otherwise, a thirteenth partial step 213 is carried out.
- the value of the running index i is incremented.
- the fourth partial step 204 is then carried out for the new value of the running index i .
- an average temperature of the rolling stock section after the simulated passage through the cooling section i.e. after the simulated passage through all effective regions 31, 32, 33, calculated.
- a fourteenth sub-step 214 is carried out.
- the fourteenth sub-step 214 it is checked whether the average temperature calculated in the previous execution of the thirteenth sub-step 213 T n out with a reasonable accuracy with the target average temperature T ⁇ S of the rolling stock section after passing through the cooling section.
- a sufficiently precise match is understood to mean, for example, a match apart from an absolute or relative deviation, the amount of which does not exceed a specified tolerance value. Is the average temperature correct? T n out not sufficiently close to the target average temperature T ⁇ S match, after the fourteenth sub-step 214 a fifteenth sub-step 215 is carried out. Otherwise, after the fourteenth sub-step 214, a sixteenth sub-step 216 is carried out.
- the fifteenth sub-step 215 is therefore executed when the calculated average temperature T n out after the simulated cooling line run does not match the target average temperature with sufficient accuracy T ⁇ S matches. If the calculated average temperature T n out is the target average temperature T ⁇ exceeds S , this indicates that the total amount of coolant W used as a basis for the simulated cooling section run was too small. If the calculated average temperature T n out is the target average temperature T ⁇ falls below S , this indicates that the total amount of coolant W used as a basis for the simulated cooling section run was too large. Therefore, in the fifteenth sub-step 215, the value of the total amount of coolant W is changed, for example by an amount that depends on the deviation of the calculated average temperature T n out depends on the target average temperature T ⁇ S . This allows the calculated average temperature T n out after the next simulated cooling section run of the target average temperature T ⁇ S to be approximated. The adaptation of the total amount of coolant W can be improved in later simulated cooling line runs, for example using a Newton method.
- the third sub-step 203 is carried out with the new value of the total coolant quantity W , ie a further simulation of the passage through the cooling section of the rolling stock section with the changed value of the total coolant quantity W is started.
- the maximum value W max is a maximum amount of coolant, which of all cooling devices 21, 22, 23 together in the cooling section run (at the transport speed specified for him) of the rolled section to part of the rolling stock surface 29 belonging to the rolling stock section can be output.
- the sixteenth step 216 is carried out after the fourteenth step 214 of this simulated run through the cooling section.
- the cases that the total coolant amount W becomes zero or reaches or exceeds the maximum value W max are in FIG Figures 3 and 4 not shown for the sake of clarity.
- the second method step 200 is ended and for each cooling device 21, 22, 23 the setting value w i of the coolant flow last determined in method step 200 is stored.
- the coolant flow of the respective cooling device 21, 22, 23 is set to this setting value w i in the third method step 300.
- FIG 4 shows a second exemplary embodiment of method step 200.
- This exemplary embodiment differs from that based on FIG figure 3 described first embodiment only in a modification of the sub-step 206 and the omission of the sub-steps 208 and 209. It is therefore only the changes compared to the basis of figure 3 described first embodiment described and commented.
- w i V is the default value that was determined in the previous execution of partial step 205 for the coolant flow of the cooling device 21, 22, 23 with the current value of the running index i .
- T i in ( 0 ) is a value of the surface temperature of the upper surface 29 of the rolling stock when it enters the effective region 31, 32, 33 of this cooling device 21, 22, 23. is derived.
- f i ( T ) is a function which is zero for T ⁇ T min , unity for T ⁇ T min + ⁇ T i res , and strictly monotonically increasing in the interval [ T min , T min + ⁇ T i res ].
- T min is the minimum value for a surface temperature of the rolling stock surface 29 received in the first method step 100 during the transport of the rolling stock 15 through the cooling section 19.
- ⁇ T i res is a reserve temperature difference, which is specified in such a way that the surface temperature of the rolling stock surface 29 when exiting the Effective range 31, 32, 33 of the cooling device 21, 22, 23 with the running index value i does not fall below the minimum value T min even if the surface temperature of the rolling stock surface 29 when entering this effective range 31, 32, 33 is greater than T min + ⁇ T i res and the coolant flow emitted by the cooling device 21, 22, 23 with the running index value i onto the rolling stock surface 29 is at its maximum, i.e.
- ⁇ T res is determined, for example, in a separate simulation of a cooling section run through of the rolling stock 15 or using a mathematical model of the cooling section 19 as a function of a heating temperature of the heating furnace 3 and the transport speed of the rolling stock 15 .
- the reserve temperature difference ⁇ T i res can depend on the value of the running index i , that is to say for cooling devices 21, 22, 23 that differ from one another, reserve temperature differences that differ from one another can be specified.
- the second exemplary embodiment of method step 200 shown is simpler than that in figure 3 shown first embodiment, because the sub-steps 208 and 209 and thus the potential iteration of the sub-steps 207 to 209 are omitted.
- the second exemplary embodiment of method step 200 generally requires less computing effort than the first exemplary embodiment and therefore generally also requires shorter computing time or less computing capacity.
- the first exemplary embodiment of method step 200 generally enables faster cooling of the rolling stock 15 than the second exemplary embodiment, since the iteration of partial steps 207 to 209 enables a more precise adaptation of the setting values for the coolant flows of the cooling devices 21, 22, 23 to the minimum value T min .
- an embodiment of the method according to the invention provides for method steps 200 and 300 to be carried out successively for rolled stock sections of the rolled stock 15 which pass through the effective regions 31, 32, 33 of the cooling devices 21, 22, 23 in succession.
- method step 200 is carried out, for example, for each rolling stock section according to one of the Figures 3 or 4 described embodiments performed.
- FIG 5 shows such a modification of the in figure 3 shown embodiment.
- a second running index j is used, which numbers the rolled stock sections.
- the second partial step 202 as in the case of figure 3 shown embodiment, an initial total amount of coolant W of coolant 35 received.
- the value 1 is assigned to the second running index j as the initial value.
- Sub-steps 203 to 214 are carried out for the respective current value of the second running index j, i.e. for the associated rolling stock section, like sub-steps 203 to 214 of in figure 3 shown embodiment executed.
- the value of the second running index j is incremented in a sub-step 217 after sub-step 214 .
- the value of the total amount of coolant W is changed in sub-step 215, and then in sub-step 217 the value of the second running index j is incremented. It is accepted that rolled stock sections with small values of the second running index j have an average temperature after the passage through the cooling section that does not yet correspond with the desired average temperature with sufficient accuracy T ⁇ S matches.
- sub-step 203 is carried out for the new value of the second running index j , ie a simulation of the passage through the cooling section of the subsequent rolling stock section with a possibly changed total coolant quantity W is started.
- a cooling line run is simulated exactly once for each rolling stock section, and a total coolant quantity W that may have been adjusted in substep 215 is transferred to the simulation of the cooling line run for the respective subsequent rolling stock section.
- the second method step 200 carried out for a rolling stock section is linked to the second method step 200 carried out for the subsequent rolling stock section.
- the setting value w i of the coolant flow determined in this execution of method step 200 is stored for each cooling device 21, 22, 23 for the respective value of the second running index j .
- the setting values w i stored for a value of the second running index j are not overwritten by the setting values w i determined for a different value of the second running index j .
- the repeated execution of the second method step 200 ends when the second running index j reaches a final value. For example, after each execution of the second step 200 is checked whether the second running index j has reached the final value, and sub-step 217 is only executed if this is not the case. Otherwise the repeated execution of the second method step 200 is terminated. this is in figure 5 not shown for the sake of clarity.
- the third method step 300 can also be carried out separately for each rolling stock section and can be carried out independently of the other rolling stock sections.
- the third method step 300 can already be carried out for a value k of the second running index, in which, by means of the cooling devices 21, 22, 23, when the rolled stock section with the value k of the second running index is passed through the cooling section, the coolant flow w i determined for this value k the rolling stock section is output, while the second method step 200 is carried out for values j of the second running index with j > k .
- each cooling device 21, 22, 23 determines for each cooling device 21, 22, 23 in method step 300, depending on the transport speed or the transport speed profile over time, when the rolling stock section with the value k will be in the effective range 31, 32, 33 of the cooling device 21, 22, 23 .
- the cooling device 21, 22, 23 is then set in such a way that it outputs the coolant flow w i determined for this value k precisely when the rolling stock section with the value k is in the effective range 31, 32, 33 of the cooling device 21, 22, 23 is located.
- FIG 6 shows one to figure 5 analogous modification of the in figure 4 shown embodiment of the second method step 200.
- the exemplary embodiments of the method according to the invention described above can also be carried out if the rolling stock is transported through the cooling section 19 several times.
- the finishing train 9 can have a reversing stand through which the rolling stock 15 is guided several times in alternating directions.
- the rolling stock 15 can then also be transported several times through the cooling section 19 in alternating directions.
- method steps 200 and 300 are carried out for each cooling section run.
- a second measuring point is provided behind the cooling section 19, i.e. between the intermediate roller table 7 and the finishing train 9, at which a surface temperature of a surface part of the rolling stock surface 29 belonging to a rolling stock section is recorded before the rolling stock section is measured from the second measuring point Cooling section 19 passes through.
- an original initial enthalpy distribution and/or original initial temperature distribution is determined as a function of the surface temperature of the surface part of the rolling stock surface 29 belonging to the rolling stock section recorded at the second measuring point.
- the intermediate roller table 7 can have several cooling sections 19, or one cooling section 19 can have several partial cooling sections for which the method according to the invention is carried out separately (each partial cooling section is then understood as a cooling section within the meaning of the invention). If, for example, an intermediate measuring point is arranged in the intermediate roller table 7, at which a surface temperature of the rolling stock 15 is recorded, the method according to the invention can be used separately for a first partial cooling section or cooling section, which is arranged between the first measuring point 39 and the intermediate measuring point and for a second partial cooling section or cooling section, which is arranged between the intermediate measuring point and the finishing train 9.
- An original initial temperature distribution and/or an original initial enthalpy distribution for the second partial cooling section or cooling section is then determined as a function of the surface temperature of the rolling stock 15 recorded at the intermediate measuring point.
- a corresponding procedure can be followed if a plurality of intermediate measuring points are arranged in the intermediate roller table 7, at each of which a surface temperature of the rolling stock 15 is recorded.
- FIG 7 shows, by way of example, temperature curves of temperatures T K , T S and T in a rolling stock section before and during a cooling section run through a cooling section 19 as a function of time t.
- T K designates a core temperature in the rolling stock section in the middle between a top and a bottom surface of the rolling stock 15.
- T S designates a surface temperature on the rolling stock surface 29 of the rolling stock 15.
- T denotes an average temperature of the rolling stock section, which is defined analogously to Equation (8).
- the rolling stock section enters the cooling section 19 about 3 s after a time zero. Due to the cooling effect of cooling devices 21, 22, 23 at the beginning of the cooling section 19, the surface temperature T S drops rapidly from around 1070° C. when the rolling stock section enters the cooling section 19 to the minimum value T min , which in this case is around 800° C. and is already reached by the surface temperature T S about 5.5 s after time zero. As the rolling stock section continues through the cooling section, its surface temperature T S is kept relatively constant at the minimum value T min by cooling devices 21, 22, 23 of the cooling section 19 according to the invention until the rolling stock section exits the cooling section 19 about 7.7 s after time zero.
- the surface temperature T S rose again due to the lack of cooling, since heat from the inside of the Rolled stock section is passed to the rolled stock surface 29 .
- the core temperature T K of the rolling stock section remains relatively constant at around 1100° C. during the passage through the cooling section.
- the average temperature T of the rolling stock section falls from about 1090°C to about 1020°C during the passage through the cooling section.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Control Of Metal Rolling (AREA)
- Metal Rolling (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zum Kühlen eines Walzguts (15) in einer vor einer Fertigstraße (9) einer Warmwalzanlage (1) angeordneten Kühlstrecke (19) mit wenigstens einer Kühleinrichtung (21, 22, 23), mit der auf eine Walzgutoberfläche (29) des Walzguts (15) ein Kühlmittelstrom eines Kühlmittels (35) ausgebbar ist. Bei dem Verfahren wird mittels jeder Kühleinrichtung (21, 22, 23) bei jedem Kühlstreckendurchlauf ein Kühlmittelstrom auf die Walzgutoberfläche (29) ausgegeben, der auf einen der jeweiligen Kühleinrichtung (21, 22, 23) für den Kühlstreckendurchlauf zugeordneten Einstellwert eingestellt wird. Die Einstellwerte für einen Kühlstreckendurchlauf werden bei einer Simulation des Kühlstreckendurchlaufs derart bestimmt, dass bei der Simulation bestimmte Oberflächentemperaturen der Walzgutoberfläche (29) beim Austritt aus Wirkbereichen (31, 32, 33) der Kühleinrichtungen (21, 22, 23) einen Minimalwert für eine Oberflächentemperatur (T<sub>S</sub>) der Walzgutoberfläche (29) nicht unterschreiten.The invention relates to a method for cooling a rolled stock (15) in a cooling section (19) arranged upstream of a finishing train (9) of a hot rolling plant (1) and having at least one cooling device (21, 22, 23) with which a rolling stock surface (29) of the rolling stock (15) a coolant stream of a coolant (35) can be output. In the method, each cooling device (21, 22, 23) discharges a flow of coolant onto the surface (29) of the rolling stock during each cooling section run, which coolant flow is set to a setting value assigned to the respective cooling device (21, 22, 23) for the cooling section run. The setting values for a cooling section run are determined in a simulation of the cooling section run in such a way that during the simulation certain surface temperatures of the rolling stock surface (29) when exiting the effective areas (31, 32, 33) of the cooling devices (21, 22, 23) have a minimum value for a surface temperature (T<sub>S</sub>) of the rolling stock surface (29).
Description
Die Erfindung betrifft ein Verfahren und eine Kühlstrecke zum Kühlen eines Walzguts vor einer Fertigstraße einer Warmwalzanlage.The invention relates to a method and a cooling line for cooling a rolling stock before a finishing train of a hot rolling mill.
In einer Warmwalzanlage wird ein metallisches Walzgut, beispielsweise ein Stahlband, gewalzt, um seine Dicke zu reduzieren. Eine Warmwalzanlage weist häufig eine so genannte Vorstraße und eine so genannte Fertigstraße auf. In der Vorstraße wird das Walzgut zu einem so genannten Vorband mit einer Vorbanddicke gewalzt. Das Vorband wird über einen so genannten Zwischenrollgang der Fertigstraße zugeführt, in der die Dicke des Walzguts von der Vorbanddicke weiter auf eine Enddicke reduziert wird.In a hot rolling mill, a metallic rolling stock, for example a steel strip, is rolled in order to reduce its thickness. A hot rolling mill often has a so-called roughing train and a so-called finishing train. In the roughing train, the rolling stock is rolled into a so-called pre-strip with a pre-strip thickness. The pre-strip is fed via a so-called intermediate roller table to the finishing train, in which the thickness of the rolling stock is further reduced from the pre-strip thickness to a final thickness.
Der Vorstraße wird das Walzgut beispielsweise mit einer Temperatur im Bereich von 1100°C bis 1200°C zugeführt. Beispielsweise wird das Walzgut vor der Vorstraße mit einem Erwärmungsofen auf diese Temperatur erhitzt, oder das bereits erhitzte Walzgut wird direkt an die Vorstraße geliefert. In dem Zwischenrollgang wird das Walzgut nicht umgeformt, das heißt seine Dicke wird nicht durch Walzen reduziert, sondern das Walzgut wird lediglich gekühlt, das heißt die Temperatur des Vorbands wird gesenkt, beispielsweise auf eine Temperatur im Bereich zwischen 700°C bis 900°C.The rolling stock is fed to the roughing train, for example at a temperature in the range from 1100°C to 1200°C. For example, the rolling stock is heated to this temperature in front of the roughing train with a heating furnace, or the already heated rolling stock is delivered directly to the roughing train. In the intermediate roller table, the rolling stock is not deformed, i.e. its thickness is not reduced by rolling, but the rolling stock is merely cooled, i.e. the temperature of the pre-strip is lowered, for example to a temperature in the range between 700°C and 900°C.
Die Kühlung des Walzguts in dem Zwischenrollgang dient der Begrenzung der Einlauftemperatur des Walzguts beim Eintritt in die Fertigstraße. Die Begrenzung der Einlauftemperatur erfolgt aus metallurgischen Gründen, beispielsweise um Rekristallisation in dem Walzgut während des Transports des Walzguts durch die Fertigstraße zu unterdrücken, insbesondere bei der Produktion so genannter thermomechanisch gewalzter Produkte wie Röhrenstahl oder mikrolegiertem Stahl, und/oder um eine hohe Oberflächenqualität zu erreichen, beispielsweise bei der Produktion von Automobilaußenhaut oder Dosenblech. Ferner ist es oft vorteilhaft, eine gewünschte Einlauftemperatur für die Fertigstraße möglichst schnell beim Transport des Walzguts durch den Zwischenrollgang zu erreichen.The cooling of the rolling stock in the intermediate roller table serves to limit the inlet temperature of the rolling stock when it enters the finishing mill. The inlet temperature is limited for metallurgical reasons, e.g. to suppress recrystallization in the rolling stock during transport of the rolling stock through the finishing train, especially in the production of so-called thermomechanically rolled products such as pipe steel or micro-alloyed steel, and/or to achieve a high surface quality , for example in the production of automobile outer skin or can sheet metal. Furthermore, it is often advantageous to reach a desired inlet temperature for the finishing train as quickly as possible when transporting the rolling stock through the intermediate roller table.
Andererseits kann eine zu starke Abkühlung des Walzguts in dem Zwischenrollgang zu einer Unterkühlung von Oberflächenbereichen einer Oberfläche des Walzguts führen. Derartige Unterkühlungen können zu Phasenumwandlungen in oberflächennahen Bereichen des Walzguts führen, die die Produktqualität des bei dem Walzprozess hergestellten Produkts beeinträchtigen und daher vermieden werden sollen. Um derartige Unterkühlungen zu verhindern, wird gefordert, dass eine Oberflächentemperatur einer Walzgutoberfläche des Walzguts in dem Zwischenrollgang einen bestimmten Minimalwert nicht unterschreitet.On the other hand, excessive cooling of the rolling stock in the intermediate roller table can lead to supercooling of surface areas of a surface of the rolling stock. Such supercooling can lead to phase transformations in areas of the rolling stock close to the surface, which impair the product quality of the product manufactured during the rolling process and should therefore be avoided. In order to prevent such supercooling, it is required that a surface temperature of a rolling stock surface of the rolling stock in the intermediate roller table does not fall below a certain minimum value.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Kühlstrecke zum Kühlen eines Walzguts vor einer Fertigstraße einer Warmwalzanlage anzugeben, mit denen das Walzgut abgekühlt wird, ohne dass dabei eine Oberflächentemperatur einer Walzgutoberfläche des Walzguts einen vorgegebenen Minimalwert unterschreitet.The invention is based on the object of specifying a method and a cooling section for cooling a rolled stock upstream of a finishing train of a hot rolling mill, with which the rolled stock is cooled without a surface temperature of a rolled stock surface of the rolled stock falling below a predetermined minimum value.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 und eine Kühlstrecke mit den Merkmalen des Anspruchs 13 gelöst.The object is achieved according to the invention by a method having the features of
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.Advantageous configurations of the invention are the subject matter of the dependent claims.
Bei dem erfindungsgemäßen Verfahren wird ein Walzgut in einer vor einer Fertigstraße einer Warmwalzanlage angeordneten Kühlstrecke gekühlt, durch die das Walzgut entlang eines Kühlstreckenweges einmal mit einer vorgegebenen Transportgeschwindigkeit oder mehrmals in alternierender Richtung mit jeweils einer vorgegebenen Transportgeschwindigkeit transportiert wird. Die vorgegebene Transportgeschwindigkeit kann dabei zeitlich variieren. Sie kann aber auch zeitlich konstant sein. Die Kühlstrecke weist eine Kühleinrichtung mit einem Wirkbereich oder mehrere entlang des Kühlstreckenweges hintereinander angeordnete Kühleinrichtungen mit jeweils einem Wirkbereich auf, wobei die Wirkbereiche einander benachbarter Kühleinrichtungen unmittelbar aneinandergrenzen und mit jeder Kühleinrichtung in deren Wirkbereich auf eine Walzgutoberfläche des Walzguts ein Kühlmittelstrom eines Kühlmittels ausgebbar ist, der zwischen dem Wert Null und einem für die Kühleinrichtung spezifischen Maximalwert einstellbar ist.In the method according to the invention, a rolled stock is cooled in a cooling section arranged in front of a finishing train of a hot rolling mill, through which the rolled stock is transported along a cooling section path once at a predetermined transport speed or several times in alternating directions, each with a predetermined transport speed. The specified transport speed can vary over time. However, it can also be constant over time. The cooling line has a cooling device with an effective area or several cooling devices arranged one behind the other along the cooling line path, each with an effective area, the effective areas of mutually adjacent cooling devices directly adjoining one another and with each cooling device in whose effective area a coolant flow of a coolant can be discharged onto a rolling stock surface of the rolling stock is adjustable between the value zero and a maximum value specific to the cooling device.
Bei dem erfindungsgemäßen Verfahren wird ein Minimalwert für eine Oberflächentemperatur der Walzgutoberfläche während des Transports des Walzguts durch die Kühlstrecke entgegengenommen. Zur Einhaltung des Minimalwerts wird jeder Kühleinrichtung für jeden Kühlstreckendurchlauf durch die Kühlstrecke ein Einstellwert für den Kühlmittelstrom zugeordnet und mittels jeder Kühleinrichtung wird bei jedem Kühlstreckendurchlauf ein Kühlmittelstrom auf die Walzgutoberfläche ausgegeben, der auf den der jeweiligen Kühleinrichtung für den Kühlstreckendurchlauf zugeordneten Einstellwert eingestellt wird.In the method according to the invention, a minimum value for a surface temperature of the rolling stock surface is accepted during the transport of the rolling stock through the cooling section. In order to maintain the minimum value, each cooling device is assigned a setting value for the coolant flow for each cooling section run through the cooling line, and by means of each cooling device a coolant flow is output onto the surface of the rolling stock during each cooling section run, which is set to the setting value assigned to the respective cooling device for the cooling section run.
Zum Bestimmen der Einstellwerte für einen Kühlstreckendurchlauf wird zumindest einmal für einen Walzgutabschnitt des Walzguts der Kühlstreckendurchlauf durch die Kühlstrecke mit der vorgegebenen Transportgeschwindigkeit simuliert. Bei jedem simulierten Kühlstreckendurchlauf wird sukzessive für jede Kühleinrichtung
- ein Vorgabewert für einen von der Kühleinrichtung auszugebenden Kühlmittelstrom spätestens unmittelbar vor Eintritt des Walzgutabschnittes in den Wirkbereich der Kühleinrichtung entgegengenommen oder bestimmt,
- ausgehend von einer Anfangsenthalpieverteilung und/oder Anfangstemperaturverteilung in dem Walzgutabschnitt beim Eintritt in den Wirkbereich der Kühleinrichtung anhand eines physikalischen Modells eine Enthalpieverteilung und/oder Temperaturverteilung in dem Walzgutabschnitt beim Austritt aus dem Wirkbereich der Kühleinrichtung berechnet und
- der Einstellwert derart bestimmt, dass er den von der Kühleinrichtung auf die Walzgutoberfläche auszugebenden Kühlmittelstrom unter den Nebenbedingungen quasi-maximiert, dass der Einstellwert den Vorgabewert nicht überschreitet und eine aus der Anfangsenthalpieverteilung und/oder Anfangstemperaturverteilung abgeleitete oder eine aus der berechneten Enthalpieverteilung und/oder berechneten Temperaturverteilung des Walzgutabschnitts abgeleitete Oberflächentemperatur der Walzgutoberfläche beim Austritt aus dem Wirkbereich der Kühleinrichtung den Minimalwert nicht unterschreitet.
- a default value for a coolant flow to be output by the cooling device is received or determined at the latest immediately before the rolling stock section enters the effective range of the cooling device,
- based on an initial enthalpy distribution and/or initial temperature distribution in the rolled stock section upon entry into the effective range of the cooling device, using a physical model to calculate an enthalpy distribution and/or temperature distribution in the rolled stock section upon exit from the effective range of the cooling device and
- the setting value is determined in such a way that it quasi-maximizes the flow of coolant to be output by the cooling device onto the surface of the rolling stock under the secondary conditions that the setting value does not exceed the default value and one derived from the initial enthalpy distribution and/or initial temperature distribution or one from the calculated enthalpy distribution and/or calculated Temperature distribution of the rolled-stock section derived surface temperature of the rolled-stock surface when exiting the effective range of the cooling device does not fall below the minimum value.
Bei der Simulation eines Kühlstreckendurchlaufs wird ferner für je zwei bei dem Kühlstreckendurchlauf von dem Walzgutabschnitt unmittelbar nacheinander durchlaufene Wirkbereiche die für den zuerst durchlaufenen Wirkbereich berechnete Enthalpieverteilung und/oder berechnete Temperaturverteilung beim Austritt aus dem zuerst durchlaufenen Wirkbereich dem anderen Wirkbereich als Anfangsenthalpieverteilung und/oder Anfangstemperaturverteilung beim Eintritt in den anderen Wirkbereich zugeordnet. Für die erste Kühleinrichtung, die von dem Walzgutabschnitt bei dem Kühlstreckendurchlauf durchlaufen wird, wird eine ursprüngliche Anfangsenthalpieverteilung und/oder ursprüngliche Anfangstemperaturverteilung entgegengenommen.When simulating a cooling section run, the enthalpy distribution calculated for the first active section passed through and/or the calculated temperature distribution at the exit from the first active section passed through is used as the initial enthalpy distribution and/or initial temperature distribution in the other active section for two active areas that are passed through immediately one after the other during the cooling section run by the rolling stock section entry assigned to the other effective range. An original initial enthalpy distribution and/or original initial temperature distribution is assumed for the first cooling device through which the rolling stock section passes during the passage through the cooling section.
Bei dem erfindungsgemäßen Verfahren wird also jeder Kühlstreckendurchlauf des Walzguts zunächst mindestens einmal für einen Walzgutabschnitt des Walzguts simuliert, wobei bei der Simulation Einstellwerte für die Kühlmittelströme aller Kühleinrichtungen bestimmt werden. Mit diesen Einstellwerten werden anschließend bei dem tatsächlichen Kühlstreckendurchlauf des Walzguts die Kühleinrichtungen angesteuert. Der Einstellwert für eine Kühleinrichtung wird bei einer Simulation eines Kühlstreckendurchlaufs derart bestimmt, dass der durch den Einstellwert bestimmte Kühlmittelstrom quasi-maximal unter den Nebenbedingungen ist, dass der Einstellwert einen Vorgabewert nicht überschreitet und eine bei der Simulation bestimmte Oberflächentemperatur der Walzgutoberfläche beim Austritt aus dem Wirkbereich der Kühleinrichtung einen Minimalwert nicht unterschreitet. Der Vorgabewert für den Kühlmittelstrom einer Kühleinrichtung wird entweder bei der Simulation bestimmt oder, beispielsweise von einer übergeordneten Steuerung, entgegengenommen.In the method according to the invention, each passage of the rolling stock through the cooling section is first simulated at least once for a rolling stock section of the rolling stock, with the simulation setting values for the coolant flows of all cooling devices being determined. The cooling devices are then controlled with these setting values when the rolling stock actually passes through the cooling section. The setting value for a cooling device is determined in a simulation of a cooling section run in such a way that the coolant flow determined by the setting value is quasi-maximum under the secondary conditions that the setting value does not exceed a default value and a surface temperature of the rolling stock surface determined during the simulation when exiting the effective area of the cooling device does not fall below a minimum value. The default value for the coolant flow of a cooling device is either determined during the simulation or, for example, received from a higher-level controller.
Unter dem quasi-maximalen Kühlmittelstrom wird hier ein Kühlmittelstrom verstanden, der unter den genannten Nebenbedingungen maximal ist oder im Rahmen einer regeltechnischen Ausgestaltung den maximalen Kühlmittelstrom approximiert. Dies berücksichtigt, dass eine exakte Maximierung des Kühlmittelstroms in der Praxis nicht erforderlich ist, da einer Simulation ein mathematisches Modell zugrunde liegt, das die Kühlstrecke nur modelliert und somit nicht exakt abbildet, so dass geringe Abweichungen der Simulation von dem realen Kühlprozess in der Kühlstrecke ohnehin in Kauf genommen werden müssen. Überdies kann eine exakte Maximierung des Kühlmittelstroms einen unangemessen hohen Rechenaufwand erfordern und einer möglichst schnellen Durchführung der Simulation im Wege stehen.The quasi-maximum coolant flow is understood here to mean a coolant flow which is maximum under the specified secondary conditions or which approximates the maximum coolant flow within the framework of a control engineering design. This takes into account that an exact maximization of the coolant flow is not necessary in practice, since a simulation is based on a mathematical model that only models the cooling section and therefore does not depict it exactly, so that there are small deviations in the simulation from the real cooling process in the cooling section anyway have to be accepted. In addition, an exact maximization of the coolant flow can require an unreasonably high computational effort and stand in the way of performing the simulation as quickly as possible.
Die Quasi-Maximierung der Kühlmittelströme ermöglicht vorteilhaft eine optimierte Kühlung des Walzguts beim Transport durch die Kühlstrecke. Durch die Vorgabewerte für die Einstellwerte der Kühlmittelströme kann eine Zieltemperatur am Ende der Kühlstrecke des Walzguts vorgegeben werden, die einer gewünschten Einlauftemperatur des Walzguts beim Eintritt in die Fertigstraße angepasst ist. Die Nebenbedingung, dass die bei der Simulation bestimmten Oberflächentemperaturen der Walzgutoberfläche beim Austritt aus den Wirkbereichen der Kühleinrichtungen jeweils den Minimalwert für die Oberflächentemperatur nicht unterschreiten, verhindert vorteilhaft eine oben genannte produktqualitätsmindernde Unterkühlung der Walzgutoberfläche während des Transports des Walzguts durch die Kühlstrecke. Der Minmalwert wird dementsprechend derart vorgegeben, dass eine derartige Unterkühlung der Walzgutoberfläche vermieden wird.The quasi-maximization of the coolant flows advantageously enables optimized cooling of the rolling stock during transport through the cooling section. Due to the default values for the setting values of the coolant flows, a Target temperature at the end of the cooling section of the rolling stock are specified, which is adapted to a desired inlet temperature of the rolling stock when it enters the finishing train. The secondary condition that the surface temperatures of the rolling stock surface determined in the simulation do not fall below the minimum value for the surface temperature when exiting the effective areas of the cooling devices advantageously prevents the above-mentioned supercooling of the rolling stock surface, which reduces product quality, during the transport of the rolling stock through the cooling section. The minimum value is accordingly specified in such a way that such undercooling of the rolling stock surface is avoided.
Bei einer Ausgestaltung des erfindungsgemäßen Verfahrens wird zumindest einer Kühleinrichtung, insbesondere jeder Kühleinrichtung, bei jedem simulierten Kühlstreckendurchlauf eines Walzgutabschnitts der Einstellwert gemäß wi = fi (TL in (0))wi v als Produkt von fi (Ti in (0)) und wi V zugeordnet, wobei i ein der Kühleinrichtung zugeordneter Wert eines Laufindex ist, der die Wirkbereiche der Kühleinrichtungen in der Reihenfolge nummeriert, in der sie von einem Walzgutabschnitt bei dem Kühlstreckendurchlauf durchlaufen werden. Dabei ist wi V der Vorgabewert für den von der Kühleinrichtung auszugebenden Kühlmittelstrom, Ti in (0) ist eine aus der Anfangsenthalpieverteilung und/oder Anfangstemperaturverteilung abgeleitete Oberflächentemperatur der Walzgutoberfläche beim Eintritt in den Wirkbereich der Kühleinrichtung, Tmin ist der Minimalwert für die Oberflächentemperatur der Walzgutoberfläche und ΔTi res ist eine vorgebbare Reservetemperaturdifferenz. fi (T) ist eine Funktion, die für T ≤ Tmin Null ist, für T ≥ Tmin +ΔTi res Eins ist und im Intervall [Tmin,Tmin +ΔTi res ] streng monoton steigt.In one embodiment of the method according to the invention, at least one cooling device, in particular each cooling device, receives the setting value according to w i = f i ( T L in (0)) w i v as a product of f i ( T i in ( 0)) and w i V assigned, where i is a value of a running index assigned to the cooling device, which numbers the effective areas of the cooling devices in the order in which they are passed through by a section of rolling stock during the cooling section run. In this case, w i V is the default value for the coolant flow to be output by the cooling device, T i in (0) is a surface temperature of the rolling stock surface derived from the initial enthalpy distribution and/or initial temperature distribution when it enters the effective range of the cooling device, T min is the minimum value for the surface temperature the rolling stock surface and Δ T i res is a definable reserve temperature difference. f i ( T ) is a function that is zero for T ≤ T min , unity for T ≥ T min +Δ T i res , and strictly monotonically increasing in the interval [ T min ,T min +Δ T i res ].
Bei der vorgenannten Ausgestaltung des erfindungsgemäßen Verfahrens wird die Nebenbedingung, dass der Einstellwert den Vorgabewert nicht überschreitet, dadurch realisiert, dass die Funktion fi (T) den Wert Eins nicht überschreitet. Die Nebenbedingung, dass die Oberflächentemperatur der Walzgutoberfläche beim Austritt aus dem Wirkbereich der Kühleinrichtung den Minimalwert nicht unterschreitet, kann durch eine geeignete Wahl der Reservetemperaturdifferenz ΔTi res erreicht werden. Die Quasi-Maximierung des Kühlmittelstroms wird durch den monotonen Anstieg der Funktion fi (T) von Null auf Eins erreicht.In the aforementioned embodiment of the method according to the invention, the secondary condition that the setting value does not exceed the default value is implemented in that the function f i ( T ) does not exceed the value one. The constraint that the surface temperature of the Rolling stock surface does not fall below the minimum value when exiting the effective range of the cooling device can be achieved by a suitable choice of the reserve temperature difference Δ T i res . The quasi-maximization of the coolant flow is achieved by the monotonic increase of the function f i ( T ) from zero to one.
Bei einer zur vorgenannten Ausgestaltung alternativen Ausgestaltung des erfindungsgemäßen Verfahrens wird der Einstellwert für zumindest eine Kühleinrichtung, insbesondere für jede Kühleinrichtung, bei jedem simulierten Kühlstreckendurchlauf bestimmt, indem die Oberflächentemperatur der Walzgutoberfläche beim Austritt aus dem Wirkbereich der Kühleinrichtung zunächst für den Vorgabewert für den Kühlmittelstrom der Kühleinrichtung berechnet wird. Der Einstellwert wird dem Vorgabewert gleichgesetzt, falls die für den Vorgabewert berechnete Oberflächentemperatur den Minimalwert nicht unterschreitet. Andernfalls wird die Berechnung der Oberflächentemperatur beim Austritt aus dem Wirkbereich für wenigstens einen Kühlmittelstrom, der kleiner als der Vorgabewert ist, iteriert, um einen Einstellwert des Kühlmittelstroms zu bestimmen, für den die berechnete Oberflächentemperatur beim Austritt aus dem Wirkbereich mit dem Minimalwert mit hinreichnender Genauigkeit übereinstimmt. Unter einer hinreichend genauen Übereinstimmung wird beispielsweise eine Übereinstimmung bis auf eine absolute oder relative Abweichung verstanden, deren Betrag einen vorgegebenen Toleranzwert nicht überschreitet.In an embodiment of the method according to the invention that is an alternative to the aforementioned embodiment, the setting value for at least one cooling device, in particular for each cooling device, is determined for each simulated passage through the cooling section by first comparing the surface temperature of the rolling stock surface when it exits the effective range of the cooling device for the default value for the coolant flow of the cooling device is calculated. The setting value is set equal to the default value if the surface temperature calculated for the default value does not fall below the minimum value. Otherwise, the calculation of the surface temperature at the exit from the effective range is iterated for at least one coolant flow that is smaller than the default value, in order to determine a set value of the coolant flow for which the calculated surface temperature at the exit from the effective range corresponds to the minimum value with sufficient accuracy . A sufficiently precise match is understood to mean, for example, a match apart from an absolute or relative deviation, the amount of which does not exceed a specified tolerance value.
Auch die vorgenannte Ausgestaltung des erfindungsgemäßen Verfahrens realisiert die oben genannten Nebenbedingungen. Diese Ausgestaltung realisiert eine exakte Maximierung des Kühlmittelstroms, wenn die Oberflächentemperatur nach deren iterierter Berechnung tatsächlich mit dem Minimalwert übereinstimmt. Ein geringfügiges Überschreiten des Minimalwertes ist jedoch aus den oben genannten Gründen akzeptabel und stellt eine Quasi-Maximierung des Kühlmittelstroms dar.The aforementioned configuration of the method according to the invention also implements the above-mentioned secondary conditions. This refinement realizes an exact maximization of the coolant flow if the surface temperature actually corresponds to the minimum value after its iterated calculation. However, slightly exceeding the minimum value is acceptable for the reasons given above and represents a quasi-maximization of the coolant flow.
Bei einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens wird für jede Kühleinrichtung als Vorgabewert für den Kühlmittelstrom bei jedem simulierten Kühlstreckendurchlauf der für die jeweilige Kühleinrichtung spezifische Maximalwert des Kühlmittelstroms entgegengenommen.In a further embodiment of the method according to the invention, the maximum value of the coolant flow specific to the respective cooling device is accepted for each cooling device as the default value for the coolant flow during each simulated cooling section run.
Die vorgenannte Ausgestaltung des erfindungsgemäßen Verfahrens ermöglicht insbesondere eine möglichst schnelle Abkühlung des Walzguts bei einem Kühlstreckendurchlauf, indem jeder Vorgabewert auf den für die jeweilige Kühleinrichtung spezifischen Maximalwert des Kühlmittelstroms gesetzt wird.The aforementioned embodiment of the method according to the invention enables the rolling stock to be cooled as quickly as possible during a cooling section run, in that each default value is set to the maximum value of the coolant flow specific to the respective cooling device.
Bei einer zu der vorgenannten Ausgestaltung alternativen Ausgestaltung des erfindungsgemäßen Verfahrens wird für eine Simulation eines Kühlstreckendurchlaufs eines Walzgutabschnitts eine Gesamtkühlmittelmenge von Kühlmittel bestimmt, die bei dem Kühlstreckendurchlauf höchstens insgesamt auf den zu dem Walzgutabschnitt gehörenden Oberflächenteil der Walzgutoberfläche auszugeben ist, und die Vorgabewerte für die Kühlmittelströme des simulierten Kühlstreckendurchlaufs werden in Abhängigkeit von der Gesamtkühlmittelmenge und der für den Kühlstreckendurchlauf vorgegebenen Transportgeschwindigkeit bestimmt. Dabei bedeutet die Bezeichnung Kühlmittelmenge stets das Integral über einen Kühlmittelstrom während der Laufzeit des betrachteten Walzgutabschnittes durch den Wirkbereich einer oder mehrerer Kühleinrichtungen. Dabei kann es auch vorkommen, dass ein auf einen Walzgutabschnitt einwirkender Kühlmittelstrom nicht stets dieselbe Wirkung hat. Dann ist mit Kühlmittelmenge ein entsprechend der Kühlwirkung des Kühlmittelstroms gewichtetes Integral gemeint. Die physikalische Einheit des Kühlmittelstroms ist beispielsweise m2/s entsprechend eines spezifischen Kühlmittelstroms in m3/s pro m Breite der Kühleinrichtung. Die physikalische Einheit der Kühlmittelmenge ist dann m2 entsprechend einer Kühlmittelmenge in m3 pro m Breite der Kühleinrichtung.In an embodiment of the method according to the invention that is an alternative to the aforementioned embodiment, a total amount of coolant is determined for a simulation of a cooling section run through a rolling stock section, which is to be dispensed at most in total on the surface part of the rolling stock surface that belongs to the rolling stock section during the cooling section run, and the default values for the coolant flows of the simulated cooling line passage are determined depending on the total amount of coolant and the transport speed specified for the cooling line passage. The designation coolant quantity always means the integral over a coolant flow during the running time of the considered section of rolling stock through the effective range of one or more cooling devices. It can also happen that a coolant flow acting on a rolling stock section does not always have the same effect. Then the amount of coolant means an integral weighted according to the cooling effect of the coolant flow. The physical unit of the coolant flow is, for example, m 2 /s corresponding to a specific coolant flow in m 3 /s per m width of the cooling device. The physical unit of the amount of coolant is then m 2 corresponding to an amount of coolant in m 3 per m width of the cooling device.
Bei der vorgenannten Ausgestaltung des erfindungsgemäßen Verfahrens kann durch die Gesamtkühlmittelmenge eine Kühlwirkung des gesamten Kühlstreckendurchlaufs und damit eine Zieltemperatur des Walzguts nach dem Kühlstreckendurchlauf vorgegeben werden. Die Vorgabewerte für die Kühlmittelströme des simulierten Kühlstreckendurchlaufs werden dann in Abhängigkeit von der Gesamtkühlmittelmenge bestimmt, so dass die Gesamtkühlmittelmenge durch die Vorgabewerte auf die Kühleinrichtungen verteilt wird.In the aforementioned embodiment of the method according to the invention, a cooling effect of the entire passage through the cooling section and thus a target temperature of the rolling stock after passage through the cooling section can be specified by the total amount of coolant. The default values for the coolant flows of the simulated cooling line run are then determined as a function of the total amount of coolant, so that the total amount of coolant is distributed to the cooling devices by the default values.
Bei einer Weitergestaltung der vorgenannten Ausgestaltung des erfindungsgemäßen Verfahrens wird eine Solldurchschnittstemperatur des Walzguts nach einem Kühlstreckendurchlauf entgegengenommen. Bei jeder Simulation eines Kühlstreckendurchlaufs eines Walzgutabschnitts wird eine Durchschnittstemperatur des Walzgutabschnitts am Ende des Kühlstreckendurchlaufs berechnet und, wenn die berechnete Durchschnittstemperatur nicht hinreichend genau mit der Solldurchschnittstemperatur übereinstimmt, wird für eine nachfolgende Simulation eines Kühlstreckendurchlaufs eines Walzgutabschnitts die Gesamtkühlmittelmenge geändert, um die berechnete Durchschnittstemperatur der Solldurchschnittstemperatur anzugleichen. Dies ermöglicht vorteilhaft, die Gesamtkühlmittelmenge iterativ zu ändern, um am Ende eines Kühlstreckendurchlaufs die Solldurchschnittstemperatur mit hinreichender Genauigkeit zu erreichen. Unter einer hinreichend genauen Übereinstimmung der berechneten Durchschnittstemperatur mit der Solldurchschnittstemperatur wird beispielsweise eine Übereinstimmung bis auf eine absolute oder relative Abweichung verstanden, deren Betrag einen vorgegebenen Toleranzwert nicht überschreitet. Bei dieser Weitergestaltung wird somit als Zieltemperatur des Walzguts nach dem Kühlstreckendurchlauf eine Solldurchschnittstemperatur des Walzguts vorgegeben und die Gesamtkühlmittelmenge wird der Solldurchschnittstemperatur angepasst.In a further development of the aforementioned embodiment of the method according to the invention, a target average temperature of the rolling stock is received after it has passed through a cooling section. With each simulation of a cooling line run of a rolled stock section, an average temperature of the rolled stock section is calculated at the end of the cooling line run and, if the calculated average temperature does not correspond sufficiently exactly to the target average temperature, the total amount of coolant is changed for a subsequent simulation of a cooling line run of a rolled stock section by the calculated average temperature of the target average temperature to adjust This advantageously makes it possible to change the total amount of coolant iteratively in order to reach the setpoint average temperature with sufficient accuracy at the end of a cooling section run. A sufficiently precise match between the calculated average temperature and the setpoint average temperature is understood to mean, for example, a match apart from an absolute or relative deviation, the magnitude of which does not exceed a specified tolerance value. In this development, a target average temperature of the rolling stock is specified as the target temperature of the rolling stock after it has passed through the cooling section, and the total amount of coolant is adjusted to the target average temperature.
Ferner kann vorgesehen sein, dass bei einer Simulation eines Kühlstreckendurchlaufs eines Walzgutabschnitts jeder Kühleinrichtung eine Restkühlmittelmenge zugeordnet wird. Dabei wird der ersten Kühleinrichtung des Kühlstreckendurchlaufs die Gesamtkühlmittelmenge als Restkühlmittelmenge zugeordnet. Jeder weiteren Kühleinrichtung wird als Restkühlmittelmenge die Restkühlmittelmenge der vorhergehenden Kühleinrichtung des Kühlstreckendurchlaufs abzüglich der Kühlmittelmenge zugeordnet, die von der vorhergehenden Kühleinrichtung gemäß dem für sie ermittelten Einstellwert des Kühlmittelstroms auf den zu dem Walzgutabschnitt gehörenden Oberflächenteil der Walzgutoberfläche ausgegeben würde. Der Vorgabewert des Kühlmittelstroms einer Kühleinrichtung wird dann gemäß wi V = wi max min(1, WR /Wi max ) als das Produkt von wi max und min(1, WR / Wi max ) bestimmt, wobei wi max der Maximalwert des Kühlmittelstroms der Kühleinrichtung ist, WR die der Kühleinrichtung zugeordnete Restkühlmittelmenge ist und wi max eine maximale Kühlmittelmenge ist, die mit der Kühleinrichtung auf den zu dem Walzgutabschnitt gehörenden Oberflächenteil der Walzgutoberfläche bei dem Kühlstreckendurchlauf ausgebbar ist. min(1,WR /Wi max ) bezeichnet das Minimum der beiden Werte 1 und WR /Wi max. Bei dieser Ausgestaltung des erfindungsgemäßen Verfahrens werden die Vorgabewerte für die Kühlmittelströme der Kühleinrichtung also während der Simulation eines Kühlstreckendurchlaufs bestimmt, indem jeder Kühleinrichtung eine Restkühlmittelmenge zugeordnet wird und der Vorgabewert für die Kühleinrichtung in Abhängigkeit von der Restkühlmittelmenge bestimmt wird.Furthermore, it can be provided that in a simulation of a cooling line passage of a section of rolling stock Cooling device is assigned a residual amount of coolant. In this case, the total quantity of coolant as the residual quantity of coolant is assigned to the first cooling device of the passage through the cooling section. Each additional cooling device is assigned as the residual coolant quantity the residual coolant quantity of the preceding cooling device of the cooling section run minus the coolant quantity that would be output by the preceding cooling device according to the coolant flow setting value determined for it onto the surface part of the rolling stock surface belonging to the rolling stock section. The coolant flow command of a cooler is then determined according to w i V = w i max min(1, W R / W i max ) as the product of w i max and min(1, W R / W i max ), where w i max is the maximum value of the coolant flow of the cooling device, W R is the residual amount of coolant assigned to the cooling device, and w i max is a maximum amount of coolant that can be dispensed with the cooling device onto the part of the surface of the rolling stock that belongs to the rolling stock section as it passes through the cooling section. min(1 ,W R / W i max ) designates the minimum of the two
Alternativ kann vorgesehen sein, dass, wenn bei der Simulation des Kühlstreckendurchlaufs des Walzgutabschnitts für eine Kühleinrichtung ein Einstellwert bestimmt wird, der kleiner als ein für die Kühleinrichtung entgegengenommener Vorgabewert ist, und wenn es wenigstens eine nachfolgende Kühleinrichtung gibt, die bei dem Kühlstreckendurchlauf später erreicht wird und für die ein entgegengenommener Vorgabewert kleiner als der Maximalwert des Kühlmittelstroms dieser Kühleinrichtung ist, der Vorgabewert für wenigstens eine derartige nachfolgende Kühleinrichtung erhöht wird, um die bei dem Kühlstreckendurchlauf auf den zu dem Walzgutabschnitt gehörenden Oberflächenteil der Walzgutoberfläche insgesamt auszugebene Kühlmittelmenge der für den Kühlstreckendurchlauf bestimmten Gesamtkühlmittelmenge anzupassen. Diese Ausgestaltung des erfindungsgemäßen Verfahrens geht von am Anfang einer Simulation entgegengenommenen Vorgabewerten aus. Die Vorgabewerte werden bei der Simulation gegebenenfalls angepasst, wenn der bei der Simulation für eine Kühleinrichtung bestimmte Einstellwert den zugehörigen Vorgabewert unterschreitet. Bei der Anpassung der Vorgabewerte werden, soweit möglich, Vorgabewerte für nachfolgende Kühleinrichtungen erhöht, um die Kühlwirkung des Kühlstreckendurchlaufs an die der Gesamtkühlmittelmenge entsprechenden Kühlwirkung anzupassen.Alternatively, it can be provided that, if during the simulation of the cooling line run of the rolling stock section, a setting value is determined for a cooling device that is smaller than a default value accepted for the cooling device, and if there is at least one subsequent cooling device that is reached later during the cooling line run and for which an accepted setpoint is less than the maximum value of the coolant flow of that cooling device, the setpoint for at least one such subsequent cooling device is increased by to adjust the total amount of coolant to be dispensed during the passage of the cooling section onto the part of the surface of the rolling stock surface belonging to the section of rolling stock to the total quantity of coolant determined for the passage through the cooling section. This embodiment of the method according to the invention is based on default values received at the beginning of a simulation. If necessary, the default values are adjusted during the simulation if the setting value determined for a cooling device during the simulation falls below the associated default value. When adapting the default values, default values for subsequent cooling devices are increased as far as possible in order to adapt the cooling effect of the cooling section run to the cooling effect corresponding to the total amount of coolant.
Bei einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens wird zum Berechnen der Enthalpieverteilung und/oder Temperaturverteilung in dem Walzgutabschnitt beim Austritt aus dem Wirkbereich einer Kühleinrichtung bei einer Simulation eines Kühlstreckendurchlaufs des Walzgutabschnitts eine eindimensionale Wärmeleitungsgleichung gelöst, die die Enthalpieverteilung und/oder Temperaturverteilung in dem Walzgutabschnitt entlang einer Walzgutdickenrichtung beschreibt. Zum Lösen der Wärmeleitungsgleichung werden beispielsweise Randbedingungen berücksichtigt, die eine Kühlung des Walzgutabschnitts durch Wärmestrahlung, auf die Walzgutoberfläche ausgegebenes Kühlmittel, an die Umgebungsluft abgeführte Wärme und an das Walzgut transportierende Transportrollen abgeführte Wärme parametrieren. Die Walzgutdickenrichtung ist dabei eine Richtung von einer oberseitigen Oberfläche zu einer unterseitigen Oberfläche des Walzguts oder umgekehrt von der unterseitigen Oberfläche zu der oberseitigen Oberfläche des Walzguts.In a further embodiment of the method according to the invention, in order to calculate the enthalpy distribution and/or temperature distribution in the rolling stock section when exiting the effective range of a cooling device, a one-dimensional heat conduction equation is solved during a simulation of a cooling section run through of the rolling stock section, which equation calculates the enthalpy distribution and/or temperature distribution in the rolling stock section along a Rolled stock thickness direction describes. To solve the heat conduction equation, boundary conditions are taken into account, for example, which parameterize cooling of the rolling stock section by thermal radiation, coolant emitted onto the rolling stock surface, heat dissipated to the ambient air and heat dissipated to the transport rollers transporting the rolling stock. The rolling stock thickness direction is a direction from a top surface to a bottom surface of the rolling stock or conversely from the bottom surface to the top surface of the rolling stock.
Die vorgenannte Ausgestaltung des erfindungsgemäßen Verfahrens berücksichtigt, dass ein Wärmefluss in Längs- oder Querrichtung innerhalb des Walzguts gegenüber einem Wärmefluss in Walzgutdickenrichtung des Walzguts vernachlässigbar ist. Daher kann zu einer Berechnung der Enthalpieverteilung und/oder Temperaturverteilung in dem Walzgutabschnitt mit einer ausreichenden Genauigkeit eine eindimensionale Wärmeleitungsgleichung verwendet werden, die die Enthalpieverteilung und/oder Temperaturverteilung in dem Walzgutabschnitt entlang der Walzgutdickenrichtung beschreibt. Dies reduziert den Rechenaufwand und die Rechenzeit erheblich gegenüber der Verwendung einer zwei- oder dreidimensionalen Wärmeleitungsgleichung. Die genannten Randbedingungen berücksichtigen die wesentlichen Einflüsse auf die Entwicklung der Enthalpieverteilung und Temperaturverteilung in dem Walzgut.The aforementioned embodiment of the method according to the invention takes into account that a heat flow in the longitudinal or transverse direction within the rolling stock compared to a Heat flow in the rolling stock thickness direction of the rolling stock is negligible. A one-dimensional heat conduction equation, which describes the enthalpy distribution and/or temperature distribution in the rolling stock section along the rolling stock thickness direction, can therefore be used to calculate the enthalpy distribution and/or temperature distribution in the rolling stock section with sufficient accuracy. This significantly reduces the computational effort and computation time compared to using a two- or three-dimensional heat conduction equation. The boundary conditions mentioned take into account the main influences on the development of the enthalpy distribution and temperature distribution in the rolling stock.
Bei einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens wird an wenigstens einer Messstelle, die von einem Walzgutabschnitt vor einem Kühlstreckendurchlauf passiert wird, die Oberflächentemperatur eines zu dem Walzgutabschnitt gehörenden Oberflächenteils der Walzgutoberfläche gemessen und die ursprüngliche Anfangsenthalpieverteilung und/oder ursprüngliche Anfangstemperaturverteilung für eine Simulation eines Kühlstreckendurchlaufs des Walzgutabschnitts werden in Abhängigkeit von der wenigstens einen gemessenen Oberflächentemperatur bestimmt.In a further embodiment of the method according to the invention, the surface temperature of a surface part of the rolling stock surface belonging to the rolling stock section is measured at at least one measuring point, which is passed by a rolling stock section before a cooling section runs through it, and the original initial enthalpy distribution and/or original initial temperature distribution for a simulation of a cooling section run through of the rolling stock section are determined as a function of the at least one measured surface temperature.
Das erfindungsgemäße Verfahren kann ferner für eine oberseitige Walzgutoberfläche oder eine unterseitige Walzgutoberfläche oder separat für die oberseitige Walzgutoberfläche und die unterseitige Walzgutoberfläche des Walzguts durchgeführt werden.The method according to the invention can also be carried out for an upper-side rolling stock surface or a lower-side rolling stock surface or separately for the upper-side rolling stock surface and the underside rolling stock surface of the rolling stock.
Eine erfindungsgemäße Kühlstrecke zum Kühlen eines Walzguts vor einer Fertigstraße einer Warmwalzanlage umfasst
- eine Kühleinrichtung oder mehrere entlang eines Kühlstreckenweges durch die Kühlstrecke hintereinander angeordnete Kühleinrichtungen, mit denen jeweils auf eine Walzgutoberfläche des Walzguts ein Kühlmittelstrom eines Kühlmittels ausgebbar ist, der zwischen dem Wert Null und einem für die Kühleinrichtung spezifischen Maximalwert einstellbar ist,
- mehrere Transportrollen, die eingerichtet sind, das Walzgut entlang des Kühlstreckenweges durch die Kühlstrecke zu transportieren, und
- eine Steuereinheit, die eingerichtet ist, die Kühlstrecke gemäß dem erfindungsgemäßen Verfahren nach einem der vorhergehenden Ansprüche zu betreiben.
- a cooling device or a plurality of cooling devices arranged one behind the other along a cooling section path through the cooling section, with which a coolant flow of a coolant can be discharged onto a rolling stock surface of the rolling stock, which coolant flow is between the value zero and can be set to a maximum value specific to the cooling device,
- a plurality of transport rollers which are set up to transport the rolling stock through the cooling section along the cooling section path, and
- a control unit that is set up to operate the cooling section according to the method according to the invention according to one of the preceding claims.
Bei einer Ausgestaltung einer erfindungsgemäßen Kühlstrecke mit mehreren Kühleinrichtungen sind die Kühleinrichtungen entlang des Kühlstreckenweges ihren Maximalwerten der ausgebbaren Kühlmittelströme entsprechend angeordnet, so dass die Maximalwerte zu der Fertigstraße hin monoton abnehmen. Dies ermöglicht vorteilhaft eine schnelle Abkühlung des Walzguts am Anfang der Kühlstrecke. Ferner können die Kühleinrichtungen im hinteren Teil der Kühlstrecke einfacher und kostengünstiger ausgeführt sein als die Kühleinrichtungen im vorderen Teil der Kühlstrecke, da in dem hinteren Teil der Kühlstrecke die Oberflächentemperatur der Walzgutoberfläche in der Regel bereits den Minimalwert erreicht hat und daher dort nur eine geringe Kühlleistung benötigt wird.In an embodiment of a cooling section according to the invention with a plurality of cooling devices, the cooling devices are arranged along the cooling section path according to their maximum values of the coolant flows that can be discharged, so that the maximum values decrease monotonically towards the finishing train. This advantageously enables rapid cooling of the rolling stock at the beginning of the cooling section. Furthermore, the cooling devices in the rear part of the cooling section can be simpler and less expensive than the cooling devices in the front part of the cooling section, since the surface temperature of the rolling stock surface has usually already reached the minimum value in the rear part of the cooling section and therefore only requires a low cooling capacity there becomes.
Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung von Ausführungsbeispielen, die im Zusammenhang mit den Zeichnungen näher erläutert werden. Dabei zeigen:
-
FIG 1 schematisch eine Warmwalzanlage, -
FIG 2 ein Ablaufdiagramm des erfindungsgemäßen Verfahrens, -
FIG 3 ein Ablaufdiagramm eines ersten Ausführungsbeispiels eines Verfahrensschrittes des erfindungsgemäßen Verfahrens, -
FIG 4 ein Ablaufdiagramm eines zweiten Ausführungsbeispiels eines Verfahrensschrittes des erfindungsgemäßen Verfahrens, -
FIG 5 ein Ablaufdiagramm eines dritten Ausführungsbeispiels eines Verfahrensschrittes des erfindungsgemäßen Verfahrens, -
FIG 6 ein Ablaufdiagramm eines vierten Ausführungsbeispiels eines Verfahrensschrittes des erfindungsgemäßen Verfahrens, -
FIG 7 Temperaturverläufe von Temperaturen in einem Walzgutabschnitt vor und während eines Kühlstreckendurchlaufs.
-
FIG 1 schematic of a hot rolling mill, -
FIG 2 a flowchart of the method according to the invention, -
3 a flowchart of a first exemplary embodiment of a method step of the method according to the invention, -
FIG 4 a flowchart of a second exemplary embodiment of a method step of the method according to the invention, -
5 a flowchart of a third exemplary embodiment of a method step of the method according to the invention, -
6 a flowchart of a fourth exemplary embodiment of a method step of the method according to the invention, -
FIG 7 Temperature curves of temperatures in a rolling stock section before and during a cooling section run.
Einander entsprechende Teile sind in den Figuren mit denselben Bezugszeichen versehen.Corresponding parts are provided with the same reference symbols in the figures.
Der Erwärmungsofen 3 ist vor der Vorstraße 5 angeordnet und eingerichtet, das Walzgut 15 auf eine bestimmte Temperatur, beispielsweise im Bereich von 1100°C bis 1200°C, zu erhitzen.The
Die Vorstraße 5 weist mindestens ein Vorstraßenwalzgerüst 17 auf. In der Vorstraße 5 wird das Walzgut 15 zu einem Vorband mit einer Vorbanddicke gewalzt, die beispielsweise im Bereich zwischen 30 mm und 170 mm liegt.The
Durch den Zwischenrollgang 7 wird das Walzgut 15 von der Vorstraße 5 zu der Fertigstraße 9 mit einer vorgegebenen Transportgeschwindigkeit transportiert. Der Zwischenrollgang 7 weist ein Ausführungsbeispiel einer erfindungsgemäßen Kühlstrecke 19 auf. Die Kühlstrecke 19 umfasst mehrere entlang eines Kühlstreckenweges durch die Kühlstrecke 19 hintereinander angeordnete Kühleinrichtungen 21, 22, 23, mehrere Transportrollen 25, die eingerichtet sind, das Walzgut 15 entlang des Kühlstreckenweges durch die Kühlstrecke zu transportieren, und eine Steuereinheit 27, die eingerichtet ist, die Kühlstrecke 19 gemäß einem Ausführungsbeispiel des erfindungsgemäßen Verfahrens zum Kühlen des Walzguts 15 zu betreiben. Ausführungsbeispiele des erfindungsgemäßen Verfahrens werden unten anhand der
Mit jeder Kühleinrichtung 21, 22, 23 ist in einem Wirkbereich 31, 32, 33 der Kühleinrichtung 21, 22, 23 auf eine Walzgutoberfläche 29 des Walzguts 15 ein Kühlmittelstrom eines Kühlmittels 35 ausgebbar, der zwischen dem Wert Null und einem für die Kühleinrichtung 21, 22, 23 spezifischen Maximalwert einstellbar ist. Das Kühlmittel 35 ist beispielsweise Wasser. In
Jede Kühleinrichtung 21, 22, 23 ist beispielsweise als ein Kühlbalken ausgebildet, der sich entlang einer Breite des Walzguts 15 erstreckt und mehrere Düsen aufweist, mit denen jeweils Kühlmittel 35 auf die Walzgutoberfläche 29 ausgebbar ist. Die Wirkbereiche 31, 32, 33 sind den Kühleinrichtungen 21, 22, 23 derart zugeordnet, dass die Wirkbereiche 31, 32, 33 einander benachbarter Kühleinrichtungen 21, 22, 23 unmittelbar aneinandergrenzen. Beispielsweise sind die Kühleinrichtungen 21, 22, 23 entlang des Kühlstreckenweges ihren Maximalwerten der ausgebbaren Kühlmittelströme entsprechend angeordnet, so dass die Maximalwerte zu der Fertigstraße 9 hin monoton abnehmen.Each cooling
In dem Zwischenrollgang 7 ist ferner vor der Kühlstrecke 19 eine Messeinrichtung 37 an einer Messstelle 39 angeordnet, die eingerichtet ist, eine Oberflächentemperatur der Walzgutoberfläche 29 zu erfassen. Beispielsweise weist die Messeinrichtung 37 zu diesem Zweck ein Pyrometer auf.A measuring
Die Fertigstraße 9 umfasst mehrere Fertigstraßenwalzgerüste 41 sowie Fertigstraßenkühleinrichtungen 43, die jeweils zwischen zwei Fertigstraßenwalzgerüste 41 angeordnet sind und mit denen jeweils Fertigstraßenkühlmittel 45 auf die Walzgutoberfläche 29 ausgebbar ist. In der Fertigstraße 9 wird die Dicke des Walzguts 15 mit den Fertigstraßenwalzgerüsten 41 auf eine Enddicke reduziert.The finishing
In dem Auslaufkühlbereich 11 sind Auslaufkühleinrichtungen 47, 49 angeordnet, mit denen Auslaufkühlmittel 51 auf die Walzgutoberfläche 29 ausgebbar ist. In dem Auslaufkühlbereich 11 wird das Walzgut 15 hinter der Fertigstraße 9 abgekühlt.
In dem Haspelbereich 13 ist mindestens eine Walzguthaspel 53 angeordnet, die eingerichtet ist, das Walzgut 15 aufzuwickeln.At least one rolled
In einem ersten Verfahrensschritt 100 wird von der Steuereinheit 27 ein Minimalwert Tmin für eine Oberflächentemperatur der Walzgutoberfläche 29 während des Transports des Walzguts 15 durch die Kühlstrecke 19 entgegengenommen. Der Minimalwert Tmin wird beispielsweise von einer (nicht dargestellten) übergeordneten Steuerung oder von einem Bediener der Warmwalzanlage 1 vorgegeben. Der Minimalwert Tmin ist eine Oberflächentemperatur der Walzgutoberfläche 29, die während des Transports des Walzguts 15 durch die Kühlstrecke 19 nicht unterschritten werden soll.In a
In einem zweiten Verfahrensschritt 200 wird für einen Kühlstreckendurchlauf des Walzguts 15 durch die Kühlstrecke 19 jeder Kühleinrichtung 21, 22, 23 ein Einstellwert für den von der Kühleinrichtung 21, 22, 23 auf die Walzgutoberfläche 29 auszugebenden Kühlmittelstrom zugeordnet. Ausführungsbeispiele des zweiten Verfahrensschrittes 200 werden unten anhand der
In einem dritten Verfahrensschritt 300 wird mittels jeder Kühleinrichtung 21, 22, 23 bei dem Kühlstreckendurchlauf ein Kühlmittelstrom auf die Walzgutoberfläche 29 ausgegeben, der auf den der jeweiligen Kühleinrichtung 21, 22, 23 für den Kühlstreckendurchlauf im zweiten Verfahrensschritt 200 zugeordneten Einstellwert eingestellt wird.In a
Die Verfahrensschritte 200 und 300 können auch mehrfach ausgeführt werden, so dass die Einstellwerte der Kühleinrichtungen 21, 22, 23 während des Transports des Walzguts 15 durch die Kühlstrecke 19 gegebenenfalls geändert werden. Dies ist in
Beispielsweise wird das Walzgut 15 in mehrere Walzgutabschnitte aufgeteilt, die die Wirkbereiche 31, 32, 33 der Kühleinrichtungen 21, 22, 23 nacheinander durchlaufen, und die Verfahrensschritte 200 und 300 werden sukzessive für jeden Walzgutabschnitt ausgeführt. In diesem Fall wird in dem zweiten Verfahrensschritt 200 jeweils für den Kühlstreckendurchlauf eines Walzgutabschnitts durch die Kühlstrecke 19 jeder Kühleinrichtung 21, 22, 23 ein Einstellwert für den von der Kühleinrichtung 21, 22, 23 auf den zu dem Walzgutabschnitt gehörenden Teil der Walzgutoberfläche 29 auszugebenden Kühlmittelstrom zugeordnet.For example, the rolling
In dem dritten Verfahrensschritt 300 wird entsprechend mittels jeder Kühleinrichtung 21, 22, 23 bei dem Kühlstreckendurchlauf eines Walzgutabschnitts ein Kühlmittelstrom auf den zu dem Walzgutabschnitt gehörenden Teil der Walzgutoberfläche 29 ausgegeben, der auf den der jeweiligen Kühleinrichtung 21, 22, 23 für den Kühlstreckendurchlauf des Walzgutabschnitts im zweiten Verfahrensschritt 200 zugeordneten Einstellwert eingestellt wird. Dabei wird vorzugsweise für jede Kühleinrichtung 21, 22, 23 eine Verzögerungszeitdauer berücksichtigt, die zwischen dem Ändern des Einstellwertes der Kühleinrichtung 21, 22, 23 und der Änderung des tatsächlich von der Kühleinrichtung 21, 22, 23 ausgegebenen Kühlmittelstroms auf den geänderten Einstellwert vergeht, indem der Einstellwert der Kühleinrichtung 21, 22, 23 zu einem Zeitpunkt geändert wird, der um die Verzögerungszeitdauer vor dem Zeitpunkt liegt, zu dem der Walzgutabschnitt in den Wirkbereich 31, 32, 33 der Kühleinrichtung 21, 22, 23 eintritt.In the
In einem ersten Teilschritt 201 wird eine Solldurchschnittstemperatur
In dem zweiten Teilschritt 202 wird eine Gesamtkühlmittelmenge W von Kühlmittel 35 entgegengenommen, die bei dem Kühlstreckendurchlauf auf den zu dem Walzgutabschnitt gehörenden Oberflächenteil der Walzgutoberfläche 29 höchstens insgesamt auszugeben ist. Nach dem zweiten Teilschritt 202 wird ein dritter Teilschritt 203 ausgeführt.In the
In dem dritten Teilschritt 203 wird einer Restkühlmittelmenge WR als Anfangswert die Gesamtkühlmittelmenge W zugewiesen und dem Laufindex i wird als Anfangswert der Wert 1 zugewiesen. Nach dem dritten Teilschritt 203 wird ein vierter Teilschritt 204 für den Laufindexwert i = 1 ausgeführt.In the third
In dem vierten Teilschritt 204 wird eine Anfangstemperaturverteilung Ti in (x) in dem Walzgutabschnitt entlang einer Walzgutdickenrichtung beim Eintritt in den Wirkbereich 31, 32, 33 mit dem jeweils aktuellen Wert des Laufindex i entgegengenommen beziehungsweise übernommen. Die Walzgutdickenrichtung verläuft senkrecht zu einer Transportrichtung des Transports des Walzguts 15 durch die Kühlstrecke 19 von der oberseitigen Oberfläche zu der unterseitigen Oberfläche des Walzguts 15. x bezeichnet eine Variable entlang der Walzgutdickenrichtung, wobei x = 0 ein Punkt an der oberseitigen Oberfläche des Walzguts 15 ist und x = d ein dem Punkt x = 0 entlang der Walzgutdickenrichtung gegenüberliegender Punkt an der unterseitigen Oberfläche des Walzguts 15 ist.In the
Für den Laufindexwert i = 1 wird als Anfangstemperaturverteilung T 1 in (x) eine ursprüngliche Anfangstemperaturverteilung entgegengenommen, die beispielsweise aus einer Oberflächentemperatur der Walzgutoberfläche 29, die von der Messeinrichtung 37 erfasst wurde, und/oder aus einer Heiztemperatur des Erwärmungsofens 3 abgeleitet wird. Beispielsweise wird die Anfangstemperaturverteilung T 1 in (x) als eine parabolische Temperaturverteilung in Walzgutdickenrichtung zwischen einer angenommenen Kerntemperatur in der Mitte zwischen einer oberseitigen und einer unterseitigen Oberfläche des Walzguts 15 und der von der Messeinrichtung 37 erfassten Oberflächentemperatur modelliert, wobei die Kerntemperatur beispielsweise aus der Heiztemperatur des Erwärmungsofens 3 abgeleitet wird.For the running index value i = 1, an original initial temperature distribution is accepted as the initial temperature distribution T 1 in ( x ), which is derived, for example, from a surface temperature of the rolling
Für jeden Laufindexwert i > 1 wird als Anfangstemperaturverteilung Ti in (x) die Temperaturverteilung T i-1 out (x) übernommen, die bei der vorhergehenden Ausführung des Teilschritts 207 für den Wirkbereich 31, 32, 33 mit dem Laufindexwert i - 1 ermittelt wurde:
Alternativ oder zusätzlich zu der Anfangstemperaturverteilung Ti in (x) kann in dem Teilschritt 204 in analoger Weise für den jeweils aktuellen Laufindexwert i eine Anfangsenthalpieverteilung hi in (x) entgegengenommen beziehungsweise übernommen werden. Nach dem vierten Teilschritt 204 wird ein fünfter Teilschritt 205 ausgeführt.As an alternative or in addition to the initial temperature distribution T i in ( x ), an initial enthalpy distribution h i in ( x ) can be received or adopted in
In dem fünften Teilschritt 205 wird ein Vorgabewert wi V für den Kühlmittelstrom der Kühleinrichtung 21, 22, 23 mit dem jeweils aktuellen Wert des Laufindex i bestimmt. Dazu wird beispielsweise eine maximale Kühlmittelmenge wi max bestimmt, die mit der Kühleinrichtung 21, 22, 23 auf den zu dem Walzgutabschnitt gehörenden Oberflächenteil der Walzgutoberfläche 29 bei dem Kühlstreckendurchlauf ausgebbar ist. Die maximale Kühlmittelmenge wi max hängt insbesondere von dem für die Kühleinrichtung 21, 22, 23 spezifischen Maximalwert wi max des ausgebbaren Kühlmittelstroms und von der vorgegebenen Transportgeschwindigkeit ab. Der Vorgabewert wi V wird dann als das Produkt des Maximalwertes wi max und des Minimums min(1,WR /Wi max ) der beiden Werte 1 und WR /Wi max definiert:
Mit anderen Worten stimmt der Vorgabewert wi V mit dem für die Kühleinrichtung 21, 22, 23 spezifischen Maximalwert wi max des ausgebbaren Kühlmittelstroms überein, falls der aktuelle Wert der Restkühlmittelmenge WR größer als die maximale Kühlmittelmenge wi max oder gleich der maximalen Kühlmittelmenge wi max ist. Andernfalls ist der Vorgabewert wi V der Quotient des aktuellen Wertes der Restkühlmittelmenge WR und einer effektiven Durchlaufzeit Wi max /wi max des Walzgutabschnitts durch den Wirkbereich 31, 32, 33 mit dem aktuellen Wert des Laufindex i. Nach dem fünften Teilschritt 205 wird ein sechster Teilschritt 206 ausgeführt.In other words, the default value w i V corresponds to the maximum value w i max of the coolant flow that can be dispensed, which is specific to the
In dem sechsten Teilschritt 206 wird dem Einstellwert wi des Kühlmittelstroms für die Kühleinrichtung 21, 22, 23 mit dem jeweils aktuellen Wert des Laufindex i als Anfangswert der in der vorhergehenden Ausführung des fünften Teilschritts 205 für diesen Kühlmittelstrom bestimmte Vorgabewert wi V zugewiesen. Nach dem sechsten Teilschritt 206 wird ein siebter Teilschritt 207 ausgeführt.In the sixth sub-step 206, the setting value w i of the coolant flow for the
In dem siebten Teilschritt 207 wird eine Temperaturverteilung Ti out (x) in dem Walzgutabschnitt entlang der Walzgutdickenrichtung beim Austritt aus dem Wirkbereich 31, 32, 33 mit dem jeweils aktuellen Wert des Laufindex i berechnet. Die Temperaturverteilung Ti out (x) wird anhand eines physikalischen Modells berechnet, das die zeitliche Entwicklung der Temperaturverteilung in dem Walzgutabschnitt durch eine eindimensionale Wärmeleitungsgleichung beschreibt. Die Wärmeleitungsgleichung wird für unten genannte Randbedingungen mit der zugehörigen Anfangstemperaturverteilung Ti in (x) als Temperaturverteilung beim Eintritt in den jeweiligen Wirkbereich 31, 32, 33 gelöst.In the seventh
Alternativ oder zusätzlich zu der Temperaturverteilung Ti out (x) kann in dem siebten Teilschritt 207 analog eine Enthalpieverteilung hi out (x) in dem Walzgutabschnitt beim Austritt aus dem Wirkbereich 31, 32, 33 mit dem jeweils aktuellen Wert des Laufindex i berechnet werden, wenn bei der vorhergehenden Ausführung des vierten Teilschritts 204 eine zugehörige Anfangsenthalpieverteilung hi in (x) beim Eintritt in diesen Wirkbereich 31, 32, 33 entgegengenommen beziehungsweise übernommen wurde.As an alternative or in addition to the temperature distribution T i out ( x ), in the seventh
Eine einfache Form der Wärmeleitungsgleichung ist
Dabei ist
Als Randbedingungen werden für die Wärmeleitungsgleichung (3) die Wärmestromdichte j o für die oberseitige Oberfläche (x = 0) und die Wärmestromdichte j u für die unterseitige Oberfläche (x = d) des Walzguts 15 benötigt. Beispielsweise wird für die oberseitige Oberfläche
Die Funktion f w wird oftmals separiert, um eine einfachere Parametrierung zu ermöglichen, beispielsweise gemäß
Wenn das erfindungsgemäße Verfahren für oberseitige und unterseitige Kühleinrichtungen 21, 22, 23 durchgeführt wird, wird es separat für die oberseitigen Kühleinrichtungen 21, 22, 23 und die unterseitigen Kühleinrichtungen 21, 22, 23 durchgeführt. In
Eine alternative Form der Wärmeleitungsgleichung ist
In Gleichung (5) sind pk, k = 1,...,m Phasenanteile des Walzguts 15, beispielsweise ein Austenitanteil, ein Ferritanteil, ein Zementitanteil und/oder andere Anteile. Die Phasenanteile sind stets nicht negativ und ihre Summe ist Eins. Die Größe h ist eine Enthalpiedichte, wobei
Die Phasenanteile können dabei nach Bedarf, insbesondere gekoppelt mit der Lösung der Wärmeleitungsgleichung berechnet werden. Beispielsweise kann man für die Phasenanteile ein gekoppeltes Differentialgleichungssystem
Die Gleichung (3) beziehungsweise die Gleichungen (5) und (6) werden mit den Randbedingungen gemäß den Gleichungen (4a) und (4b) für eine Anfangstemperaturverteilung Ti in (x) beziehungsweise eine Anfangsenthalpieverteilung hi in (x) und anfängliche Phasenanteile p 1 i,...,pmi gelöst, um eine Temperaturverteilung Ti out (x) beziehungsweise eine Enthalpieverteilung hi out (x) und Phasenanteile
Die in die Gleichungen (4a) und (4b) eingehenden Funktionen f L, f w, f R werden in aus dem Stand der Technik bekannter Weise beispielsweise als so genannte B-Splines geeignet parametriert. In einigen Fällen lassen sich auch geschlossene Darstellungen angeben. Diesbezüglich wird beispielsweise auf die Veröffentlichung
Nach dem siebten Teilschritt 207 wird ein achter Teilschritt 208 ausgeführt.After the seventh
In dem achten Teilschritt 208 wird geprüft, ob die in dem siebten Teilschritt 207 berechnete Temperatur Ti out (0) an der Walzgutoberfläche 29 beim Austritt aus dem Wirkbereich 31, 32, 33 mit dem jeweils aktuellen Wert des Laufindex i den Minimalwert Tmin überschreitet oder gleich dem Minimalwert Tmin ist (im Fall, dass die Walzgutoberfläche 29 die unterseitige Oberfläche des Walzguts 15 ist, ist hier Ti out (0) durch Ti out (d) zu ersetzen oder die Wahl der Koordinate x so anzupassen, dass x = 0 die unterseitige Oberfläche des Walzguts 15 bezeichnet). Wenn dies nicht der Fall ist, wird ein neunter Teilschritt 209 ausgeführt. Andernfalls wird ein zehnter Teilschritt 210 ausgeführt.In the
Der neunte Teilschritt 209 wird also immer dann ausgeführt, wenn die berechnete Oberflächentemperatur der Walzgutoberfläche 29 beim Austritt aus dem Wirkbereich 31, 32, 33 mit dem jeweils aktuellen Wert des Laufindex i den Minimalwert Tmin unterschreitet, das heißt, wenn der aktuelle Einstellwert wi für diesen Wert des Laufindex i zu hoch ist. In dem neunten Teilschritt 209 wird diesem Einstellwert wi deshalb ein neuer (kleinerer) Wert zugewiesen, beispielsweise mit einem Newtonverfahren derart, dass die für den neuen Einstellwert wi berechnete Oberflächentemperatur dem Minimalwert Tmin angenähert wird. Anschließend werden wieder der siebte Teilschritt 207 und der achte Teilschritt 208 ausgeführt, das heißt die Oberflächentemperatur beim Austritt aus dem Wirkbereich 31, 32, 33 mit dem aktuellen Wert des Laufindex i wird für den neuen Einstellwert wi berechnet. Dies wird sooft wiederholt bis die berechnete Oberflächentemperatur mit dem Minimalwert Tmin übereinstimmt oder ihn geringfügig überschreitet, beispielsweise um höchstens 10°C, vorzugsweise um höchstens 5°C. Anschließend wird der zehnte Teilschritt 210 ausgeführt.The
In dem zehnten Teilschritt 210 wird der Wert der Restkühlmittelmenge WR geändert, indem von dem bisherigen Wert die dem Einstellwert wi entsprechende Kühlmittelmenge Wi subtrahiert wird, die von der Kühleinrichtung 21, 22, 23 mit dem aktuellen Wert des Laufindex i auf den zu dem Walzgutabschnitt gehörenden Oberflächenteil der Walzgutoberfläche 29 ausgegeben würde. Die Kühlmittelmenge Wi lässt sich beispielsweise gemäß
In dem elften Teilschritt 211 wird geprüft, ob der aktuelle Wert des Laufindex i den Endwert n erreicht hat, das heißt, ob der simulierte Kühlstreckendurchlauf beendet ist. Wenn dies nicht der Fall ist, wird ein zwölfter Teilschritt 212 ausgeführt. Andernfalls wird ein dreizehnter Teilschritt 213 ausgeführt.In the eleventh
In dem zwölften Teilschritt 212 wird der Wert des Laufindex i inkrementiert. Anschließend wird der vierte Teilschritt 204 für den neuen Wert des Laufindex i ausgeführt.In the twelfth
In dem dreizehnten Teilschritt 213 wird eine Durchschnittstemperatur des Walzgutabschnitts nach dem simulierten Kühlstreckendurchlauf, das heißt nach dem simulierten Durchlaufen aller Wirkbereiche 31, 32, 33, berechnet. Diese Durchschnittstemperatur wird beispielsweise gemäß
In dem vierzehnten Teilschritt 214 wird geprüft, ob die bei der vorhergehenden Ausführung des dreizehnten Teilschritts 213 berechnete Durchschnittstemperatur
Der fünfzehnte Teilschritt 215 wird also ausgeführt, wenn die berechnete Durchschnittstemperatur
Nach dem fünfzehnten Teilschritt 215 wird der dritte Teilschritt 203 mit dem neuen Wert der Gesamtkühlmittelmenge W ausgeführt, das heißt es wird eine weitere Simulation des Kühlstreckendurchlaufs des Walzgutabschnitts mit dem geänderten Wert der Gesamtkühlmittelmenge W gestartet. Die Simulation des Kühlstreckendurchlaufs wird sooft jeweils mit einem geänderten Wert der Gesamtkühlmittelmenge W wiederholt, bis die berechnete Durchschnittstemperatur
Wenn die berechnete Durchschnittstemperatur
Wenn der Wert der Gesamtkühlmittelmenge W Null wird, wird jedem Einstellwert wi, i = 1, ..., n der Wert Null zugewiesen, das heißt Vi: wi =0 gesetzt, und anschließend wird der sechzehnte Teilschritt 216 ausgeführt. Wenn der Wert der Gesamtkühlmittelmenge W den Maximalwert Wmax erreicht oder überschreitet, wird jedem Einstellwert wi der für die jeweilige Kühleinrichtung 21, 22, 23 spezifische Maximalwert wi max zugewiesen, das heißt Vi: wi = wi max gesetzt, und anschließend wird der sechzehnte Teilschritt 216 ausgeführt. Die Fälle, dass die Gesamtkühlmittelmenge W Null wird oder den Maximalwert Wmax erreicht oder überschreitet, sind in den
In dem sechzehnten Teilschritt 216 wird der zweite Verfahrensschritt 200 beendet und für jede Kühleinrichtung 21, 22, 23 der bei dem Verfahrensschritt 200 zuletzt bestimmte Einstellwert wi des Kühlmittelstroms gespeichert. Auf diesen Einstellwert wi wird der Kühlmittelstrom der jeweiligen Kühleinrichtung 21, 22, 23 in dem dritten Verfahrensschritt 300 eingestellt.In the sixteenth
In dem Teilschritt 206 wird bei diesem Ausführungsbeispiel bei einem simulierten Kühlstreckendurchlauf eines Walzgutabschnitts der Einstellwert wi des Kühlmittelstroms für die Kühleinrichtung 21, 22, 23 mit dem jeweils aktuellen Wert des Laufindex i gemäß
fi (T) ist eine Funktion, die für T ≤ Tmin Null ist, für T ≥ Tmin +ΔTi res Eins ist und im Intervall [Tmin ,Tmin +ΔTi res ] streng monoton steigt. Beispielsweise ist die Funktion f(T) im Intervall [Tmin ,Tmin +ΔTi res ] definiert gemäß
Tmin ist der im ersten Verfahrensschritt 100 entgegengenommene Minimalwert für eine Oberflächentemperatur der Walzgutoberfläche 29 während des Transports des Walzguts 15 durch die Kühlstrecke 19. ΔTi res ist eine Reservetemperaturdifferenz, die derart vorgegeben wird, dass die Oberflächentemperatur der Walzgutoberfläche 29 beim Austritt aus dem Wirkbereich 31, 32, 33 der Kühleinrichtung 21, 22, 23 mit dem Laufindexwert i selbst dann den Minimalwert Tmin nicht unterschreitet, wenn die Oberflächentemperatur der Walzgutoberfläche 29 beim Eintritt in diesen Wirkbereich 31, 32, 33 größer als Tmin +ΔTi res ist und der von der Kühleinrichtung 21, 22, 23 mit dem Laufindexwert i auf die Walzgutoberfläche 29 ausgegebene Kühlmittelstrom maximal ist, das heißt den für die Kühleinrichtung 21, 22, 23 spezifischen Maximalwert wi max annimmt. ΔTi res wird beispielsweise in einer separaten Simulation eines Kühlstreckendurchlaufs des Walzguts 15 oder anhand eines mathematischen Modells der Kühlstrecke 19 in Abhängigkeit von einer Heiztemperatur des Erwärmungsofens 3 und der Transportgeschwindigkeit des Walzguts 15 bestimmt. Die Reservetemperaturdifferenz ΔTi res kann vom Wert des Laufindex i abhängen, das heißt für voneinander verschiedene Kühleinrichtungen 21, 22, 23 können voneinander verschiedene Reservetemperaturdifferenzen vorgegeben werden. T min is the minimum value for a surface temperature of the rolling
Das in
Oben wurde bereits ausgeführt, dass eine Ausgestaltung des erfindungsgemäßen Verfahrens vorsieht, die Verfahrensschritte 200 und 300 sukzessive für Walzgutabschnitte des Walzguts 15 durchzuführen, die die Wirkbereiche 31, 32, 33 der Kühleinrichtungen 21, 22, 23 nacheinander durchlaufen. Bei dieser Ausgestaltung des erfindungsgemäßen Verfahrens wird der Verfahrensschritt 200 beispielsweise für jeden Walzgutabschnitt gemäß einem der anhand der
Im Fall, dass die im Teilschritt 213 berechnete Durchschnittstemperatur
Nach dem Teilschritt 217 wird der Teilschritt 203 für den neuen Wert des zweiten Laufindex j ausgeführt, das heißt es wird eine Simulation des Kühlstreckendurchlaufs des nachfolgenden Walzgutabschnitts mit einer möglicherweise geänderten Gesamtkühlmittelmenge W gestartet. Bei dem in
Die wiederholte Ausführung des zweiten Verfahrensschritts 200 wird beendet, wenn der zweite Laufindex j einen Endwert erreicht. Beispielsweise wird nach jeder Ausführung des zweiten Verfahrensschrittes 200 geprüft, ob der zweite Laufindex j den Endwert erreicht hat, und der Teilschritt 217 wird nur ausgeführt, wenn dies nicht der Fall ist. Andernfalls wird die wiederholte Ausführung des zweiten Verfahrensschritts 200 beendet. Dies ist in
Ferner müssten in
Auch der dritte Verfahrensschritt 300 ist für jeden Walzgutabschnitt separat durchzuführen und unabhängig von den anderen Walzgutabschnitten durchführbar. Dabei kann für einen Wert k des zweiten Laufindex bereits der dritte Verfahrensschritt 300 durchgeführt werden, in dem mittels der Kühleinrichtungen 21, 22, 23 bei dem Kühlstreckendurchlauf des Walzgutabschnittes mit dem Wert k des zweiten Laufindex der für diesen Wert k jeweils bestimmte Kühlmittelstrom wi auf den Walzgutabschnitt ausgegeben wird, während der zweite Verfahrensschritt 200 für Werte j des zweiten Laufindex mit j > k durchgeführt wird. Dazu wird für jede Kühleinrichtung 21, 22, 23 im Verfahrensschritt 300 in Abhängigkeit von der Transportgeschwindigkeit beziehungsweise von dem zeitlichen Transportgeschwindigkeitsverlauf ermittelt, wann sich der Walzgutabschnitt mit dem Wert k in dem Wirkbereich 31, 32, 33 der Kühleinrichtung 21, 22, 23 befinden wird. Unter Berücksichtigung der zugehörigen Verzögerungszeit wird die Kühleinrichtung 21, 22, 23 dann derart eingestellt, dass sie den für diesen Wert k bestimmten Kühlmittelstrom wi genau dann ausgibt, wenn sich der Walzgutabschnitt mit dem Wert k in dem Wirkbereich 31, 32, 33 der Kühleinrichtung 21, 22, 23 befindet.The
Die oben beschriebenen Ausführungsbeispiele des erfindungsgemäßen Verfahrens können auch durchgeführt werden, wenn das Walzgut mehrmals durch die Kühlstrecke 19 transportiert wird. Beispielsweise kann die Fertigstraße 9 ein Reversiergerüst aufweisen, durch das das Walzgut 15 mehrmals in alternierender Richtung geführt wird. Dann kann auch das Walzgut 15 mehrmals in alternierender Richtung durch die Kühlstrecke 19 transportiert werden. In diesem Fall werden die Verfahrensschritte 200 und 300 für jeden Kühlstreckendurchlauf durchgeführt. Beispielsweise ist in diesem Fall eine zweite Messstelle hinter der Kühlstrecke 19, das heißt zwischen dem Zwischenrollgang 7 und der Fertigstraße 9 vorgesehen, an der eine Oberflächentemperatur eines zu einem Walzgutabschnitt gehörenden Oberflächenteils der Walzgutoberfläche 29 erfasst wird, bevor der Walzgutabschnitt von der zweiten Messstelle aus die Kühlstrecke 19 durchläuft. Für eine Simulation dieses Kühlstreckendurchlaufs des Walzgutabschnitts wird eine ursprüngliche Anfangsenthalpieverteilung und/oder ursprüngliche Anfangstemperaturverteilung in Abhängigkeit von der an der zweiten Messstelle erfassten Oberflächentemperatur des zu dem Walzgutabschnitt gehörenden Oberflächenteils der Walzgutoberfläche 29 bestimmt.The exemplary embodiments of the method according to the invention described above can also be carried out if the rolling stock is transported through the
Ferner kann der Zwischenrollgang 7 mehrere Kühlstrecken 19 aufweisen, beziehungsweise eine Kühlstrecke 19 kann mehrere Teilkühlstrecken aufweisen, für die das erfindungsgemäße Verfahren jeweils separat ausgeführt wird (jede Teilkühlstrecke wird dann als Kühlstrecke im Sinne der Erfindung verstanden). Wenn beispielsweise im Zwischenrollgang 7 eine Zwischenmessstelle angeordnet ist, an der eine Oberflächentemperatur des Walzguts 15 erfasst wird, kann das erfindungsgemäße Verfahren separat für eine erste Teilkühlstrecke beziehungsweise Kühlstrecke, die zwischen der ersten Messstelle 39 und der Zwischenmessstelle angeordnet ist, und für eine zweite Teilkühlstrecke beziehungsweise Kühlstrecke, die zwischen der Zwischenmessstelle und der Fertigstraße 9 angeordnet ist, ausgeführt werden. Eine ursprüngliche Anfangstemperaturverteilung und/oder eine ursprüngliche Anfangsenthalpieverteilung für die zweite Teilkühlstrecke beziehungsweise Kühlstrecke wird dann in Abhängigkeit von der an der Zwischenmessstelle erfassten Oberflächentemperatur des Walzguts 15 bestimmt. Entsprechend kann verfahren werden, wenn in dem Zwischenrollgang 7 mehrere Zwischenmessstellen angeordnet sind, an denen jeweils eine Oberflächentemperatur des Walzguts 15 erfasst wird.Furthermore, the intermediate roller table 7 can have several cooling
Der Walzgutabschnitt tritt etwa 3 s nach einem Zeitnullpunkt in die Kühlstrecke 19 ein. Durch die Kühlwirkung von Kühleinrichtungen 21, 22, 23 am Anfang der Kühlstrecke 19 sinkt die Oberflächentemperatur TS schnell von etwa 1070°C beim Eintritt des Walzgutabschnitts in die Kühlstrecke 19 auf den Minimalwert Tmin, der in diesem Fall etwa 800°C beträgt und von der Oberflächentemperatur TS bereits etwa 5,5 s nach dem Zeitnullpunkt erreicht wird. Im weiteren Verlauf des Kühlstreckendurchlaufs des Walzgutabschnitts wird dessen Oberflächentemperatur TS durch Kühleinrichtungen 21, 22, 23 der Kühlstrecke 19 erfindungsgemäß relativ konstant auf dem Minimalwert Tmin gehalten bis der Walzgutabschnitt etwa 7,7 s nach dem Zeitnullpunkt aus der Kühlstrecke 19 austritt. Danach stiegt die Oberflächentemperatur TS aufgrund nun ausbleibender Kühlung wieder an, da Wärme aus dem Inneren des Walzgutabschnitts zu der Walzgutoberfläche 29 geleitet wird. Die Kerntemperatur TK des Walzgutabschnitts bleibt während des Kühlstreckendurchlaufs relativ konstant bei etwa 1100°C. Die Durchschnittstemperatur
Obwohl die Erfindung im Detail durch bevorzugte Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.Although the invention has been illustrated and described in more detail by means of preferred exemplary embodiments, the invention is not restricted by the disclosed examples and other variations can be derived therefrom by a person skilled in the art without departing from the protective scope of the invention.
- 11
- Warmwalzanlagehot rolling mill
- 33
- Erwärmungsofenheating furnace
- 55
- Vorstraßefore road
- 77
- Zwischenrollgangintermediate roller table
- 99
- Fertigstraßefinishing line
- 1111
- Auslaufkühlbereichoutlet cooling area
- 1313
- Haspelbereichreel area
- 1515
- Walzgutrolling stock
- 1717
- Vorstraßenwalzgerüstroughing mill stand
- 1919
- Kühlstreckecooling line
- 21, 22, 2321, 22, 23
- Kühleinrichtungcooling device
- 2525
- Transportrolletransport roller
- 2727
- Steuereinheitcontrol unit
- 2929
- Walzgutoberflächerolling stock surface
- 31, 32, 3331, 32, 33
- Wirkbereicheffective range
- 3535
- Kühlmittelcoolant
- 3737
- Messeinrichtungmeasuring device
- 3939
- Messstellemeasuring point
- 4141
- Fertigstraßenwalzgerüstfinishing mill stand
- 4343
- Fertigstraßenkühleinrichtungfinishing train cooling device
- 4545
- Fertigstraßenkühlmittelfinishing line coolant
- 47, 4947, 49
- Auslaufkühleinrichtungoutlet cooling device
- 5151
- Auslaufkühlmitteloutlet coolant
- 5353
- Walzguthaspelrolling stock coiler
- 100, 200, 300100, 200, 300
- Verfahrensschrittprocess step
- 201 bis 217201 to 217
- Teilschrittsubstep
- tt
- Zeittime
- TKTC
- Kerntemperaturcore temperature
- TSTS
- Oberflächentemperatursurface temperature
- TT
- Durchschnittstemperaturaverage temperature
Claims (14)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21178033.3A EP4101553B1 (en) | 2021-06-07 | 2021-06-07 | Cooling of a rolled stock upstream of a finishing train of a hot rolling plant |
PCT/EP2022/063733 WO2022258350A1 (en) | 2021-06-07 | 2022-05-20 | Cooling a rolled product upstream of a finishing train of a hot rolling mill |
CN202280041056.4A CN117460587A (en) | 2021-06-07 | 2022-05-20 | Cooling of rolled stock prior to finishing train of hot rolling equipment |
MX2023014250A MX2023014250A (en) | 2021-06-07 | 2022-05-20 | Cooling a rolled product upstream of a finishing train of a hot rolling mill. |
US18/566,707 US12049677B1 (en) | 2021-06-07 | 2022-05-20 | Cooling a rolled product upstream of a finishing train of a hot rolling mill |
JP2023575470A JP2024526057A (en) | 2021-06-07 | 2022-05-20 | Cooling of the rolled product upstream of the finishing train of a hot rolling mill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21178033.3A EP4101553B1 (en) | 2021-06-07 | 2021-06-07 | Cooling of a rolled stock upstream of a finishing train of a hot rolling plant |
Publications (3)
Publication Number | Publication Date |
---|---|
EP4101553A1 true EP4101553A1 (en) | 2022-12-14 |
EP4101553C0 EP4101553C0 (en) | 2024-01-31 |
EP4101553B1 EP4101553B1 (en) | 2024-01-31 |
Family
ID=76305820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21178033.3A Active EP4101553B1 (en) | 2021-06-07 | 2021-06-07 | Cooling of a rolled stock upstream of a finishing train of a hot rolling plant |
Country Status (6)
Country | Link |
---|---|
US (1) | US12049677B1 (en) |
EP (1) | EP4101553B1 (en) |
JP (1) | JP2024526057A (en) |
CN (1) | CN117460587A (en) |
MX (1) | MX2023014250A (en) |
WO (1) | WO2022258350A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005099923A1 (en) * | 2004-04-06 | 2005-10-27 | Siemens Aktiengesellschaft | Method for producing a metal |
EP2873469A1 (en) | 2013-11-18 | 2015-05-20 | Siemens Aktiengesellschaft | Operating method for a cooling section |
DE102019216261A1 (en) * | 2019-07-02 | 2021-01-07 | Sms Group Gmbh | Method for controlling a cooling device in a rolling train |
-
2021
- 2021-06-07 EP EP21178033.3A patent/EP4101553B1/en active Active
-
2022
- 2022-05-20 MX MX2023014250A patent/MX2023014250A/en unknown
- 2022-05-20 CN CN202280041056.4A patent/CN117460587A/en active Pending
- 2022-05-20 WO PCT/EP2022/063733 patent/WO2022258350A1/en active Application Filing
- 2022-05-20 JP JP2023575470A patent/JP2024526057A/en active Pending
- 2022-05-20 US US18/566,707 patent/US12049677B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005099923A1 (en) * | 2004-04-06 | 2005-10-27 | Siemens Aktiengesellschaft | Method for producing a metal |
EP2873469A1 (en) | 2013-11-18 | 2015-05-20 | Siemens Aktiengesellschaft | Operating method for a cooling section |
DE102019216261A1 (en) * | 2019-07-02 | 2021-01-07 | Sms Group Gmbh | Method for controlling a cooling device in a rolling train |
Non-Patent Citations (1)
Title |
---|
W. TIMM ET AL.: "Modelling of heat transfer in hot strip mill runout table cooling", STEEL RESEARCH, vol. 73, 2002, pages 97 - 104 |
Also Published As
Publication number | Publication date |
---|---|
MX2023014250A (en) | 2024-01-17 |
EP4101553C0 (en) | 2024-01-31 |
US20240263263A1 (en) | 2024-08-08 |
WO2022258350A1 (en) | 2022-12-15 |
JP2024526057A (en) | 2024-07-17 |
US12049677B1 (en) | 2024-07-30 |
EP4101553B1 (en) | 2024-01-31 |
CN117460587A (en) | 2024-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19963186B4 (en) | Method for controlling and / or regulating the cooling section of a hot strip mill for rolling metal strip and associated device | |
EP1397523B1 (en) | Cooling method for a hot-rolled product and a corresponding cooling-section model | |
EP2076824B1 (en) | Method for controlling and/or regulating an industrial process | |
EP2566633B1 (en) | Operating method for a production line with prediction of the command speed | |
EP2094410A1 (en) | Method of monitoring the physical state of a hot-rolled sheet or hot-rolled strip while controlling a plate rolling train for working a hot-rolled sheet or hot-rolled strip | |
DE10156008A1 (en) | Control method for a finishing train upstream of a cooling section for rolling hot metal strip | |
DE4040360A1 (en) | Multiple-stand strip rolling control - uses model comparisons and converging parameters to maintain strip profile and flatness | |
EP2697001A1 (en) | Control method for a rolling train | |
DE2256136A1 (en) | COMPUTER CONTROLLED ROLLING MILL | |
EP1596999B1 (en) | Method for regulating the temperature of a metal strip, especially in a cooling path | |
EP2697002A1 (en) | Control method for a mill train | |
DE69907354T2 (en) | Process for rolling a metal product | |
WO2012034875A2 (en) | Method for determining control variables of a rolling train comprising a plurality of roll stands for rolling a metal strip | |
DE102019208736A1 (en) | Method for casting a cast strand in a continuous caster | |
DE102012002774B4 (en) | Process and system for the automatic optimal operation of an extrusion press for metals | |
EP3642372B1 (en) | Method for operating an annealing surface | |
EP4101553B1 (en) | Cooling of a rolled stock upstream of a finishing train of a hot rolling plant | |
EP4061552B1 (en) | Method, control device and rolling mill for the adjustment of an outlet temperature of a metal strip exiting a rolling train | |
EP4122613A1 (en) | Method for producing a metallic strip | |
EP3494239B1 (en) | Method for operating an annealing furnace for annealing a metal strip | |
DE1527610A1 (en) | Rolling process and device for carrying out the same | |
EP4311606B1 (en) | Method for regulating a rolling train and rolling train | |
EP3934822B1 (en) | Method for producing a metallic strip or plate | |
EP4122615B1 (en) | Method and device for producing a metallic strip | |
EP4119247A1 (en) | Incorporation of state-dependent density when solving a heat conduction equation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230614 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20231004 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502021002542 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20240131 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240131 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240430 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240430 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240531 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240131 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240501 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240131 |
|
U21 | Renewal fee paid with penalty [unitary effect] |
Year of fee payment: 4 Effective date: 20240808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240131 |