EP1397523B1 - Cooling method for a hot-rolled product and a corresponding cooling-section model - Google Patents

Cooling method for a hot-rolled product and a corresponding cooling-section model Download PDF

Info

Publication number
EP1397523B1
EP1397523B1 EP02748572A EP02748572A EP1397523B1 EP 1397523 B1 EP1397523 B1 EP 1397523B1 EP 02748572 A EP02748572 A EP 02748572A EP 02748572 A EP02748572 A EP 02748572A EP 1397523 B1 EP1397523 B1 EP 1397523B1
Authority
EP
European Patent Office
Prior art keywords
cooling
rolled
temperature
strip
line model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02748572A
Other languages
German (de)
French (fr)
Other versions
EP1397523B2 (en
EP1397523A1 (en
Inventor
Klaus Weinzierl
Klaus Franz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7688717&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1397523(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1397523A1 publication Critical patent/EP1397523A1/en
Application granted granted Critical
Publication of EP1397523B1 publication Critical patent/EP1397523B1/en
Publication of EP1397523B2 publication Critical patent/EP1397523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/20Track of product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Definitions

  • the present invention further relates to a cooling line model corresponding thereto.
  • phase transformation again requires the temperature as input parameter.
  • the Fourier heat equation has to be solved together with the dynamics of the phase transformation.
  • phase transformation is first modeled based on an approximate temperature history. Thereafter, the phase transformation is frozen. The exothermic processes in the phase transformation are then taken into account by heat sources in the Fourier heat equation. This approach partially neglects the coupling between the phase transformation and the temperature.
  • the object of the present invention is to provide a cooling method and the corresponding cooling line model, by means of which the temperature of the rolling stock to be cooled as well as its phases and phase transitions are described correctly.
  • the quantities e and p are location and time dependent. div and degrees are the well-known operators divergence and gradient, which act on the place variables.
  • the approach according to the invention is based on the principle of energy conservation.
  • the Fourier heat conduction line is therefore formulated with the enthalpy as a state variable and the temperature as the size dependent on the enthalpy. heat sources are obviously not needed. They do not have to be parameterized any more.
  • phase transformation degree and the enthalpy represent state variables that can be numerically calculated in parallel.
  • x denotes the position variable in the band thickness direction.
  • the modeling is even better if a final temperature is recorded for the rolling stock behind the cooling section. Because then it is in particular possible to adapt the cooling line model based on a comparison of the detected end temperature with a determined based on the expected temporal temperature profile expected end temperature. Thus, the model can be optimized based on the actual detected final temperature.
  • h is a function such as In equation 2 on page 144 of the article " Mathematical Models of Solid-Solid Phase Transitions in Steel "by A. Visintin, IMA Journal of Applied Mathematics, 39, 1987, pages 143-157 is disclosed.
  • a hot-rolled rolling stock 1 runs out of a rolling stand 2 at a rolling speed v in a strip running direction z.
  • a rolling stand temperature measuring station 3 is arranged.
  • an initial temperature T1 is determined for a rolling stock detected on the surface of the rolling stock 1 and fed to a cooling line model 4 as an input parameter.
  • the rolling stock 1 is a metal strip, for. B. a steel strip. It therefore has a rolling stock width b in a width direction y and a rolling stock thickness d in a thickness direction x. Walzgutbreite b and Walzgutdicke d together give the Walzgutquerrough the rolling stock. 1
  • the initial temperature T1 of the rolling stock 1 can vary across the bandwidth b.
  • the rolling temperature measuring station 3 is therefore preferably designed such that the initial temperature T1 across the bandwidth b can be detected multiple times.
  • a plurality of temperature sensors arranged transversely across the bandwidth b may be provided for this purpose. It is also possible to provide a temperature sensor, which is preceded by an optical system, by means of which in the bandwidth direction y scanning is possible.
  • the cooling section 5 has cooling devices 6, by means of which a coolant 7, typically water 7, from above, from below or from both sides of the rolling stock 1 can be applied.
  • a coolant 7, typically water 7, from above, from below or from both sides of the rolling stock 1 can be applied.
  • the type of application is adapted to the profile to be rolled.
  • a reel temperature measuring station 8 is arranged. With this a corresponding end temperature T2 can be detected for the Walzgutstelle, which is also supplied to the cooling line model 4.
  • the reel temperature measuring station 8 is designed in the same way as the rolling stand temperature measuring station 3.
  • the reel temperature measuring station 8 is followed by a reel 9. On this, the metal strip 1 is reeled.
  • the arrangement of the reel 9 is typical when rolling tapes.
  • the reel 9 instead of the reel 9 usually another unit is provided, for. B. in wire rod mills a Windungsleger.
  • the rolling stock 1 should have a predetermined temperature and desired desired microstructural properties G * when the reel 9 is reached. For this purpose, it is necessary that the metal strip 1 between rolling stand 2 and reel 9 has a corresponding temperature profile. This temperature profile is calculated by means of the cooling section model 4.
  • cooling line model 4 different values are supplied to the cooling line model 4.
  • the cooling speed model 4 the rolling speed v is supplied. Due to this fact, in particular a material tracking is feasible.
  • the parameters PAR include in particular actual and desired parameters of the strip 1.
  • An actual parameter is, for example, the alloy of the metal strip 1 or its bandwidth b.
  • a desired parameter is, for example, the desired reel temperature.
  • the cooling line model 4 according to FIG. 2 comprises a heat conduction model 10, a heat transfer model 11 and a coolant quantity course determiner 12.
  • the cooling stretch model 4 determines an expected temporal temperature profile Tm (t).
  • the expected temperature profile Tm (t) is compared with a desired temperature profile T * (t).
  • the comparison result is supplied to the coolant quantity course determiner 12. This then uses the difference to determine a new coolant flow rate in order to approximate the expected temperature curve Tm (t) to the desired temperature curve T * (t).
  • the cooling devices 6 of the cooling section 5 are then controlled by thedemengenverlaufsermittler 12 accordingly.
  • the coolant 7 is thus applied to the relevant Walzgutstelle according to the determined temporal coolant flow rate.
  • a heat conduction equation is achieved in the heat conduction model 10.
  • e denotes the enthalpy
  • the thermal conductivity
  • p the phase conversion degree
  • the density
  • T the temperature of the rolling stock 1 at the rolling stock and t the time.
  • ⁇ (e, 1) and ⁇ (e, 0) are functions as shown in FIG.
  • T (e, 1) and T (e, 0) are functions as shown by way of example in FIG.
  • the heat transfer model 13 can be adapted.
  • This approach requires a significantly lower computational effort with only slightly deteriorated result, because in this case, only the heat equation for a one-dimensional rod that extends at the Walzgutstelle from the belt bottom to the top of the band must be solved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

To determine the temperature profile (Tm(t)) of a hot-rolled material (1) in a cooling line (5), a heat conduction equation which takes the following formwhere e is the enthalpy, lambda the thermal conductivity, p the degree of phase transformation, rho the density and T the temperature of the rolled material at the rolled-material location and t is the time, is solved in a cooling-line model (4).

Description

Die vorliegende Erfindung betrifft ein Kühlverfahren für ein warmgewalztes Walzgut mit einem Walzgutquerschnitt, insbesondere ein Metallband, z. B. ein Stahlband, in einer Kühlstrecke, mit folgenden Schritten:

  • vor der Kühlstrecke wird für eine Walzgutstelle eine Anfangstemperatur erfasst,
  • anhand eines Kühlstreckenmodells und vorgegebener Solleigenschaften des Walzgutes wird ein zeitlicher Kühlmittelmengenverlauf ermittelt,
  • auf die Walzgutstelle wird gemäß dem ermittelten zeitlichen Kühlmittelmengenverlauf ein Kühlmittel aufgebracht, und
  • anhand des Kühlstreckenmodells und des zeitlichen Kühlmittelmengenverlaufs wird ein erwarteter zeitlicher Temperaturverlauf des Walzgutes an der Walzgutstelle über den Walzgutquerschnitt ermittelt.
The present invention relates to a cooling method for a hot-rolled rolling stock having a Walzgutquerschnitt, in particular a metal strip, for. As a steel strip, in a cooling section, with the following steps:
  • in front of the cooling section, an initial temperature is detected for a rolling stock
  • Based on a cooling line model and predetermined desired properties of the rolling stock, a time course of coolant quantity is determined,
  • on the Walzgutstelle a coolant is applied in accordance with the determined temporal coolant flow rate, and
  • Based on the cooling section model and the temporal coolant flow rate an expected temporal temperature profile of the rolling stock is determined at the Walzgutstelle on the Walzgutquerschnitt.

Die vorliegende Erfindung betrifft ferner ein hiermit korrespondierendes Kühlstreckenmodell.The present invention further relates to a cooling line model corresponding thereto.

Ein derartiges Kühlverfahren und das korrespondierende Kühlstreckenmodell sind z. B. aus " Stahl und Eisen", Band 116 (1996), Nr. 11, Seiten 115 bis 120 bekannt.Such a cooling method and the corresponding cooling line model are z. B. " Stahl und Eisen ", Vol. 116 (1996), No. 11, pages 115 to 120 known.

Beim Kühlen eines warmgewalzten Metallbandes ist die exakte Modellierung des zeitlichen Temperaturverlaufs entscheidend für die Steuerung des Kühlmittelmengenverlaufs. Da ferner die Abkühlung nicht im thermodynamischen Gleichgewicht erfolgt, beeinflussen Phasenübergänge des zu kühlenden Walzguts, z. B. eine Phasenumwandlung von Stahl, entscheidend das thermische Verhalten bei der Abkühlung. Die Phasenumwandlung muss somit in die Fouriersche Wärmeleitungsgleichung einbezogen werden.When cooling a hot-rolled metal strip, the exact modeling of the temporal temperature profile is crucial for the control of the coolant flow rate. Further, since the cooling does not take place in the thermodynamic equilibrium, affect phase transitions of the rolling stock to be cooled, for. As a phase transformation of steel, crucial to the thermal behavior during cooling. The phase transformation must therefore be included in the Fourier heat equation.

Die Modellierung der Phasenumwandlung benötigt wiederum die Temperatur als Eingangsparameter. Hierdurch entsteht ein gekoppeltes Differenzialgleichungssystem, das numerisch z. B. durch einen Anfangswertproblemlöser näherungsweise gelöst werden kann. Bei diesem Ansatz ist die Fouriersche Wärmeleitungsgleichung zusammen mit der Dynamik der Phasenumwandlung zu lösen.The modeling of the phase transformation again requires the temperature as input parameter. This creates a coupled differential equation system, the numerically z. B. can be solved by an initial value problem solver approximately. In this approach, the Fourier heat equation has to be solved together with the dynamics of the phase transformation.

Im Stand der Technik sind zwei Methoden gebräuchlich.Two methods are common in the prior art.

Bei der ersten erfolgt die Modellierung der Phasenumwandlung zunächst auf der Basis eines angenäherten Temperaturverlaufs. Danach wird die Phasenumwandlung eingefroren. Die exothermen Vorgänge bei der Phasenumwandlung werden sodann durch Wärmequellen in der Fourierschen Wärmeleitungsgleichung berücksichtigt. Dieser Ansatz vernachlässigt teilweise die Kopplung zwischen der Phasenumwandlung und der Temperatur.In the first, the phase transformation is first modeled based on an approximate temperature history. Thereafter, the phase transformation is frozen. The exothermic processes in the phase transformation are then taken into account by heat sources in the Fourier heat equation. This approach partially neglects the coupling between the phase transformation and the temperature.

In einem anderen Verfahren wird zwar die Fouriersche Wärmeleitungsgleichung mit der Phasenumwandlung gekoppelt gelöst. Auch bei diesem Verfahren werden exotherme Vorgänge bei der Phasenumwandlung durch Wärmequellen in der Fourierschen Wärmeleitungsgleichung nachgebildet.In another method, although the Fourier heat equation is solved coupled with the phase transformation. Also in this method, exothermic processes in the phase transformation by heat sources are modeled in the Fourier heat equation.

Durch die Verfahren des Standes der Technik wird das Problem aber nur scheinbar gelöst. Denn der Ansatz ist in beiden Fällen physikalisch falsch. Dies zeigt sich insbesondere darin, dass die Wärmequelle im Kühlstreckenmodell gesondert parametriert werden muss.By the methods of the prior art, the problem is only apparently solved. Because the approach is physically wrong in both cases. This is particularly evident in the fact that the heat source in the cooling line model must be parameterized separately.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Kühlverfahren und das hiermit korrespondierende Kühlstreckenmodell zu schaffen, mittels dessen die Temperatur des zu kühlenden Walzguts und auch dessen Phasen und Phasenübergänge korrekt beschrieben werden.The object of the present invention is to provide a cooling method and the corresponding cooling line model, by means of which the temperature of the rolling stock to be cooled as well as its phases and phase transitions are described correctly.

Die Aufgabe wird für das Kühlverfahren dadurch gelöst, dass zur Ermittlung des Temperaturverlaufs im Walzgut im Kühlstreckenmodell eine Wärmeleitungsgleichung der Form e t - div λ e p ρ gradT e p = 0

Figure imgb0001
gelöst wird, wobei e die Enthalpie, λ die Wärmeleitfähigkeit, p der Phasenumwandlungsgrad, ρ die Dichte und T die Temperatur des Walzgutes an der Walzgutstelle und t die Zeit ist.The object is achieved for the cooling method in that for determining the temperature profile in the rolling stock in the cooling section model, a heat equation of the form e t - div λ e p ρ gradT e p = 0
Figure imgb0001
where e is the enthalpy, λ is the thermal conductivity, p is the degree of phase transformation, ρ is the density, and T is the temperature of the rolling stock at the rolling stock and t is the time.

Die Größen e und p sind dabei ort- und zeitabhängig. div und grad sind die allgemein bekannten Operatoren Divergenz und Gradient, die auf die Ortsvariablen wirken.The quantities e and p are location and time dependent. div and degrees are the well-known operators divergence and gradient, which act on the place variables.

Hiermit korrespondierend wird die Aufgabe für das Kühlstreckenmodell dadurch gelöst, dass es zur Ermittlung des Temperaturverlaufs im Walzgut eine Wärmeleitungsgleichung der Form e t - div λ e p ρ gradT e p = 0

Figure imgb0002
enthält, wobei e die Enthalpie, λ die Wärmeleitfähigkeit, p der Phasenumwandlungsgrad, ρ die Dichte und T die Temperatur des Walzgutes an der Walzgutstelle und t die Zeit ist.Correspondingly, the task for the cooling section model is achieved in that, to determine the temperature profile in the rolling stock, a heat equation of the shape e t - div λ e p ρ gradT e p = 0
Figure imgb0002
where e is the enthalpy, λ is the thermal conductivity, p is the degree of phase change, ρ is the density and T is the temperature of the rolling stock at the rolling stock and t is the time.

Die obige Gleichung ist noch in üblicher Form um Anfangs- und Randbedingungen zu ergänzen. Diese Ergänzungen erfolgen in gleicher Weise wie auch beim Stand der Technik allgemein üblich und bekannt. Auf die Ergänzungen wird daher nachfolgend nicht weiter eingegangen.The above equation is still in the usual form to complement initial and boundary conditions. These additions are made in the same way as well as in the prior art, common practice and known. The additions will therefore not be discussed further below.

Der erfindungsgemäße Lösungsansatz fußt auf dem Prinzip der Energieerhaltung. Die Fouriersche Wärmeleitungsleitung ist daher mit der Enthalpie als Zustandsgröße und der Temperatur als von der Enthalpie abhängige Größe formuliert. Wärmequellen werden ersichtlich nicht benötigt. Sie müssen also auch nicht mehr parametriert werden.The approach according to the invention is based on the principle of energy conservation. The Fourier heat conduction line is therefore formulated with the enthalpy as a state variable and the temperature as the size dependent on the enthalpy. heat sources are obviously not needed. They do not have to be parameterized any more.

Aufgrund des nunmehr korrekten Ansatzes für die Wärmeleitungsgleichung stellen der Phasenumwandlungsgrad und die Enthalpie Zustandsgrößen dar, die numerisch parallel berechenbar sind.Due to the now correct approach for the heat equation, the phase transformation degree and the enthalpy represent state variables that can be numerically calculated in parallel.

Die obige Lösung gilt unabhängig vom Profil des zu kühlenden Walzguts. Wenn das Walzgut ein Metallband ist, ergibt sich im wesentlichen ein Wärmefluss nur in Richtung der Banddicke. In Bandlaufrichtung und in Bandbreitenrichtung hingegen erfolgt nur ein vernachlässigbar geringer Wärmefluss. Es ist daher möglich, den Rechenaufwand dadurch zu verringern, dass die Wärmeleitungsgleichung statt dreidimensional nur noch eindimensional betrachtet wird. In diesem Fall kann also die Wärmeleitungsgleichung zu e t - x λ e p ρ T ( e , p ) x = 0

Figure imgb0003
vereinfacht werden. x bezeichnet dabei die Ortsvariable in Banddickenrichtung.The above solution is independent of the profile of the rolling stock to be cooled. If the rolling stock is a metal strip, essentially results in a heat flow only in the direction of the strip thickness. In the strip running direction and in the bandwidth direction, however, only a negligible heat flow occurs. It is therefore possible to reduce the computational effort by the fact that the heat equation is considered only one-dimensional instead of three-dimensional. In this case, therefore, the heat equation can e t - x λ e p ρ T ( e . p ) x = 0
Figure imgb0003
be simplified. x denotes the position variable in the band thickness direction.

Die Modellierung ist noch besser, wenn für die Walzgutstelle hinter der Kühlstrecke eine Endtemperatur erfasst wird. Denn dann ist es insbesondere möglich, das Kühlstreckenmodell anhand eines Vergleichs der erfassten Endtemperatur mit einer anhand des erwarteten zeitlichen Temperaturverlaufs ermittelten erwarteten Endtemperatur zu adaptieren. Somit kann das Modell anhand der tatsächlich erfassten Endtemperatur optimiert werden.The modeling is even better if a final temperature is recorded for the rolling stock behind the cooling section. Because then it is in particular possible to adapt the cooling line model based on a comparison of the detected end temperature with a determined based on the expected temporal temperature profile expected end temperature. Thus, the model can be optimized based on the actual detected final temperature.

Im Rahmen des Kühlstreckenmodells ist es erforderlich, auch den Phasenumwandlungsgrad zu ermitteln. Dies kann auf verschiedene Art und Weise erfolgen. Beispielsweise ist es möglich, den Phasenumwandlungsgrad gemäß der Scheilschen Regel zu ermitteln. Es ist beispielsweise auch möglich, dass der Phasenumwandlungsgrad (p) im Kühlstreckenmodell anhand einer Differenzialgleichung der Form p t = h e p

Figure imgb0004
ermittelt wird. Der Vorteil diese Ansatzes besteht in der Möglichkeit der Kopplung an die Fouriersche Wärmeleitungsgleichung, ohne dass dabei die Möglichkeit aufgegeben werden muss, einen Anfangswertproblemlöser zur gekoppelten Berechnung von Phasenumwandlungsgrad p und Temperatur T einzusetzen.As part of the cooling line model, it is necessary to also determine the phase transformation degree. This can be done in different ways. For example, it is possible to have the phase conversion degree according to Scheil's rule to investigate. It is also possible, for example, for the phase transformation degree (p) in the cooling-gap model to be based on a differential equation of the shape p t = H e p
Figure imgb0004
is determined. The advantage of this approach is the possibility of coupling to the Fourier heat equation, without sacrificing the possibility of using an initial value problem solver for the coupled calculation of phase transformation degree p and temperature T.

h ist eine Funktion wie sie z. B. in Gleichung 2 auf Seite 144 des Artikels " Mathematical Models of Solid-Solid Phase Transitions in Steel" von A. Visintin, IMA Journal of Applied Mathematics, 39, 1987, Seiten 143 bis 157 offenbart ist.h is a function such as In equation 2 on page 144 of the article " Mathematical Models of Solid-Solid Phase Transitions in Steel "by A. Visintin, IMA Journal of Applied Mathematics, 39, 1987, pages 143-157 is disclosed.

Weitere Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels in Verbindung mit den Zeichnungen. Dabei zeigen in Prinzipdarstellung

FIG 1
eine Kühlstrecke mit einem Metallband,
FIG 2
ein Kühlstreckenmodell,
FIG 3
die Wärmeleitfähigkeit als Funktion der Enthalpie für zwei verschiedene Phasenumwandlungsgrade,
FIG 4
die Temperatur als Funktion der Enthalpie für zwei verschiedene Phasenumwandlungsgrade und
FIG 5
ein Wärmeleitungsmodell.
Further advantages and details emerge from the following description of an embodiment in conjunction with the drawings. This show in a schematic representation
FIG. 1
a cooling section with a metal band,
FIG. 2
a cooling line model,
FIG. 3
the thermal conductivity as a function of enthalpy for two different phase transformation degrees,
FIG. 4
the temperature as a function of enthalpy for two different phase transformation degrees and
FIG. 5
a heat conduction model.

Gemäß FIG 1 läuft ein warmgewalztes Walzgut 1 mit einer Walzgeschwindigkeit v in einer Bandlaufrichtung z aus einem Walzgerüst 2 aus. Hinter dem Walzgerüst 2 ist ein Walzgerüst-Temperaturmessplatz 3 angeordnet. Im Walzgerüst-Temperaturmessplatz 3 wird für eine Walzgutstelle eine Anfangstemperatur T1 an der Oberfläche des Walzgutes 1 erfasst und einem Kühlstreckenmodell 4 als Eingangsparameter zugeführt.According to FIG. 1, a hot-rolled rolling stock 1 runs out of a rolling stand 2 at a rolling speed v in a strip running direction z. Behind the rolling stand 2, a rolling stand temperature measuring station 3 is arranged. In rolling mill temperature measuring station 3, an initial temperature T1 is determined for a rolling stock detected on the surface of the rolling stock 1 and fed to a cooling line model 4 as an input parameter.

Gemäß FIG 1 ist das Walzgut 1 ein Metallband, z. B. ein Stahlband. Es weist daher in einer Breitenrichtung y eine Walzgutbreite b und in einer Dickenrichtung x eine Walzgutdicke d auf. Walzgutbreite b und Walzgutdicke d ergeben zusammen den Walzgutquerschnitt des Walzgutes 1.According to FIG 1, the rolling stock 1 is a metal strip, for. B. a steel strip. It therefore has a rolling stock width b in a width direction y and a rolling stock thickness d in a thickness direction x. Walzgutbreite b and Walzgutdicke d together give the Walzgutquerschnitt the rolling stock. 1

Die Anfangstemperatur T1 des Walzgutes 1 kann quer über die Bandbreite b variieren. Der Walzgut-Temperaturmessplatz 3 ist daher vorzugsweise derart ausgebildet, dass die Anfangstemperatur T1 quer über die Bandbreite b mehrfach erfasst werden kann. Beispielsweise können hierzu mehrere, quer über die Bandbreite b angeordnete Temperatursensoren vorgesehen sein. Auch ist es möglich, einen Temperatursensor vorzusehen, dem eine Optik vorgeschaltet ist, mittels deren in Bandbreitenrichtung y ein Abscannen möglich ist.The initial temperature T1 of the rolling stock 1 can vary across the bandwidth b. The rolling temperature measuring station 3 is therefore preferably designed such that the initial temperature T1 across the bandwidth b can be detected multiple times. For example, a plurality of temperature sensors arranged transversely across the bandwidth b may be provided for this purpose. It is also possible to provide a temperature sensor, which is preceded by an optical system, by means of which in the bandwidth direction y scanning is possible.

Hinter dem Walzgerüst-Temperaturmessplatz 3 ist eine Kühlstrecke 5 angeordnet. Die Kühlstrecke 5 weist Kühlvorrichtungen 6 auf, mittels derer ein Kühlmittel 7, typischerweise Wasser 7, von oben, von unten oder von beiden Seiten auf das Walzgut 1 aufbringbar ist. Die Art der Aufbringung ist dabei an das zu walzende Profil angepasst.Behind the rolling stand temperature measuring station 3, a cooling section 5 is arranged. The cooling section 5 has cooling devices 6, by means of which a coolant 7, typically water 7, from above, from below or from both sides of the rolling stock 1 can be applied. The type of application is adapted to the profile to be rolled.

Hinter der Kühlstrecke 5 ist ein Haspel-Temperaturmessplatz 8 angeordnet. Mit diesem ist für die Walzgutstelle eine korrespondierende Endtemperatur T2 erfassbar, die ebenfalls dem Kühlstreckenmodell 4 zugeführt wird. Der Haspel-Temperaturmessplatz 8 ist ebenso ausgebildet wie der Walzgerüst-Temperaturmessplatz 3.Behind the cooling section 5, a reel temperature measuring station 8 is arranged. With this a corresponding end temperature T2 can be detected for the Walzgutstelle, which is also supplied to the cooling line model 4. The reel temperature measuring station 8 is designed in the same way as the rolling stand temperature measuring station 3.

Dem Haspel-Temperaturmessplatz 8 ist ein Haspel 9 nachgeordnet. Auf diesem wird das Metallband 1 aufgehaspelt.The reel temperature measuring station 8 is followed by a reel 9. On this, the metal strip 1 is reeled.

Die Anordnung des Haspels 9 ist typisch beim Walzen von Bändern. Beim Walzen von Profilen ist anstelle des Haspels 9 üblicherweise eine andere Einheit vorgesehen, z. B. bei Drahtwalzstraßen ein Windungsleger.The arrangement of the reel 9 is typical when rolling tapes. When rolling profiles, instead of the reel 9 usually another unit is provided, for. B. in wire rod mills a Windungsleger.

Das Walzgut 1 soll bei Erreichen des Haspels 9 eine vorbestimmte Temperatur und gewünschte Soll-Gefügeeigenschaften G* aufweisen. Hierzu ist es erforderlich, dass das Metallband 1 zwischen Walzgerüst 2 und Haspel 9 einen korrespondierenden Temperaturverlauf aufweist. Dieser Temperaturverlauf wird mittels des Kühlstreckenmodells 4 errechnet.The rolling stock 1 should have a predetermined temperature and desired desired microstructural properties G * when the reel 9 is reached. For this purpose, it is necessary that the metal strip 1 between rolling stand 2 and reel 9 has a corresponding temperature profile. This temperature profile is calculated by means of the cooling section model 4.

Dem Kühlstreckenmodell 4 werden gemäß den FIG 1 und 2 verschiedene Werte zugeführt. Zunächst wird dem Kühlstreckenmodell 4 die Walzgeschwindigkeit v zugeführt. Aufgrund dieser Tatsache ist insbesondere eine Materialverfolgung durchführbar.According to FIGS. 1 and 2, different values are supplied to the cooling line model 4. First, the cooling speed model 4, the rolling speed v is supplied. Due to this fact, in particular a material tracking is feasible.

Sodann werden dem Kühlstreckenmodell 4 die Banddicke d, die Anfangstemperatur T1 sowie verschiedene Parameter PAR zugeführt. Die Parameter PAR umfassen insbesondere Ist- und Sollparameter des Bandes 1. Ein Istparameter ist beispielsweise die Legierung des Metallbandes 1 oder dessen Bandbreite b. Ein Sollparameter ist beispielsweise die gewünschte Haspel-temperatur.Then, the cooling section model 4, the strip thickness d, the initial temperature T1 and various parameters PAR supplied. The parameters PAR include in particular actual and desired parameters of the strip 1. An actual parameter is, for example, the alloy of the metal strip 1 or its bandwidth b. A desired parameter is, for example, the desired reel temperature.

Das Kühlstreckenmodell 4 umfasst gemäß FIG 2 ein Wärmeleitungsmodell 10, ein Wärmeübergangsmodell 11 und einen Kühlmittelmengenverlaufsermittler 12. Das Kühlstreckenmodell 4 ermittelt dann einen erwarteten zeitlichen Temperaturverlauf Tm(t). Der erwartete Temperaturverlauf Tm(t) wird mit einem Solltemperaturverlauf T*(t) verglichen. Das Vergleichsergebnis wird dem Kühlmittelmengenverlaufsermittler 12 zugeführt. Dieser ermittelt dann anhand der Differenz einen neuen Kühlmittelmengenverlauf, um den erwarteten Temperaturverlauf Tm(t) an den Solltemperaturverlauf T*(t) anzunähern.The cooling line model 4 according to FIG. 2 comprises a heat conduction model 10, a heat transfer model 11 and a coolant quantity course determiner 12. The cooling stretch model 4 then determines an expected temporal temperature profile Tm (t). The expected temperature profile Tm (t) is compared with a desired temperature profile T * (t). The comparison result is supplied to the coolant quantity course determiner 12. This then uses the difference to determine a new coolant flow rate in order to approximate the expected temperature curve Tm (t) to the desired temperature curve T * (t).

Nach erfolgter Anpassung werden dann die Kühlvorrichtungen 6 der Kühlstrecke 5 vom Kühlmengenverlaufsermittler 12 entsprechend angesteuert. Das Kühlmittel 7 wird also auf die betreffende Walzgutstelle gemäß dem ermittelten zeitlichen Kühlmittelmengenverlauf aufgebracht.After the adjustment, the cooling devices 6 of the cooling section 5 are then controlled by the Kühlmengenverlaufsermittler 12 accordingly. The coolant 7 is thus applied to the relevant Walzgutstelle according to the determined temporal coolant flow rate.

Zur Ermittlung des erwartenden Temperaturverlaufs Tm(t) wird im Wärmeleitungsmodell 10 eine Wärmeleitungsgleichung gelöst. Die Wärmeleitungsgleichung weist die Form e t - div λ e p ρ gradT e p = 0

Figure imgb0005
auf. In der Formel bezeichnen e die Enthalpie, λ die Wärmeleitfähigkeit, p den Phasenumwandlungsgrad, ρ die Dichte und T die Temperatur des Walzgutes 1 an der Walzgutstelle sowie t die Zeit.In order to determine the expected temperature profile Tm (t), a heat conduction equation is achieved in the heat conduction model 10. The heat equation has the shape e t - div λ e p ρ gradT e p = 0
Figure imgb0005
on. In the formula, e denotes the enthalpy, λ the thermal conductivity, p the phase conversion degree, ρ the density and T the temperature of the rolling stock 1 at the rolling stock and t the time.

Zur korrekten Lösung der Wärmeleitungsgleichung muss ferner der Phasenumwandlungsgrad p und dessen zeitlicher Verlauf ermittelt werden. Dies erfolgt vorzugsweise anhand einer Differenzialgleichung der Form p t = h e p

Figure imgb0006
h ist eine Funktion wie sie z. B. in Gleichung 2 auf Seite 144 des Artikels " Mathematical Models of Solid-Solid Phase Transitions in Steel" von A. Visintin, IMA Journal of Applied Mathematics, 39, 1987, Seiten 143 bis 157 offenbart ist.For the correct solution of the heat conduction equation, the phase transformation degree p and its time course must also be determined. This is preferably done using a differential equation of the form p t = H e p
Figure imgb0006
h is a function such as In equation 2 on page 144 of the article " Mathematical Models of Solid-Solid Phase Transitions in Steel "by A. Visintin, IMA Journal of Applied Mathematics, 39, 1987, pages 143-157 is disclosed.

Obige Gleichungen müssen an der Walzgutstelle für den gesamten Walzgutquerschnitt gelöst werden. Ferner muss gegebenenfalls auch der Wärmefluss in Bandlaufrichtung z berücksichtigt werden.The above equations must be solved at the Walzgutstelle for the entire Walzgutquerschnitt. Furthermore, where appropriate, the heat flow in the direction of strip z must be taken into account.

Der Zusammenhang λ(e,p) kann in den Gleichungen z. B. durch die Funktion λ e p = e 1 + 1 - p λ e 0

Figure imgb0007
angenähert werden. Dabei sind in beispielhafter Ausgestaltung λ(e,1) und λ (e,0) Funktionen wie sie in FIG 3 gezeigt sind.The relationship λ (e, p) can be found in the equations z. B. by the function λ e p = e 1 + 1 - p λ e 0
Figure imgb0007
be approximated. In an exemplary embodiment, λ (e, 1) and λ (e, 0) are functions as shown in FIG.

Der Zusammenhang T(e,p) kann z. B. durch die Funktion T e p = pT e 1 + 1 - p T e 0

Figure imgb0008
angenähert werden. Dabei sind T(e,1) und T(e,0) Funktionen wie sie beispielhaft in FIG 4 gezeigt sind.The relationship T (e, p) can z. B. by the function T e p = pT e 1 + 1 - p T e 0
Figure imgb0008
be approximated. Here, T (e, 1) and T (e, 0) are functions as shown by way of example in FIG.

Solange das Metallband 1 noch nicht den Haspel-Temperaturmessplatz 8 erreicht hat, steht als Temperaturistwert lediglich die Anfangstemperatur T1 zur Verfügung. Sobald hingegen auch die Endtemperatur T2 erfassbar ist, kann diese mit einer aufgrund der vorherigen Berechnung erwarteten Endtemperatur T2m verglichen werden. Das Vergleichsergebnis wird einem Adaptionselement 13 zugeführt. Mittels des Adaptionselements 13 ist beispielsweise das Wärmeübergangsmodell 13 adaptierbar.As long as the metal strip 1 has not yet reached the reel temperature measuring station 8, only the initial temperature T1 is available as the actual temperature value. On the other hand, as soon as the end temperature T2 can also be detected, it can be compared with an end temperature T2m expected on the basis of the previous calculation. The comparison result is fed to an adaptation element 13. By means of the adaptation element 13, for example, the heat transfer model 13 can be adapted.

Bei dem in FIG 2 dargestellten und oben stehend erläuterten Kühlstreckenmodell 4 wird im Rahmen des Wärmeleitungsmodells 10 die Wärmeleitungsgleichung e t - div λ e p ρ gradT e p = 0

Figure imgb0009
gelöst. Beim Kühlen von Metallband erfolgt ein Wärmefluss aber im wesentlichen ausschließlich in x-Richtung. Es ist daher möglich und zulässig, gemäß FIG 5 das Wärmeleitungsmodell 10 eindimensional anzusetzen. Es ist also hinreichend eine Wärmeleitungsgleichung der Form e t - x λ e p ρ T ( e , p ) x = 0
Figure imgb0010
zu lösen. Diese Vorgehensweise erfordert einen erheblich geringeren Rechenaufwand bei nur geringfügig verschlechterten Ergebnis, weil in diesem Fall lediglich die Wärmeleitungsgleichung für einen eindimensionalen Stab, der sich an der Walzgutstelle von der Bandunterseite zur Bandoberseite erstreckt, gelöst werden muss.In the illustrated in Figure 2 and above explained cooling section model 4 is in the context of the heat conduction model 10, the heat equation e t - div λ e p ρ gradT e p = 0
Figure imgb0009
solved. When cooling metal strip, however, a heat flow takes place essentially exclusively in the x direction. It is therefore possible and permissible, according to FIG 5, the heat conduction model 10 one-dimensionally set. So it is sufficient a heat equation of the form e t - x λ e p ρ T ( e . p ) x = 0
Figure imgb0010
to solve. This approach requires a significantly lower computational effort with only slightly deteriorated result, because in this case, only the heat equation for a one-dimensional rod that extends at the Walzgutstelle from the belt bottom to the top of the band must be solved.

Claims (14)

  1. Method for cooling a hot-rolled material (1) having a rolled-material cross section, in particular a metal strip (1), e.g. a steel strip (1), in a cooling line (5), comprising the following steps:
    - a starting temperature (T1) is recorded for a rolled-material location upstream of the cooling line (5),
    - a temporal quantitative coolant profile is determined on the basis of a cooling-line model (4) and predetermined desired properties of the rolled material (1),
    - a coolant (7) is applied to the rolled-material location in accordance with the temporal quantitative coolant profile which has been determined, and
    - an expected temporal temperature profile (Tm(t)) of the rolled material (1) at the rolled-material location across the rolled-material cross section is determined on the basis of the cooling-line model (4) and the temporal quantitative coolant profile,
    characterized
    in that a heat conduction equation of the following form e t - div λ e p ρ gradT e p = 0
    Figure imgb0017

    where e is the enthalpy, λ the thermal conductivity, p the degree of phase transformation, ρ the density and T the temperature of the rolled material at the rolled-material location and t is the time, is solved in the coolant-line model (4) in order to determine the temperature profile (Tm(t)) in the rolled material (1).
  2. Cooling method according to claim 1, characterized
    in that a finishing temperature (T2) is recorded for the rolled-material location downstream of the cooling line (5).
  3. Cooling method according to claim 2, characterized
    in that the cooling-line model (4) is adapted on the basis of a comparison between the recorded finishing temperature (T2) and an expected finishing temperature (T2m), which is determined on the basis of the expected temporal temperature profile (Tm(t)).
  4. Method for cooling a hot-rolled metal strip (1), in particular a steel strip (1), having a strip thickness (d), in a cooling line (5), comprising the following steps:
    - a starting temperature (T1) is recorded for a strip location upstream of the cooling line (5),
    - a temporal quantitative coolant profile is determined on the basis of a cooling-line model (4) and predetermined desired properties of the metal strip (1),
    - a coolant (7) is applied to the strip location in accordance with the temporal quantitative coolant profile which has been determined, and
    - an expected temporal temperature profile (Tm(t)) of the metal strip (1) at the strip location across the strip thickness (d) is determined on the basis of the cooling-line model (4) and the temporal quantitative coolant profile,
    characterized in that a heat conduction equation of the following form e t - x λ e p ρ T ( e , p ) x = 0
    Figure imgb0018

    where e is the enthalpy, x the position in the strip thickness direction, λ the thermal conductivity, p the degree of phase transition, ρ the density and T the temperature of the metal strip (1) at the strip location and t is the time, is solved in the cooling-line model (4) in order to determine the temperature profile (Tm(t)) in the metal strip (1).
  5. Cooling method according to claim 4, characterized in that a finishing temperature (T2) is recorded for the strip location downstream of the cooling line (5).
  6. Cooling method according to claim 5, characterized in that the cooling-line model (5) is adapted on the basis of a comparison between the recorded finishing temperature (T2) and an expected finishing temperature (T2m) which is determined on the basis of the expected temporal temperature profile (Tm(t)).
  7. Cooling method according to one of the preceding claims, characterized in that the degree of phase transition (p) is determined in the cooling-line model (4) on the basis of a differential equation which takes the following form p t = h e p .
    Figure imgb0019
  8. Cooling-line model for a hot-rolled material (1) which is to be cooled in a cooling line (5) and has a rolled-material cross section, in particular a metal strip (1), e.g. a steel strip (1), in which
    - a starting temperature (T1), recorded upstream of the cooling line (5), of a rolled-material location can be fed to the cooling-line model (4),
    - a temporal quantitative coolant profile can be determined by means of the cooling-line model (4) on the basis of predetermined desired properties of the rolled material (1),
    - an expected temporal temperature profile (Tm (t)) of the rolled material (1) at the rolled-material location across the rolled-material cross section can be determined by means of the cooling-line model (4) and the temporal quantitative coolant profile,
    characterized in that the cooling-line model (4), in order to determine the temperature profile (Tm(t)) in the rolled material (1), includes a heat conduction equation of the following form e t - div λ e p ρ gradT e p = 0
    Figure imgb0020

    where e is the enthalpy, λ the thermal conductivity, p the degree of phase transformation, ρ the density and T the temperature of the rolled material at the rolled-material location and t is the time.
  9. Cooling-line model according to claim 8,
    characterized in that it can be fed a finishing temperature (T2), recorded downstream of the cooling line (5), of the rolled-material location.
  10. Cooling method according to claim 9, characterized in that the cooling-line model (4) can be adapted on the basis of a comparison between the recorded finishing temperature (T2) and an expected finishing temperature (T2m), which is determined on the basis of the expected temporal temperature profile (Tm(t)).
  11. Cooling-line model for a hot-rolled metal strip (1) which is to be cooled in a cooling line (5) and has a strip thickness (d), in particular a steel strip (1), in which
    - a starting temperature (T1), recorded downstream of the cooling line (5), of a strip location can be fed to the cooling-line model (4),
    - a temporal quantitative coolant profile can be determined by means of the cooling-line model (4) on the basis of predetermined desired properties of the metal strip (1),
    - an expected temporal temperature profile (Tm(t)) of the metal strip (1) at the strip location across the strip thickness (d) can be determined by means of the cooling-line model (4) and the temporal quantitative coolant profile,
    characterized in that the cooling-line model (4), in order to determine the temperature profile (Tm(t)) in the metal strip (1), includes a heat conduction equation which takes the following form e t - x λ e p ρ T ( e , p ) x = 0
    Figure imgb0021

    where e is the enthalpy, x the position in the strip thickness direction, λ the thermal conductivity, p the degree of phase transformation, ρ the density and T the temperature of the metal strip (1) at the strip location and t is the time.
  12. Cooling-line model according to claim 11, characterized in that it can be fed a finishing temperature (T2), recorded downstream of the cooling line (5), of the strip location.
  13. Cooling method according to claim 12, characterized in that the cooling-line model (4) can be adapted on the basis of a comparison between the recorded finishing temperature (T2) and an expected finishing temperature (T2m) which has been determined on the basis of the expected temporal temperature profile (Tm(t)).
  14. Cooling-line model according to one of claims 8 to 13,
    characterized in that to determine the degree of phase transformation (p) it includes a differential equation which takes the following form p t = h e p .
    Figure imgb0022
EP02748572A 2001-06-20 2002-06-07 Cooling method for a hot-rolled product and a corresponding cooling-section model Expired - Lifetime EP1397523B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10129565 2001-06-20
DE10129565A DE10129565C5 (en) 2001-06-20 2001-06-20 Cooling method for a hot-rolled rolling stock and corresponding cooling line model
PCT/DE2002/002077 WO2003000940A1 (en) 2001-06-20 2002-06-07 Cooling method for a hot-rolled product and a corresponding cooling-section model

Publications (3)

Publication Number Publication Date
EP1397523A1 EP1397523A1 (en) 2004-03-17
EP1397523B1 true EP1397523B1 (en) 2007-08-08
EP1397523B2 EP1397523B2 (en) 2010-08-11

Family

ID=7688717

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02748572A Expired - Lifetime EP1397523B2 (en) 2001-06-20 2002-06-07 Cooling method for a hot-rolled product and a corresponding cooling-section model

Country Status (9)

Country Link
US (1) US6860950B2 (en)
EP (1) EP1397523B2 (en)
JP (1) JP4287740B2 (en)
CN (1) CN1243617C (en)
AT (1) ATE369443T1 (en)
DE (2) DE10129565C5 (en)
ES (1) ES2289120T5 (en)
NO (1) NO20030561L (en)
WO (1) WO2003000940A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103619501A (en) * 2011-06-27 2014-03-05 西门子公司 Method for controlling a hot strip rolling line
EP3099430B1 (en) 2014-01-28 2017-11-01 Primetals Technologies Germany GmbH Cooling section with dual cooling to a particular target value

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10327383C5 (en) 2003-06-18 2013-10-17 Aceria Compacta De Bizkaia S.A. Plant for the production of hot strip with dual phase structure
DE102005036068A1 (en) 2005-08-01 2007-02-08 Siemens Ag Modeling method for the time course of the state of a steel volume by a computer and corresponding objects
DE102004005919A1 (en) 2004-02-06 2005-09-08 Siemens Ag Computer-aided modeling method for the behavior of a steel volume with a volume surface
US7853348B2 (en) 2004-04-06 2010-12-14 Siemens Aktiengesellschaft Method for producing a metal
JP4767544B2 (en) * 2005-01-11 2011-09-07 新日本製鐵株式会社 Steel sheet cooling control method
MX2009002192A (en) * 2006-08-28 2009-04-15 Air Prod & Chem Cryogenic nozzle.
CN100519778C (en) * 2006-10-25 2009-07-29 宝山钢铁股份有限公司 Medium cooling and following rolling model supporting method in niobium-containing thick steel plate rolling process
WO2009011070A1 (en) * 2007-07-19 2009-01-22 Nippon Steel Corporation Method of cooling control, cooling control unit and cooling water quantity computing unit
WO2009032688A1 (en) * 2007-08-28 2009-03-12 Air Products And Chemicals, Inc. Apparatus and method for providing condensation-and frost-free surfaces on cryogenic components
WO2009032689A2 (en) * 2007-08-28 2009-03-12 Air Products And Chemicals, Inc. Apparatus and method for monitoring and regulating cryogenic cooling
CN101855495B (en) 2007-08-28 2013-02-06 气体产品与化学公司 Apparatus and method for controlling the temperature of a cryogen
BRPI0815931A2 (en) * 2007-08-28 2018-01-09 Air Prod & Chem method and apparatus for use in an industrial process
DE102008011303B4 (en) * 2008-02-27 2013-06-06 Siemens Aktiengesellschaft Operating method for a cooling line for cooling a rolling stock with temperature-separated cooling to a final enthalpy value
FR2940979B1 (en) * 2009-01-09 2011-02-11 Fives Stein METHOD FOR COOLING A THREADED METAL STRIP
US8437991B2 (en) * 2009-10-22 2013-05-07 GM Global Technology Operations LLC Systems and methods for predicting heat transfer coefficients during quenching
KR101395509B1 (en) * 2009-11-24 2014-05-14 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet manufacturing device, and hot-rolled steel sheet manufacturing method
EP2353742A1 (en) * 2010-02-05 2011-08-10 Siemens Aktiengesellschaft Heat rolling train for rolling hot rolled strips, method for operating same to roll hot rolled strips, control and/or regulating device
EP2527053A1 (en) 2011-05-24 2012-11-28 Siemens Aktiengesellschaft Operating method for a mill train
EP2527054A1 (en) 2011-05-24 2012-11-28 Siemens Aktiengesellschaft Operating method for a mill train
CN103191927B (en) * 2012-01-10 2015-08-05 鞍山钢铁集团公司 A kind of computational methods predicting temperature field of cold-roll strip steel
EP2873469A1 (en) 2013-11-18 2015-05-20 Siemens Aktiengesellschaft Operating method for a cooling section
EP3456426B1 (en) 2017-09-19 2020-07-15 Primetals Technologies Germany GmbH Cooling of an inclined flat product which is to be rolled
DE102018127347A1 (en) * 2018-11-01 2020-05-07 Sms Group Gmbh Process for the optimized production of metallic steel and iron alloys with high carbon contents in hot rolling and heavy plate mills
EP3670682A1 (en) 2018-12-20 2020-06-24 Primetals Technologies Austria GmbH Production of a metal strip with an austenite-martensite compound structure
DE102019104419A1 (en) * 2019-02-21 2020-08-27 Sms Group Gmbh Method for setting different cooling processes for rolling stock over the bandwidth of a cooling section in a hot strip or heavy plate mill
CN110070919B (en) * 2019-04-12 2023-02-17 上海交通大学 Melting model related to crystalline phase reaction and numerical simulation method thereof
EP3825789A1 (en) * 2019-11-20 2021-05-26 Primetals Technologies Germany GmbH Remote control of a plant for producing and / or treating a metal rolled product
EP4119247B1 (en) 2021-07-15 2024-04-24 Primetals Technologies Germany GmbH Incorporation of state-dependent density when solving a heat conduction equation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0453566B1 (en) * 1989-06-16 1998-04-08 Kawasaki Steel Corporation Steel material cooling control method
DE19740691A1 (en) 1997-09-16 1999-03-18 Siemens Ag Method and apparatus for metal cooling in steelworks
DE19850253A1 (en) * 1998-10-31 2000-05-04 Schloemann Siemag Ag Method and system for controlling cooling sections

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103619501A (en) * 2011-06-27 2014-03-05 西门子公司 Method for controlling a hot strip rolling line
CN103619501B (en) * 2011-06-27 2016-01-20 西门子公司 For the control method of hot-rolled band production line
EP3099430B1 (en) 2014-01-28 2017-11-01 Primetals Technologies Germany GmbH Cooling section with dual cooling to a particular target value

Also Published As

Publication number Publication date
EP1397523B2 (en) 2010-08-11
WO2003000940A1 (en) 2003-01-03
JP2004530793A (en) 2004-10-07
DE10129565A1 (en) 2003-01-09
NO20030561D0 (en) 2003-02-04
ES2289120T3 (en) 2008-02-01
JP4287740B2 (en) 2009-07-01
CN1243617C (en) 2006-03-01
ATE369443T1 (en) 2007-08-15
ES2289120T5 (en) 2011-01-27
CN1463293A (en) 2003-12-24
DE10129565C5 (en) 2007-12-27
DE50210648D1 (en) 2007-09-20
US20040006998A1 (en) 2004-01-15
DE10129565B4 (en) 2004-01-29
US6860950B2 (en) 2005-03-01
EP1397523A1 (en) 2004-03-17
NO20030561L (en) 2003-02-04

Similar Documents

Publication Publication Date Title
EP1397523B1 (en) Cooling method for a hot-rolled product and a corresponding cooling-section model
EP1485216B1 (en) Computer-aided method for determining desired values for controlling elements of profile and surface evenness
WO2001047648A2 (en) Method for controlling and/or regulating the cooling stretch of a hot strip rolling mill for rolling metal strip, and corresponding device
EP0997203B1 (en) Method and system for controlling cooling lines
WO2008043684A1 (en) Method of monitoring the physical state of a hot-rolled sheet or hot-rolled strip while controlling a plate rolling train for working a hot-rolled sheet or hot-rolled strip
EP1576429B1 (en) Modeling method for a metal
EP1711868B1 (en) Computer-assisted modelling method for the behaviour of a steel volume having a surface
EP2548665A1 (en) Method for determining the wear on a roller dependent on relative movement
DE4321963A1 (en) Hot strip rolling train control - comprising setting roller surface speeds in neighbouring stand pairs to cancel out internal mass flow variations
EP1675694B1 (en) Method and control device for operating a mill train for metal strip
DE2256136A1 (en) COMPUTER CONTROLLED ROLLING MILL
EP1711283B1 (en) Control method and control device for a roll stand
DE10211623A1 (en) Computer-aided determination process comprises feeding input variables to a material flow model which describes a metal strip before and after the passing through a roll stand
EP1448330B1 (en) Method for continuous casting
DE2047984A1 (en) Method and device for correcting a value of the rolling stock temperature
DE3516779C2 (en)
EP3787811B1 (en) Process for operating a cooling section and system for producing rolled products
EP3009204A1 (en) Modeling of a metal strip in a rolling mill
DE1527610A1 (en) Rolling process and device for carrying out the same
EP4119247B1 (en) Incorporation of state-dependent density when solving a heat conduction equation
DE19980248B4 (en) Method and device for determining an intermediate profile of a metal strip
DE10159608B9 (en) Rolling process and rolling train for a band with a weld
WO2020069875A1 (en) Decoupled adjustment of contour and flatness of a metal strip
EP4101553B1 (en) Cooling of a rolled stock upstream of a finishing train of a hot rolling plant
Prinz Model-based control of the thickness profile in hot strip rolling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

D17P Request for examination filed (deleted)
R17P Request for examination filed (corrected)

Effective date: 20030115

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEINZIERL, KLAUS

Inventor name: FRANZ, KLAUS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070820

REF Corresponds to:

Ref document number: 50210648

Country of ref document: DE

Date of ref document: 20070920

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2289120

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070808

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071109

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080108

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070808

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SMS DEMAG AG

Effective date: 20080508

NLR1 Nl: opposition has been filed with the epo

Opponent name: SMS DEMAG AG

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070808

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20100811

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Effective date: 20110117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20110708

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 11

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FI

Effective date: 20111122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120508

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130603

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130711

Year of fee payment: 12

Ref country code: BE

Payment date: 20130710

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130607

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 369443

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140607

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20150611

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50210648

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140608

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Effective date: 20151105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160901 AND 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160607

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50210648

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES GERMANY GMBH, 91052 ERLANGEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210618

Year of fee payment: 20

Ref country code: FR

Payment date: 20210622

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210618

Year of fee payment: 20

Ref country code: TR

Payment date: 20210603

Year of fee payment: 20

Ref country code: GB

Payment date: 20210625

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50210648

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220606

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG