EP4093810A1 - Procédé de préparation d'un mélange maître enzymé - Google Patents

Procédé de préparation d'un mélange maître enzymé

Info

Publication number
EP4093810A1
EP4093810A1 EP21701969.4A EP21701969A EP4093810A1 EP 4093810 A1 EP4093810 A1 EP 4093810A1 EP 21701969 A EP21701969 A EP 21701969A EP 4093810 A1 EP4093810 A1 EP 4093810A1
Authority
EP
European Patent Office
Prior art keywords
enzymes
polysaccharide
polymer
masterbatch
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21701969.4A
Other languages
German (de)
English (en)
Inventor
Nadia AUCLAIR
Chloé GUILLAUMONT
Clémentine ARNAULT
Yannick CHARPENTIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carbiolice SAS
Original Assignee
Carbiolice SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carbiolice SAS filed Critical Carbiolice SAS
Publication of EP4093810A1 publication Critical patent/EP4093810A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a process for preparing a masterbatch (or "masterbatch”) comprising a polysaccharide, enzymes and a low melting point polymer in a mixer.
  • This masterbatch is used in particular for the manufacture of biodegradable plastic articles.
  • plastics based on biodegradable and biobased polyesters have been developed in order to meet ecological challenges. These plastic products, synthesized from starch or derivatives of starch and polyester, are used in the manufacture of articles with a short shelf life, such as plastic bags, food packaging, bags. bottles, wrapping films, etc.
  • plastic compositions generally contain polyester and flour obtained from various cereals (US 5,739,244; US 6,176,915; US 2004/0167247; WO 2004/113433; FR 2 903 042; FR 2 856 405).
  • additive such as mineral fillers (WO 2010/041063) and / or biological entities having polyester degradation activity (WO 2013 / 093355; WO 2016/198652; WO 2016/198650; WO 2016/146540; WO 2016/062695) has been proposed.
  • Articles of biodegradable plastic material comprising biological entities, more particularly enzymes dispersed in a polymer, thus exhibit better biodegradability compared to plastic products devoid of these enzymes.
  • the present invention describes a process for preparing a masterbatch, which used in the manufacture of plastic products comprising enzymes dispersed in a polymer, improves the dispersion of enzymes in the final compound as well as the rate of biodegradability. of the plastic material without modifying the mechanical properties of the product.
  • the present invention relates to a process for the preparation of a masterbatch comprising a polysaccharide, enzymes and a support polymer in a mixer, said process comprising the following steps: a) separate introduction of one part of the enzymes in solution and of on the other hand, polysaccharide and their mixture at a temperature below the melting point of the support polymer; b) introduction of the support polymer into the mixture prepared beforehand in a); c) mixing of components; and d) recovering the masterbatch.
  • the invention also relates to the masterbatches thus obtained and to articles of plastic material obtained by mixing the masterbatch with a polymer or a mixture of polymers comprising a polymer capable of being degraded by the enzymes of the masterbatch.
  • It relates in particular to a process for preparing a plastic article comprising a polymer capable of being degraded by enzymes and enzymes capable of degrading said polymer, comprising a step of mixing the masterbatch according to the invention with said polymer. , alone or as a mixture.
  • the present invention relates to a process for preparing a masterbatch comprising a polysaccharide, enzymes and a support polymer in a mixer, said process comprising at least the following steps of: a) separate introduction on the one hand of the enzymes in solution and on the other hand of the polysaccharide and their mixing at a temperature below the melting point of the support polymer; b) introduction of the support polymer into the mixture previously prepared in a) c) mixing of the components; and d) recovering the masterbatch.
  • the present invention also relates to a process for preparing a masterbatch comprising a polysaccharide, enzymes and a support polymer in a mixer, said process comprising at least the following steps of a) to be introduced separately into a mixer, in particular an extruder in particular twin-screw, on the one hand the enzymes in solution and on the other hand a polysaccharide, to mix them at a temperature below the melting point of the support polymer, then b) to add the support polymer to the mixture of enzymes in solution and polysaccharide and c) mixing them before d) recovering the masterbatch.
  • polysaccharides refers to molecules composed of long chains of monosaccharide units linked together by glycosidic bonds.
  • the structure of polysaccharides can be linear to highly branched. Examples include storage polysaccharides such as starch and glycogen, and structural polysaccharides such as cellulose and chitin.
  • Polysaccharides include native polysaccharides or polysaccharides chemically modified by crosslinking, oxidation, acetylation, partial hydrolysis, etc.
  • Carbohydrate polymers can be classified according to their source (marine, plant, microbial or animal), structure (linear, branched) and / or physical behavior (such as designation as gum or hydrocolloid which refers to the property that these polysaccharides hydrate in hot or cold water to form viscous solutions or dispersions with a low concentration of gum or hydrocolloid).
  • the polysaccharides can be classified according to the classification described in "Encapsulation technologies for active ingredients. food and food processing - Chapter 3 - Materials for encapsulation
  • - Starch and derivatives such as amylose, amylopectin, maltodextrin, glucose syrups, dextrin, cyclodextrin - Cellulose and derivatives, such as methylcellulose, hydroxypropylmethylcellulose, ethylcellulose, etc.
  • Exudate and plant extracts also called vegetable gums or natural gums, including but not limited to arabic gum (or acacia gum), tragacanth, guar gum, locust bean gum , karaya gum, mesquite gum, galactomannans, pectin, soluble soy polysaccharide
  • Polysaccharides can be classified according to their solubility in water.
  • cellulose is not soluble in water.
  • the polysaccharides have the ability to be soluble in water.
  • polysaccharides used in the formulation of plastic compositions are well known to those skilled in the art. They are in particular chosen from starch derivatives such as amylose, amylopectin, maltodextrins, glucose syrup, dextrins and cyclodextrins, natural gums such as gum arabic, gum tragacanth, guar gum , locust beam gum, karaya gum, mesquite gum, galactomannans, pectin or soluble soybean polysaccharides, marine extracts such as carrageenans and alginates, and microbial or animal polysaccharides such as gellans, dextrans , xanthans or chitosan, and mixtures thereof.
  • starch derivatives such as amylose, amylopectin, maltodextrins, glucose syrup, dextrins and cyclodextrins
  • natural gums such as gum arabic, gum tragacanth, guar gum , loc
  • the polysaccharide can also be a mixture of several polysaccharides mentioned above.
  • the polysaccharide used is a natural gum, and more particularly gum arabic.
  • the enzymes used are enzymes having an activity of degrading polyesters or microorganisms producing one or more enzyme (s) having an activity of degrading polyesters. Their incorporation into the products of biodegradable plastic material based on polyesters thus makes it possible to improve the biodegradability of the latter.
  • polyester degrading activity examples include depolymerases, esterases, lipases, cutinases, carboxylesterases, proteases or polyesterases.
  • enzymes capable of degrading polyesters so as to improve the biodegradability of articles prepared with the masterbatch according to the invention.
  • the enzymes are capable of degrading PLA.
  • Such enzymes and their mode of incorporation into thermoplastic articles are known to those skilled in the art, in particular described in patent applications WO 2013/093355, WO 2016/198652, WO 2016/198650, WO 2016/146540 and WO 2016/062695.
  • the enzymes used in the context of the invention are chosen in particular from proteases and serine proteases.
  • serine proteases are Proteinase K from Tritirachium album, or PLA degrading enzymes from Amycolatopsis sp., Actinomadura keratinilytica, Laceyella sacchari LP175, Thermus sp., Or Bacillus licheniformis or reformulated commercial enzymes known to be degrade PLA such as Savinase®, Esperase®, Everlase® or any enzyme of the CAS [9014-01-1] subtilisin family or any functional variant.
  • the enzymes can be used in their pure or enriched form, and optionally as a mixture with one or more excipient (s).
  • the enzymes are used in the process according to the invention in the form of an enzyme solution.
  • Solvent is a solvent that does not degrade enzymes, especially water.
  • composition of the masterbatch comprises at most 5% of enzymes having polyester degradation activity.
  • the support polymer is a low melting point polymer and a polymer which advantageously has a melting point of less than 140 ° C and / or a glass transition temperature of less than 70 ° C. It must also be compatible with the polymer (s) with which the masterbatch will be mixed for the preparation of enzymated plastic articles.
  • Such support polymers are well known to those skilled in the art. These are in particular polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), polybutylene adipate terephthalate (PBAT), polyhdroxyalkanoate (PHA), polylactic acid (PLA), or their copolymers. It may also be a natural polymer such as starch or else a polymer which will be qualified as universal, ie compatible with a wide range of polymers such as a copolymer of EVA type.
  • the support polymer has a melting temperature below 120 ° C and / or a glass transition temperature below 30 ° C.
  • the support polymer is generally a single polymer as defined above. It can also consist of a mixture of these support polymers.
  • the support polymer is PCL. According to another particular embodiment of the invention, the support polymer is PLA.
  • Step a) is the addition of the polysaccharide and enzymes to the mixer.
  • the enzymes in solution on the one hand and the polysaccharide on the other hand are introduced separately into the mixer.
  • the two components to be mixed can be introduced consecutively, that is to say one after the other, or simultaneously. You can introduce the polysaccharide first, then the enzymes in solution, or the enzymes in solution first and then the polysaccharide. According to an advantageous embodiment of the invention, the enzymes in solution and the polysaccharide are introduced simultaneously.
  • the polysaccharide is in powder form and is introduced into the mixer via a specific powder doser.
  • Enzymes in aqueous solution are added in liquid form. They are added by any usual means of introducing a solution into a mixer, in particular via a peristaltic pump.
  • the polysaccharide / enzymes / water mixture comprises by weight relative to the total weight of the mixture:
  • the polysaccharide / enzymes / water mixture comprises by weight relative to the total weight of the mixture: - 0.3% to 30% of enzymes,
  • the polysaccharide / enzymes / water mixture comprises by weight relative to the total weight of the mixture:
  • the polysaccharide / enzymatic solution ratio is determined so as to have a dry mass of at least 35% and at most 55% or even at most 70%.
  • the amount of polysaccharide in the mixture is between 4% and 100% of the maximum solubility of the polysaccharide in water, that is to say between 4% and 100% of the saturation concentration. polysaccharide in water. That is, the amount of the polysaccharide in the mixture is 4% to 100% of the maximum solubility of the polysaccharide in the mixture, that is, 4% to 100% of the saturation concentration of the polysaccharide in the mixture. .
  • the mixing of the compounds, polysaccharide, enzymes and water is carried out at a temperature below the melting point of the support polymer.
  • the temperature is between 25 and 80 ° C. In a preferred embodiment, the temperature is between 25 and 50 ° C.
  • step a) is advantageously carried out for a period of less than 30 seconds, more particularly in less than 25 seconds.
  • the low melting point polymer is added to the mixer.
  • the support polymer is introduced in a partially or completely molten form.
  • the temperature of the mixer is therefore higher than that of step a).
  • steps b) and c) are between 40 and 200 ° C.
  • the temperature is preferably between 55 and 175 ° C.
  • the temperature of steps b) and c) is adjusted according to the nature of the polymer used. Typically, the temperature does not exceed 300 ° C, more particularly, the temperature does not exceed 250 ° C.
  • step c) We will try to maintain a temperature of the mixture in step c) which is the lowest allowing a mixture and a homogeneous dispersion of the enzymes and the polysaccharide in the support polymer.
  • step c) The mixing of the polysaccharide, enzyme and support polymer components in step c) is carried out for a period of 10 to 30 seconds. In a preferred mode, the mixing lasts between 15 and 25 seconds, more preferably 20 seconds.
  • the temperature is gradually increased in order to ensure a homogeneous and constant mixture while best preserving the characteristics and properties of each of the components.
  • the residence time of the polysaccharide / enzyme composition in the polymer at a temperature above 100 ° C. within the mixer (steps b) and c)) is as short as possible. It is preferably between 5 seconds and 10 minutes. However, a residence time of less than 5 minutes is preferred. In a preferred embodiment, this is less than 3 minutes, and optionally less than 2 minutes.
  • the masterbatch obtained in step d) is in solid form. It is advantageously recovered in the form of granules. These granules can be stored, transported, and incorporated in the manufacture of plastic products or articles, regardless of their form and use, which can be called "end products". These can be films, or flexible or solid parts of shapes and volumes suited to their uses.
  • the formulation of the masterbatch can include a mineral filler.
  • the inorganic compound is introduced in step a), after the addition of the polysaccharide and the enzymatic solution to the mixer.
  • calcite carbonate salts or carbonate metals such as calcium carbonate, carbonate of potassium, magnesium carbonate, aluminum carbonate, zinc carbonate, copper carbonate, chalk, dolomite
  • silicate salts such as calcium silicate, potassium silicate, magnesium silicate, aluminum silicate, or a mixture thereof, such as micas, smectites such as montmorillonite, vermiculite, and sepiolite-palygorskite
  • sulphate salts such as barium sulphate or calcium sulphate (gypsum), mica
  • hydroxide salts or hydroxide metals such as calcium hydroxide, potassium hydroxide (potash), magnesium hydroxide, aluminum hydroxide, sodium hydroxide (caustic soda), hydrotalcite
  • metal oxides or oxide salts such as magnesium oxide, calcium oxide, aluminum oxide, iron oxide, copper oxide, clay, asbestis, silica, graphite, carbon black; metal fibers or metal petals; glass fibers;
  • the mineral filler used is calcium carbonate.
  • the masterbatch is formulated with:
  • the masterbatch can also include the presence of one or more compounds.
  • the masterbatch can comprise one or more additives.
  • additives are used in order to improve specific properties of the final product.
  • the additives can be chosen from plasticizers, coloring agents, processing aids, rheological agents, antistatic agents, anti-UV agents, reinforcing agents, compatibility agents, retardation agents. flame, antioxidants, pro-oxidants, light stabilizers, oxygen traps, adhesives, products, excipients, etc ....
  • the masterbatch comprises less than 20% by weight of additives and preferably less than 10% relative to the total weight of the mixture.
  • master In general, the composition of the masterbatch comprises from 0% to 10% by weight of additives relative to the total weight of the masterbatch.
  • composition of the masterbatch after formulation comprises between 5% and 30% by weight of enzymatic solution, relative to the total weight of the masterbatch into which the enzymes have been introduced in aqueous solution and whose composition is defined above.
  • the enzymatic solution represents between 8% and 22% by weight relative to the total weight of the composition.
  • the masterbatch comprises between 10% and 20% of enzymatic solution by weight of its composition.
  • the enzymes are chosen to be able to degrade at least one polymer of the plastic article which will be obtained by using the masterbatch in its manufacturing process.
  • the composition of the masterbatch after formulation comprises, relative to the total weight of the composition: from 50% to 95% by weight of polyester, from 5% to 50% by weight of enzymatic solution and of polysaccharide, from 0 to 20% by weight of mineral filler and optionally at least one additive.
  • the composition of the masterbatch after formulation comprises, relative to the total weight of the composition: from 60% to 90% by weight of polyester, from 10% to 30% by weight of enzymatic solution and of polysaccharide, from 0 to 10% by weight of mineral filler and optionally at least one additive.
  • the masterbatch manufacturing process is carried out in a mixer.
  • mixers that may be used for the manufacture of these polymer masterbatches.
  • the mixer is an extruder. This can be of the single-screw or twin-screw type. It is preferably of the twin-screw type.
  • the method is implemented in an extruder comprising at least 4 zones, a head zone where the first components are introduced at a first temperature, an intermediate zone where other components are added to a first temperature. second temperature, a mixing zone and an outlet zone through which the masterbatch is recovered, with the following steps a) to d): a) the separate introduction on the one hand of a polysaccharide and on the other hand d an enzymatic solution in the head zone, and their mixture at a temperature below the melting point of the low-melting point polymer; b) introducing a support polymer into the intermediate zone; c) mixing the components in the mixing zone; d) recovering the masterbatch at the outlet of the extruder.
  • the support polymer is introduced in the partially or completely molten state in step b) via an extruder or a side feeder.
  • the masterbatch can be obtained in the form of granules prepared according to the usual techniques. These granules can be stored, transported and used in the manufacture of biodegradable plastic articles, which can be called "end articles".
  • the masterbatch When in granular form, the masterbatch can be dried for storage.
  • the drying methods are usual methods known to those skilled in the art, in particular with the use of hot air ovens, vacuum ovens, desiccators, microwaves or a fluidized bed.
  • the drying temperature and its duration will depend on the one hand on the water content provided by the enzymatic solution in the preparation of the masterbatch, but also on the melting and glass transition temperatures of the support polymer used.
  • composition of the masterbatch advantageously comprises:
  • the humidity level is generally 0.5% or less and preferably less than 0.3%.
  • the masterbatch obtained in the form of granules can then be used in the manufacture of biodegradable plastic products or "end articles". These can be films, or flexible or solid parts of shapes and volumes suited to their uses.
  • the biodegradable plastic article is obtained by mixing the masterbatch comprising the enzymes with at least one polymer capable of being degraded by said enzymes.
  • the invention therefore relates to a process for preparing a plastic article or a premix as defined above comprising a polymer capable of being degraded by enzymes and enzymes capable of degrading said polymer, said process comprising the steps of preparing a masterbatch comprising enzymes capable of degrading said polymer, a polysaccharide, and a support polymer, the masterbatch being prepared in a mixer by a process comprising the following steps of: a) separate introduction into the mixer on the one hand enzymes in solution and on the other hand polysaccharide and their mixture at a temperature below the melting point of the support polymer; b) introduction of the support polymer into the mixture prepared beforehand in a); c) mixing of components; and d) recovering the masterbatch, then mixing said polymer capable of being degraded by enzymes with the masterbatch.
  • said polymer capable of being degraded by enzymes is a biodegradable polyester.
  • These polyesters are well known to those skilled in the art, such as polylactic acid (PLA), polyglycolic acid (PGA), polyhydroxyalkanoate (PHA), polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene succinate adipase (PBSA), polybutylene adipate terephthalate (PBAT), plasticized starch and mixtures thereof.
  • PBS polybutylene succinate
  • PBSA polybutylene succinate adipase
  • PBAT polybutylene adipate terephthalate
  • plasticized starch and mixtures thereof.
  • biodegradable polyesters used for the preparation of the final articles have the same or different physicochemical properties from the polyesters used as support polymers in the masterbatch according to the invention.
  • the enzyme degradable polyester comprises PLA, alone or in admixture with another of the above polyester, in particular a PLA / PBAT blend.
  • the biodegradable plastic article thus consists of the masterbatch and a biodegradable polymer.
  • composition of the biodegradable plastic article further comprises the biodegradable polymer from 0.5% to 20% enzymatic masterbatch.
  • the masterbatch can be mixed with the other constituents of the composition for their shaping. It is also possible to prepare a premix or “compound” comprising the masterbatch and at least the biodegradable polymer. This premix in solid form, in particular in the form of granules, can be stored and then transported before being used for shaping the final article, alone or combined with other constituents depending on the final composition of the product. final article.
  • the premix comprises:
  • biodegradable polymer preferably PLA, - from 0.01% to 5% by weight of a polysaccharide, preferably a natural gum such as gum arabic
  • the final articles can be films, flexible or solid parts of shapes and volumes adapted to their uses.
  • biodegradable plastic articles concerned by the invention are films, mulch films, routing films, food or non-food films; packaging such as packaging blisters, trays; disposable crockery such as cups, plates or cutlery; caps and lids; drink capsules; and horticultural items.
  • composition of the plastic article is as follows:
  • a polysaccharide preferably a natural gum such as gum arabic
  • the biodegradable plastic articles obtained with the enzyme masterbatch can be flexible and / or rigid.
  • the enzyme degradable polyester includes PLA.
  • the biodegradable polyester is a PBAT / PLA mixture, the weight ratio of which preferably ranges from 10/90 to 20/80, more preferably from 13/87 to 15/85.
  • the biodegradable polyester is a PBAT / PLA mixture whose weight ratio ranges from 10/90 to 30/70, from 10/90 to 40/60, from 10/90 to 50/50, from 10 / 90 to 60/40, from 10/90 to 70/30, from 10/90 to 80/20, from 10/90 to 90/10.
  • the biodegradable polyester is a PBAT / PLA blend whose weight ratio is less than 10/90, equal to or less than 9/91, equal to or less than 8/92, equal to or less than 7/93 , equal to or less than 6/94, equal or less than 5/95, equal or less than 4/96, equal or less than 3/97, equal or less than 2/98, equal or less than 1/99.
  • the biodegradable polyester is PLA.
  • the flexible biodegradable plastic articles are characterized by a thickness less than 250 ⁇ m, preferably by a thickness less than 200 ⁇ m.
  • the films have a thickness less than 100 ⁇ m, more preferably less than 50 ⁇ m, 40 ⁇ m or 30 ⁇ m, preferably between 10 and 20 ⁇ m. More preferably, the thickness of the flexible article is 15 ⁇ m.
  • films such as food films, routing films, industrial films or mulch films and bags.
  • composition of the flexible article comprises:
  • a polysaccharide preferably a natural gum such as gum arabic
  • the composition according to the invention is particularly suitable for the production of plastic films.
  • the films according to the invention can be produced according to the usual methods of the art, in particular by extrusion-inflation.
  • the films can be prepared from granules of composition according to the invention which are melted according to the usual techniques, in particular by extrusion.
  • the films of composition as defined above with enzymes can be monolayer or multilayer films. In the case of a multilayer film, at least one of the layers has a composition as defined above.
  • Monolayer and multilayer films, with a composition as defined above both have a high PLA content and retain mechanical properties as desired for the preparation of biodegradable and bio-based films, in particular for the packaging of food and non-food products. .
  • the constituents of the composition according to the invention will preferably be chosen from products compatible with food use.
  • the multilayer film can be a film comprising at least 3 layers, of the ABA, ABCA or ACBCA type, the layers A, B and C being of different compositions.
  • the multilayer films are of the ABA or ACBCA type.
  • layers A and B comprise PLA and / or a polyester, advantageously of a composition according to the invention.
  • the C layers are there to provide particular properties to the articles according to the invention, more particularly to provide barrier properties to gases and in particular to oxygen.
  • barrier materials are well known to those skilled in the art, and in particular PVOH (polyvinyl alcohol), PVCD (polyvinyl chloride), PGA (polyglycolic acid), cellulose and its derivatives, milk proteins, or polysaccharides and their mixtures in all proportions.
  • the enzymes can be present in all the layers or else in only one of the layers, for example in layers A and B or only in layer A or in layer B.
  • the two layers A consist of a composition according to the invention comprising PLA, polyester and polypropylene glycol diglycidyl ether (PPGDGE), without enzymes.
  • the enzymes are in layer B, either in a composition according to the invention with enzymes as defined above, or in a particular composition, in particular an enzyme composition in a low melting point polymer defined above.
  • the composition of the enzyme layer of the flexible articles can comprise up to 95% by weight of polymer.
  • biodegradable preferably PLA.
  • the enzymated layer can comprise from 8% to 50%, from 8% to 60%, from 8% to 70%, from 8% to 80% or even from 8% to 90% by weight of biodegradable polymer.
  • composition of the enzyme layer of flexible articles comprises:
  • biodegradable polymer preferably PLA, in particular from 8% to 70%, from 8% to 60%, from 8% to 50%, or from 8% to 40%,
  • a polysaccharide preferably a natural gum such as gum arabic
  • the biodegradable polyester is PLA, preferably a PLA / calcium carbonate mixture.
  • the weight ratio ranges from 100/0 to 25/75, preferably from 95/5 to 45/55, more preferably from 90/10 to 50/50.
  • the biodegradable polyester is a PBAT / PLA mixture, the weight ratio of which preferably ranges from 10/90 to 80/20, more preferably from 20/80 to 60/40.
  • the rigid articles have a thickness between 200 ⁇ m and 5 mm, between 150 ⁇ m and 5 mm, preferably between 200 ⁇ m and 3 mm, or between 150 ⁇ m and 3 mm. In one embodiment, the articles have a thickness between 200 ⁇ m and 1 mm, between 150 ⁇ m and 1 mm, preferably between 200 ⁇ m and 750 ⁇ m or between 150 ⁇ m and 750 ⁇ m. In another embodiment, the thickness is 450 ⁇ m.
  • the composition of the rigid article comprises:
  • a polysaccharide preferably a natural gum such as gum arabic
  • composition of the rigid article comprises:
  • a polysaccharide preferably a natural gum such as gum arabic
  • composition of the rigid article thus comprises more than 60% by weight of biodegradable polymer or mixture of polymer (s), or even more than 70%, or even more than 80%, or even more than 90%.
  • the content of the mineral filler in the rigid article is between 0.01% and 35% by weight depending on the nature of the mineral filler.
  • the rigid article thus comprises more than 0.01%, more than 0.1%, more than 1%, or even more than 2%, or even more than 3% by weight of mineral filler.
  • the quantity by weight of mineral filler is greater than or equal to 4%, greater than or equal to 5%, greater than or equal to 6%, greater than or equal to 7%, or greater than or equal to 8 %.
  • the mineral filler included in the article rigid is 10 to 35% by weight, 15% to 30%, or 20% to 28% by weight.
  • the final articles can also include plasticizers, compatibilizers and other usual additives used in the composition of plastics, such as pigments or dyes, release agents, impact modifiers, antiblock agent etc ....
  • plasticizers examples include citrate esters and lactic acid oligomers (OLA).
  • Citrate esters are plasticizers known to those skilled in the art, in particular as bio-based materials. Mention will in particular be made of triethyl citrate (TEC), triethyl acetyl citrate (TEAC), tributyl citrate (TBC), tributyl acetyl citrate (TBAC).
  • TEC triethyl citrate
  • TEAC triethyl acetyl citrate
  • TBAC tributyl citrate
  • the citrate ester used as a plasticizer in the composition according to the invention is TBAC.
  • OLAs are also plasticizers known to those skilled in the art, in particular as bio-based materials. These are lactic acid oligomers with a molecular weight of less than 1500 g / mol. They are preferably esters of oligomers of lactic acids, their carboxylic acid termination being blocked by esterification with an alcohol, in particular a linear or branched C1 -C10 alcohol, advantageously a C6-C10 alcohol, or a mixture of these latter.
  • an alcohol in particular a linear or branched C1 -C10 alcohol, advantageously a C6-C10 alcohol, or a mixture of these latter.
  • the OLAs have a molecular weight of at least 900 g / mol, preferably from 1000 to 1400 g / mol, more preferably from 1000 to 1100 g / mol
  • Poly (propylene glycol) diglycidyl ether are also called glycidyl ethers, described in particular as “reactive plasticizers” in patent application WO 2013/104743, used for the preparation of block copolymers with PLA and PBAT. They are also identified as liquid epoxy resin, from the company DOW, marketed under the reference “DER TM 732P”, or alternatively as aliphatic epoxy resin, from the company HEXION, marketed under the reference “Epikote TM Resin 877”.
  • the composition according to the invention may optionally comprise other PLA / Polyesters compatibilizers associated with PPGDGE.
  • PLA / Polyesters compatibilizers are well known to those skilled in the art, in particular chosen from polyacrylates, terpolymers of ethylene, of acrylic ester and of glycidyl methacrylate (for example sold under the trademark Lotader® by the company Arkema ), PLA-PBAT-PLA triblock copolymers, PLA grafted with maleic anhydride (PLA-g-AM) or PBAT grafted with maleic anhydride (PBAT-g-AM), in particular poly (ethylene-co- methyl acrylate-co-glycidyl methacrylate) described in particular by Dong & al. (International Journal of Molecular Sciences, 2013, 14, 20189-20203) and Ojijo & al. (Polymer 2015, 80, 1-17), more particularly marketed under the name JONCRYL ® by the company BASF, preferably the grade ADR 4468.
  • PLA-g-AM PLA grafted with maleic anhydride
  • PBAT-g-AM PBAT
  • the invention also relates to a process for preparing a plastic article or a premix as defined above comprising a polymer capable of being degraded by enzymes and enzymes capable of degrading said polymer, said process comprising the steps of preparing a masterbatch comprising enzymes capable of degrading said polymer, a polysaccharide, and a support polymer, the masterbatch being prepared in a mixer by a process comprising the following steps of: a) separate introduction into the mixer on the one hand enzymes in solution and on the other hand polysaccharide and their mixture at a temperature below the melting point of the support polymer; b) introduction of the support polymer into the mixture prepared beforehand in a); c) mixing of components; and d) recovering the masterbatch, then mixing said polymer capable of being degraded by enzymes with the masterbatch.
  • PCL marketed under the reference Capa TM 6500 by the company Perstorp calcium carbonate marketed under the reference OMYAFILM 707-OG by the company Omya, and gum arabic under the reference InstantGumAA by the company Nexira were used.
  • the mixture A1 of support polymer and enzymes is prepared from granules of polycaprolactone (PCL) and enzymes in liquid form.
  • the mixture of support polymer and enzymes was made with a CLEXTRAL EV25HT twin-screw extruder comprising 11 zones for which the temperature is independently controlled and regulated.
  • the PCL is introduced in zone 1 at 16 kg / h and the enzyme solution in zone 5 at 4 kg / h using a peristaltic pump.
  • the zones are heated according to Table 1. 20% of the enzymatic solution containing the polysaccharide is introduced into PCL (% by weight relative to the total weight).
  • the mixture A2 of support polymer and enzymes was prepared in the same way as for the mixture of support polymer and A1 enzymes. Only calcium carbonate was added to the preparation.
  • the PCL as well as the enzymatic solution were introduced under the same conditions as for the mixture A1 at 12 kg / h and 6 kg / h respectively.
  • the calcium carbonate was introduced simultaneously with the PCL in zone 1 at 2 kg / h.
  • the extrusion temperatures used are identical to those used for the preparation of the polymer / enzyme mixture A1. 2.
  • the mixture B of carrier polymer and enzymes is prepared from granules of polycaprolactone (PCL), a polysaccharide (gum arabic) and enzymes in solution according to the method of the invention.
  • the mixture of support polymer and enzymes was made with a Clextral Evolum 25 HT co-rotating twin screw comprising 11 zones for which the temperature is independently controlled and regulated.
  • the enzymes in solution and the gum arabic were introduced simultaneously at the start of the extruder in order to achieve the mixture according to an increasing temperature profile of between 25 and 50 ° C.
  • the enzymes in solution are introduced at 2.2 kg / h using a peristaltic pump.
  • Gum arabic is introduced at 1.8kg / h using a specific powder dispenser.
  • the PCL also called the support polymer, is introduced at 16 kg / h in a partially or even completely molten state between zone 5 and zone 6 of the extruder at an actual temperature of 55 ° C.
  • the mixture C of support polymer and enzymes of the invention was prepared in the same way as for the mixture of support polymer and B enzymes.
  • the enzymes in solution are introduced at 2.4 kg / h using a peristaltic pump.
  • Gum arabic is introduced at 1.6 kg / h using a specific powder dispenser.
  • the PCL also called the support polymer, is introduced at 16 kg / h in a partially or even completely molten state between zone 5 and zone 6 of the extruder.
  • the mixture D of support polymer and enzymes of the invention is similar to mixture C; only calcium carbonate was added to the preparation. To do this, a dry-blend was prepared with gum arabic. The addition is therefore done at the start of the extruder via a powder doser, simultaneously with the solution, at a flow rate of 3.6 kg / h.
  • the PCL is introduced at 14kg / h.
  • PLA marketed under the reference Ingeo TM Biopolymer 4043D by the company NatureWorks PLA-PBAT marketed under the reference Ecovio® F2223 by the company BASF, Joncryl® ADR 4468 marketed by the company. company BASF, TBAC Citrofol® BII marketed by the company Jungbunzlauer and PBAT marketed under the reference A400 by the company Wango were used.
  • the granules were produced on a Clextral Evolum 25 HT co-rotating twin screw.
  • a Clextral Evolum 25 HT co-rotating twin screw To introduce the polymers (PLA and PBAT) and the compatibilizer, two gravimetric dosers were used and to dose the liquid TBAC, a PCM pump was used.
  • the PLA and Joncryl® mixture was introduced via a metering device at the start of the screw in the presence of the plasticizer TBAC.
  • the mixture is melted and brought to the introduction zone of the PBAT which itself arrives in a partially or totally molten state.
  • the granules were prepared with a screw speed of 450 rpm and at a flow rate of 40 kg / h.
  • the mixture of components arrives in the molten state in the Z11 screw and is immediately granulated with a cutting system under water to obtain half-moon granules with a diameter of less than 3 mm.
  • a composition is prepared in the state of the art comprising 35% of PLA and 61% of PBAT, 2.5% of TBAC and 0.4% of Joncryl® ADR 4468 C (% by weight relative to the total weight of the composition).
  • Table 4b Extrusion inflation temperatures for film 2
  • Table 4c Extrusion inflation temperatures for films 3 and 4
  • the films were prepared with the granules prepared in Example 2.11 or the granules of Ecovio F2223, and the support polymer mixture and enzymes D prepared in Example 1.11.2.
  • the compositions of these different films are listed in Table 3. Table 3: Summary of the three-layer films produced
  • Table 6a Extrusion inflation temperatures for film 10
  • Table 6b Extrusion inflation temperatures for film 12
  • the mechanical properties in tension and tear can be measured using a Zwick or Llyod type machine, equipped with a 50 N sensor or a 5 kN sensor. The properties are measured in two different directions: in the longitudinal direction and in the transverse direction. The mechanical properties in tension and in tearing are measured respectively according to standards EN ISO 527-3 and ISO 6383-1.
  • the puncture resistance As for the puncture resistance, it is measured using a Dart-Test according to standard NF EN ISO 7765-1.
  • the opacity of the films is characterized by measuring the haze (Haze) according to ASTM D1003-07 (11/2007), procedure B - Measurement of Haze with a spectrocolorimeter.
  • the evaluation of the biodegradability of the films was evaluated with a depolymerization test carried out according to the following protocol: 100 mg of each sample were was introduced into a plastic vial containing 50 mL of buffer solution at pH 9.5. The depolymerization is started by incubating each sample at 45 ° C., in an incubator shaken at 150 rpm. A 1 mL aliquot of buffer solution is taken regularly and filtered using a 0.22 ⁇ m filter syringe in order to be analyzed by high performance liquid chromatography (HPLC) with an Aminex HPX-87H column to measure the release of lactic acid (LA) and its dimer.
  • HPLC high performance liquid chromatography
  • LA lactic acid
  • the chromatography system used is an Ultimate 3000 UHPLC System (Thermo Fisher Scientific, Inc.
  • Waltham, MA, USA comprising a pump, an automatic sampler, a column thermostatically controlled at 50 ° C. and a UV detector at 220nm.
  • the eluent is 5 mM H2SO4.
  • the injection is 20 ⁇ l of sample.
  • Lactic acid is measured from standard curves prepared from commercial lactic acid.
  • the hydrolysis of plastic films is calculated from the lactic acid and the lactic acid dimer released.
  • the percentage of depolymerization is calculated with respect to the percentage of PLA in the sample.
  • Films 1 and 2 composed of 2 different polymer matrices and containing no enzyme exhibit a depolymerization rate of less than 1% after five days at 45 ° C, and less than 1% and 0% after two days at 28 ° C. These results testify to the zero depolymerization of the polymer matrices alone.
  • the masterbatch A1 resulting from the method of preparation described in paragraph ex 2.11.1 has a density equivalent to that of the masterbatch B resulting from the method of preparation of the invention described in paragraph ex 2. II.2, to namely 1, 16g / cm 3 .
  • the method of preparing the support polymer and enzyme mixture has no impact on the density of the final compound.
  • thermogravimetric analyzes carried out on these two mixtures prepared in paragraph II show that all the components of the formulation are found at equivalent decomposition temperatures. A difference is observed in terms of quantity since the masses found from 450 ° C. differ slightly depending on the process used. The results are shown in Table 7.
  • the method of preparing the support polymer and enzyme mixture has no impact on the transparency or opacity of the finished product.
  • the comparison of films 5 and 6 makes it possible to assess the impact of the mineral filler present in the mixture of support polymer and enzymes.
  • Table 10 Characterization of the transparency of the films The addition of a mineral filler of the calcium carbonate type has no impact on the transparency or opacity of the finished product.
  • the film 6 containing a support polymer mixture and enzymes produced according to the process described in the invention and the film 7 containing a support polymer mixture and enzymes produced under conventional conditions have a depolymerization rate of 25% after two days. at 45 ° C.
  • the rate of enzymes in film 6 is lower than that of film 7, the method of preparing the mixture described in the invention makes it possible to achieve depolymerization rates identical to the conventional process but with fewer enzymes.
  • Films 6 and 8 composed of two different polymer matrices and containing an almost similar rate of enzymes respectively show a rate of depolymerization of 25% and 53% after two days at 45 ° C, and of 21% and 44% after twenty days at 28 ° C. That is, the PLA matrix of film 8 reacts more effectively with the masterbatch than that of film 6. d. Films with different thicknesses
  • Films 8 and 9 of different thicknesses respectively show a depolymerization rate of 53% and 22% after two days at 45 ° C, and of 44% and 7% after twenty days at 28 ° C.
  • the thickness of the film influences the depolymerization of PLA. For the same masterbatch, when this increases, the rate of depolymerization decreases.
  • PLA marketed under the reference PLA marketed under the reference LX175 by the company Total Corbion, calcium carbonate marketed under the reference Filler PL 776 by the company Perakritis were used.
  • the sheets were prepared with the granules of PLA LX175, and the mixture of support polymer and D enzymes prepared in Example 1.11.2.
  • the compositions of these different calendered sheets are listed in Table 11.
  • Table 11 Summary of calendered sheets produced For the calendering extrusion, a Labtech laboratory line, single screw Yvroud, was used. For sheets 450pm thick, the screw speed is between 40 and 55.8 rpm, general draw speeds are between 1, 2 and 1, 4 m / min. For the 30pm thick sheet, the screw speed is 13 rpm, the general draw speed is 8 m / min.
  • the calendering extrusion temperatures are detailed in Table 42. Table 42a: Calendering extrusion temperatures for sheet 1
  • Table 52b Calendering extrusion temperatures for sheets 2 and 4
  • Table 62c Calendering extrusion temperatures for sheet 3
  • test pieces were prepared with the PLA LX175 granules, and the mixture of support polymer and D enzyme prepared in Example 1.11.2.
  • the compositions of these different specimens are listed in Table 73.
  • a KM 50t / 380 CX ClassiX 50T laboratory line was used for the injection.
  • the injection speed is 82mm / s, and the injection pressure is 1271 bar.
  • Sheet 1 does not contain enzyme but only PLA LX175 polymer matrix and PCL as a control masterbatch. It exhibits a depolymerization rate of less than 1% after five days at 45 ° C, as well as after twenty days at 28 ° C. The results of this analysis being almost harmful, it allows to certify the witness.
  • Sheet with and without addition of CaCC Depolymerization of the PLA from sheets 2 and 3 Sheets 2 and 3 have a similar composition except for the addition of a masterbatch loaded with CaCC for sheet 3. The two sheets contain almost the same rate of enzymes and respectively show a depolymerization rate of 19% and 73% after two days at 45 ° C, and of 5% and 24% after twenty days at 28 ° C. The nature of the PLA matrix of sheet 2 reacts more in the presence of a masterbatch containing CaCC.
  • Sheets of different thickness The nature of the PLA matrix of sheet 2 reacts more in the presence of a masterbatch containing CaCC.
  • Depolymerization of the PLA from sheets 2 and 4 Sheets 2 and 4 of different thickness respectively show a depolymerization rate of 19% and 62% after two days at 45 ° C, and of 5% and 55% after twenty days at 28 ° C. Increasing the film thickness has a negative impact on the depolymerization of PLA.
  • Plate 1 contains only PLA LX175 and shows a depolymerization rate of less than 1% after two days at 45 ° C, and 0.11% after twenty days at 28 ° C. The results of this analysis being almost harmful, the witness is verified.
  • Plate 2 exhibits a depolymerization rate of 26% after two days at 45 ° C, and of 8% after twenty days at 28 ° C.
  • the results of this analysis show the action of the masterbatch on the PLA matrix in a plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

La présente invention concerne un procédé de préparation d'un mélange maître (ou « masterbatch ») comprenant un polysaccharide, des enzymes et un polymère à bas point de fusion dans un mélangeur. Ce mélange maître est notamment utilisé pour la fabrication d'articles de matière plastique biodégradables.

Description

Procédé de Préparation d’un Mélange Maître Enzymé
DOMAINE DE L’INVENTION
La présente invention concerne un procédé de préparation d’un mélange maître (ou « masterbatch ») comprenant un polysaccharide, des enzymes et un polymère à bas point de fusion dans un mélangeur. Ce mélange maître est notamment utilisé pour la fabrication d’articles de matière plastique biodégradables.
ETAT DE LA TECHNIQUE
Des procédés de préparation de matières plastiques à base de polyesters biodégradables et biosourcés ont été développés afin de répondre aux enjeux écologiques. Ces produits de matière plastique, synthétisés à partir d’amidon ou de dérivés de l’amidon et de polyester, sont utilisés pour la fabrication d’articles ayant une courte durée de vie, tels que les sacs en plastique, les emballages alimentaires, les bouteilles, les films d’enrubannage, etc...
Ces compositions de plastique contiennent généralement du polyester et des farines issues de diverses céréales (US 5,739,244; US 6,176,915; US 2004/0167247; WO 2004/113433; FR 2 903 042; FR 2 856 405).
Dans le but de contrôler la dégradation de ces produits de matière plastique, l’ajout d’additif(s) comme des charges minérales (WO 2010/041063) et/ou d’entités biologiques ayant une activité de dégradation de polyester (WO 2013/093355; WO 2016/198652; WO 2016/198650; WO 2016/146540; WO 2016/062695) a été proposé. Les articles de matière plastique biodégradable comprenant des entités biologiques, plus particulièrement des enzymes dispersées dans un polymère, présentent ainsi une meilleure biodégradabilité par rapport aux produits de matière plastique dépourvus de ces enzymes.
Des procédés de préparation de ces matières plastiques enzymées ont précédemment été décrits, cependant des problèmes liés à l’homogénéité et à la rugosité peuvent apparaître et se répercuter sur les propriétés physiques du produit. Par exemple, la présence d’agrégats d’enzymes entraîne une rugosité plus importante, l’esthétisme du produit est diminué et les propriétés physiques et mécaniques sont altérées. Une première amélioration a été apportée en apportant l’enzyme sous forme liquide au polymère support (WO 2019/043145, WO 2019/043134).
La présente invention décrit un procédé de préparation d’un mélange maître, qui utilisé dans la fabrication de produits de matière plastique comprenant des enzymes dispersées dans un polymère, permet d’améliorer la dispersion des enzymes dans le composé final ainsi que le taux de biodégradabilité de la matière plastique sans modifier les propriétés mécaniques du produit.
EXPOSE DE L’INVENTION
La présente invention concerne un procédé de préparation d’un mélange maître comprenant un polysaccharide, des enzymes et un polymère support dans un mélangeur, ledit procédé comprenant les étapes suivantes de : a) introduction séparée d’une part des enzymes en solution et d’autre part du polysaccharide et leur mélange à une température inférieure à la température de fusion du polymère support ; b) introduction du polymère support dans le mélange préalablement préparé en a); c) mélange des composants ; et d) récupération du mélange maître.
L’invention concerne aussi les mélanges maîtres ainsi obtenus et des articles de matière plastique obtenus en mélangeant le mélange maître avec un polymère ou un mélange de polymères comprenant un polymère capable d’être dégradé par les enzymes du mélange maître.
Elle concerne en particulier un procédé de préparation d’un article de matière plastique comprenant un polymère susceptible d’être dégradé par des enzymes et des enzymes capables de dégrader ledit polymère, comprenant une étape de mélange du mélange maître selon l’invention avec ledit polymère, seul ou en mélange.
DESCRIPTION DETAILLEE DE L’INVENTION
La présente invention concerne un procédé de préparation d’un mélange maître comprenant un polysaccharide, des enzymes et un polymère support dans un mélangeur, ledit procédé comprenant au moins les étapes suivantes de : a) introduction séparée d’une part des enzymes en solution et d’autre part du polysaccharide et leur mélange à une température inférieure à la température de fusion du polymère support ; b) introduction du polymère support dans le mélange préalablement préparé en a) c) mélange des composants ; et d) récupération du mélange maître.
La présente invention concerne aussi un procédé de préparation d’un mélange maître comprenant un polysaccharide, des enzymes et un polymère support dans un mélangeur, ledit procédé comprenant au moins les étapes suivantes de a) à introduire séparément dans un mélangeur, en particulier une extrudeuse notamment bivis, d’une part les enzymes en solution et d’autre part un polysaccharide, de les mélanger à une température inférieure à la température de fusion du polymère support, puis b) d’ajouter le polymère support au mélange d’enzymes en solution et de polysaccharide et c) les mélanger avant d) de récupérer le mélange maître.
Sauf indication contraire, les pourcentages sont donnés en poids par rapport au poids total de la composition à laquelle ils se réfèrent.
Tel qu'il est utilisé ici, le terme «polysaccharides» fait référence à des molécules composées de longues chaînes d'unités monosaccharides liées ensemble par des liaisons glycosidiques. La structure des polysaccharides peut être linéaire à fortement ramifiée. Les exemples incluent les polysaccharides de stockage tels que l'amidon et le glycogène, et les polysaccharides structurels tels que la cellulose et la chitine. Les polysaccharides comprennent les polysaccharides natifs ou les polysaccharides chimiquement modifiés par réticulation, oxydation, acétylation, hydrolyse partielle, etc. Les polymères glucidiques peuvent être classés en fonction de leur source (marine, végétale, microbienne ou animale), de la structure (linéaire, ramifiée) et/ou un comportement physique (tel que la désignation comme gomme ou hydrocolloïde qui fait référence à la propriété que ces polysaccharides hydratent dans l'eau chaude ou froide pour former des solutions ou des dispersions visqueuses à faible concentration en gomme ou hydrocolloïde).
Dans le cadre de l'invention, les polysaccharides peuvent être classés selon la classification décrite dans «Technologies d'encapsulation pour ingrédients actifs alimentaires et transformation alimentaire - Chapitre 3 - Matériaux pour encapsulation
- Christine Wandrey, Artur Bartkowiak et Stephen E. Harding» :
- Amidon et dérivés, tels que l'amylose, l'amylopectine, la maltodextrine, les sirops de glucose, la dextrine, la cyclodextrine - Cellulose et dérivés, tels que la méthylcellulose, l'hydroxypropylméthylcellulose, l'éthylcellulose, etc
- Exsudais et extraits de plantes, également appelés gommes végétales ou gommes naturelles, y compris, mais sans s'y limiter, la gomme arabique (ou la gomme d'acacia), la gomme tragacanthe, la gomme de guar, la gomme de caroube, la gomme karaya, la gomme mesquite, les galactomannanes, la pectine, le polysaccharide de soja soluble
- Extraits marins tels que carraghénane et alginate
- Polysaccharides microbiens et animaux tels que le gellane, le dextrane, le xanthane, le chitosane.
Les polysaccharides peuvent être classés en fonction de leur solubilité dans l'eau. En particulier, la cellulose n'est pas soluble dans l'eau. Selon l'invention, les polysaccharides présentent la capacité d'être solubles dans l'eau.
Les polysaccharides employés dans la formulation de compositions plastiques sont bien connus de l’homme du métier. Ils sont en particulier choisis parmi les dérivés d’amidon comme l’amylose, l’amylopectine, les maltodextrines, le sirop de glucose, les dextrines et les cyclodextrines, les gommes naturelles comme la gomme arabique, la gomme tragacanthe, la gomme de guar, la gomme locust beam, la gomme de karaya, la gomme de mesquite, les galactomannanes, la pectine ou les polysaccharides solubles de soja, les extraits marins comme les carraghénanes et les alginates, et des polysaccharides microbiens ou animaux comme les gellanes, les dextranes, les xanthanes ou le chitosan, et leurs mélanges.
Le polysaccharide peut aussi être un mélange de plusieurs polysaccharides cités ci- dessus.
Dans un mode de réalisation préféré, le polysaccharide utilisé est une gomme naturelle, et plus particulièrement la gomme arabique.
Les enzymes utilisées sont des enzymes ayant une activité de dégradation des polyesters ou des microorganismes produisant une ou plusieurs enzyme(s) ayant une activité de dégradation des polyesters. Leur incorporation au sein des produits de matière plastique biodégradables à base de polyesters permet ainsi d’améliorer la biodégradabilité de ces derniers.
Des exemples d’enzymes ayant une activité de dégradation de polyester sont bien connus de l’homme du métier, notamment les dépolymérases, les estérases, les lipases, les cutinases, les carboxylesterases, les protéases ou les polyestérases.
On citera en particulier des enzymes capables de dégrader les polyesters de manière à améliorer la biodégradabilité des articles préparés avec le mélange maître selon l’invention. Dans un mode particulier de l’invention les enzymes sont capables de dégrader le PLA. De telles enzymes et leur mode d’incorporation dans les articles thermoplastiques sont connus de l’homme du métier, notamment décrits dans les demandes de brevets WO 2013/093355, WO 2016/198652, WO 2016/198650, WO 2016/146540 et WO 2016/062695.
Les enzymes utilisées dans le contexte de l’invention sont notamment choisies parmi les protéases et les protéases à sérines. Des exemples de protéases à sérines sont la Protéinase K de Tritirachium album , ou des enzymes dégradant le PLA issues d ’Amycolatopsis sp., Actinomadura keratinilytica, Laceyella sacchari LP175, Thermus sp., ou Bacillus licheniformis ou d’enzymes commerciales reformulées et connues pour dégrader le PLA telles que Savinase®, Esperase®, Everlase® ou n’importe quelle enzyme de la famille des subtilisines CAS [9014-01-1] ou tout variant fonctionnel.
Les enzymes peuvent être utilisées sous leur forme pure ou enrichie, et éventuellement en tant que mélange avec un ou plusieurs excipient(s).
Les enzymes sont employées dans le procédé selon l’invention sous la forme d’une solution enzymatique. Le solvant est un solvant qui ne dégrade pas les enzymes, et plus particulièrement de l’eau.
Dans le contexte de l’invention, la composition du mélange maître comprend au plus 5% d’enzymes ayant une activité de dégradation des polyesters.
Le polymère support est un polymère à bas point de fusion et un polymère qui présente avantageusement une température de fusion inférieure à 140°C et/ou une température de transition vitreuse inférieure à 70°C. Il doit également être compatible avec le ou les polymère(s) avec le(s)quel(s) le mélange maître sera mélangé pour la préparation d’articles de matière plastique enzymés.
De tels polymères supports sont bien connus de l’homme du métier. Il s’agit en particulier de polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), polybutylene adipate terephthalate (PBAT), polyhdroxyalkanoate (PHA), d’acide polylactique (PLA), ou de leurs copolymères. Il peut aussi s’agir d’un polymère naturel comme l’amidon ou encore un polymère que l’on qualifiera d’universel, c’est à dire compatible avec une large gamme de polymères comme un copolymère de type EVA.
De manière avantageuse, le polymère support a une température de fusion inférieure à 120°C et/ou une température de transition vitreuse inférieure à 30°C.
Le polymère support est généralement un seul polymère tel que défini ci-dessus. Il peut aussi être constitué d’un mélange de ces polymères supports.
Selon un mode particulier de réalisation de l’invention, le polymère support est du PCL. Selon un autre mode particulier de réalisation de l’invention, le polymère support est du PLA.
L’étape a) correspond à l’addition du polysaccharide et des enzymes dans le mélangeur.
Les enzymes en solution d’une part et le polysaccharide d’autre part sont introduits séparément dans le mélangeur. Les deux composants à mélanger peuvent être introduits consécutivement, c’est-à-dire l’un après l’autre, ou simultanément. On peut d’abord introduire le polysaccharide puis les enzymes en solution, ou bien d’abord les enzymes en solution puis le polysaccharide. Selon un mode avantageux de réalisation de l’invention, les enzymes en solution et le polysaccharide sont introduits simultanément.
Le polysaccharide est sous forme pulvérulente et est introduit dans le mélangeur via un doseur spécifique aux poudres. Les enzymes en solution aqueuse sont ajoutées sous forme liquide. Leur ajout se fait par tout moyen usuel d’introduction d’une solution dans un mélangeur, notamment via une pompe péristaltique.
Le mélange polysaccharide/enzymes/eau comprend en poids par rapport au poids total du mélange :
- 0,01 % à 35% d’enzymes,
- 15% à 95% d’eau, et
- 3% à 80% de polysaccharide.
Dans un mode de réalisation, le mélange polysaccharide/enzymes/eau comprend en poids par rapport au poids total du mélange : - 0,3% à 30% d’enzymes,
- 19% à 85% d’eau, et
- 4% à 80% de polysaccharide.
Dans un autre mode de réalisation, le mélange polysaccharide/enzymes/eau comprend en poids par rapport au poids total du mélange :
- 0,3% à 30% d’enzymes,
- 19% à 60% d’eau, et
- 15% à 70% de polysaccharide.
Le ratio polysaccharide/solution enzymatique est déterminé de manière à avoir une masse sèche d’au moins 35% et au plus 55% voire au plus 70%.
Dans un mode de réalisation, la quantité de polysaccharide dans le mélange est comprise entre 4% et 100% de la solubilité maximale du polysaccharide dans l’eau, c’est-à-dire entre 4% et 100% de la concentration de saturation du polysaccharide dans l’eau. Autrement dit, la quantité du polysaccharide dans le mélange est de 4% à 100% de la solubilité maximale du polysaccharide dans le mélange, c’est-à-dire de 4% à 100% de la concentration de saturation du polysaccharide dans le mélange.
Le mélange des composés, polysaccharide, enzymes et eau est réalisé à une température inférieure à la température de fusion du polymère support. De manière avantageuse, la température est comprise entre 25 et 80°C. Dans un mode de réalisation préféré, la température est comprise entre 25 et 50°C.
L’homme du métier saura adapter les caractéristiques du procédé (température et temps) nécessaires à la réalisation de l’étape a) en fonction des composants (polysaccharide et enzymes) utilisés.
Le mélange à l’étape a) se fait avantageusement pendant une durée inférieure à 30 secondes, plus particulièrement en moins de 25 secondes.
Suite au mélange du polysaccharide et de la solution enzymatique à l’étape a), le polymère à bas point de fusion est ajouté dans le mélangeur. Le polymère support est introduit sous une forme partiellement ou totalement fondue. La température du mélangeur est donc supérieure à celle de l’étape a). L’homme du métier saura adapter la température des étapes b) et c) du procédé afin que le polymère soit ajouté sous une forme partiellement ou totalement fondue et à une température à laquelle l’activité enzymatique est conservée. De manière générale, la température des étapes b) et c) est comprise entre 40 et 200°C. La température est préférentiellement comprise entre 55 et 175°C. Dans un mode de réalisation préféré, la température des étapes b) et c) est ajustée selon la nature du polymère utilisé. Typiquement, la température ne dépasse pas 300°C, plus particulièrement, la température ne dépasse pas 250°C.
On cherchera à maintenir une température du mélange à l’étape c) qui soit la plus basse permettant un mélange et une dispersion homogène des enzymes et du polysaccharide dans le polymère support.
Le mélange des composants polysaccharide, enzymes et polymère support à l’étape c), est effectué pendant une durée de 10 à 30 secondes. Dans un mode préféré, le mélange dure entre 15 et 25 secondes, plus préférentiellement 20 secondes.
Au cours du processus de réalisation du mélange maître, la température est graduellement augmentée afin d’assurer un mélange homogène et constant tout en préservant au mieux les caractéristiques et propriétés de chacun des composants.
De manière avantageuse, le temps de résidence de la composition polysaccharide/enzymes dans le polymère à une température au-dessus de 100 °C au sein du mélangeur (étapes b) et c)) est aussi court que possible. Il est préférentiellement compris entre 5 secondes et 10 minutes. Cependant un temps de résidence inférieur à 5 minutes est préféré. Dans un mode de réalisation préféré, celui- ci est inférieur à 3 minutes, et éventuellement inférieur à 2 minutes.
Le mélange maître obtenu à l’étape d) est sous forme solide. Il est avantageusement récupéré sous forme de granulés. Ces granulés pourront être stockés, transportés, et incorporés dans la fabrication de produits ou articles en matière plastique, quel que soit leur forme et leur utilisation, que l’on peut appeler « produits finaux ». Il peut s’agir de films, ou de pièces souples ou solides de formes et volumes adaptés à leurs usages.
La formulation du mélange maître peut comprendre une charge minérale. Dans ce cas, le composé minéral est introduit lors de l’étape a), après l’addition du polysaccharide et de la solution enzymatique dans le mélangeur.
Plusieurs minéraux peuvent être utilisés. Des exemples sont la calcite, les sels de carbonate ou les métaux carbonates tels que le carbonate de calcium, le carbonate de potassium, le carbonate de magnésium, le carbonate d’aluminium, le carbonate de zinc, le carbonate de cuivre, la craie, la dolomite ; les sels de silicate, tels que le silicate de calcium, le silicate de potassium, le silicate de magnésium, le silicate d’aluminium, ou un mélange de ceux-ci, comme les micas, les smectites comme la montmorillonite, la vermiculite, et sépiolite-palygorskite ; les sels de sulfates, tels que le sulfate de barium ou le sulfate de calcium (gypsum), le mica ; les sels d’hydroxyde ou les métaux d’hydroxyde comme l’hydroxyde de calcium, l’hydroxyde de potassium (potasse), l’hydroxyde de magnésium, l’hydroxyde d’aluminium, l’hydroxyde de sodium (soude caustique), l’hydrotalcite ; les métaux oxydes ou les sels d’oxyde comme l’oxyde de magnésium, l’oxyde de calcium, l’oxyde d’aluminium, l’oxyde de fer, l’oxyde de cuivre, l’argile, l’asbestis, la silice, le graphite, le noir de carbone ; les fibres de métal ou les pétales de métal ; les fibres de verre ; les fibres magnétiques ; les fibres céramiques et des dérivés et/ou des mélanges de ceux-ci.
Dans un mode de réalisation préféré, la charge minérale utilisée est du carbonate de calcium.
De manière générale, le mélange maître est formulé avec :
- 50 à 90% de polymère support,
- 5 à 30% de solution enzymatique
- 2 à 20% de polysaccharide, et
- 0 à 20% de charge minérale.
Le mélange maître peut aussi comprendre la présence d’un ou plusieurs composés. En particulier, le mélange maître peut comprendre un ou plusieurs additifs. De manière générale, les additifs sont utilisés afin d’améliorer des propriétés spécifiques du produit final. Par exemples, les additifs peuvent être choisis parmi les plastifiants, les agents de coloration, les auxiliaires technologiques, les agents rhéologiques, les agents antistatiques, les agents anti-UV, les agents de renforcement, les agents de compatibilité, les agents de retardement de flamme, les antioxydants, les pro-oxydants, les stabilisateurs de lumière, les pièges à oxygène, les adhésifs, les produits, les excipients, etc... .
De manière avantageuse, le mélange maître comprend moins de 20% en poids d’additifs et préférentiellement moins de 10% par rapport au poids total du mélange maître. En général, la composition du mélange maître comprend de 0% à 10% en poids d’additifs par rapport au poids total du mélange maître.
La composition du mélange maître après formulation comprend entre 5% et 30% en poids de solution enzymatique, par rapport au poids total du mélange maître dans lequel les enzymes ont été introduites en solution aqueuse et dont la composition est définie ci-dessus.
Dans un mode de réalisation, la solution enzymatique représente entre 8% et 22% en poids par rapport au poids total de la composition.
Dans un mode préféré, le mélange maître comprend entre 10% et 20% de solution enzymatique en poids de sa composition.
En tout état de cause, les enzymes sont choisies pour être capables de dégrader au moins un polymère de l’article de matière plastique qui sera obtenu par l’utilisation du mélange maître dans son procédé de fabrication.
Dans un mode de réalisation, la composition du mélange maître après formulation comprend, par rapport au poids total de la composition : de 50% à 95% en poids de polyester, de 5% à 50% en poids de solution enzymatique et de polysaccharide, de 0 à 20% en poids de charge minérale et optionnellement au moins un additif.
Dans un autre mode préféré, la composition du mélange maître après formulation comprend, par rapport au poids total de la composition : de 60% à 90% en poids de polyester, de 10% à 30% en poids de solution enzymatique et de polysaccharide, de 0 à 10% en poids de charge minérale et optionnellement au moins un additif.
Le procédé de fabrication du mélange maître est réalisé dans un mélangeur. L’homme du métier connaît différents types de mélangeurs susceptibles d’être employés pour la fabrication de ces mélanges maîtres de polymères.
Dans un mode préféré de réalisation, le mélangeur est une extrudeuse. Celle-ci peut être de type monovis ou bivis. Elle est préférentiellement de type bivis.
En particulier, le procédé est mis en œuvre dans une extrudeuse comprenant au moins 4 zones, une zone de tête où sont introduits les premiers composants à une première température, une zone intermédiaire où sont ajoutés d’autres composants à une deuxième température, une zone de mélange et une zone de sortie par laquelle le mélange maître est récupéré, avec les étapes a) à d) suivantes : a) l’introduction séparée d’une part d’un polysaccharide et d’autre part d’une solution enzymatique en zone de tête, et leur mélange à une température inférieure à la température de fusion du polymère à bas point de fusion ; b) l’introduction d’un polymère support dans la zone intermédiaire ; c) le mélange des composants dans la zone de mélange ; d) la récupération du mélange maître en sortie de l’extrudeuse.
Le polymère support est introduit à l’état partiellement ou totalement fondu à l’étape b) par l’intermédiaire d’une extrudeuse ou d’un gaveur latéral.
La personne du métier saura adapter les caractéristiques de l’extrudeuse (i.e. la longueur et le diamètre de la/des vis, les zones de dégazages... ) et le temps de résidence du polysaccharide, des enzymes et du polymère à bas point de fusion en fonction des contraintes de temps et de température des différentes étapes du procédé de l’invention.
Le mélange maître peut être obtenu sous forme de granulés préparés selon les techniques usuelles. Ces granulés pourront être stockés, transportés et utilisés dans la fabrication d’articles de matière plastique biodégradables, que l’on peut appeler « articles finaux ».
Lorsqu’il est sous forme de granulés, le mélange maître peut être séché pour son stockage. Les méthodes de séchage sont des méthodes usuelles connues de l’homme du métier, notamment avec l’utilisation d’étuves sous air chaud, d’étuves sous vide, de dessiccateurs, de micro-ondes ou de lit fluidisé. La température de séchage et sa durée dépendront d’une part de la teneur en eau apportée par la solution enzymatique dans la préparation du mélange maître, mais aussi des températures de fusion et de transition vitreuse du polymère support employé.
Une fois sec, la composition du mélange maître comprend avantageusement de :
- 55% à 95% de polymère support,
- 0,5% à 7% d’enzyme,
- 2% à 27% de polysaccharide, et
- 0% à 30% de charge minérale. Le taux d’humidité est généralement de 0,5% ou moins et de préférence inférieur à 0,3%.
Le mélange maître obtenu sous forme de granulés, peut ensuite entrer dans la fabrication de produits de matière plastique biodégradables ou « articles finaux ». Il peut s’agir de films, ou de pièces souples ou solides de formes et volumes adaptés à leurs usages.
L’article de matière plastique biodégradable est obtenu par mélange du mélange maître comprenant les enzymes avec au moins un polymère susceptible d’être dégradé par lesdites enzymes.
L’invention concerne donc un procédé de préparation d’un article en matière plastique ou un pré-mélange tels que définis ci-dessus comprenant un polymère susceptible d’être dégradé par des enzymes et des enzymes capables de dégrader ledit polymère, ledit procédé comprenant les étapes de préparation d’un mélange maître comprenant des enzymes capables de dégrader ledit polymère, un polysaccharide, et un polymère support, le mélange maître étant préparé dans un mélangeur par un procédé comprenant les étapes suivantes de : a) introduction séparée dans le mélangeur d’une part des enzymes en solution et d’autre part du polysaccharide et leur mélange à une température inférieure à la température de fusion du polymère support ; b) introduction du polymère support dans le mélange préalablement préparé en a); c) mélange des composants ; et d) récupération du mélange maître, puis mélange dudit polymère susceptible d’être dégradé par des enzymes avec le mélange maître.
De manière avantageuse, ledit polymère susceptible d’être dégradé par les enzymes est un polyester biodégradable. Ces polyesters sont bien connus de l’homme du métier, comme l’acide polylactique (PLA), l’acide polyglycolique (PGA), le polyhydroxyalkanoate (PHA), le polycaprolactone (PCL), le polybutylene succinate (PBS), le polybutylene succinate adipase (PBSA), le polybutylene adipate terephtalate (PBAT), l’amidon plastifié et les mélanges de ceux-ci. Ces polyesters sont choisis pour leurs propriétés physico-chimiques en fonction de l’article final et des propriétés qui seront recherchées, en particulier ses propriétés mécaniques mais aussi leur couleur ou leur transparence.
Les polyesters biodégradables employés pour la préparation des articles finaux ont des propriétés physicochimiques identiques ou différentes des polyesters employés comme polymères supports dans le mélange maître selon l’invention.
Dans un mode de réalisation préféré, le polyester pouvant être dégradé par les enzymes comprend du PLA, seul ou en mélange avec un autre polyester ci-dessus, en particulier un mélange PLA/PBAT.
L’article de matière plastique biodégradable est ainsi constitué du mélange maître et d’un polymère biodégradable.
La composition de l’article de matière plastique biodégradable comprend en plus du polymère biodégradable de 0,5% à 20% de mélange maître enzymé.
Les méthodes de préparation de ces articles finaux sont bien connues de l’homme du métier, comprenant en particulier les techniques usuelles de la plasturgie telles que l’extrusion-gonflage, l’extrusion-soufflage, l’extrusion de film coulé, le calandrage et le thermoformage, le moulage par injection, le moulage par compression, le rotomoulage, le revêtement, la stratification, l’expansion, la pultrusion, la compression-granulation. De telles opérations sont bien connues de l'homme du métier, qui adaptera facilement les conditions du procédé en fonction du type d'articles en matière plastique prévu (par exemple température, temps de séjour, etc.).
Pour la préparation des articles de matière plastique biodégradables, on peut mélanger le mélange maître avec les autres constituants de la composition pour leur mise en forme. On peut également préparer un pré-mélange ou « compound » comprenant le mélange maître et au moins le polymère biodégradable. Ce pré-mélange sous forme solide, en particulier sous forme de granulés, peut être stocké puis transporté avant d’être employé pour la mise en forme de l’article final, seul ou associé à d’autres constituants selon la composition finale de l’article final.
Avantageusement, le pré-mélange comprend :
- de 8% à 99% en poids de polymère biodégradable, préférentiellement du PLA, - de 0,01 % à 5% en poids d’un polysaccharide, préférentiellement une gomme naturelle telle que la gomme arabique
- de 0,1% à 20% en poids d’un polymère support, tel que défini ci-dessus, en particulier du PCL, et
- de 0,01% à 2% en poids d’enzymes ayant une activité de dégradation de polymère biodégradable, plus particulièrement ayant une activité de dégradation de PLA, et le cas échéant
- de 0 à 35% en poids de charge minérale.
Les articles finaux peuvent être des films, de pièces souples ou solides de formes et volumes adaptés à leurs usages. Des exemples d’articles de matière plastique biodégradables concernés par l’invention sont les films, les films de paillage, les films de routage, les films alimentaires ou non alimentaires ; les emballages tels que les blisters d’emballage, les barquettes ; la vaisselle jetable comme les gobelets, les assiettes ou encore les couverts ; les bouchons et les couvercles ; les capsules de boisson ; et les articles horticoles.
De manière avantageuse, la composition de l’article de matière plastique est la suivante :
60% à 98% en poids de polymère ou mélange de polymères biodégradable(s),
0,01% à 5% en poids d’un polysaccharide, préférentiellement une gomme naturelle telle que la gomme arabique,
0,01 % à 20% en poids d’un polymère support, tel que défini ci-dessus, 0,01% à 2% en poids d’enzymes ayant une activité de dégradation de polymère biodégradable,
0% à 35% en poids de charge minérale,
0% à 5% en poids d’additifs.
Les articles de matière plastique biodégradables obtenus avec le mélange maître enzymé peuvent être souples et/ou rigides.
Dans le cas des articles souples, le polyester pouvant être dégradé par les enzymes comprend du PLA. Dans un mode de réalisation ; le polyester biodégradable est un mélange PBAT/PLA dont le rapport pondéral va préférentiellement de 10/90 à 20/80, plus préférentiellement de 13/87 à 15/85. Dans un autre mode de réalisation, le polyester biodégradable est un mélange PBAT/PLA dont le rapport pondéral va de 10/90 à 30/70, de 10/90 à 40/60, de 10/90 à 50/50, de 10/90 à 60/40, de 10/90 à 70/30, de 10/90 à 80/20, de 10/90 à 90/10.
Dans un autre mode de réalisation, le polyester biodégradable est un mélange PBAT/PLA dont le rapport pondéral est inférieur à 10/90, égal ou inférieur à 9/91 , égal ou inférieur à 8/92, égal ou inférieur à 7/93, égal ou inférieur à 6/94, égal ou inférieur à 5/95, égal ou inférieur à 4/96, égal ou inférieur à 3/97, égal ou inférieur à 2/98, égal ou inférieur à 1/99.
Dans un autre mode de réalisation, le polyester biodégradable est du PLA.
Les articles de matière plastique biodégradables souples sont caractérisés par une épaisseur inférieure à 250 pm, préférentiellement par une épaisseur inférieure à 200 pm. Dans un mode de réalisation préféré, les films ont une épaisseur inférieure à 100 pm, plus avantageusement inférieure à 50 pm, 40 pm ou 30 pm, préférentiellement entre 10 et 20 pm. Plus préférentiellement, l’épaisseur de l’article souple est de 15 pm. Des exemples sont les films, tels que les films alimentaires, les films de routage, films industriels ou les films de paillages et les sacs.
Avantageusement, la composition de l’article souple comprend :
- de 70% à 98% en poids de polymère ou mélange de polymères biodégradable(s),
- de 0,01 % à 5% en poids d’un polysaccharide, préférentiellement une gomme naturelle telle que la gomme arabique
- de 0,1 % à 20% en poids d’un polymère support, tel que défini ci-dessus, et
- de 0,01 % à 2% en poids d’enzymes ayant une activité de dégradation de polymère biodégradable,
- de 0% à 5% en poids de charge minérale, notamment de 0,01 % à 5% en poids, en particulier de 0,05 à 5% en poids,
- de 0% à 5% en poids d’additifs.
La composition selon l’invention est particulièrement adaptée pour la réalisation de films plastiques. Les films selon l’invention peuvent être produits selon les méthodes usuelles de la technique, en particulier par extrusion-gonflage. Les films peuvent être préparés à partir de granulés de composition selon l’invention qui sont fondus selon les techniques usuelles, en particulier par extrusion. Les films de composition telle que définie précédemment avec des enzymes peuvent être des films monocouches ou multicouches. Dans le cas d’un film multicouche, au moins une des couches est de composition telle que définie précédemment. Les films monocouches et multicouches, de composition telles que définies précédemment, ont à la fois une forte teneur en PLA et conservent des propriétés mécaniques telles que recherchées pour la préparation de films biodégradables et biosourcés, notamment pour l’emballage de produits alimentaires et non alimentaires. A cet effet, les constituants de la composition selon l’invention seront préférentiellement choisis parmi les produits compatibles avec un usage alimentaire.
Le film multicouche peut être un film comprenant au moins 3 couches, de type ABA, ABCA ou ACBCA, les couches A, B et C étant de compositions différentes. Dans un mode préféré, les films multicouches sont de type ABA ou ACBCA.
Généralement les couches A et B comprennent du PLA et/ou un polyester, avantageusement d’une composition selon l’invention. Les couches C, si présentes, sont là pour apporter des propriétés particulières aux articles selon l’invention, plus particulièrement pour apporter des propriétés barrières aux gaz et notamment à l’oxygène. De tels matériaux barrières sont bien connus de l’homme du métier, et notamment le PVOH (alcool polyvinylique), le PVCD (polychlorure de vinyle), le PGA (acide polyglycolique), la cellulose et ses dérivés, les protéines de lait, ou des polysaccharides et leurs mélanges en toutes proportions.
Dans le cas de films multicouches tels que définis plus haut, et en particulier de films de type ABA, ABCA ou ACBCA, les enzymes peuvent être présents dans toutes les couches ou bien dans une seule des couches, par exemple dans les couches A et B ou seulement dans la couche A ou dans la couche B.
Selon un mode particulier de réalisation de l’invention, les deux couches A sont constituées d’une composition selon l’invention comprenant le PLA, le polyester et du poly propylene glycol diglycidyl ether (PPGDGE), sans enzymes. Les enzymes sont dans la couche B, soit dans une composition selon l’invention avec enzymes telle que définie plus haut, soit dans une composition particulière en particulier une composition d’enzyme dans un polymère à bas point de fusion définie plus haut.
Selon les modes de réalisation, la composition de la couche enzymée des articles souples (mono- ou multicouche) peut comprendre jusqu’à 95% en poids de polymère biodégradable, préférentiellement du PLA. Ainsi, la couche enzymée peut comprendre de 8% à 50%, de 8% à 60%, de 8% à 70%, de 8% à 80% ou encore de 8% à 90% en poids de polymère biodégradable.
Avantageusement, la composition de la couche enzymée des articles souples (mono- ou multicouche) comprend :
- de 8% à 95% en poids de polymère biodégradable, préférentiellement du PLA, notamment de 8% à 70%, de 8% à 60%, de 8% à 50%, ou de 8% à 40%,
- de 0,02% à 4% en poids d’un polysaccharide, préférentiellement une gomme naturelle telle que la gomme arabique
- de 0,1% à 19% en poids d’un polymère support, tel que défini ci-dessus, et
- de 0,05% à 2% en poids d’enzymes ayant une activité de dégradation de polymère biodégradable, plus particulièrement ayant une activité de dégradation de PLA, et le cas échéant
- de 0 à 5% en poids de charge minérale, notamment de 0,01% à 5% en poids, en particulier de 0,05% à 5% en poids.
Concernant les articles rigides, le polyester biodégradable est du PLA, préférentiellement un mélange PLA/carbonate de calcium. Le rapport pondéral va de 100/0 à 25/75, préférentiellement de 95/5 à 45/55, plus préférentiellement de 90/10 à 50/50. Dans un autre mode de réalisation, le polyester biodégradable est un mélange PBAT/PLA dont le rapport pondéral va préférentiellement de 10/90 à 80/20, plus préférentiellement de 20/80 à 60/40.
Les articles rigides possèdent une épaisseur comprise entre 200 pm et 5 mm, entre 150 pm et 5 mm, préférentiellement entre 200 pm et 3 mm, ou entre 150 pm et 3 mm. Dans un mode de réalisation, les articles ont une épaisseur comprise entre 200 pm et 1 mm, entre 150 pm et 1 mm, préférentiellement entre 200 pm et 750 pm ou entre 150 pm et 750 pm. Dans un autre mode de réalisation, l’épaisseur est de 450 pm.
Des exemples de tels articles de matière plastique biodégradables sont les gobelets, les assiettes, les couverts, les barquettes, les capsules de boisson et les blisters d’emballage, de manière plus générale des emballages alimentaires ou cosmétiques, ou des produits horticoles. Avantageusement, la composition de l’article rigide comprend :
- de 60% à 95% en poids de polymère ou mélange de polymères biodégradable(s),
- de 0,01 % à 5% en poids d’un polysaccharide, préférentiellement une gomme naturelle telle que la gomme arabique
- de 0,1% à 20% en poids d’un polymère support, tel que défini ci-dessus,
- de 0,01% à 2% en poids d’enzymes ayant une activité de dégradation de polymère biodégradable,
- de 0% à 35% en poids de charge minérale, notamment 0,01 à 35% en poids,
- de 0% à 5% en poids d’additifs.
Dans un autre mode de réalisation, la composition de l’article rigide comprend :
- de 60% à 80% en poids de polymère ou mélange de polymères biodégradable(s),
- de 0,01 % à 5% en poids d’un polysaccharide, préférentiellement une gomme naturelle telle que la gomme arabique
- de 0,1% à 20% en poids d’un polymère support, tel que défini ci-dessus, et
- de 0,01% à 2% en poids d’enzymes ayant une activité de dégradation de polymère biodégradable,
- de 8% à 35% en poids de charge minérale,
- de 0% à 5% en poids d’additifs.
La composition de l’article rigide comprend ainsi plus de 60 % en poids de polymère ou mélange de polymère(s) biodégradables, voire plus de 70%, voire plus de 80%, voire plus de 90%.
La teneur de la charge minérale dans l’article rigide est comprise entre 0,01% et 35% en poids selon la nature de la charge minérale.
Selon des modes de réalisation, l’article rigide comprend ainsi plus de 0,01%, plus de 0,1%, plus de 1%, voire plus de 2%, voire plus de 3% en poids de charge minérale. Dans d’autre modes de réalisation, la quantité en poids de charge minérale est supérieure ou égale à 4%, supérieure ou égale à 5%, supérieure ou égale à 6%, supérieure ou égale à 7%, ou supérieure ou égale à 8%.
Encore dans d’autres modes de réalisation, la charge minérale comprise dans l’article rigide est de 10 à 35% en poids, de 15% à 30%, ou de 20% à 28% en poids.
Qu’ils soient souples ou rigides, les articles finaux peuvent également comprendre des plastifiants, des compatibilisants et autres additifs usuels entrant dans la composition de matières plastiques, comme des pigments ou des colorants, des agents démoulant, des modificateurs d’impact, agent antiblock etc....
Des exemples de plastifiants sont les esters de citrate et les oligomères d’acide lactique (OLA).
Les esters de citrate sont des plastifiants connus de l’homme du métier, en particulier comme matériaux biosourcés. On citera notamment le triéthyl citrate (TEC), le triéthyl acétyl citrate (TEAC), le tributyl citrate (TBC), le tributyl acétyl citrate (TBAC). De manière préférentielle, l’ester de citrate employé comme plastifiant dans la composition selon l’invention est le TBAC.
Les OLAs sont également des plastifiants connus de l’homme du métier, en particulier comme matériaux biosourcés. Il s’agit d’oligomères d’acide lactique de poids moléculaire inférieur à 1500 g/mol. Ils sont de préférence des esters d’oligomères d’acides lactiques, leur terminaison acide carboxylique étant bloquée par estérification avec un alcool, en particulier un alcool linéaire ou ramifié en C1 -C10, avantageusement un alcool en C6-C10, ou un mélange de ces derniers. On citera notamment les OLAs décrits dans la demande de brevet EP 2 256 149 avec leur mode de préparation, et les OLAs commercialisés par la société Condensia Quimica sous la marque Glyplast®, en particulier les références Glyplast® OLA 2, qui a un poids moléculaire de 500 à 600 g/mol et Glyplast® OLA 8 qui a un poids moléculaire de 1000 à 1100 g/mol. Selon un mode préféré de réalisation de l’invention, les OLAs ont un poids moléculaire d’au moins 900 g/mol, de préférence de 1000 à 1400 g/mol, plus préférentiellement de 1000 à 1100 g/mol
Les poly (propylene glycol) diglycidyl ether sont également appelés éthers de glycidyls, décrits notamment comme « plastifiants réactifs » dans la demande de brevet WO 2013/104743, employés pour la préparation de copolymères blocs avec du PLA et du PBAT. Ils sont également identifiés comme résine époxy liquide, de la société DOW, commercialisée sous la référence « D.E.R.™ 732P », ou encore comme résine époxy aliphatique, de la société HEXION, commercialisée sous la référence « Epikote™ Resin 877 ». La composition selon l’invention peut comprendre de manière optionnelle d’autres compatibilisants PLA/Polyesters associés au PPGDGE. De tels compatibilisants PLA/Polyesters sont bien connus de l’homme du métier, notamment choisis parmi les polyacrylates, les terpolymères d’éthylène, d’ester acrylique et de méthacrylate de glycidyle (par exemple commercialisé sous la marque Lotader® par la société Arkema), les copolymères triblocs PLA-PBAT-PLA, les PLA greffés d’anhydride maléique (PLA- g-AM) ou les PBAT greffés d’anhydride maléique (PBAT-g-AM), en particulier du poly(éthylène-co-méthyl acrylate-co-glycidyl méthacrylate) décrits notamment par Dong & al. (International Journal of Molecular Sciences, 2013, 14, 20189-20203) et Ojijo & al. (Polymer 2015, 80, 1-17), plus particulièrement commercialisés sous la dénomination JONCRYL® par la société BASF, préférentiellement le grade ADR 4468.
L’invention concerne également un procédé de préparation d’un article en matière plastique ou un pré-mélange tels que définis ci-dessus comprenant un polymère susceptible d’être dégradé par des enzymes et des enzymes capables de dégrader ledit polymère, ledit procédé comprenant les étapes de préparation d’un mélange maître comprenant des enzymes capables de dégrader ledit polymère, un polysaccharide, et un polymère support, le mélange maître étant préparé dans un mélangeur par un procédé comprenant les étapes suivantes de : a) introduction séparée dans le mélangeur d’une part des enzymes en solution et d’autre part du polysaccharide et leur mélange à une température inférieure à la température de fusion du polymère support ; b) introduction du polymère support dans le mélange préalablement préparé en a); c) mélange des composants ; et d) récupération du mélange maître, puis mélange dudit polymère susceptible d’être dégradé par des enzymes avec le mélange maître.
EXEMPLES
Exemple 1 : Préparation du mélange maître I. Produits commerciaux
Dans ces exemples, du PCL commercialisé sous la référence Capa™ 6500 par la société Perstorp, du carbonate de calcium commercialisé sous la référence OMYAFILM 707-OG par la société Omya, et de la gomme arabique sous la référence InstantGumAA par la société Nexira ont été utilisés.
II. Préparation d’un mélange de polymère support et d’enzymes
1. Préparation d’un mélange-maître dans des conditions de l’état de la technique Le mélange A1 de polymère support et d’enzymes est préparé à partir de granulés de polycaprolactone (PCL) et d’enzymes sous forme liquide.
Le mélange de polymère support et d’enzymes a été fabriqué avec une extrudeuse bivis CLEXTRAL EV25HT comprenant 11 zones pour lesquelles la température est indépendamment contrôlée et régulée. Le PCL est introduit en zone 1 à 16kg/h et la solution d’enzymes en zone 5 à 4kg/h à l’aide d’une pompe péristaltique. Les zones sont chauffées selon le Tableau 1. 20% de la solution enzymatique contenant le polysaccharide est introduite au PCL (% en poids par rapport au poids total).
Tableau 1 : Profil de température (°C) utilisé pour le mélange polymère support et enzymes
Le mélange A2 de polymère support et d’enzymes a été préparé de la même manière que pour le mélange de polymère support et d’enzymes A1. Seul du carbonate de calcium a été ajouté à la préparation. Le PCL ainsi que la solution enzymatique ont été introduits, dans les mêmes conditions que pour le mélange A1 à 12kg/h et 6kg/h respectivement. Le carbonate de calcium a été introduit simultanément avec le PCL en zone 1 à 2kg/h. Les températures d’extrusion utilisées sont identiques à celles utilisées pour la préparation du mélange polymères/enzymes A1. 2. Préparation d’un mélange-maître selon procédé de l’invention
Le mélange B de polymère support et d’enzymes est préparé à partir de granulés de polycaprolactone (PCL), d’un polysaccharide (gomme arabique) et d’enzymes en solution selon le procédé de l’invention.
Le mélange de polymère support et d’enzymes a été fabriqué avec une bivis co-rotative Clextral Evolum 25 HT comprenant 11 zones pour lesquelles la température est indépendamment contrôlée et régulée. Les enzymes en solution et la gomme arabique ont été introduites simultanément au début de l’extrudeuse afin de réaliser le mélange selon un profil de température croissant compris entre 25 et 50°C. Les enzymes en solution sont introduites à 2,2kg/h à l’aide d’une pompe péristaltique. La gomme arabique est, quant à elle, introduite à 1 ,8kg/h à l’aide d’un doseur spécifique aux poudres. Le PCL, aussi appelé polymère support, est introduit à 16kg/h dans un état partiellement voire totalement fondu entre la zone 5 et la zone 6 de l’extrudeuse à une température réelle de 55°C.
Le mélange C de polymère support et d’enzymes de l’invention a été préparé de la même manière que pour le mélange de polymère support et d’enzymes B. Les enzymes en solution sont introduites à 2,4kg/h à l’aide d’une pompe péristaltique. La gomme arabique est, quant à elle, introduite à 1 ,6kg/h à l’aide d’un doseur spécifique aux poudres. Le PCL, aussi appelé polymère support, est introduit à 16kg/h dans un état partiellement voire totalement fondu entre la zone 5 et la zone 6 de l’extrudeuse. Le mélange D de polymère support et d’enzymes de l’invention est similaire au mélange C ; seul du carbonate de calcium a été ajouté à la préparation. Pour se faire, un dry-blend a été préparé avec la gomme arabique. L’ajout se fait donc au début de l’extrudeuse via un doseur poudre, simultanément avec la solution, à un débit de 3,6kg/h. Le PCL est, quant à lui, introduit à 14kg/h.
Exemple 2 : Utilisation du mélange maître dans les articles souples
I. Produits commerciaux
Dans ces exemples, du PLA commercialisé sous la référence Ingeo™ Biopolymer 4043D par la société NatureWorks, du PLA-PBAT commercialisé sous la référence Ecovio® F2223 par la société BASF, du Joncryl® ADR 4468 commercialisé par la société BASF, du TBAC Citrofol® BII commercialisé par la société Jungbunzlauer et du PBAT commercialisé sous la référence A400 par la société Wango ont été utilisés.
II. Préparation de granulés de mélange de PBAT et de PLA
Les granulés ont été produits sur bi-vis co-rotative Clextral Evolum 25 HT. Pour introduire les polymères (PLA et PBAT) et le compatibilisant deux doseurs gravimétriques ont été utilisés et pour doser le TBAC liquide, une pompe PCM a été utilisée.
Le mélange PLA et Joncryl® a été introduit via un doseur en début de vis en présence du plastifiant TBAC. Le mélange est fondu et amené dans la zone d’introduction du PBAT qui lui-même arrive à l’état partiellement ou totalement fondu.
Les granulés ont été préparés avec une vitesse de vis de 450 tpm et à un débit de 40 kg/h.
Les paramètres utilisés pour l’extrusion des granulés sont présentés dans le Tableau 2.
Tableau 2 : Profil de température (°C) utilisé pour l’extrusion des granulés
Le mélange des composants arrive à l’état fondu dans la vis en Z11 et est immédiatement granulé avec un système de coupe sous eau pour obtenir des granulés en demi-lune de diamètre inférieur à 3 mm.
On prépare une composition à l’état de la technique comprenant 35% de PLA et 61 % de PBAT, 2,5% de TBAC et 0,4% de Joncryl® ADR 4468 C (% en poids par rapport au poids total de la composition).
III. Production des films
1. Films monocouches Les films ont été préparés avec les granulés préparés en exemple 2.11 ou les granulés d’Ecovio F2223, et les mélanges polymère support et d’enzymes A1-A2-B-C-D préparés en exemple 1. 11.1 et II.2.
Les compositions de ces différents films sont répertoriées dans le Tableau 3. Tableau 3 : Récapitulatif des films monocouches réalisés
Pour l’extrusion gonflage, une ligne de laboratoire Labtech LF-250, vis de 30 L/D type LBE20-30/C a été utilisée. La vitesse de vis est de 50 tpm, les vitesses de tirage haut et bas sont situées entre 1,9 et 6,1 m/min. Les températures d’extrusion gonflage sont détaillées dans les Tableau 4. Tableau 4a : Températures d’extrusion gonflage pour les films 1 , 5, 6 et 7
Tableau 4b : Températures d’extrusion gonflage pour le film 2 Tableau 4c : Températures d’extrusion gonflage pour les films 3 et 4
Tableau 4d : Températures d’extrusion gonflage pour le film 8
Tableau 4e : Températures d’extrusion gonflage pour le film 9
2. Films tricouches
Les films ont été préparés avec les granulés préparés en exemple 2.11 ou les granulés d’Ecovio F2223, et le mélange polymère support et enzymes D préparé en exemple 1.11.2. Les compositions de ces différents films sont répertoriées dans le Tableau 3. Tableau 3 : Récapitulatif des films tricouches réalisés
Pour l’extrusion gonflage tricouche, une ligne de laboratoire EUR.EX.MA de type K3A, diamètre des vis A et C : xtr20 et B : xtr25 a été utilisée. Les vitesses des vis sont de 20 à 30 tpm pour les vis A et C et de 40 à 45 tpm pour la vis B, la vitesse de tirage est située entre 5 et 11 m/min.
Les températures d’extrusion gonflage sont détaillées dans les Tableaux 6.
Tableau 6a : Températures d’extrusion gonflage pour le film 10 Tableau 6b : Températures d’extrusion gonflage pour le film 12
Tableau 6c : Températures d’extrusion gonflage pour le film 13
IV. Méthode d’analyses
Les propriétés mécaniques en traction et en déchirure peuvent être mesurées à l’aide d’une machine de type Zwick ou Llyod, équipée d’un capteur de 50 N ou d’un capteur de 5 kN. Les propriétés sont mesurées dans deux directions différentes : dans le sens longitudinal et dans le sens transversal. Les propriétés mécaniques en traction et en déchirure sont mesurées respectivement selon les normes EN ISO 527-3 et ISO 6383- 1.
Quant à la résistance à la perforation, elle est mesurée à l’aide d’un Dart-Test selon la norme NF EN ISO 7765-1.
L’opacité des films est caractérisée par la mesure du trouble (Haze) selon la norme ASTM D1003-07 (11/2007), procédure B - Mesure de Haze avec un spectrocolorimètre.
L’évaluation de la biodégradabilité des films a été évaluée avec un test de dépolymérisation effectué selon le protocole suivant : 100mg de chaque échantillon ont été introduit dans un vial plastique contenant 50mL de solution tampon à pH 9,5. La dépolymérisation est lancée en incubant chaque échantillon à 45°C, dans un incubateur agité à 150 tpm. Un aliquot de 1 mL de solution tampon est prélevée régulièrement et filtrée à l’aide d’une seringue à filtre de 0.22 pm afin d’être analysée par chromatographie liquide à haute performance (HPLC) avec une colonne Aminex HPX-87H pour mesurer la libération d’acide lactique (AL) et son dimère. Le système de chromatographie utilisé est une Ultimate 3000 UHPLC System (Thermo Fisher Scientific, Inc. Waltham, MA, USA) comprenant une pompe, un échantillonner automatique, une colonne thermostatée à 50°C et un détecteur d’UV à 220nm. L’éluant est le 5 mM H2SO4. L’injection est de 20 pL d’échantillon. L’acide lactique est mesuré à partir de courbes standards préparées à partir d’acide lactique commercial. L’hydrolyse des films plastiques est calculée à partir de l’acide lactique et du dimère d’acide lactique libéré. Le pourcentage de dépolymérisation est calculé en regard du pourcentage de PLA dans l’échantillon.
V. Résultats d’analyses
1. Films monocouches a. Films témoins
Dépolymérisation du PLA des films 1 et 2
Les films 1 et 2 composés de 2 matrices polymères différentes et contenant aucune enzyme présentent un taux de dépolymérisation inférieur à 1 % après cinq jours à 45°C, et inférieur à 1 % et de 0% après deux jours à 28°C. Ces résultats témoignent de la dépolymérisation nulle des matrices polymères seules. b. Films contenant les différents mélanges-maîtres (3-4-5-6-7)
Densité des granulés par pycnométrie
Le mélange-maître A1 issu du mode de préparation décrit dans le paragraphe ex 2.11.1 a une densité équivalente à celle du mélange-maître B issu du mode de préparation de l’invention décrit dans le paragraphe ex 2. II.2, à savoir 1 ,16g/cm3.
Le mode de préparation du mélange polymère support et enzymes n’a pas d’impact sur la densité du compound final.
Analyses thermoqravimétriques Les analyses thermogravimétriques réalisées sur ces deux mélanges préparés dans le paragraphe II montrent que tous les composants de la formulation sont retrouvés à des températures de décompositions équivalentes. Une différence est observée en termes de quantité puisque les masses retrouvées à partir de 450°C diffèrent légèrement selon le procédé utilisé. Les résultats sont présentés dans le Tableau 7.
Tableau 7 : Résultats des analyses thermogravimétriques
Les interactions entre la gomme arabique et la solution enzymatique sont donc différentes selon le mode de préparation de ces deux mélanges-maîtres. Propriétés mécaniques des films 3 et 4
Les propriétés mécaniques mesurées sur le film issu de la technique et celui issu de l’invention sont présentées dans le Tableau 8. Les valeurs indiquées représentent la moyenne de l’ensemble des mesures réalisées.
Tableau 8 : Caractérisation des propriétés mécaniques des films
(avec SL = Sens longitudinal du film et ST = Sens transversal du film)
Les propriétés mécaniques ainsi mesurées montrent que le film décrit dans l’invention a propriétés mécaniques maintenues voire supérieures au film de la technique.
Mesures de Haze sur les films 3-4 et sur les films 5-6 Trois valeurs de Haze ont été mesurées ; la moyenne est indiquée dans le Tableau 9. Tableau 9 : Caractérisation de la transparence des films
Le mode de préparation du mélange polymère support et enzyme n’a pas d’impact sur la transparence ou l’opacité du produit fini. La comparaison des films 5 et 6 permet d’évaluer l’impact de la charge minérale présente dans le mélange polymère support et d’enzymes.
Trois valeurs de Haze ont été mesurées ; la moyenne est indiquée dans le Tableau 10. Tableau 10 : Caractérisation de la transparence des films L’ajout d’une charge minérale de type carbonate de calcium n’a pas d’impact sur la transparence ou l’opacité du produit fini.
Dépolymérisation du PLA des films 5, 6 et 7 Les films 5 et 6 contenant le même taux d’enzymes présentent respectivement un taux de dépolymérisation de 16% et 25% après deux jours à 45°C. L’ajout de carbonate de calcium dans la composition du mélange polymère support et d’enzyme favorise la dépolymérisation du PLA.
Le film 6 contenant un mélange polymère support et d’enzymes fabriqué selon le procédé décrit dans l’invention et le film 7 contenant un mélange polymère support et d’enzymes fabriqué dans les conditions classiques présentent un taux de dépolymérisation de 25% après deux jours à 45°C. Le taux d’enzymes dans le film 6 est inférieur à celui du film 7, le mode de préparation du mélange décrit dans l’invention permet d’atteindre des taux de dépolymérisation identiques au procédé classique mais avec moins d’enzymes. c. Films avec 5% de masterbatch
Dépolymérisation du PLA des films 6 et 8
Les films 6 et 8 composés de deux matrices polymères différentes et contenant un taux d’enzymes quasiment similaire présentent respectivement un taux de dépolymérisation de 25% et 53% après deux jours à 45°C, et de 21 % et 44% après vingt jours à 28°C. C’est-à-dire que la matrice PLA du film 8 réagit plus efficacement avec le masterbatch que celle du film 6. d. Films avec des épaisseurs différentes
Dépolymérisation du PLA des films 8 et 9
Les films 8 et 9 d’épaisseurs différentes (15 et 30pm) présentent respectivement un taux de dépolymérisation de 53% et 22% après deux jours à 45°C, et de 44% et 7% après vingt jours à 28°C. L'épaisseur du film influe sur la dépolymérisation du PLA. Pour un même mélange-maître, lorsque celle-ci augmente, le taux de dépolymérisation diminue.
Exemple 3 : Utilisation du mélange maître dans les articles rigides
I. Produits commerciaux Dans ces exemples, du PLA commercialisé sous la référence du PLA commercialisé sous la référence LX175 par la société Total Corbion, du carbonate de calcium commercialisé sous la référence Filler PL 776 par la société Plastikakritis ont été utilisés.
II. Production des feuilles calandrées et des éprouvettes injectées
1. Feuilles calandrées
Les feuilles ont été préparées avec les granulés de PLA LX175, et le mélange polymère support et d’enzymes D préparé en exemple 1.11.2. Les compositions de ces différentes feuilles calandrées sont répertoriées dans le Tableau 11.
Tableau 11 : Récapitulatif des feuilles calandrées réalisées Pour l’extrusion calandrage, une ligne de laboratoire Labtech, monovis Yvroud, a été utilisée. Pour les feuilles de 450pm d’épaisseur, la vitesse de vis se trouve entre 40 et 55,8 tpm, les vitesses de tirage générales sont situées entre 1 ,2 et 1 ,4 m/min. Pour la feuille de 30pm d’épaisseur, la vitesse de vis est de 13 tpm, la vitesse de tirage générale est de 8 m/min. Les températures d’extrusion calandrage sont détaillées dans les Tableau 42. Tableau 42a : Températures d’extrusion calandrage pour la feuille 1
Tableau 52b : Températures d’extrusion calandrage pour les feuilles 2 et 4 Tableau 62c : Températures d’extrusion calandrage pour la feuille 3
2. Plaques injectées
Les éprouvettes ont été préparées avec les granulés PLA LX175, et le mélange polymère support et d’enzyme D préparé en exemple 1.11.2. Les compositions de ces différentes éprouvettes sont répertoriées dans le Tableau 73.
Tableau 73 : Récapitulatif des éprouvettes réalisées
Pour l’injection, une ligne de laboratoire KM 50t/380 CX ClassiX 50T a été utilisée. La vitesse d’injection est de 82mm/s, et la pression d’injection est de 1271 bars.
Les températures d’injection sont détaillées dans les Tableaux 14. Tableau 14a : Températures d’injection pour la plaque 1
Tableau 14b : Températures d’injection pour la plaque 2
III. Méthode d’analyses
L’analyse de la dégradation des feuilles calandrées par dépolymérisation s’effectue de la même manière que dans le paragraphe exemple 2. IV, à l’exception de la préparation d’échantillon qui se fait par micronisation. IV. Résultats d’analyses
1. Feuilles calandrées a. Témoin
Dépolymérisation du PLA de la feuille 1
La feuille 1 ne contient pas d’enzyme mais seulement la matrice polymère PLA LX175 et du PCL en tant que masterbatch témoin. Elle présente un taux de dépolymérisation inférieur à 1 % après cinq jours à 45°C, ainsi qu’après vingt jours à 28°C. Les résultats de cette analyse étant quasiment nuis, cela permet de certifier le témoin. b. Feuille avec et sans ajout de CaCC Dépolymérisation du PLA des feuilles 2 et 3 Les feuilles 2 et 3 ont une composition similaire à l’exception de l’ajout d’un masterbatch chargé en CaCC pour la feuille 3. Les deux feuilles contiennent quasiment le même taux d’enzymes et présentent respectivement un taux de dépolymérisation de 19% et 73% après deux jours à 45°C, et de 5% et 24% après vingt jours à 28°C. La nature de la matrice PLA de la feuille 2 réagit davantage en présence d’un masterbatch contenant du CaCC . c. Feuilles de différentes épaisseurs
Dépolymérisation du PLA des feuilles 2 et 4 Les feuilles 2 et 4 d’épaisseur différente (450 et 30pm) présentent respectivement un taux de dépolymérisation de 19% et 62% après deux jours à 45°C, et de 5% et 55% après vingt jours à 28°C. L'augmentation de l’épaisseur du film a un impact négatif sur la dépolymérisation du PLA.
2. Eprouvettes injectées a. Témoin
Dépolymérisation du PLA de la plaque 1
La plaque 1 contient seulement du PLA LX175 et présente un taux de dépolymérisation inférieur à 1% après deux jours à 45°C, et de 0,11% après vingt jours à 28°C. Les résultats de cette analyse étant quasiment nuis, le témoin est vérifié. b. Plaque avec 5% de masterbatch
Dépolymérisation du PLA de la plaque 2
La plaque 2 présente un taux de dépolymérisation de 26% après deux jours à 45°C, et de 8% après vingt jours à 28°C. Les résultats de cette analyse montrent l’action du masterbatch sur la matrice PLA dans une plaque.

Claims

REVENDICATIONS
1. Procédé de préparation d’un mélange maître comprenant un polysaccharide, des enzymes et un polymère support dans un mélangeur, caractérisé en ce que ledit procédé comprend les étapes suivantes de : a) introduction séparée d’une part des enzymes en solution et d’autre part du polysaccharide et leur mélange à une température inférieure à la température de fusion du polymère support ; b) introduction du polymère support; c) mélange des composants ; d) récupération du mélange maître.
2. Procédé selon la revendication 1 , caractérisé en ce que les enzymes en solution et le polysaccharide sont introduits simultanément dans le mélangeur.
3. Procédé selon l’une des revendications 1 ou 2, caractérisé en ce que le polysaccharide est choisi parmi les dérivés de l’amidon, les gommes naturelles, les polysaccharides solubles de soja, les extraits marins et les polysaccharides microbiens ou animaux, ou leur mélange en toutes proportions.
4. Procédé selon l’une des revendications 1 à 3, caractérisé en ce que le polysaccharide est la gomme arabique.
5. Procédé selon l’une des revendications 1 à 4, caractérisé en ce que les enzymes sont ajoutées sous forme de solution aqueuse.
6. Procédé selon l’une des revendications 1 à 5, caractérisé en ce que le mélange polysaccharide/enzymes/eau comprend en poids par rapport au poids total du mélange :
- 0,01 % à 35% d’enzymes,
- 15% à 95% d’eau, et
- 3% à 80% de polysaccharide.
7. Procédé selon l’une des revendications 1 à 5, caractérisé en ce que le mélange polysaccharide/enzymes/eau comprend en poids par rapport au poids total du mélange :
- 0,3% à 30% d’enzymes,
- 19% à 85% d’eau, et
- 4% à 80% de polysaccharide.
8. Procédé selon l’une des revendications 1 à 5, caractérisé en ce que le mélange le mélange polysaccharide/enzymes/eau comprend en poids par rapport au poids total du mélange :
- 0,3% à 30% d’enzymes, - 19% à 60% d’eau, et
- 15% à 70% de polysaccharide.
9. Procédé selon l’une des revendications 1 à 8, caractérisé en ce que la température de l’étape a) est comprise entre 25 et 80°C,
10. Procédé selon l’une des revendications 1 à 8, caractérisé en ce que la température de l’étape a) est comprise entre 25 et 50°C.
11. Procédé selon l’une des revendications 1 à 10, caractérisé en ce que le mélange du polysaccharide et de la solution enzymatique à l’étape a) se fait en moins de 30 secondes.
12. Procédé selon l’une des revendications 1 à 10, caractérisé en ce que le mélange du polysaccharide et de la solution enzymatique à l’étape a) se fait en moins de 25 secondes.
13. Procédé selon l’une des revendications 1 à 12, caractérisé en ce que le polymère support est introduit à l’étape b) à l’état partiellement ou totalement fondu.
14. Procédé selon l’une des revendications 1 à 13, caractérisé en ce que le polymère support est choisi parmi le polycaprolactone (PCL), le poly butylène succinate adipate
(PBSA), le poly butylène adipate terephtalate (PBAT), le polydioxanone (PDS), le polyhydroxyalkanoate (PHA) et l’acide polylactique (PLA) et leurs mélanges.
15. Procédé selon l’une des revendications 1 à 14, caractérisé en ce que le polymère support le polycaprolactone (PCL).
16. Procédé selon l’une des revendications 1 à 15, caractérisé en ce que le mélange à l’étape c) se fait entre 10 et 30 secondes.
17. Procédé selon l’une des revendications 1 à 16, caractérisé en ce que le mélange à l’étape c) se fait entre 15 et 25 secondes.
18. Procédé selon la revendication 17, caractérisé en ce que le mélange à l’étape c) se fait pendant environ 20 secondes.
19. Procédé selon l’une des revendications 1 à 18, caractérisé en ce qu’il comprend l’addition d’une charge minérale à l’étape a).
20. Procédé selon la revendication 19, caractérisé en ce que le minéral est du carbonate de calcium.
21. Procédé selon l’une des revendications 1 à 20, caractérisé en ce que le mélangeur est une extrudeuse.
22. Procédé selon la revendication 21, caractérisé en ce que l’extrudeuse comprend au moins 4 zones, une zone de tête où sont introduits les premiers composants à une première température, une zone intermédiaire où sont ajoutés d’autres composants à une deuxième température, une zone de mélange et une zone de sortie par laquelle le mélange maître est récupéré, avec les étapes a) à d) suivantes : a) l’introduction séparée d’une part d’un polysaccharide et d’autre part d’une solution enzymatique en zone de tête, et leur mélange à une température inférieure à la température de fusion du polymère à bas point de fusion ; b) l’introduction d’un polymère support dans la zone intermédiaire ; c) le mélange des composants dans la zone de mélange ; d) la récupération du mélange maître en sortie de l’extrudeuse.
23. Procédé selon l’une des revendications 1 à 22, caractérisé en ce que le mélange maître est obtenu à l’étape d) sous forme de granulés.
24. Procédé selon l’une des revendications 1 à 23, caractérisé en ce que la formulation contient
- 50 à 90% de polymère à bas point de fusion,
- 5 à 30% de solution enzymatique, - 2 à 20% de polysaccharide,
- 0 à 20% de charge minérale.
25. Mélange maître susceptible d’être obtenu selon l’une des revendications 1 à 24.
26. Procédé de préparation d’un article de matière plastique ou d’un pré-mélange comprenant un polymère susceptible d’être dégradé par des enzymes et des enzymes capables de dégrader le dit polymère, caractérisé en ce qu’il comprend une étape de mélange du polymère avec le mélange maître selon la revendication 15 ou obtenu selon l’une des revendications 1 à 24, les enzymes du mélange maître étant capable de dégrader le dit polymère de l’article de matière plastique ou du pré-mélange.
27. Procédé selon la revendication 26, caractérisé en ce que le polymère susceptible d’être dégradé par des enzymes de l’article en matière plastique ou du pré-mélange est de l’acide polylactique (PLA).
EP21701969.4A 2020-01-24 2021-01-25 Procédé de préparation d'un mélange maître enzymé Pending EP4093810A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2000692A FR3106592B1 (fr) 2020-01-24 2020-01-24 Procédé de Préparation d’un Mélange Maître Enzymé
PCT/EP2021/051546 WO2021148665A1 (fr) 2020-01-24 2021-01-25 Procédé de préparation d'un mélange maître enzymé

Publications (1)

Publication Number Publication Date
EP4093810A1 true EP4093810A1 (fr) 2022-11-30

Family

ID=70154692

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21701969.4A Pending EP4093810A1 (fr) 2020-01-24 2021-01-25 Procédé de préparation d'un mélange maître enzymé

Country Status (12)

Country Link
US (1) US20230340212A1 (fr)
EP (1) EP4093810A1 (fr)
JP (1) JP2023510903A (fr)
KR (1) KR20220134549A (fr)
CN (1) CN115038743A (fr)
AU (1) AU2021210619A1 (fr)
BR (1) BR112022014514A2 (fr)
CA (1) CA3164570A1 (fr)
CL (1) CL2022001997A1 (fr)
FR (1) FR3106592B1 (fr)
MX (1) MX2022009109A (fr)
WO (1) WO2021148665A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3139569A1 (fr) 2022-09-14 2024-03-15 Carbiolice ARTICLE MONOCOUCHE ENZYMÉ ayant des propriétés barrières à l’eau
FR3139500B1 (fr) 2022-09-14 2024-09-27 Carbiolice ARTICLE MULTICOUCHE ENZYMÉ ayant des propriétés barrières à l’eau
FR3144996A1 (fr) * 2023-01-18 2024-07-19 Carbiolice Melange maitre enzyme comprenant des proteines

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739244A (en) 1994-03-23 1998-04-14 Fisk; Donald Polymer composition containing prime starch
US6176915B1 (en) 1995-04-14 2001-01-23 Standard Starch, L.L.C. Sorghum meal-based biodegradable formulations, shaped products made therefrom, and methods of making said shaped products
WO2003006545A1 (fr) 2001-07-13 2003-01-23 Biorepla Corporation Composition plastique biodegradable
FR2856405B1 (fr) 2003-06-20 2006-02-17 Ulice Materiau biodegradable a base de polymeres et de matieres cerealieres plastifiees, son procedede fabrication et ses utilisations
FR2903042B1 (fr) 2006-07-03 2010-12-24 Ulice Film biodegradable heterogene
CA2712709A1 (fr) 2008-01-25 2009-07-30 Ara, Marco Paolo Procede de plastification de polymeres d'acide lactique
GB2464285A (en) 2008-10-08 2010-04-14 Wells Plastics Ltd Transition metal additives for enhancing polymer degradation
FR2984354A1 (fr) 2011-12-20 2013-06-21 Centre Nat Rech Scient Procede de preparation d'alliage polymere/enzymes
DE102012000860A1 (de) 2012-01-13 2013-07-18 How To Organize (H2O) Gmbh Aufbewahrungs- und/oder Transportbehälter für medizinische Instrumente und Verfahren zum Erfassen und Übertragen von Daten medizinischer Instrumente
PL3209771T3 (pl) 2014-10-21 2021-05-31 Carbios Polipeptyd wykazujący działanie rozkładające poliester i jego zastosowania
EP3268469A1 (fr) 2015-03-13 2018-01-17 Carbios Nouveau polypeptide présentant une activité de dégradation de polyester et ses utilisations
JP6907132B2 (ja) 2015-06-12 2021-07-21 キャルビオスCarbios 生分解性ポリエステル組成物及びその使用
CN116790108A (zh) * 2017-08-31 2023-09-22 卡比奥利司公司 包含酶的可生物降解的聚酯制品
WO2019043145A1 (fr) * 2017-08-31 2019-03-07 Carbios Composition liquide contenant des entités biologiques et utilisations associées

Also Published As

Publication number Publication date
US20230340212A1 (en) 2023-10-26
FR3106592B1 (fr) 2022-08-05
FR3106592A1 (fr) 2021-07-30
JP2023510903A (ja) 2023-03-15
BR112022014514A2 (pt) 2022-09-20
CN115038743A (zh) 2022-09-09
WO2021148665A1 (fr) 2021-07-29
MX2022009109A (es) 2022-08-18
AU2021210619A1 (en) 2022-07-21
CL2022001997A1 (es) 2023-02-24
CA3164570A1 (fr) 2021-07-29
KR20220134549A (ko) 2022-10-05

Similar Documents

Publication Publication Date Title
JP7217267B2 (ja) 生物学的実体を含む液体組成物及びその使用
US11773257B2 (en) Biodegradable polyester article comprising enzymes
EP4093810A1 (fr) Procédé de préparation d'un mélange maître enzymé
EP3946884B1 (fr) Article multicouche comprenant des enzymes
EP3818099A1 (fr) Matiere plastique à haute teneur en pla comprenant un ester de citrate
WO2021148666A1 (fr) Utilisation d'un melange enzyme pour ameliorer les proprietes mecaniques d'un article comprenant le melange enzyme et un polymere biodegradable
EP4373888A1 (fr) Procédé de préparation d'un mélange maître enzymé
EP3997174B1 (fr) Matiere plastique à haute teneur en pla comprenant du ppgdge
WO2020008030A1 (fr) Matiere plastique à haute teneur en pla comprenant des oligomeres d'acide lactique
FR3144996A1 (fr) Melange maitre enzyme comprenant des proteines
WO2024056824A1 (fr) Article multicouche enzymé ayant des proprietes barrieres a l'eau
WO2024056823A1 (fr) Article monocouche enzymé ayant des proprietes barrieres a l'eau
WO2023205308A2 (fr) Matériaux thermoplastiques biodégradables

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARBIOLICE