EP4093584A1 - Procédé de détermination de composantes d'un torseur d'actions mécaniques au point de guidage d'une lame de coupe pour machine de coupe - Google Patents

Procédé de détermination de composantes d'un torseur d'actions mécaniques au point de guidage d'une lame de coupe pour machine de coupe

Info

Publication number
EP4093584A1
EP4093584A1 EP21716809.5A EP21716809A EP4093584A1 EP 4093584 A1 EP4093584 A1 EP 4093584A1 EP 21716809 A EP21716809 A EP 21716809A EP 4093584 A1 EP4093584 A1 EP 4093584A1
Authority
EP
European Patent Office
Prior art keywords
dynamometer
sensors
blade
cutting
presser foot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP21716809.5A
Other languages
German (de)
English (en)
Other versions
EP4093584B1 (fr
Inventor
Didier CHABIRAND-GARCONNET
Olivier CAHUC
Quentin COSSON-COCHE
Philippe DARNIS
Raynald LAHEURTE
Denis TEISSANDIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Lectra SA
Ecole National Superieure dArts et Metiers ENSAM
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Amvalor SAS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Lectra SA
Ecole National Superieure dArts et Metiers ENSAM
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Amvalor SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Lectra SA, Ecole National Superieure dArts et Metiers ENSAM, Universite de Bordeaux, Institut Polytechnique de Bordeaux, Amvalor SAS filed Critical Centre National de la Recherche Scientifique CNRS
Priority to HRP20240198TT priority Critical patent/HRP20240198T1/hr
Priority to SI202130111T priority patent/SI4093584T1/sl
Priority to RS20240180A priority patent/RS65258B1/sr
Publication of EP4093584A1 publication Critical patent/EP4093584A1/fr
Application granted granted Critical
Publication of EP4093584B1 publication Critical patent/EP4093584B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/005Computer numerical control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/3806Cutting-out; Stamping-out wherein relative movements of tool head and work during cutting have a component tangential to the work surface
    • B26F1/3813Cutting-out; Stamping-out wherein relative movements of tool head and work during cutting have a component tangential to the work surface wherein the tool head is moved in a plane parallel to the work in a coordinate system fixed with respect to the work
    • B26F1/382Cutting-out; Stamping-out wherein relative movements of tool head and work during cutting have a component tangential to the work surface wherein the tool head is moved in a plane parallel to the work in a coordinate system fixed with respect to the work wherein the cutting member reciprocates in, or substantially in, a direction parallel to the cutting edge

Definitions

  • the present invention relates to the general field of automatic cutting by a vibrating blade of a flexible material placed on a cutting table in the form of a single fold or a stack of folds. It relates more precisely to a method for determining the components of a mechanical action torsor at the guide point of such a cutting blade.
  • One field of application of the invention is that of the automatic cutting of parts in a flexible textile or non-textile material (such as leather), in particular in the clothing industry, furniture or automotive upholstery. .
  • a known method for the automatic cutting of pieces in a flexible material consists in bringing the material onto a fixed or movable cutting support of the cutting table, in the form of a single fold or of a stack of folds forming a mattress. , and cutting the pieces by means of a cutting head moving above the cutting support of the table.
  • the cutting head notably carries a vibrating steel blade which is vibrated vertically in the direction of its cutting edge in order to cut the material.
  • the main aim of the present invention is therefore to provide a method making it possible to determine all the forces undergone by the cutting blade in order to allow finer and more independent control of the cut.
  • this object is achieved by means of a method for determining components of a torsor of mechanical actions at the guide point of a cutting blade for a cutting machine, the blade being guided in a presser foot d a cutting head of the machine, the method comprising:
  • the dynamometer comprising a plurality of sensors capable of determining a frontal force, a lateral force, a rolling moment, a pitching moment and a yaw moment of the blade cutting;
  • the method according to the invention is remarkable in that it makes it possible to determine the forces undergone by the blade in the three directions from a dynamometer installed in the presser foot of the cutting head.
  • five of the six components of the torsor of mechanical actions at the guide point of the blade can be determined, namely: front force, lateral force, roll moment, pitch moment and yaw moment (the force following l 'main axis of the blade being excluded).
  • the step of developing the dynamometer calibration matrix includes the development of a theoretical calibration matrix of the dynamometer sensors at different theoretical stresses depending on the 6 components of the dynamometer.
  • the step of developing the dynamometer calibration matrix further comprises, on the basis of the theoretical calibration matrix and real response measurements of the dynamometer sensors, the calculation of a response matrix of the dynamometer.
  • dynamometer sensors at different real stresses depending on the 6 components of the dynamometer.
  • the response matrix of the dynamometer sensors can be calculated by a linear optimization method.
  • the dynamometer comprises three triaxial piezoelectric sensors which are mounted in the presser foot being distributed around a longitudinal axis of the blade.
  • the dynamometer comprises at least three - and preferably six - coupled strain gauge bridges which are mounted on branches of the presser foot regularly distributed around a longitudinal axis of the blade in order to form at least three - and preferably six - full decks.
  • the dynamometer comprises at least five full bridges of decoupled strain gauges which are mounted in the presser foot.
  • the transmission of the measurements from the dynamometer sensors can be carried out without contact or by wire.
  • Figure 1 is a schematic view showing a first embodiment of the implementation of the method according to the invention.
  • FIG. 2 represents a schematic view showing a second embodiment of the implementation of the method according to the invention.
  • FIG. 3 represents a schematic view showing a third embodiment of the implementation of the method according to the invention.
  • the invention applies to the automated cutting of parts from a flexible material in the form of a single ply or a stack of plies.
  • Such a cutting operation is generally carried out by means of a cutting machine provided with a horizontal cutting support on which the flexible material to be cut is fed.
  • a cutting head carrying a vibrating blade is mounted on a gantry which is caused to move along the cutting support while the cutting head simultaneously moves along the gantry so as to be able to follow the different cutting paths calculated by cutting software.
  • a presser foot such as that shown in Figure 1 is mounted on the lower part of the cutting head in order to press the flexible material with a controlled force on its cutting support during cutting, the position of this presser foot being adaptable according to the height of flexible material placed on the cutting support.
  • the presser foot keeps the guiding of the cutting blade as close as possible to the flexible material.
  • the invention provides a method for determining components of a mechanical action torsor at the guide point of the vibrating blade of such a cutting head.
  • the method provides for positioning a piezoelectric dynamometer with five components on the presser foot P of the cutting head.
  • the piezoelectric dynamometer comprises three triaxial piezoelectric sensors 1 to 3 which are mounted on the presser foot P, preferably being regularly distributed around a longitudinal axis Z of the cutting blade L.
  • the piezoelectric sensors 1 to 3 are advantageously distributed at 120 ° while being equidistant from the center of the dynamometer. As shown in Figure 1, their Z axes (respectively Z 1 , Z 2 and Z 3 ) are directed downwards (i.e. towards the cutting support), their Y axes (respectively Y 1 , Y 2 and Y 3 ) are directed towards the outside of the dynamometer to facilitate the passage of the cables, and their X axes (respectively X 1 , X 2 and X 3 ) are parallel to the radii of the dynamometer.
  • This arrangement allows good integration of the sensors into the environment of the presser foot while ensuring good stiffness thereof.
  • An upper plate (not shown in FIG. 1) closes the dynamometer integrated in the presser foot. It has holes for the passage of screws making it possible to pre-load the sensors by compressing them between the upper plate and the bottom of the presser foot.
  • the first step of the method according to the invention for determining the 3D forces undergone by the cutting blade is to calibrate the piezoelectric dynamometer thus mounted on the presser foot.
  • This calibration consists in establishing a calibration matrix which makes it possible to interpret the different measurement voltages sent by the piezoelectric sensors 1 to 3 in mechanical forces.
  • this theoretical calibration matrix should be refined to a response matrix corresponding to the actual calibration matrix.
  • each sensor has its own direct reference (Oi, xi, yi, zi) and their xi axes are collinear to the right (OOi).
  • This calibration matrix is theoretical. It represents the contribution of the different axes of the sensors in the measurement of the forces of the dynamometer. These measurements depend on the sensitivity K of the piezoelectric sensors used. In reality, no term of the matrix is zero because, despite the care taken in the production and whatever the manufacturing processes of the dynamometer, geometric defects appear. However, the preponderant terms must be identifiable.
  • the calibration can be performed. It consists in correlating controlled unit loadings applied to the dynamometer with the various electrical signals delivered by the triaxial sensors.
  • Identified loads should be applied in strategic places where the theoretical response of the dynamometer is known. By linear optimization, it is possible to correlate the values of the sensors with the expected values. Through a test campaign, the actual calibration matrix is determined.
  • FIG. 2 represents a second embodiment of the implementation of the invention in which the method provides for positioning a dynamometer with coupled gauges.
  • the dynamometer comprises at least three and preferably six bridges of coupled strain gauges which are mounted on branches of the presser foot P 'distributed around a longitudinal axis Z of the blade L in order to form at least three and preferably six full decks.
  • the dynamometer has been built around the axis of the blade with branches spaced 120 ° apart.
  • the three gauges J1 to J3 forming the six gauge bridges are preferably glued equidistant from the axis of the blade and on inclined faces, the extension of which meets at the point of application of the forces.
  • Double longitudinal / transverse strain gauges J1 to J3 are used and arranged on each face of each of the branches so that each half-bridge is in opposition. A total of at least three full bridges are required for the instrumentation of this dynamometer.
  • Calibration involves matching a known action torsor to a strain value measured by the gauge bridges.
  • the next step in developing the real calibration matrix consists in applying known forces along well-defined axes and recording the reaction of each half-bridge.
  • This calibration method offers a very large amount of data which requires some optimization.
  • the signal / load relations being assumed to be linear, a direct method based on the least squares method is applied.
  • the approach aims to minimize the least squares of the deviations between the imposed values and the measured values according to a linear response model.
  • [A i, j ] the calibration matrix, using n measurements [m i ] delivering n different torsors [T j ].
  • the equation can be written this way:
  • FIG. 3 represents a third embodiment of the implementation of the invention in which the method provides for positioning a dynamometer with decoupled gauges.
  • the dynamometer thus comprises five full-bridge gauge bridges mounted in the presser foot P ”.
  • the gauges used are half-bridge rosettes in order to ensure that the forces are read in the two possible bending directions (for reasons of clarity, only the five gauge bridges P1 to P5 are shown in FIG. 3).
  • the actual calibration matrix is obtained by measuring the deformations at the positions of the strain gauges and by doing the calculation relating to the wiring of the bridges. For example, a result is visible in the table below:
  • this embodiment does not require a preliminary step of developing a theoretical calibration matrix.
  • a set of electronic cards is provided between the piezoelectric sensors or the strain gauge bridges and the computer station using the information received.
  • These electronic boards perform the following functions: supply and conditioning of signals from the sensors (depending on the type of these sensors), filtering and amplification of signals in line with the input range of the analog-to-digital converter, analog-to-digital conversion, and serialization and transmission of data to the computer station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Sawing (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Of Cutting Processes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

Procédé de détermination de composantes d'un torseur d'actions mécaniques au point de guidage d'une lame de coupe pour machine de coupe L'invention concerne un procédé de détermination de composantes d'un torseur d'actions mécaniques au point de guidage d'une lame de coupe (L) pour machine de coupe, la lame étant guidée dans un pied presseur (P) d'une tête de coupe de la machine, le procédé comprenant le positionnement d'un dynamomètre à cinq composantes sur le pied presseur, le dynamomètre comprenant une pluralité de capteurs aptes à déterminer un effort frontal, un effort latéral, un moment de roulis, un moment de tangage et un moment de lacet de la lame de coupe, l'établissement d'une matrice d'étalonnage du dynamomètre, et la détermination des efforts en trois dimensions subis par la lame de coupe à partir des mesures obtenues par les capteurs et de la matrice d'étalonnage.

Description

Description
Titre de l'invention : Procédé de détermination de composantes d'un torseur d'actions mécaniques au point de guidage d'une lame de coupe pour machine de coupe
Domaine Technique
La présente invention se rapporte au domaine général de la découpe automatique par une lame vibrante d’une matière souple placée sur une table de coupe sous forme d’un pli unique ou d’un empilement de plis. Elle concerne plus précisément un procédé de détermination de composantes d’un torseur d’actions mécaniques au point de guidage d’une telle lame de coupe.
Technique antérieure
Un domaine d’application de l’invention est celui de la découpe automatique de pièces dans une matière souple textile ou non textile (comme le cuir), en particulier dans l’industrie de la confection, de l’ameublement ou de la sellerie automobile.
Un procédé connu pour la découpe automatique de pièces dans une matière souple consiste à amener la matière sur un support de coupe fixe ou mobile de la table de coupe, sous la forme d’un pli unique ou d’un empilement de plis formant un matelas, et à découper les pièces au moyen d’une tête de coupe se déplaçant au-dessus du support de coupe de la table. La tête de coupe porte notamment une lame vibrante en acier qui est mise en vibration verticalement selon le sens de son fil tranchant afin de découper la matière.
Au cours de cette mise en vibration verticale et lors de la découpe de la matière, la lame de coupe est soumise à des nombreux efforts qui affectent la qualité des bords découpés des pièces. En particulier, ces efforts ont un impact direct sur la qualité de coupe et sur la géométrie des pièces découpées sur toute la hauteur de la matière, notamment lorsque celle-ci est formée d’un empilement de plis.
Aussi, afin de pouvoir agir sur les paramètres de coupe et sur l’orientation de la lame, il est nécessaire de connaître au mieux les déformations subies par la lame de coupe. A cet effet, il est connu de positionner un capteur de flexion au niveau du pied presseur de la tête de coupe. De la sorte, ce capteur permet de collecter des données relatives à la flexion latérale de la lame de coupe et ainsi d’agir sur les paramètres de coupe et d’orientation de la lame pour corriger celle-ci. On pourra par exemple se référer à la demande de brevet IT 102017000023745 au nom de Morgan Tecnica.
Cependant, ces données ne sont pas suffisantes et ne prennent pas en compte tous les efforts subis par la lame de coupe.
Exposé de l’invention
La présente invention a donc pour but principal de proposer un procédé permettant de déterminer l’ensemble des efforts subis par la lame de coupe afin de permettre un pilotage plus fin et plus autonome de la coupe.
Conformément à l’invention, ce but est atteint grâce à un procédé de détermination de composantes d’un torseur d’actions mécaniques au point de guidage d’une lame de coupe pour machine de coupe, la lame étant guidée dans un pied presseur d’une tête de coupe de la machine, le procédé comprenant :
- le positionnement d’un dynamomètre à 6 composantes sur le pied presseur, le dynamomètre comprenant une pluralité de capteurs aptes à déterminer un effort frontal, un effort latéral, un moment de roulis, un moment de tangage et un moment de lacet de la lame de coupe ;
- établissement d’une matrice d’étalonnage du dynamomètre ; et
- la détermination des efforts en trois dimensions subis par la lame de coupe à partir des mesures obtenues par les capteurs et de la matrice d’étalonnage.
Le procédé selon l’invention est remarquable en ce qu’il permet de déterminer les efforts subis par la lame dans les trois directions à partir d’un dynamomètre installé dans le pied presseur de la tête de coupe. En particulier, cinq des six composantes du torseur d’actions mécaniques au point de guidage de la lame peuvent être déterminées, à savoir : effort frontal, effort latéral, moment de roulis, moment de tangage et moment de lacet (l’effort suivant l’axe principal de la lame étant exclu).
De la sorte, à partir de ces données, il est possible d’assurer un pilotage particulièrement précis et autonome des paramètres de la coupe afin d’en corriger les défauts.
De préférence, l’étape d’élaboration de la matrice d’étalonnage du dynamomètre comprend l’élaboration d’une matrice de calibration théorique des capteurs du dynamomètre à différentes sollicitations théoriques en fonction des 6 composantes du dynamomètre.
De préférence également, l’étape d’élaboration de la matrice d’étalonnage du dynamomètre comprend en outre, à partir de la matrice de calibration théorique et de mesures réelles de réponse des capteurs du dynamomètre, le calcul d’une matrice de réponse des capteurs du dynamomètre à différentes sollicitations réelles en fonction des 6 composantes du dynamomètre.
La matrice de réponse des capteurs du dynamomètre peut être calculée par une méthode d’optimisation linéaire.
Dans un mode de réalisation, le dynamomètre comprend trois capteurs piézoélectriques triaxiaux qui sont montés dans le pied presseur en étant répartis autour d’un axe longitudinal de la lame.
Dans un deuxième mode de réalisation, le dynamomètre comprend au moins trois - et de préférence six - ponts de jauges de déformations couplés qui sont montés sur des branches du pied presseur régulièrement réparties autour d’un axe longitudinal de la lame afin de former au moins trois - et de préférence six - ponts complets.
Dans un troisième mode de réalisation, le dynamomètre comprend au moins cinq ponts complets de jauges de déformations découplés qui sont montés dans le pied presseur.
Quel que soit le mode de réalisation, la transmission des mesures des capteurs du dynamomètre peut être réalisée sans contact ou par voie filaire
Brève description des dessins
[Fig. 1] La figure 1 est une vue schématique représentant un premier mode de réalisation de mise en oeuvre du procédé selon l’invention.
[Fig. 2] La figure 2 représente une vue schématique représentant un deuxième mode de réalisation de mise en oeuvre du procédé selon l’invention. [Fig. 3] La figure 3 représente une vue schématique représentant un troisième mode de réalisation de mise en oeuvre du procédé selon l’invention.
Description des modes de réalisation
L’invention s’applique à la découpe automatisée de pièces dans une matière souple se présentant sous la forme d’un pli unique ou d’un empilement de plis.
Une telle opération de découpe est généralement réalisée au moyen d’une machine de coupe munie d’un support horizontal de coupe sur lequel est amenée la matière souple à découper.
Une tête de coupe portant une lame vibrante est montée sur un portique qui est amené à se déplacer le long du support de coupe tandis que la tête de coupe se déplace simultanément le long du portique de sorte à pouvoir suivre les différentes trajectoires de coupe calculées par un logiciel de coupe.
Typiquement, un pied presseur tel que celui représenté sur la figure 1 est monté sur la partie basse de la tête de coupe afin de plaquer suivant un effort contrôlé la matière souple sur son support de coupe pendant la coupe, la position de ce pied presseur étant adaptable en fonction de la hauteur de matière souple posée sur le support de coupe. Ainsi, le pied presseur permet de maintenir le guidage de la lame de coupe au plus près de la matière souple.
L’invention propose un procédé de détermination de composantes d’un torseur d’actions mécaniques au point de guidage de la lame vibrante d’une telle tête de coupe.
Plusieurs variantes d’implantation du procédé selon l’invention sont possibles.
Selon un mode de réalisation schématisé sur la figure 1 , le procédé prévoit de positionner un dynamomètre piézoélectrique à cinq composantes sur le pied presseur P de la tête de coupe.
Plus précisément, le dynamomètre piézoélectrique comprend trois capteurs piézoélectriques triaxiaux 1 à 3 qui sont montés sur le pied presseur P en étant de préférence régulièrement répartis autour d’un axe longitudinal Z de la lame de coupe L.
Les capteurs piézoélectriques 1 à 3 sont avantageusement répartis à 120° en étant équidistants du centre du dynamomètre. Comme représenté sur la figure 1 , leurs axes Z (respectivement Z1, Z2 et Z3) sont dirigés vers le bas (c’est-à-dire vers le support de coupe), leurs axes Y (respectivement Y1, Y2 et Y3) sont dirigés vers l’extérieur du dynamomètre pour faciliter le passage des câbles, et leurs axes X (respectivement X1, X2 et X3) sont parallèles aux rayons du dynamomètre.
Cette disposition permet une bonne intégration des capteurs dans l’environnement du pied presseur tout en garantissant une bonne raideur de celui-ci.
Une plaque supérieure (non représentée sur la figure 1 ) vient fermer le dynamomètre intégré dans le pied presseur. Elle présente des orifices pour le passage de vis permettant de pré-charger les capteurs en les comprimant entre la plaque supérieure et le fond du pied presseur.
La première étape du procédé selon l’invention de détermination des efforts en 3D subis par la lame de coupe est de réaliser un étalonnage du dynamomètre piézoélectrique ainsi monté sur le pied presseur.
Cet étalonnage consiste à établir une matrice d’étalonnage qui permet d’interpréter les différentes tensions de mesure envoyées par les capteurs piézoélectriques 1 à 3 en efforts mécaniques.
Dans un premier temps, il convient de réaliser une matrice de calibration théorique ou globale sensible à l’orientation et à la géométrie des capteurs. Dans un second temps, il convient d’affiner cette matrice de calibration théorique vers une matrice de réponse correspondant à la matrice d’étalonnage réelle.
La réflexion concernant la matrice d'étalonnage théorique se situe dans un contexte où toutes les formes géométriques sont supposées parfaites sans défaut, selon un positionnement idéal des axes. Il convient de représenter dans l'espace (C,U,Z) le positionnement des trois capteurs triaxiaux afin d'exprimer le torseur des actions mécaniques qui leur est rattaché.
A chaque capteur i est rattaché un repère orthonormé (xi, yi, zi) en son centre Oi. Le torseur des actions en Oi peut alors s’écrire :
[Math. 1]
En effectuant le transport des torseurs élémentaires de chaque capteur à l’origine du repère du dynamomètre O, il est possible de déterminer la contribution de chaque direction de mesure de chacun des capteurs dans la lecture des efforts globaux. La matrice de calibration théorique ou globale est alors calculée à partir de ces différentes équations.
La position du centre Oi de chaque capteur est définie dans un système de coordonnées cylindriques par un rayon R correspondant à la distance OOi et un angle βi. Chaque capteur possède un repère propre direct (Oi, xi, yi, zi) et leurs axes xi sont colinéaires à la droite (OOi).
Le transport des torseurs de chaque capteur à l’origine et dans le repère du dynamomètre est donné par l’équation suivante ;
[Math. 2] Les différents changements de repères sont les suivants : [Math. 3]
[Math. 4] [Math. 5]
Après simplification, l’expression des torseurs de chaque capteur à l’origine et dans le repère du dynamomètre peut alors s’écrire :
[Math. 6]
Cette matrice de calibration est théorique. Elle représente la contribution des différents axes des capteurs dans la mesure des efforts du dynamomètre. Ces mesures dépendent de la sensibilité K des capteurs piézoélectriques utilisés. Dans la réalité, aucun terme de la matrice n’est nul car, malgré le soin apporté à la réalisation et quels que soient les procédés de fabrication du dynamomètre, des défauts géométriques apparaissent. Cependant, les termes prépondérants doivent pouvoir être identifiés. Une fois la matrice de calibration théorique écrite, l’étalonnage peut être effectué. Il consiste à faire corréler des chargements unitaires maîtrisés appliqués au dynamomètre avec les différents signaux électriques délivrés par les capteurs triaxiaux.
Il convient d’appliquer des chargements identifiés en des endroits stratégiques où la réponse théorique du dynamomètre est connue. Par une optimisation linéaire, il est possible de faire corréler les valeurs des capteurs aux valeurs attendues. Grâce à une campagne d’essais, la matrice d’étalonnage réelle est déterminée.
Les résultats de l’optimisation linéaire donnent la matrice d’étalonnage réelle suivante :
[Math. 7]
La figure 2 représente un deuxième mode de réalisation de mise en oeuvre de l’invention dans lequel le procédé prévoit de positionner un dynamomètre à jauges couplées.
Plus précisément, le dynamomètre comprend au moins trois et de préférence six ponts de jauges de déformations couplés qui sont montés sur des branches du pied presseur P’ répartis autour d’un axe longitudinal Z de la lame L afin de former au moins trois et de préférence six ponts complets.
Afin de garantir une bonne lecture des efforts, le dynamomètre a été construit autour de l’axe de la lame avec des branches espacées de 120°. Les trois jauges J1 à J3 formant les six ponts de jauge sont collées de préférence à équidistance de l’axe de la lame et sur des pans inclinés dont le prolongement se rejoint au point d’application des efforts.
Des doubles jauges de déformations longitudinales/transverses J1 à J3 sont utilisées et disposées sur chaque face de chacune des branches de sorte que chaque demi-pont soit en opposition. Un total d’au moins trois ponts complets est nécessaire à l’instrumentation de ce dynamomètre.
L’étalonnage consiste à faire correspondre un torseur d’action connu à une valeur de déformation mesurée par les ponts de jauges.
En considérant que les ponts de jauges sont idéalement centrés sur les branches du corps d’épreuve, les centres respectifs des ponts Oi (i=i :6) placés sur chaque branche sont confondus. Ils sont ensuite distants du centre du capteur O d’un valeur r et orientés par un angle a. Enfin, le point d’application des efforts sur la lame est déplacé de -h suivant l’axe Z au point Q.
Le torseur d’action connu [T] suivant est appliqué au point Q :
[Math. 8]
Le déplacement de ce torseur [T] à chaque point de mesure des ponts de jauge permet de connaître la contribution de chacun des axes des ponts dans la lecture des efforts.
Pour mesurer le moment de torsion Mz, un effort est appliqué suivant l’axe Y, au niveau point Q avec un bras de levier de distance I.
Par soucis de clarté, les repères groupés sont renommés comme suivant :
[Math. 9]
Ces transports donnent alors : [Math. 10]
Ces valeurs donnent les composants de la matrice d’étalonnage théorique. Maintenant, en prenant en compte le fait que les jauges de déformations ne réagissent que suivant leur axe Z, il est possible de simplifier la matrice. Elle s’écrit alors :
[Math. 11]
Avec K désignant la sensibilité de chaque pont de jauges (ici supposée commune), et F, la déformation mesurée par le point de jauge i. L’étape suivante d’élaboration de la matrice d’étalonnage réelle consiste à appliquer des efforts connus suivant des axes bien définis et d’enregistrer la réaction de chaque demi pont.
Cette méthode d’étalonnage offre un nombre de données très important ce qui impose une certaine optimisation. Les relations signaux/chargements étant supposés linéaires, une méthode directe basée sur la méthode des moindres carrées est appliquée.
L’approche vise à minimiser les moindres carrés des écarts entre les valeurs imposées et les valeurs mesurées selon un modèle de réponse linéaire. A cet effet, nous cherchons à exprimer [Ai,j], la matrice d’étalonnage, à l’aide de n mesures [mi] délivrant n torseurs différents [Tj]. L’équation peut s’écrire de cette façon :
[Math. 12]
La mise en forme suivante permet le calcul des termes aij de la matrice [A]t solution par la méthode d’optimisation linéaire, identique à la solution de l’équation normale de l’équation précédente.
[Math. 13]
A titre d’illustration, la matrice ainsi obtenue pour chaque capteur est ainsi donnée :
[Math. 14]
Les capteurs étant tous différents selon les variabilités inhérentes à l’usinage et au collage des jauges, il est impossible d’obtenir une matrice identique. Cependant la réaction de chaque capteur à chaque matrice est bonne. Il est possible d’obtenir une matrice lissant le comportement de chaque capteur, cette matrice appelé matrice fusionnée prend en considération l’ensemble des mesures d’étalonnage des trois capteurs (voir l’exemple ci-dessous)
[Math. 15]
Après vérifications, on constate que la réponse des trois capteurs à cette matrice est vraiment très proche et l’écart de mesure très faible.
La figure 3 représente un troisième mode de réalisation de mise en œuvre de l’invention dans lequel le procédé prévoit de positionner un dynamomètre à jauges découplées.
Comme représenté sur cette figure 3, le dynamomètre comprend ainsi cinq ponts de jauges en ponts complets montés dans le pied presseur P”. Les jauges utilisées sont des rosettes demi-ponts afin de garantir la lecture des efforts dans les deux sens de flexion possibles (pour des raisons de clarté, seuls les cinq ponts de jauges P1 à P5 sont représentés sur la figure 3).
La matrice d’étalonnage réelle est obtenue en mesurant les déformations aux positions des jauges de déformations et en faisant le calcul relatif au câblage des ponts. A titre d’exemple, un résultat est visible dans le tableau ci-dessous :
[Table 1]
On constate que le couplage le plus impor tant obtenu es de 5,61% de déformation lue par le pont 1 pendant l’application d’un moment My.
On constate également que ce mode de réalisation ne nécessite pas d’étape préalable d’élaboration d’une matrice de calibration théorique.
On notera que quel que soit le mode de réalisation, la transmission des mesures des capteurs de déformation du dynamomètre est réalisée sans contact ou par voie filaire.
On notera encore que quel que soit le mode de réalisation, il est prévu un ensemble de cartes électroniques entre les capteurs piézoélectriques ou les ponts de jauges de contraintes et la station informatique exploitant les informations reçues. Ces cartes électroniques réalisent les fonctions suivantes : alimentation et conditionnement des signaux issus des capteurs (en fonction de la typologie de ces capteurs), filtrage et amplification des signaux en adéquation avec la plage d’entrée du convertisseur analogique-numérique, conversion analogique numérique, et sérialisation et transmission des données vers la station informatique.

Claims

Revendications
[Revendication 1] Procédé de détermination de composantes d'un torseur d'actions mécaniques au point de guidage d'une lame de coupe (L) pour machine de coupe, la lame étant guidée dans un pied presseur (P ; P' ; P") d'une tête de coupe de la machine, le procédé comprenant :
- le positionnement d'un dynamomètre à cinq composantes sur le pied presseur, le dynamomètre comprenant une pluralité de capteurs aptes à déterminer un effort frontal, un effort latéral, un moment de roulis, un moment de tangage et un moment de lacet de la lame de coupe ;
- l'établissement d'une matrice d'étalonnage du dynamomètre ; et
- la détermination des efforts en trois dimensions subis par la lame de coupe à partir des mesures obtenues par les capteurs et de la matrice d'étalonnage.
[Revendication 2] Procédé selon la revendication 1, dans lequel l'étape d'élaboration de la matrice d'étalonnage du dynamomètre comprend l'élaboration d'une matrice de calibration théorique des capteurs du dynamomètre à différentes sollicitations théoriques en fonction des 6 composantes du dynamomètre.
[Revendication 3] Procédé selon la revendication 2, dans lequel l'étape d'élaboration de la matrice d'étalonnage du dynamomètre comprend en outre, à partir de la matrice de calibration théorique et de mesures réelles de réponse des capteurs du dynamomètre, le calcul d'une matrice de réponse des capteurs du dynamomètre à différentes sollicitations réelles en fonction des 6 composantes du dynamomètre.
[Revendication 4] Procédé selon la revendication 3, dans lequel la matrice de réponse des capteurs du dynamomètre est calculée par une méthode d'optimisation linéaire.
[Revendication 5] Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le dynamomètre comprend trois capteurs piézoélectriques triaxiaux (1, 2, 3) qui sont montés dans le pied presseur (P) en étant répartis autour d'un axe longitudinal (Z) de la lame.
[Revendication 6] Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le dynamomètre comprend au moins trois ponts de jauges de déformations (J1 à J3) couplés qui sont montés sur des branches du pied presseur (R') régulièrement réparties autour d'un axe longitudinal (Z) de la lame afin de former au moins trois ponts complets.
[Revendication 7] Procédé selon la revendication 6, dans lequel le dynamomètre comprend six ponts de jauges de déformations régulièrement réparties autour de l'axe longitudinal (Z) de la lame afin de former six ponts complets.
[Revendication 8] Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le dynamomètre comprend au moins cinq ponts de jauges de déformations (PI à P5) découplés qui sont montées sur le pied presseur (P"). [Revendication 9] Procédé selon l'une quelconque des revendications 1 à 8, dans lequel la transmission des mesures des capteurs du dynamomètre est réalisée sans contact ou par voie filaire.
EP21716809.5A 2020-03-31 2021-03-23 Procédé de détermination de composantes d'un torseur d'actions mécaniques au point de guidage d'une lame de coupe pour machine de coupe Active EP4093584B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
HRP20240198TT HRP20240198T1 (hr) 2020-03-31 2021-03-23 Postupak za određivanje komponenti torzora mehaničkih djelovanja na točki vođenja rezne oštrice stroja za rezanje
SI202130111T SI4093584T1 (sl) 2020-03-31 2021-03-23 Metoda za določanje sestavnih delov torzorja mehanskega delovanja na vodilni točki rezilnega noža za rezalni stroj
RS20240180A RS65258B1 (sr) 2020-03-31 2021-03-23 Postupak za određivanje komponenti torzora mehaničkih dejstava u tački vođenja sečiva za mašinu za sečenje

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2003227A FR3108542B1 (fr) 2020-03-31 2020-03-31 Procédé de détermination de composantes d’un torseur d’actions mécaniques au point de guidage d’une lame de coupe pour machine de coupe
PCT/FR2021/050499 WO2021198586A1 (fr) 2020-03-31 2021-03-23 Procédé de détermination de composantes d'un torseur d'actions mécaniques au point de guidage d'une lame de coupe pour machine de coupe

Publications (2)

Publication Number Publication Date
EP4093584A1 true EP4093584A1 (fr) 2022-11-30
EP4093584B1 EP4093584B1 (fr) 2023-11-29

Family

ID=71575454

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21716809.5A Active EP4093584B1 (fr) 2020-03-31 2021-03-23 Procédé de détermination de composantes d'un torseur d'actions mécaniques au point de guidage d'une lame de coupe pour machine de coupe

Country Status (15)

Country Link
US (1) US20230226712A1 (fr)
EP (1) EP4093584B1 (fr)
JP (1) JP2023519831A (fr)
KR (1) KR20240052600A (fr)
CN (1) CN115666886A (fr)
BR (1) BR112022018942A2 (fr)
FI (1) FI4093584T3 (fr)
FR (1) FR3108542B1 (fr)
HR (1) HRP20240198T1 (fr)
LT (1) LT4093584T (fr)
MX (1) MX2022011809A (fr)
PT (1) PT4093584T (fr)
RS (1) RS65258B1 (fr)
SI (1) SI4093584T1 (fr)
WO (1) WO2021198586A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3132040A1 (fr) 2022-01-27 2023-07-28 Lectra Procédé de pilotage automatique d’un déclenchement d’un affûtage du fil tranchant d’une lame de coupe pour machine de coupe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849712A (en) * 1972-06-30 1974-11-19 Ibm Adaptive numerically controlled machine tool responsive to deflection forces on the tool normal to the cutting path
IT201700023745A1 (it) 2017-03-02 2018-09-02 Morgan Tecnica S P A Macchina e metodo per il taglio automatico di tessuto
US11779411B2 (en) * 2017-03-10 2023-10-10 Sony Corporation Operation system, surgical system, control device, distortion generating body, surgical instrument, and external force detecting system

Also Published As

Publication number Publication date
EP4093584B1 (fr) 2023-11-29
HRP20240198T1 (hr) 2024-05-24
FR3108542A1 (fr) 2021-10-01
US20230226712A1 (en) 2023-07-20
CN115666886A (zh) 2023-01-31
BR112022018942A2 (pt) 2022-12-13
FR3108542B1 (fr) 2022-04-01
JP2023519831A (ja) 2023-05-15
MX2022011809A (es) 2023-01-19
KR20240052600A (ko) 2024-04-23
FI4093584T3 (fi) 2024-02-13
RS65258B1 (sr) 2024-03-29
SI4093584T1 (sl) 2024-04-30
LT4093584T (lt) 2024-03-12
PT4093584T (pt) 2024-02-28
WO2021198586A1 (fr) 2021-10-07

Similar Documents

Publication Publication Date Title
KR101313909B1 (ko) 정렬 오류를 결정하기 위한 장치, 디바이스 및 방법
CN101103245B (zh) 车轮前端角度测定装置以及测定方法
US8037744B2 (en) Method for measuring deformation of tire tread
US6327768B1 (en) Method for positioning parts in an assembly station
EP4093584B1 (fr) Procédé de détermination de composantes d'un torseur d'actions mécaniques au point de guidage d'une lame de coupe pour machine de coupe
CN102854196A (zh) Mems结构缺陷的晶圆级自动检测系统及检测方法
ITTO950850A1 (it) Calibro per il collaudo dimensionale di pezzi.
JP4867236B2 (ja) 塗布状態の検出装置
NZ520311A (en) in-line nondestructive testing of corrugated board
US7146911B2 (en) Image recorder
CN101733943B (zh) 轮胎用帘线层的接合装置和接合方法
JP3156747B2 (ja) バ−材の真直度修正装置
US6644109B2 (en) Method for correcting lateral force measuring values
JP2007212150A (ja) シャシダイナモメータの車両位置制御装置
CN207214950U (zh) 一种前风窗开口尺寸检测工装
JPH10246618A (ja) 平行度測定装置
JP2009236703A (ja) 自動車のサスペンション検査方法及びその装置
Hazra et al. Practical inspection system of drill point geometry by using simple measurement jig and image processing
EP4067812A1 (fr) Dispositif d'inspection et procédé d'inspection destiné à une couche de feuille
JP2001318037A (ja) 木材の強度測定装置
AU781022B2 (en) Measurement apparatus and technique for properties of board products
JP2001001051A (ja) 板厚検出方法、板厚差検出方法および板材折り曲げ加工機
CN115839676A (zh) 商用车纵梁孔位自动检测装置及其检测方法
JPH1019502A (ja) シャフト付ゴムローラ用姿ゲージ
CN115817847A (zh) 一种直升机起落架着陆载荷测量方法

Legal Events

Date Code Title Description
REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20240198T

Country of ref document: HR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20230626

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TEISSANDIER, DENIS

Inventor name: LAHEURTE, RAYNALD

Inventor name: DARNIS, PHILIPPE

Inventor name: COSSON-COCHE, QUENTIN

Inventor name: CAHUC, OLIVIER

Inventor name: CHABIRAND-GARCONNET, DIDIER

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021007328

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 4093584

Country of ref document: PT

Date of ref document: 20240228

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20240222

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240329

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 43544

Country of ref document: SK

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20240198T

Country of ref document: HR

Payment date: 20240301

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20240221

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240220

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240319

Year of fee payment: 4

Ref country code: FI

Payment date: 20240223

Year of fee payment: 4

Ref country code: DE

Payment date: 20240220

Year of fee payment: 4

Ref country code: BG

Payment date: 20240227

Year of fee payment: 4

Ref country code: PT

Payment date: 20240226

Year of fee payment: 4

Ref country code: SK

Payment date: 20240228

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20240301

Year of fee payment: 4

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20240198

Country of ref document: HR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240228

Year of fee payment: 4

Ref country code: RS

Payment date: 20240321

Year of fee payment: 4

Ref country code: LV

Payment date: 20240220

Year of fee payment: 4

Ref country code: HR

Payment date: 20240301

Year of fee payment: 4

Ref country code: FR

Payment date: 20240221

Year of fee payment: 4

Ref country code: BE

Payment date: 20240220

Year of fee payment: 4