EP4093535B1 - Procédé de production d'une dispersion stable d'hydrocarbures et d'eau pour améliorer les processus de combustion, et une dispersion eau-hydrocarbure qui est facilement séparable en au moins deux phases en tant que partie du processus de nettoyage à des emplacements d'accident - Google Patents

Procédé de production d'une dispersion stable d'hydrocarbures et d'eau pour améliorer les processus de combustion, et une dispersion eau-hydrocarbure qui est facilement séparable en au moins deux phases en tant que partie du processus de nettoyage à des emplacements d'accident Download PDF

Info

Publication number
EP4093535B1
EP4093535B1 EP21703372.9A EP21703372A EP4093535B1 EP 4093535 B1 EP4093535 B1 EP 4093535B1 EP 21703372 A EP21703372 A EP 21703372A EP 4093535 B1 EP4093535 B1 EP 4093535B1
Authority
EP
European Patent Office
Prior art keywords
dispersion
water
hydrocarbon
uada
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21703372.9A
Other languages
German (de)
English (en)
Other versions
EP4093535A1 (fr
Inventor
Dimitrij Bieren
Jürgen Gärtner
Kerstin SELKA
Sergej Nikolaeviz TUMAKOV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raptech Eberswalde GmbH
Original Assignee
Raptech Eberswalde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raptech Eberswalde GmbH filed Critical Raptech Eberswalde GmbH
Publication of EP4093535A1 publication Critical patent/EP4093535A1/fr
Application granted granted Critical
Publication of EP4093535B1 publication Critical patent/EP4093535B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/328Oil emulsions containing water or any other hydrophilic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/70Pre-treatment of the materials to be mixed
    • B01F23/711Heating materials, e.g. melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • B01F25/102Mixing by creating a vortex flow, e.g. by tangential introduction of flow components wherein the vortex is created by two or more jets introduced tangentially in separate mixing chambers or consecutively in the same mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2213Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/7544Discharge mechanisms characterised by the means for discharging the components from the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/99Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/505Mixing fuel and water or other fluids to obtain liquid fuel emulsions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2250/00Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
    • C10L2250/06Particle, bubble or droplet size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2250/00Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
    • C10L2250/08Emulsion details
    • C10L2250/082Oil in water (o/w) emulsion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/34Applying ultrasonic energy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/46Compressors or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/0228Adding fuel and water emulsion

Definitions

  • the present invention relates to a process for producing a stable hydrocarbon-water dispersion using thermocavitation and supercavitation.
  • the present invention relates to a process for producing a water-hydrocarbon dispersion which can be easily separated into at least two phases and subsequent phase separation.
  • WO 2019/161852 A2 discloses a process for producing a hydrocarbon-water fine dispersion with an emulsifier arranged between two pumps.
  • EP 3 184 164 A1 discloses a device between two pumps which uses cavitation effects to generate bubbles in water.
  • the object of the present invention is to provide a stable hydrocarbon-water dispersion, in particular a stable fuel-water dispersion, without the use of additives such as emulsifiers.
  • UADA versions There are two different UADA versions: with and without an integrated premixer.
  • the first version does not contain an integrated premixer for mixing the media.
  • the media are mixed directly in the premixer integrated in the pre-sound chamber of the UADA body.
  • the first embodiment is used in the present invention.
  • the patent RU2130503C1 , RU2462301C1 and the patent for the useful technical model RU134076U1 The technical description of the UADA body and the acoustic panel are in Figures 6 and 7 shown.
  • At least one premixing unit for producing a coarse dispersion from the at least one medium 1 and medium 2 is arranged upstream of the at least one unit for producing a hydrocarbon-water dispersion.
  • the coarse disperser consists of at least two supply lines for two different media, each with a heat exchanger, an adjustment device for the media ratio and a premixer.
  • the coarse dispersant is the precursor to the fine dispersant or ultrafine dispersant.
  • the plant based on the present method thus comprises, in the first aspect, a fine disperser consisting of a coarse disperser, a UADA module and a pump upstream of the UADA and a pump downstream of the UADA and separation-disperser consisting of a UADA module and a pump upstream of the UADA and a pump downstream of the UADA.
  • the plant based on the present method thus comprises, in a second aspect, a combination of an ultrafine disperser consisting of a heating device (heating cartridge with a screw-in heater) and UADA, the structure being as follows: heating device - first pump - first UADA - second pump. or consisting of a premixer (coarse disperser), a heating device (heating cartridge with a screw-in heater) and UADA, the structure being as follows: coarse disperser-heating device- first pump- first UADA- second pump.
  • the plant based on the present process thus comprises, in a third aspect, a combination of a coarse disperser, a fine disperser and a downstream ultrafine disperser.
  • Cavitation is the formation and implosive dissolution of vapor bubbles in liquids.
  • the UADA is used to produce a hydrocarbon-water dispersion using cavitation.
  • the principle of dispersion generation using the above-mentioned system is based on the fact that a mixture of at least two different media is pressed through special nozzles in a UADA.
  • the at least two different media are premixed with each other.
  • the further steps of producing a hydrocarbon-water dispersion using cavitation take place in at least one or two UADA modules.
  • a first UADA module supercavitation takes place, as an individual case of hydrodynamic cavitation, while in the other, second UADA module, thermal and supercavitation take place.
  • the two UADA modules are connected one after the other.
  • the type and intensity of the cavitation varies the size of the water droplets in the dispersion. Stronger cavitations result in a smaller diameter of the enclosed droplet.
  • the present process enables the production of a hydrocarbon-water dispersion with a droplet size in the range of 10 to 100 ⁇ m. The stability of the dispersion increases as the droplet diameter decreases.
  • the droplet size in the dispersion is regulated by varying degrees of cavitation.
  • the droplet size, phase distribution and morphology in turn influence the stability of the dispersion.
  • the cavitation is set, varied and controlled by varying the pressure behind the UADA.
  • the droplet size, phase division and morphology have an influence on the stability (quality) of the dispersion.
  • the cavitation is set, varied and controlled by varying the pressure behind the UADA.
  • the droplet size in the dispersion is regulated by varying degrees of cavitation. For the quality of the hydrocarbon-water dispersion produced with the above-mentioned system, it is important to set the optimal intensity of the cavitation.
  • the system described makes it possible to keep the water content and the process parameters pressure, temperature and throughput constant in order to ensure a consistent quality of the water-oil dispersion produced.
  • the developed process can be structured in two or three process engineering stages.
  • the first involves a technological implementation of coarse and fine dispersion.
  • the other technological solution for deeper dispersion consists of coarse, fine and ultra-dispersion.
  • a coarse dispersion can be provided from the pre-tempered medium 1 as a hydrocarbon-containing medium and the pre-tempered medium 2 as water by mixing medium 1 and medium 2 in at least one premixing unit (coarse disperser).
  • a pressure is set in front of the UADA module (pre-pressure) and a pressure behind the UADA.
  • the presonic velocity is a transverse deformation of flows through the formation of vortex ring flows.
  • the ultrasonic velocity occurs after the flows meet and the energy of the flows is concentrated in the limited volume.
  • the concentrated energy promotes the energy-mass exchange and accelerates the physico-chemical transformation.
  • the dispersion formed is discharged from the module through the drain.
  • vapor pressure of water must be reduced to below the operating pressure by means of hydrostatic pressure and temperature adjustment (vapor pressure curve) by increasing the speed (energy conversion/kinetic pressure component). This results from the vapor pressure curve for water as in Figure 1 shown.
  • the conditions for initiating thermal cavitation are created in a heating device with low pressure and elevated temperature.
  • the local heating in the heating device creates small vapor bubbles on the surface, which are dislodged by the flow and collapse again in the liquid due to a reduction in temperature.
  • This thermal cavitation catalyzes the hydrodynamic cavitation in the subsequent UADA and thus increases the mixing of the dispersion.
  • the process technology is designed in such a way that there is a negative pressure in the heating device.
  • the pressure is built up again and the pressure is reduced behind the UADA.
  • Ultrafine dispersion can be technologically realized either after coarse dispersion or after fine dispersion.
  • the cavitation process used in the described system in an ultrasonic acoustic flow unit is known from the patents RU2130503C1 , RU2462301C1 and the patent for the useful technical model RU134076U1 known and enables the production of a stable dispersion of fuel and water.
  • this UADA is expanded in combination with heat exchangers and pressure boosters, so that the stability of the hydrocarbon-water dispersion formed is significantly increased.
  • the heat exchangers installed in the system described allow a separately tempered hydrocarbon and water supply.
  • a moisture sensor can also be installed in the feed line of the mixing device (UADA) in order to continuously check and control the water content.
  • control or metering valves are installed in the hydrocarbon and water addition, which allow the mixing ratio to be changed.
  • the developed technology produces a long-term stable dispersion of water and hydrocarbons.
  • the long-term stability is significantly influenced by the droplet size.
  • a droplet size of less than 100 ⁇ m can achieve a stability of at least 1 year up to 7 years. This increases the stability of bunker oils, for example, which means that the use of additives is no longer necessary. There are fewer or no unwanted reactions in the storage or transport fuel tank and the flocculation of paraffins can be reduced or even suppressed.
  • the fine droplets in the dispersion allow the fuel to be burned more optimally, as they evaporate suddenly in the combustion chamber and the combustion of the fuel is more homogeneous due to the increase in surface area to volume. Fewer soot particles are produced during combustion. The efficiency of the combustion, in relation to the primary energy introduced, is increased, with the fuel being converted almost completely into energy.
  • the pollutants are reduced when the dispersion is burned compared to the pure fuel.
  • the combustion temperature is reduced, which in turn can minimize the emission of pollutants such as NO x .
  • liquid media with a viscosity of 1 mm 2 /s to 1,000 mm 2 /s, preferably from 100 mm 2 /s to 800 mm 2 /s, in particular from 300 mm 2 /s to 500 mm 2 /s can be processed.
  • Table 1 Media for the preparation of the hydrocarbon-water dispersion Media1 Media2 • Heavy oil • Drinking water • Diesel fuel • VE water • Heating oil • Sludge: Products from oil separators, waste oil, bilge water from ships
  • Medium 1 (as main medium) refers to the hydrocarbon-containing, oil-containing component, which corresponds to more than 60 wt% of the dispersion in combustion processes.
  • the proportion of medium 1 is less than 40 wt%.
  • Medium 2 (as the second medium) corresponds to the water-containing component, which in combustion processes represents less than 40 wt% of the dispersion.
  • the effective proportion of medium 2 in separation processes is over 60 wt%.
  • demineralized (deionized) water is used to produce the hydrocarbon-water dispersion.
  • normal tap water or so-called brackish water can also be used.
  • a premixing unit can be installed upstream of the fine disperser.
  • the at least one premixing unit comprises at least one heat exchanger for medium 1, at least one heat exchanger for medium 2 and at least one mixing apparatus for premixing medium 1 and medium 2.
  • the heat exchanger for adjusting the temperature and indirectly the viscosity of the hydrocarbon as medium 1 can be designed as a heat exchanger with a bypass.
  • Medium 1 and medium 2 are, as defined in claim 3, heated to temperatures between 30 and 90 °C, preferably between 40 and 80 °C, and introduced into the premixer. At least two different pre-heated media are thus mixed together in the coarse dispersion.
  • the prerequisite for the optimal production of the coarse dispersion is identical absolute feed pressures of the media.
  • devices for measuring the temperature and volume flow of the fuel in the fuel supply line can also be provided.
  • At least one filter for removing dirt particles from the medium 1 is provided on or in the supply line of medium 1 as a hydrocarbon-containing medium.
  • a pressure sensor is arranged upstream of the filter and a pressure sensor is arranged downstream of the filter to monitor the filter occupancy level.
  • At least one heat exchanger for adjusting the water temperature to the temperature of the oil-containing component is provided in or on the supply line for medium 2 as water, in particular demineralized and deionized water.
  • Devices e.g. sensors
  • for measuring the volume flow and the temperature of the water are preferably provided in front of and behind the heat exchanger in the water line.
  • the premixing device mentioned above is used to premix the components described above.
  • This mixing device is designed for media of different viscosities.
  • the water is mixed into the oil flow in laminar This coarse mixing optimizes the actual mixing process and protects the pump from the UADA, as a sudden change of hydrocarbon and water is prevented.
  • devices for measuring the temperature and pressure of the hydrocarbon-water coarse dispersion are provided downstream of the premixer.
  • the tempered mixture with the preset volume or percentage proportion then goes to the next stage for fine dispersion after coarse dispersion.
  • the stable hydrocarbon-water dispersion is prepared in the next step.
  • the at least one fine disperser comprises at least one first pump for a first pressure increase in the inlet of the coarse hydrocarbon-water dispersion; the at least one first ultrasonic acoustic flow unit (UADA) and at least one second pump.
  • UADA ultrasonic acoustic flow unit
  • the hydrocarbon-water coarse dispersion is, as covered in claim 5, brought to pressures of up to 2.5 MPa, preferably to pressures between 0.5 MPa and 2 MPa, particularly preferably between 1 MPa and 1.5 MPa, using a first pump before entering at least one first ultrasonic acoustic flow unit (UADA).
  • UADA ultrasonic acoustic flow unit
  • the pre-pressure built up before the first UADA can be, for example, between 0.6 and 2.5 MPa.
  • the pump used for this purpose can be designed for high-volume-flow refueling processes or for continuous low-volume-flow production processes, e.g. for volume flows between 5 m 3 /h and 100 m 3 /h, preferably between 10 m 3 /h and 80 m 3 /h, particularly preferably between 20 m 3 /h and 60 m 3 /h.
  • Typical volume flows can be e.g. 6 m 3 /h; 20 m 3 /h and 100 m 3 /h.
  • the plant based on the method has a device for measuring the water content in the hydrocarbon-water coarse dispersion arranged downstream of this first pump.
  • This device for measuring the moisture can be designed in the form of a bypass and enables If there are deviations from the desired water proportion, the water proportion can be readjusted, e.g. via a control valve in the water pipe.
  • the setting of the water content is preferably automated, which enables inline and more precise water dosing as well as control of the volume flow and temperature. These are prerequisites for a consistent quality of the dispersion to be produced. Furthermore, the amount of water in the fuel can be easily varied. The amount of water, the throughput of hydrocarbons, the temperature and the pressure in the cavitation area are important for consistent quality.
  • the water content in the dispersion can be variably adjusted and measured.
  • the water content is important for the later use and combustion properties and is in a range of 1 wt% to 40 wt%, preferably 5 to 30 wt%, particularly preferably 10-15 wt% (based on the total volume of the dispersion to be produced).
  • the device for measuring and adjusting the water content in the hydrocarbon-water coarse dispersion is followed downstream by further measuring devices (e.g. sensors) for temperature and pressure before entering the first ultrasonic acoustic flow unit (UADA).
  • further measuring devices e.g. sensors
  • UADA ultrasonic acoustic flow unit
  • the fine dispersion is produced in an ultrasonic acoustic flow unit (UADA) in which the cavitation is not actively introduced but is generated due to the flows in the UADA.
  • UADA ultrasonic acoustic flow unit
  • a pre-pressure between 0.6 and 2.5 MPa is set upstream of the UADA module (as described above) and approximately 0.06 MPa downstream of the UADA module.
  • the fine dispersion can be discharged from the system.
  • it is a two-stage process for producing the stable hydrocarbon-water dispersion by coarse dispersion (premixing to produce the mixture) and fine dispersion, whereby the recording of the process-technical regime of the ultrasonic acoustic flow units makes a significant contribution.
  • the fine dispersion can also be subsequently converted into ultrafine dispersion.
  • At least one unit for producing a stable hydrocarbon-water dispersion in the ultrafine disperser can be arranged downstream of the at least one unit for producing a stable hydrocarbon-water dispersion in the fine disperser, this unit comprising at least one second ultrasonic acoustic flow unit (UADA) for producing a stable hydrocarbon-water ultrafine dispersion by means of a combination of thermal and hydrodynamic cavitation.
  • UADA ultrasonic acoustic flow unit
  • the ultrafine disperser comprises at least one heating device for heating the fine dispersion flowing under negative pressure, (downstream) at least one pump for generating the negative pressure in the heating device and for increasing the pressure in the inlet of the heated hydrocarbon-water fine dispersion; (downstream) at least one second ultrasonic acoustic flow unit (UADA) and (downstream) at least one pump for adjusting the negative pressure, which leads to the adjustment, variation and control of the cavitation regime.
  • UADA ultrasonic acoustic flow unit
  • the at least one heating device preferably consists of at least one heating cartridge. It is also possible to use several heating cartridges that can be switched on in parallel.
  • the at least one heating cartridge consists of a heating jacket and a screw-in heating element.
  • the hydrocarbon-water fine dispersion is heated in the at least one heating device, in particular a heating cartridge, to up to 80 °C before entering the at least second ultrasonic acoustic flow unit (UADA).
  • UADA ultrasonic acoustic flow unit
  • thermal cavitation is combined with hydrodynamic cavitation to increase effectiveness and stability.
  • the conditions for initiating thermal cavitation are created in a low-pressure heating device.
  • the local heating in the heating device creates small vapor bubbles on the surface, which are released by the flow and collapse again in the liquid due to a drop in temperature.
  • This thermal cavitation increases the hydrodynamic cavitation in the subsequent UADA and thus supports the mixing of the dispersion.
  • the process application is designed in such a way that negative pressure prevails in the heating device.
  • the pressure is built up again in front of the UADA and the negative pressure is set behind the UADA.
  • thermo- and hydrodynamic cavitation creates ideal conditions for the production of stable and ultra-fine hydrocarbon-water dispersion.
  • At least one additional pump is provided downstream of the second UADA to control the cavitation regime.
  • this additional pump serves to convey the hydrocarbon-water dispersion formed to the discharge line and further to the measuring section and to the storage tanks.
  • This pump is also equipped with pump protection, which consists of a negative pressure sensor in front of the pump and an overpressure sensor behind it.
  • At least one filter is provided downstream of the at least one additional pump for conveying the hydrocarbon-water dispersion formed.
  • the filter is arranged in particular in front of the measuring section in order to filter out coarse particles and thus protect sensitive sensors in the measuring section.
  • Pressure sensors are installed in front of and behind the filter, which allow the differential pressure to be measured in order to detect any blockage of the filter at an early stage.
  • the measuring section mentioned serves to record the temperature, pressure and volume flow of the hydrocarbon-water dispersion formed.
  • a branch is provided behind the measuring section, which allows the dispersion to be guided in an inner circuit via the UADA modules during the start-up and shut-down process of the system.
  • a built-in control technology enables a smooth switchover from the inner recirculation to production.
  • the recirculation line is also equipped with a check valve, a pressure sensor and a volume flow monitor.
  • a stable hydrocarbon-water dispersion with a water droplet size of less than 10 ⁇ m can be produced with a water content of 1 to 50 wt%, preferably 5 to 30 wt%, particularly preferably 10 to 15 wt% (based on the total mass of the dispersion to be produced).
  • Ultrafine dispersion can be technologically realized either after coarse dispersion or after fine dispersion.
  • the separation disperser (unit constructed identically to the fine disperser, but either without or with a premixer - coarse disperser integrated in the UADA body) is followed by at least one separation tank for separating the water-hydrocarbon dispersion (separation dispersion), which can be easily separated into at least two phases, into hydrocarbon and water.
  • the proportion of medium 1 as a hydrocarbon-containing medium of the water-hydrocarbon separation dispersion is below 50 wt%.
  • the effective proportion of medium 2 as water in separation processes is over 50 wt%.
  • a separation dispersion with a desired water content of over 60 wt% is prepared.
  • the separation dispersion is stored for subsequent separation until at least two phases of the original media separate.
  • the phase formation occurs by coalescence of the hydrocarbon droplets. This creates aggregates of the hydrocarbon droplets. According to Stokes' equation, gravity forces the hydrocarbon aggregates to form a hydrocarbon phase. After separation, the separated media are recycled.
  • the optimal water content is above 60 wt%.
  • the resulting water-hydrocarbon dispersion is unstable.
  • the mobility of the separation system enables the accident medium, contaminated water, to be fed directly into the separation disperser to produce the water-hydrocarbon separation dispersion and then to phase separation. This allows the technology to be used as a separation process at the accident site.
  • An essential aspect of the plant based on the process is its modular design, which allows several combinations regarding plant and process implementation.
  • the fine disperser can be used individually.
  • Figure 2 shows the schematic representation of a dispersion system. The entire system is divided into three different areas: the coarse disperser, the fine disperser and the ultrafine disperser.
  • the main component of the system is the ultrasonic acoustic flow unit (UADA).
  • UADA ultrasonic acoustic flow unit
  • a UADA is always designed for a specific flow rate (6 m 3 /h; 20 m 3 /h and 100 m 3 /h).
  • the structure of the UADA module is in Figure 7
  • the module consists of inlet, pre-sound chamber, sound chamber, ultrasonic chamber and outlet.
  • the acoustic plate in Figure 8 shown, is located in the pre-sound chamber and is made up of the axial ring chamber and tangential vortex grooves.
  • In the sound chamber there are vortex tubes, which filled with conical vortex bodies. The vortex tubes open into the ultrasound chamber, which is connected to the drain.
  • filters are installed between the coarse and fine dispersers and after the ultrafine disperser.
  • Coarse dispersant In the area of coarse dispersant ( Figure 3 ) the system consists of at least two supply lines for two different media, each with a heat exchanger, an adjustment device for the media ratio and a pre-mixer.
  • the temperature of the media can be regulated via the system's control technology.
  • the media ratio is automatically set and monitored using control technology. This is transferred to the fine disperser area of the system.
  • the coarse disperser is the precursor to the fine disperser.
  • Fine dispersant The Fine dispersant area in Figure 4 consists of two pumps (primary pressure and vacuum pump), the UADA enclosed by these pumps and the associated control technology. The fine disperser is followed by the ultrafine disperser.
  • the ultrafine dispersant in Figure 5 shown, consists of a heating device, two pumps (primary pressure and vacuum pump) and the UADA enclosed by them.
  • heating device heating cartridge
  • the design of the heating device consists of a flow-through heating jacket with an integrated screw-in heating element.
  • the results are evaluated using an online viscometer via three measuring points after the coarse disperser, fine disperser and ultrafine disperser.
  • a branch is provided behind the measuring section, which allows the dispersion to be guided in an inner circuit over the UADA units during the start-up and shut-down process of the system.
  • the control enables a smooth switchover from the inner recirculation to production.
  • the dispersion system is used to mix at least two different pre-tempered media.
  • the first step involves rough physical pre-mixing.
  • the second step involves fine dispersion based on hydrodynamic and super cavitation.
  • the dispersion is thoroughly refined by combining thermo-, hydrodynamic and super-cavitation.
  • the system In the event of an accident on the water, the system is used to separate the media.
  • the facility as in Figure 6 shown, consists of two pumps (primary pressure and vacuum pump), the UADA enclosed by these pumps and the associated control technology.
  • the system is fed by a collection tank in which the damaged dispersion is located. Behind the system is the separation tank, which is connected to at least two tanks (e.g. oil and water tank) for at least two already separated media.
  • the quality control purity control then takes place in the tanks.
  • the separation system is used to separate the water-hydrocarbon mixture at accident sites and is constructed identically to the fine dispersion area.
  • the principle of dispersion generation is based on a mixture of fuel and water being pressed through special nozzles in a specially developed UADA (ultrasonic acoustic flow unit).
  • UADA ultrasonic acoustic flow unit
  • the resulting flow speeds promote the formation of cavitation.
  • the result is a very fine-droplet, stable dispersion that is flammable.
  • the UADA module can be manually shut off on the inlet side using manual shut-off valves and on the outlet side using manual shut-off valves.
  • the following safety shut-off valves are installed at the inlet, which automatically shut off the system in the event of a serious fault.
  • Safety valves are installed at the outlet, which separate the modules from the tank farm in the event of a serious fault.
  • the safety shut-off valves automatically separate the UADA module from the rest of the system in the event of an emergency stop, fire, power failure and unforeseen critical operating conditions.
  • the UADA module begins behind the fuel supply line in which the temperature and volume flow of the reactant are measured.
  • the continuing fuel line is equipped with a check valve that prevents backflow to the reactant storage.
  • a temperature sensor is also installed after the recirculation line to monitor the pour point and flash point.
  • a filter is then installed to keep dirt particles away from the system.
  • a pressure sensor is installed in front of and behind the filter to detect an excessive pressure drop. If this increases too high, the filter must be replaced or cleaned.
  • a heat exchanger with a bypass is then installed. This is intended to adjust the temperature in the inlet and bring it to the desired values (the current safety margins must be observed for the flash and ignition point temperatures). This adjusted temperature is continuously checked by the temperature sensor.
  • the oil stream is roughly premixed with the water component.
  • the desalinated (deionized) water is fed from the water treatment plant into the process via separate pipes.
  • the amount of water added is dosed using the control valve.
  • the volume flow and the temperature of the water are measured and recorded.
  • the water can be adjusted to the temperature of the hydrocarbon using the built-in heat exchanger.
  • a check valve is installed to prevent hydrocarbons from entering the water pipe.
  • the mixture temperature and the resulting pressure are measured behind the pre-mixer in order to detect any deviations in operating conditions.
  • the mixture then goes into the first pressure booster. Here the pressure is increased to up to 2.5 MPa.
  • the humidity is measured in a bypass behind the pump. If there are deviations from the desired water content, the control valve in the water line is used to make adjustments.
  • UADA ultrasonic acoustic flow unit
  • the temperature and pressure are measured and recorded.
  • the dispersion is produced in this UADA, and the pressure built up by the pressure increase drops completely.
  • the temperature and pressure are measured and recorded behind the UADA.
  • a heating cartridge with a temperature sensor is then installed in order to be able to build up subsequent thermal cavitation behind the UADA.
  • the second pressure increase is followed by the second pressure increase.
  • An additional function of the second pressure increase is the setting of the negative pressure behind the first UADA. This has a significant influence on the type, strength and form of cavitation in the first UADA.
  • the first UADA works optimally when the pressure behind it is set at 0.05 MPa.
  • the pump of the second pressure increase is equipped with a pressure sensor for monitoring the negative pressure before and a pressure sensor for monitoring the positive pressure after the UADA. This allows the system to be operated in a targeted manner at the required negative pressure and positive pressure.
  • the pressure sensors installed in this section of the line give an alarm before a critical negative or positive pressure occurs. This allows the control system to counteract this event.
  • This pump is also equipped with pump protection, which again consists of a pressure sensor for monitoring the negative pressure in front of the pump and a pressure sensor for monitoring the positive pressure behind the pump.
  • a filter is installed to ensure that no coarse particles get into the measuring section and thus protect the sensitive sensors.
  • Pressure sensors are installed in front of and behind the filter, which allow the differential pressure to be measured in order to detect any blockage of the filter at an early stage. The following data is recorded in the measuring section: the temperature, the pressure, the volume flow.
  • the control valve is installed for this purpose. This enables a smooth switchover from the inner recirculation to production.
  • the control valve is paired with a check valve to prevent mixing of faulty batches during recirculation from the product storage in the line and finished dispersion from the line.
  • the recirculation line is equipped with a check valve, a pressure sensor and a volume flow monitor.
  • Example 2 Process for preparing the dispersion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Claims (9)

  1. Procédé de préparation d'une dispersion fine stable hydrocarbure-eau avec une teneur en hydrocarbure supérieure à 50 % en poids comprenant les étapes suivantes :
    - Préparation d'une dispersion fine stable d'hydrocarbures et d'eau avec un diamètre de gouttelettes de 100 µm à 1 mm dans au moins une unité pour la préparation d'une dispersion fine d'hydrocarbures et d'eau à partir d'au moins un milieu 1 en tant que milieu contenant des hydrocarbures et d'un milieu 2 en tant qu'eau, cette unité comprenant un disperseur fin constitué d'au moins une première pompe (pompe 01) pour une première augmentation de pression dans une alimentation d'une dispersion grossière d'hydrocarbures et d'eau à partir d'une unité de prémélange en tant que partie d'un disperseur grossier, au moins un agrégat de débit acoustique ultrasonique (UADA- 01) pour la production d'une dispersion fine d'hydrocarbures et d'eau au moyen d'une cavitation hydrodynamique, et au moins une deuxième pompe (pompe 02) pour la production d'une dépression dans l'écoulement de la dispersion fine d'hydrocarbures et d'eau formée,
    - dans lequel la dispersion grossière étant préparée à partir du milieu 1 et du milieu 2 par mélange du milieu 1 et du milieu 2 dans au moins une unité de prémélange dans le disperseur grossier, et
    - dans lequel le rapport de la pression en amont de l'unité de débit acoustique ultrasonique (UADA), c'est-à-dire de la pression d'alimentation, du dispersant fin et la pression en aval de l'unité d'écoulement acoustique ultrasonique (UADA), c'est-à-dire la pression négative, du dispersant fin est d'au moins 10.
  2. Procédé de préparation d'une dispersion de séparation eau-hydrocarbure instable avec une teneur en eau supérieure à 50 % en poids comprenant les étapes suivantes :
    - Préparation d'une dispersion de séparation eau-hydrocarbures instable séparable en au moins deux phases dans une unité de fabrication d'une dispersion de séparation eau-hydrocarbures à partir d'au moins un milieu 1 en tant que milieu contenant des hydrocarbures et d'un milieu 2 en tant qu'eau, cette unité comprenant un disperseur de séparation composé d'au moins une première pompe (pompe 01) pour une première augmentation de pression dans une alimentation d'un mélange eau-hydrocarbures ; d'au moins une unité de débit acoustique ultrasonique (UADA 01) pour la production d'une dispersion de séparation eau-hydrocarbures par cavitation hydrodynamique, et d'au moins une deuxième pompe (pompe 02) pour la production d'une dépression dans l'écoulement de la dispersion de séparation eau-hydrocarbures formée,
    - dans lequel un réservoir de séparation étant placé en aval du disperseur de séparation pour séparer la dispersion de séparation eau-hydrocarbures en hydrocarbures et en eau,
    - dans lequel au moins un mélange eau-hydrocarbures séparable en au moins deux phases étant fourni par le milieu 1 et le milieu 2 ; et
    - dans lequel le rapport de la pression en amont de l'unité de débit acoustique ultrasonique (UADA), c'est-à-dire de la pression d'alimentation du dispersant de séparation et la pression en aval de l'unité d'écoulement acoustique ultrasonique (UADA), c'est-à-dire la pression négative, du dispersant de séparation est d'au moins 10.
  3. Procédé selon la revendication 1, caractérisé en ce que le milieu 1 et le milieu 2 sont introduits dans un prémélangeur de l'unité de prémélange à des températures comprises entre 30 et 90 °C, de préférence entre 40 et 80 °C.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le milieu 1 utilisé présente une viscosité de 1 mm2/s à 1 000 mm2/s, de préférence de 100 mm2/s à 800 mm2/s, en particulier de 300 mm2/s à 500 mm2/s.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la dispersion grossière d'hydrocarbures et d'eau ou le mélange d'eau et d'hydrocarbures est porté, avant l'entrée dans l'agrégat de flux acoustique ultrasonore (UADA), à des pressions comprises entre 0,5 MPa et 2,5 Mpa, de préférence à des pressions comprises entre 0,6 Mpa et 2 Mpa, en particulier de préférence entre 1 Mpa et 1,5 Mpa en utilisant la première pompe de l'unité de dispersion fine ou de séparation et, après la sortie de l'unité d'écoulement acoustique ultrasonique (UADA), à des pressions allant de 0,02 Mpa à 0,1 Mpa, de préférence à une pression de 0,06 Mpa en utilisant la deuxième pompe de l'unité de dispersion fine ou de séparation.
  6. Procédé selon l'une des revendications 1, 3-5, caractérisé en ce que la dispersion fine d'hydrocarbures et d'eau est introduite, après avoir quitté l'unité d'écoulement acoustique ultrasonique (UADA) de l'unité de dispersion fine, dans au moins une unité de dispersion ultrafine pour produire une dispersion ultrafine ayant un diamètre de gouttelettes inférieur à 100 µm,
    - cette unité de dispersion ultrafine comprenant au moins un dispositif de chauffage pour l'initiation de la thermocavitation par chauffage de la dispersion s'écoulant sous vide de l'unité de dispersion fine, au moins une pompe (pompe 02) pour une augmentation de la pression dans une alimentation de la dispersion d'hydrocarbures et d'eau chauffée ; au moins un deuxième groupe de débit acoustique ultrasonique (UADA-02) et au moins une autre pompe (pompe 03) pour générer une dépression dans l'écoulement de la dispersion d'hydrocarbures et d'eau formée pour l'établissement du régime de cavitation dans l'UADA,
    - où le rapport de la pression en amont de l'agrégat de débit acoustique ultrasonique (UADA) du disperseur ultrafin, c'est-à-dire la pression amont, et de la pression en aval de l'agrégat de débit acoustique ultrasonique (UADA) du disperseur ultrafin, c'est-à-dire la dépression, est d'au moins 12.
  7. Procédé selon la revendication 6, caractérisé en ce que la dispersion fine d'hydrocarbures et d'eau, préparée dans le disperseur fin après avoir quitté le disperseur fin, est d'abord chauffée dans au moins un dispositif de chauffage, en particulier une cartouche de chauffage, jusqu'à 80 °C avant d'entrer dans le deuxième agrégat de flux acoustique ultrasonique (UADA) au moins.
  8. Procédé selon la revendication 6 ou 7, caractérisé en ce que les effets de la cavitation hydrodynamique, respectivement de la supercavitation, sont renforcés au moyen d'une thermocavitation placée en amont.
  9. Procédé selon la revendication 2, caractérisé en ce que la dispersion de séparation eau-hydrocarbures formée dans le disperseur de séparation est introduite dans au moins un réservoir de séparation pour séparer la dispersion hydrocarbure-eau en hydrocarbure et en eau.
EP21703372.9A 2020-01-23 2021-01-25 Procédé de production d'une dispersion stable d'hydrocarbures et d'eau pour améliorer les processus de combustion, et une dispersion eau-hydrocarbure qui est facilement séparable en au moins deux phases en tant que partie du processus de nettoyage à des emplacements d'accident Active EP4093535B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020101536 2020-01-23
PCT/EP2021/051598 WO2021148673A1 (fr) 2020-01-23 2021-01-25 Système et procédé de production d'une dispersion stable d'hydrocarbures et d'eau pour améliorer les processus de combustion, et une dispersion eau-hydrocarbure qui est facilement séparable en au moins deux phases en tant que partie du processus de nettoyage à des emplacements d'accident

Publications (2)

Publication Number Publication Date
EP4093535A1 EP4093535A1 (fr) 2022-11-30
EP4093535B1 true EP4093535B1 (fr) 2024-05-15

Family

ID=74553785

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21703372.9A Active EP4093535B1 (fr) 2020-01-23 2021-01-25 Procédé de production d'une dispersion stable d'hydrocarbures et d'eau pour améliorer les processus de combustion, et une dispersion eau-hydrocarbure qui est facilement séparable en au moins deux phases en tant que partie du processus de nettoyage à des emplacements d'accident

Country Status (2)

Country Link
EP (1) EP4093535B1 (fr)
WO (1) WO2021148673A1 (fr)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES428207A1 (es) * 1973-07-12 1976-07-16 Burke Procedimiento y aparato para el tratamiento de fluidos.
US4259021A (en) * 1978-04-19 1981-03-31 Paul R. Goudy, Jr. Fluid mixing apparatus and method
DE4137179C2 (de) 1991-11-12 1997-02-27 Hdc Ag Vorrichtung zum Erzeugen einer Wasser-in-Öl Emulsion und Verwendung der Vorrichtung an einem Dieselmotor
DE4139782C2 (de) 1991-12-03 1994-05-19 Roland Steinmaier Emulgiervorrichtung zum Emulgieren von Dieselkraftstoff und Wasser
DE4408392A1 (de) 1994-03-12 1995-09-28 Mtu Friedrichshafen Gmbh Vorrichtung zur Bildung einer Öl-Wasser-Emulsion
RU2130503C1 (ru) 1998-06-17 1999-05-20 Красноярский государственный технический университет Устройство для электромагнитного рафинирования электропроводных расплавов
DE10003105A1 (de) 2000-01-25 2001-07-26 Basf Ag Kraftstoff-Wasser-Emulsionen, enthaltend Emulgatoren auf Polyisobuten-Basis
DE102009036537B3 (de) * 2009-08-07 2011-02-17 Cannon Deutschland Gmbh Vorrichtung und Verfahren zur Emulgierung von Flüssigkeiten
DE102009048223A1 (de) 2009-10-05 2011-06-16 Fachhochschule Trier Verfahren zur In-Situ-Herstellung von Treibstoff-Wasser-Gemischen in Verbrennungsmotoren
RU2462301C1 (ru) 2011-03-10 2012-09-27 Овченкова Оксана Анатольевна Устройство для тепломассоэнергообмена
DK177609B1 (en) * 2012-09-14 2013-12-02 Spx Flow Technology Danmark As Method for Continuously Reversing or Breaking an Oil-in-Water Emulsion by Hydrodynamic Cavitation
RU134076U1 (ru) 2013-06-05 2013-11-10 Сергей Николаевич Тумаков Устройство для тепломассоэнергообмена
JP2016104474A (ja) * 2014-08-22 2016-06-09 有限会社情報科学研究所 共鳴発泡と真空キャビテーションによるウルトラファインバブル製造方法及びウルトラファインバブル水製造装置。
DE102019104646A1 (de) * 2018-02-26 2019-08-29 Adelheid Holzmann Verfahren zum Betreiben einer Verbrennungskraftmaschine, eine Anordnung zur Durchführung des Verfahrens zum Betreiben einer Verbrennungskraftmaschine und eine Vorrichtung zur Erzeugung einer Emulsion

Also Published As

Publication number Publication date
EP4093535A1 (fr) 2022-11-30
WO2021148673A1 (fr) 2021-07-29

Similar Documents

Publication Publication Date Title
DE69917433T2 (de) Verfahren und vorrichtung zum herstellen von flüssigdispersen systemen in flüssigkeiten
EP0766996B1 (fr) Appareil mélangeur d'un fluide très visqueux avec un fluide peu visqueux
EP0475284B1 (fr) Procédé et dispositif pour agir sur des fluides au moyen d'une onde de choc de compression
DE60117165T2 (de) Vorrichtung und verfahren zur erzeugung hydrodynamischer kavitationen in fluiden
EP0819101B1 (fr) Installation et procede d'oxydation d'une substance aqueuse
WO1996009112A1 (fr) Dispositif de production de systemes liquides, notamment d'emulsions, de suspensions ou similaires dans un champ de cavitation hydrodynamique
DE3230289A1 (de) Herstellung von pharmazeutischen oder kosmetischen dispersionen
WO2007118788A1 (fr) Procédé en continu pour conduire une réaction chimique dans laquelle une phase gazeuse est ajoutée à un flux de départ contenant une ou plusieurs phases solides dissoutes ou dispersées dans de l'eau
DE60217409T2 (de) Einrichtung zur behandlung von wasser durch flotation
DE10061386A1 (de) Verfahren und Vorrichtung zur überkritischen Nassoxidation
EP3408015B1 (fr) Procédé de production d'émulsions
EP1945337A1 (fr) Chambre de turbulence
EP0570335B1 (fr) Dispositif et procédé pour mélanger un composant pulvérulent solide dans un matériau liquide
DE3012112A1 (de) Dosier-, misch- und emulgiereinrichtung fuer nicht mischbare fluessigkeiten fuer brennstoffe
EP1771385B1 (fr) Homogeneisation hydrodynamique
DE60311667T2 (de) Fluidbehandlungsvorrichtung mit ringförmigen strömungswegen, system und verfahren
EP4093535B1 (fr) Procédé de production d'une dispersion stable d'hydrocarbures et d'eau pour améliorer les processus de combustion, et une dispersion eau-hydrocarbure qui est facilement séparable en au moins deux phases en tant que partie du processus de nettoyage à des emplacements d'accident
DE2460232C2 (de) Verfahren zur Erzeugung einer Kernströmung, ausgehend von einer Emulsion aus zwei Flüssigkeiten unterschiedlicher Viskosität
WO2005082786A1 (fr) Procede et dispositif pour traiter de l'eau chargee en substances nocives par cavitation
DE3718818A1 (de) Verfahren und vorrichtung zum mischen und aktivieren von polymeren
DE202006001952U1 (de) Vorrichtung zum Herstellen von Dispersionen
EP1432502B1 (fr) Dispositif de floculation et procede de conditionnement de suspensions colloidales
DE2604610B2 (de) Vorrichtung zur erzeugung eines unmittelbar verbrennbaren, emulgierten oel-wassergemisches
EP2492335B1 (fr) Procédé et dispositif d'homogénéisation d'un mélange de carburant solide dans un liquide
DE102014108691A1 (de) Thermische Hydrolyse von Trester und/oder Treber

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220808

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502021003725

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0015000000

Ipc: B01F0023410000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: B01F0015000000

Ipc: B01F0023410000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B01F 35/90 20220101ALN20240122BHEP

Ipc: B01F 101/00 20220101ALN20240122BHEP

Ipc: F02M 25/022 20060101ALN20240122BHEP

Ipc: C10L 1/32 20060101ALN20240122BHEP

Ipc: B01F 35/75 20220101ALI20240122BHEP

Ipc: B01F 35/71 20220101ALI20240122BHEP

Ipc: B01F 35/221 20220101ALI20240122BHEP

Ipc: B01F 25/10 20220101ALI20240122BHEP

Ipc: B01F 23/70 20220101ALI20240122BHEP

Ipc: B01F 23/45 20220101ALI20240122BHEP

Ipc: B01F 23/41 20220101AFI20240122BHEP

INTG Intention to grant announced

Effective date: 20240207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003725

Country of ref document: DE