EP4088294B1 - Interrupteur sécurisé - Google Patents
Interrupteur sécurisé Download PDFInfo
- Publication number
- EP4088294B1 EP4088294B1 EP20719471.3A EP20719471A EP4088294B1 EP 4088294 B1 EP4088294 B1 EP 4088294B1 EP 20719471 A EP20719471 A EP 20719471A EP 4088294 B1 EP4088294 B1 EP 4088294B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electromagnet
- relay
- contact
- contacts
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 description 13
- 230000005281 excited state Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000005484 gravity Effects 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H47/00—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
- H01H47/002—Monitoring or fail-safe circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H3/00—Mechanisms for operating contacts
- H01H3/001—Means for preventing or breaking contact-welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H47/00—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
- H01H47/002—Monitoring or fail-safe circuits
- H01H47/004—Monitoring or fail-safe circuits using plural redundant serial connected relay operated contacts in controlled circuit
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H47/00—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
- H01H47/002—Monitoring or fail-safe circuits
- H01H47/004—Monitoring or fail-safe circuits using plural redundant serial connected relay operated contacts in controlled circuit
- H01H47/005—Safety control circuits therefor, e.g. chain of relays mutually monitoring each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/54—Contact arrangements
Definitions
- the present invention relates to a secure switch and, more generally, to the field of electrical switching devices.
- Secure electrical switching devices such as relay-based switches, which are used to authorize or, alternately, interrupt the flow of an electric current in an electrical circuit.
- switching devices containing one or more electromechanical relays whose contacts are connected together in series to form an electrical interruption circuit, called a safety chain, which is used for example to electrically connect an electrical load to an electrical source .
- the safety chain is switchable, depending on the state of the relays, between a blocking state, in which at least one of the contacts is open to prevent the circulation of an electric current, and a passing state, in which all the contacts are closed to allow the flow of current.
- Such devices are generally used in control-command systems, for example for controlling railway installations or railway equipment, and must meet high safety and reliability requirements.
- Such a device must be able to guarantee that in the absence of a control signal, the safety chain is switched to an open state, and therefore that the electrical load cannot be supplied.
- such a device must guarantee that the safety chain cannot remain in a conducting state in the event of a failure, for example following the accidental maintenance of one of the contacts in the closed state.
- devices are known containing two electromechanical relays with guided contacts controlled by an electronic control unit which permanently measures the state of each of the two contacts. If one of these contacts remains closed while the corresponding relay is not controlled, then the control unit detects it and prevents the excitation of the other relay in order to maintain the safety chain in its blocking state.
- DE 44 41 171 C1 describes a switching device containing electromechanical relays interconnected with each other.
- the operation of this device is not satisfactory in certain circumstances, in particular with regard to the switching order of the relays during a change of state.
- the invention more particularly intends to remedy by proposing a secure switch for the power supply of electrical appliances of simplified design and which ensures, in a secure manner, the opening of an electrical circuit in the event of a failure.
- one aspect of the invention relates to a switch as defined in claim 1.
- the interconnection circuit conditions the power supply of the electromagnet of each relay according to the state occupied by the other relay, which ensures, intrinsically, control of the state of the Interrupt circuit contacts, without the need for an electronic control unit.
- the configuration of the interconnection circuit makes it possible to guarantee that the opening or closing of the relays is done with a specific sequencing defined in advance, in particular to prevent the safety chain from being in the on state while 'she shouldn't be.
- FIG. 1 represents a secure switch 1, which includes an interruption circuit 2, also called a safety chain.
- circuit 2 is intended to be connected to an electrical circuit, for example an electrical appliance to an electrical power source.
- circuit 2 is provided with connection terminals 22.
- Circuit 2 is switchable, selectively and reversibly, between a blocking state, which prevents the circulation of an electric current through circuit 2, and a passing state, which authorizes the circulation of an electric current through the circuit 2.
- This switching is controlled here by supplying a control signal to the control electrodes of switch 1, which here bear the references 131 and 132.
- switch 1 In the absence of a control signal, switch 1 remains in the blocking state and in the presence of a control signal, switch 1 switches to the on state.
- control signal is an electrical voltage, denoted Vcc, applied between electrodes 131 and 132.
- the electrical voltage Vcc is a direct voltage, of amplitude greater than or equal to 24 V and less than or equal to 110 V.
- the switch 1 is configured to guarantee secure switching of circuit 2 between its blocking and conducting states, in particular to prevent circuit 2 from remaining in the conducting state while no control signal is applied to the switch 1.
- the switch 1 has a high level of safety, for example level “SIL 4” on the safety scale called “Safety Integrity Level” as defined by the IEC 61508 standard of the International Electrotechnical Commission or by the standard EN 50129.
- level “SIL 4” on the safety scale called “Safety Integrity Level” as defined by the IEC 61508 standard of the International Electrotechnical Commission or by the standard EN 50129.
- the switch 1 is preferably intended to be used in a control-command system, for example in the railway sector. According to variants, switch 1 can also be used in a power circuit to control the power supply to an electrical device.
- circuit 2 is adapted to receive, between its terminals 22, a continuous electrical signal having an electrical voltage less than or equal to 110 Volts and an electric current less than or equal to 3.5 A .
- the switch 1 comprises a first electromechanical relay 10, a second electromechanical relay 11 and an interconnection circuit 13 which connects the relays 10 and 11 together as explained in the following.
- the switch 1 also comprises an external housing, not illustrated, for example made of plastic material, and inside which the components of the switch 1 are housed.
- the housing can have a paving stone shape with dimensions for example equal to 12cm x 9 cm x 2cm.
- the relay 10 comprises an electromagnet 101 and movable electrical contacts 102, 103, 104 and 105 coupled with the electromagnet 101. Each of the contacts 102, 103, 104 and 105 is switchable between an open state and a closed state.
- contact 102 is of the “normally closed” type, while contacts 103, 104 and 105 are of the “normally open” type.
- Switching is carried out by means of the electromagnet 101, also called coil 101 in the following, which exerts an electromagnetic force on the contacts 102, 103, 104 and 105 when it is electrically powered.
- the relay 10 When the electromagnet 101 is not powered, the relay 10 remains in an inactive state, also called a rest state, and the contacts 102, 103, 104 and 105 remain in a corresponding rest state.
- the “normally closed” type contact 102 remains closed, while the contacts 103, 104 and 105 remain open.
- relay 10 is illustrated in its inactive state.
- the contacts 102, 103, 104 and 105 switch to their opposite state.
- contact 102 opens, while contacts 103, 104 and 105 close.
- Relay 10 is said to be activated or energized. As long as the electromagnet 101 is powered, the contacts 102, 103, 104 and 105 are maintained in this state and the relay 10 remains energized.
- the relay 10 here is an electromechanical relay with guided contacts, that is to say that the contacts 102, 103, 104 and 105 are mechanically coupled to each other.
- a relay with guided contacts is for example described by standard NF EN 50205.
- the relay 11 comprises an electromagnet 111 and movable electrical contacts 112, 113 and 114 coupled to the electromagnet 111.
- Each of the contacts 112, 113 and 114 is switchable between an open state and a closed state by means of the electromagnet 111.
- contact 112 is of the “normally closed” type, while contacts 113 and 114 are of the “normally open” type.
- relay 11 is illustrated in its inactive state.
- Relay 11 is also an electromechanical relay with guided contacts.
- the contacts 105 and 114 are electrically connected in series with each other to form the interruption circuit 2.
- the circuit 2 is in the blocking state when at least one of the contacts 105 and 114 is open, and is in the The on state only when the two contacts 105 and 114 are closed.
- the relays 10 and 11 belong to different manufacturing series and/or come from different manufacturers. This considerably reduces the risk that relays 10 and 11 are both affected simultaneously by the same manufacturing defect likely to compromise their operation.
- the relay 10 comprises a housing inside which the electromagnet 101 and the contacts 102, 103, 104 and 105 are housed.
- the relay 11 comprises a housing inside which the electromagnet is housed 111 and contacts 112, 113 and 114.
- the switch 1 may also include one or more additional interrupt circuits, similar to the interrupt circuit 2.
- the relays 10 and 11 may include additional mobile contacts, of the "normally open" type. which are mechanically coupled with contacts 102, 103, 104, 105 or 112, 113 and 114, respectively.
- Each additional interruption circuit may include an additional contact of the first relay 10 and an additional contact of the second relay 11, electrically connected in series. What is described with reference to interruption circuit 2 therefore also applies to these additional interruption circuits.
- the relays 10 and 11 may include additional contacts, which are not connected to the interconnection circuit 13 nor to the interruption circuit 2.
- the switch 1 further comprises a resistor 14 connected in series between the electromagnet 111 and the contact 113 of the second relay 11.
- resistor 14 is a wirewound resistor, although alternatively other implementations are possible.
- the resistor 14 forms a voltage divider bridge which makes it possible to lower the electrical voltage present between the terminals of the energy reserve 12 when the latter is in a loading configuration, for example when the contacts 104 and 113 are closed and the control voltage Vcc is applied between terminals 131 and 132.
- the switch 1 advantageously includes a rechargeable energy reserve 12, the role of which is described in more detail in the following.
- energy reserve 12 is a capacitor.
- the electromagnet 101 of the first relay 10 has a control voltage different from the control voltage of the electromagnet 111 of the second relay 11.
- control voltage here designates the electrical voltage which it is necessary to apply to the terminals of the electromagnet to energize the relay. In other words, the relay is not energized if a voltage lower than the control voltage is applied across the electromagnet terminals.
- control voltage of the electromagnet 101 of the first relay 10 is greater than the control voltage of the electromagnet 111 of the second relay 11, more preferably greater than twice the control voltage of the electromagnet 111.
- control voltage of the electromagnet 101 of the first relay 10 is equal to 24 Volts.
- the control voltage of the electromagnet 111 of the second relay 11 is equal to 6 Volts.
- the energy reserve 12 is dimensioned so that, once the relays 10 and 11 are energized, the electrical voltage that it delivers when discharging is strictly lower than the control voltage of the electromagnet 101 of the first relay 10 while being greater than the control voltage of the electromagnet 111 of the second relay 11.
- the quantity of energy storable by the energy reserve, denoted E is greater than or equal to the quantity of energy, denoted Emin, which is necessary to power the second electromagnet 111 so as to switch the second relay 11 from the inactive state to the excited state.
- the amount of energy E is greater than or equal to the amount of energy Emin and is less than or equal to 1.5 x Emin, or less than or equal to 1.2 x Emin.
- the energy reserve 12 is a capacitor with a capacity equal to 47 ⁇ F.
- the electromagnet 111 here has a resistance equal to 500 ⁇ .
- the interconnection circuit 13 connects the relays 10 and 11 to each other and, more precisely, connects the electromagnets 101, 111 and the contacts 102, 103, 104, 112, 113 to each other as described below.
- the interconnection circuit 13 further connects the energy reserve 12 to the relays 10 and 11.
- circuit 13 is electrically isolated from interruption circuit 2.
- circuit 13 comprises a substrate on which electrically conductive tracks are provided.
- the relays 10 and 11 are mounted on this substrate and electrodes corresponding to the electromagnets 101, 111 and the corresponding contacts are connected to these electrically conductive tracks.
- circuit 13 can be made using cables to connect relays 10 and 11.
- the circuit 13 comprises the control electrodes 131 and 132.
- the circuit 13 may comprise other control electrodes, for example a pair of control electrodes dedicated to each of the electromagnets 101 and 111 and intended to receive the same control signal to control switch 1.
- FIG. 1 represents the electrical diagram of switch 1 when circuit 13 connects relays 10 and 11 and relays 10 and 11 are inactive.
- the first electromagnet 101 is connected to the control electrodes 131, 132 via the contact 112 and the contact 103. More precisely, the contact 103 and the contact 112 are connected in parallel to each other with respect to the 'other. Contact 103 and contact 112 are both connected between electrode 132 and a first terminal of electromagnet 101. A second terminal of electromagnet 101 is connected to the other electrode 131.
- connection of the electromagnet 101 to the control electrodes 131, 132 is conditioned by the state of the second relay 11.
- the second electromagnet 111 is here connected to the control electrodes 131, 132 via contacts 102, 104 and 103 to connect or, alternately, disconnect the second electromagnet 111 from the control electrodes 131, 132 depending on the state of the first relay 10.
- the energy reserve 12 is connected to the electrodes 131, 132 and to the second electromagnet 111 via contacts 102 and 104.
- contact 104 connects one terminal of the second electromagnet 111 to a first terminal of the energy reserve 12.
- a second terminal of the energy reserve 12 and the other terminal of the electromagnet 111 are here connected to the electrode 131.
- the contact 102 connects the first terminal of the energy reserve 12 to a first terminal of the electromagnet 101 to which the contacts 103 and 112 are connected.
- the energy reserve 12 can only be connected to the electrode 132 via contacts 102 or 104.
- the second electromagnet 111 is further connected to the control electrode 132 via contact 113 of the second relay 11.
- Switching is however prevented if one of the relays 10, 11 is initially in an abnormal state, for example because one of the contacts 105 or 114 is stuck in the closed state. Circuit 2 then remains in the blocked configuration, which ensures that the interrupt circuit of switch 1 remains in the open state.
- connection of the electromagnets 101 and 111 to the electrode 132 by the contacts, respectively, 103 and 113 ensures that the corresponding relay 10, 11 is maintained in the excited state once this relay has switched to the excited state and as long as a control signal is present.
- control signal ceases to be received on the electrodes 131, 132, if one of the contacts 105 or 114 remains stuck in the closed state, then switching of the other contact 105, 114 is prevented .
- the control of the state of the contacts 105, 114 is carried out intrinsically, without using an external electronic control unit, and without using either to a mechanical device dependent on earth's gravitation for its operation.
- relays 10 and 11 undergo different wear due to the switching sequence chosen.
- the second relay 11 tends to wear out more quickly than the first relay 10 due to the fact that it experiences current inrush more frequently than the first relay 10, particularly during the closing sequence of the safety chain. This differentiated wear makes it possible to prevent the two relays 10 and 11 from suffering simultaneous failure from the same cause of wear.
- the second electromagnet 111 can be connected to second control electrodes.
- the contact 113 can connect the electromagnet 111 to a second electrode distinct from the electrode 132.
- the contact 102 can also connect the first terminal of the energy reserve 12 to this second electrode.
- the control signal is then applied both to these second control electrodes and to the electrodes 131 and 132.
- circuit 2 is switched from the blocking state to the on state in response to a control signal.
- relays 10 and 11 are initially inactive. Contacts 102 and 112 are in the closed state, while contacts 103, 104, 105, 113, 114 are in the open state. No control signal is applied between the electrodes 131, 132. The contacts 105, 114 are in the open state and circuit 2 is therefore in a blocking state.
- the energy reserve 12 is not able to power the coil 101 to activate the first relay, in particular because the maximum voltage that the energy reserve 12 can deliver is lower than the control voltage of the coil 101. Furthermore, in practice, the energy reserve 12 is generally empty or partially discharged at this stage.
- the energy reserve 12 can then discharge into the coil 101 without being able to change the state of the relay 10, since it cannot provide enough energy.
- a control signal such as an electrical voltage Vcc, is applied between the electrodes 131 and 132.
- the energy reserve 12 is connected to the electrode 132 via contacts 102 and 112 which are both in the closed state. It is therefore recharged from a fraction of the electrical voltage Vcc.
- the electromagnet 101 is connected to the electrode 132 via the contact 112. At this stage, the contact 112 is in the state closed and contact 103 is in the open state.
- the electrical voltage applied between the terminals of the energy reserve 12 is equal to the electrical voltage applied between the terminals of the first electromagnet 101.
- This electrical voltage is, for example, greater than the control voltage of the first electromagnet 101.
- coil 101 As coil 101 is supplied with a voltage greater than its control voltage, relay 10 is energized. For example, coil 101 generates an electromagnetic force which causes contacts 102, 103, 104 and 105 to switch.
- relay 10 switches to the excited state.
- Contact 102 opens and contacts 103, 104 and 105 close.
- Arrow F1 illustrates the closing of contact 105.
- this switching is not instantaneous but occurs after a first switching time, for example less than or equal to 100ms.
- Circuit 2 is still in a blocking state, which prevents the flow of current through circuit 2.
- the electromagnet 101 continues to be powered, this time via contact 103 which is closed. This ensures that relay 10 is maintained in the energized state as long as the control signal is supplied to switch 1.
- the energy reserve 12 is no longer connected to the electrode 132 and therefore is no longer electrically recharged from the voltage Vcc.
- contact 102 is now in the open state and contact 113 is still in the open state.
- electromagnet 111 is connected with energy reserve 12, which allows energy reserve 12 to discharge into electromagnet 111 to electrically power the latter.
- the electromagnet 111 triggers the switching of the relay 11 to the excited state, as illustrated in Fig. figure 5 .
- Contact 112 opens and contacts 113 and 114 close.
- Arrow F2 illustrates the closing of contact 114.
- this switching is not instantaneous but occurs after a second switching time, for example less than or equal to 100ms.
- circuit 2 switches to the on state, thus authorizing the circulation of an electric current.
- the electromagnet 111 continues to be powered, this time via contact 113 which is closed. This ensures that relay 11 is maintained in the energized state as long as the control signal is supplied to switch 1.
- the electrical voltage applied to the terminals of the energy reserve 12 is reduced to reach a holding voltage with a predefined value, chosen to guarantee that only a small quantity of energy is actually stored in the energy reserve 12. This makes it possible, among other things, to guarantee rapid switching of the relay 11 when the control signal is interrupted, since the energy reserve 12 will not be able to maintain the relay 11 in the position for too long. excited state.
- the energy reserve 12 can be transiently connected to the electromagnet 111 when the relays 10 and 11 return to their inactive state, it does not contain sufficient energy to energize the relay 11 again.
- the energy reserve 12 is equally incapable of energizing the relay 10 at the end of the switching, because although it is connected to the electromagnet 101 via the relay 102, which returns to its closed state once relay 10 becomes inactive again, the voltage supplied by the energy reserve 12 remains lower than the control voltage necessary to excite the electromagnet 101.
- switch 1 is said to be “secure” in that it guarantees that circuit 2 cannot switch to the on state if one of the contacts 105 or 114 remains stuck in the closed state when the control signal is missing.
- contact 114 cannot be closed when a control signal is subsequently applied.
- contacts 104 and 103 are closed and contact 102 is open when contact 105 is closed, even in the absence of power to the electromagnet 101.
- the electromagnet 111 is disconnected from the electrode 132, because the contacts 102 and 113 are open.
- the electromagnet 111 is only connected to the energy reserve 12 which at this stage does not contain sufficient energy to switch the relay 11.
- the electromagnet 111 cannot therefore be energized and therefore the relay 11 cannot be switched to the excited state. Circuit 2 remains in the blocking state.
- contact 105 cannot be closed when a control signal is subsequently applied. Indeed, as the contacts of relay 11 are coupled together, then contact 113 is closed and contact 112 is open when contact 114 is closed, even in the absence of power supply to the electromagnet 111. In this case, the electromagnet 101 is disconnected from the electrode 132, because the contacts 112 and 103 are open. The electromagnet 101 cannot therefore be energized and therefore the relay 10 cannot be switched to the energized state. Circuit 2 remains in the blocking state.
- the probability of simultaneous failure of contacts 105 and 114 is extremely low here, for example less than 10 -9 occurrences per hour, which guarantees a good level of security for switch 1.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Relay Circuits (AREA)
Description
- La présente invention se rapporte à un interrupteur sécurisé et, plus généralement, au domaine des appareils de commutation électrique.
- On connaît des appareils de commutation électriques sécurisés, tels que des interrupteurs à base de relais, qui sont utilisés pour autoriser ou, en alternance, interrompre la circulation d'un courant électrique dans un circuit électrique.
- Sont notamment connus des appareils de commutation contenant un ou plusieurs relais électromécaniques dont des contacts sont connectés entre eux en série pour former un circuit électrique d'interruption, dit chaîne de sécurité, qui sert par exemple pour raccorder électriquement une charge électrique à une source électrique.
- La chaîne de sécurité est commutable, en fonction de l'état des relais, entre un état bloquant, dans laquelle au moins un des contacts est ouvert pour empêcher la circulation d'un courant électrique, et un état passant, dans laquelle tous les contacts sont fermés pour autoriser la circulation du courant.
- De tels appareils sont généralement utilisés dans des systèmes de contrôle-commande, par exemple pour le pilotage d'installations ferroviaires ou d'équipements ferroviaires, et doivent répondre à des exigences de sécurité et de fiabilité élevées.
- Un tel appareil doit être en mesure de garantir qu'en l'absence d'un signal de commande, la chaîne de sécurité soit commutée vers un état ouvert, et donc que la charge électrique ne puisse pas être alimentée. En particulier, un tel appareil doit garantir que la chaîne de sécurité ne puisse pas rester dans un état passant en cas de défaillance, par exemple suite au maintien accidentel d'un des contacts dans l'état fermé.
- On connaît par exemple des relais de sécurité dits intrinsèques, dans lesquels, lorsque le relais n'est plus alimenté, les contacts électriques de la chaîne de sécurité s'ouvrent sous l'effet de la gravité, tels que les relais NS1 définis dans la norme NF 70-030. Ces relais ont cependant pour inconvénient d'être lourds et volumineux. Ils doivent en outre être installés avec une orientation particulière en fonction du sens de la pesanteur terrestre. Leur utilisation s'en trouve donc compliquée. Ces relais sont également difficiles à miniaturiser, ce qui peut être un frein à leur utilisation dans certaines applications.
- D'autre part, on connaît des dispositifs contenant deux relais électromécaniques à contacts guidés pilotés par une unité de commande électronique qui mesure en permanence l'état de chacun des deux contacts. Si l'un de ces contacts reste fermé alors que le relais correspondant n'est pas commandé, alors l'unité de contrôle le détecte et empêche l'excitation de l'autre relais afin de maintenir la chaîne de sécurité dans son état bloquant.
- Un tel dispositif a cependant pour inconvénient de nécessiter une unité de commande électronique dédiée pour mesurer l'état des relais ce qui, en plus d'être coûteux et de compliquer l'installation et le fonctionnement du dispositif, nécessite de fournir en permanence une alimentation en énergie.
-
DE 35 41 338 A1 divulgue un interrupteur selon le préambule de la revendication 1. - Enfin,
DE 44 41 171 C1 décrit un appareil de commutation contenant des relais électromécaniques interconnectés entre eux. Toutefois, le fonctionnement de cet appareil n'est pas satisfaisant dans certaines circonstances, notamment en ce qui concerne l'ordre de commutation des relais lors d'un changement d'état. - C'est à ces inconvénients qu'entend plus particulièrement remédier l'invention en proposant un interrupteur sécurisé pour l'alimentation d'appareils électriques de conception simplifiée et qui assure, de façon sécurisée, l'ouverture d'un circuit électrique en cas de défaillance.
- A cet effet, un aspect de l'invention concerne un interrupteur tel que défini à la revendication 1.
- Grâce à l'invention, le circuit d'interconnexion conditionne l'alimentation de l'électroaimant de chaque relais en fonction de l'état occupé par l'autre relais, ce qui assure, de façon intrinsèque, un contrôle de l'état des contacts du circuit d'interruption, sans avoir besoin d'une unité de commande électronique.
- Ainsi, si l'un des deux contacts électriques du circuit d'interruption subit une défaillance et que le relais auquel il appartient est dans un état anormal, l'autre relais ne pourra pas être excité, ce qui permet de maintenir l'autre contact électrique du circuit d'interruption à l'état ouvert.
- Cette sécurité intrinsèque est ici assurée sans faire appel à la pesanteur terrestre, ce qui permet de réduire la complexité mécanique et la taille de l'interrupteur par rapport aux relais intrinsèques connus. De plus, l'interrupteur n'est pas tributaire de la pesanteur terrestre et peut donc être installé sans contrainte d'orientation.
- De plus, la configuration du circuit d'interconnexion permet de garantir que l'ouverture ou la fermeture des relais se fasse avec un séquencement spécifique défini à l'avance, notamment pour éviter que la chaîne de sécurité soit dans l'état passant alors qu'elle ne devrait pas l'être.
- Des aspects avantageux mais non obligatoires de l'invention sont énoncés aux autres revendications.
- L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront plus clairement à la lumière de la description qui va suivre, d'un mode de réalisation d'un interrupteur donné uniquement à titre d'exemple et faite en référence aux dessins annexés, dans lesquels :
- [
Fig 1 ] lafigure 1 représente, de façon schématique, un interrupteur conforme à des modes de réalisation de l'invention ; - [
Fig 2 ] lafigure 2 représente, de façon schématique, le schéma électrique équivalent de l'interrupteur de lafigure 1 , dans un premier état au cours de son fonctionnement ; - [
Fig 3 ] lafigure 3 représente, de façon schématique, le schéma électrique équivalent de l'interrupteur de lafigure 1 , dans un deuxième état au cours de son fonctionnement ; - [
Fig 4 ] lafigure 4 représente, de façon schématique, le schéma électrique équivalent de l'interrupteur de lafigure 1 , dans un troisième état au cours de son fonctionnement ; - [
Fig 5 ] lafigure 5 représente, de façon schématique, le schéma électrique équivalent de l'interrupteur de lafigure 1 , dans un quatrième état au cours de son fonctionnement. - La
figure 1 représente un interrupteur 1 sécurisé, qui comporte un circuit d'interruption 2, aussi nommé chaîne de sécurité. - Par exemple, le circuit 2 est destiné à être connecté à un circuit électrique, par exemple un appareil électrique à une source d'alimentation électrique. A cet effet, le circuit 2 est pourvu de terminaux de connexion 22.
- Le circuit 2 est commutable, de façon sélective et réversible, entre un état bloquant, qui empêche la circulation d'un courant électrique au travers du circuit 2, et un état passant, qui autorise la circulation d'un courant électrique au travers du circuit 2.
- Cette commutation est ici commandée en fournissant un signal de commande sur des électrodes de commande de l'interrupteur 1, qui portent ici les références 131 et 132.
- En l'absence de signal de commande, l'interrupteur 1 reste dans l'état bloquant et en présence d'un signal de commande, l'interrupteur 1 commute vers l'état passant.
- Dans cet exemple, le signal de commande est une tension électrique, notée Vcc, appliquée entre les électrodes 131 et 132.
- A titre d'exemple illustratif, la tension électrique Vcc est une tension continue, d'amplitude supérieure ou égale à 24 V et inférieure ou égale à 110 V.
- L'interrupteur 1 est configuré pour garantir une commutation sécurisée du circuit 2 entre ses états bloquant et passant, en particulier pour éviter que le circuit 2 ne reste dans l'état passant alors qu'aucun signal de commande n'est appliqué sur l'interrupteur 1.
- De préférence, l'interrupteur 1 présente un niveau élevé de sécurité, par exemple de niveau « SIL 4 » sur l'échelle de sécurité dite « Safety Integrity Level » telle que définie par la norme IEC 61508 de la Commission Electrotechnique Internationale ou par la norme EN 50129.
- L'interrupteur 1 est de préférence destiné à être utilisé dans un système de contrôle-commande, par exemple dans le domaine ferroviaire. Selon des variantes, l'interrupteur 1 peut également être utilisé dans un circuit de puissance pour commander l'alimentation électrique d'un appareil électrique.
- A titre d'exemple illustratif et non nécessairement limitatif, le circuit 2 est adapté pour recevoir, entre ses bornes 22, un signal électrique continu présentant une tension électrique inférieure ou égale à 110 Volts et un courant électrique inférieur ou égal à 3,5 A.
- Comme illustré sur l'exemple de la
figure 1 , l'interrupteur 1 comporte un premier relais électromécanique 10, un deuxième relais électromécanique 11 et un circuit d'interconnexion 13 qui connecte les relais 10 et 11 entre eux comme expliqué dans ce qui suit. - Avantageusement, l'interrupteur 1 comporte également un boîtier extérieur, non illustré, par exemple réalisé en matière plastique, et à l'intérieur duquel sont logés les constituants de l'interrupteur 1. A titre d'exemple illustratif, le boîtier peut présenter une forme de pavé avec des dimensions par exemple égales à 12cm x 9 cm x 2cm.
- Le relais 10 comporte un électroaimant 101 et des contacts électriques mobiles 102, 103, 104 et 105 couplés avec l'électroaimant 101. Chacun des contacts 102, 103, 104 et 105 est commutable entre un état ouvert et un état fermé.
- Dans cet exemple, le contact 102 est de type « normalement fermé », alors que les contacts 103, 104 et 105 sont de type « normalement ouvert ».
- La commutation est réalisée au moyen de l'électroaimant 101, aussi nommé bobine 101 dans ce qui suit, qui exerce une force électromagnétique sur les contacts 102, 103, 104 et 105 lorsqu'il est alimenté électriquement.
- Lorsque l'électroaimant 101 n'est pas alimenté, le relais 10 reste dans un état inactif, aussi dit état de repos, et les contacts 102, 103, 104 et 105 restent dans un état de repos correspondant. Ici, dans l'état de repos, le contact 102 de type « normalement fermé » reste fermé, tandis que les contacts 103, 104 et 105 restent ouverts. A la
figure 1 , le relais 10 est illustré dans son état inactif. - Lorsque l'électroaimant 101 est alimenté électriquement, ici par le signal de commande, alors les contacts 102, 103, 104 et 105 commutent vers leur état opposé. Ici, le contact 102 s'ouvre, tandis que les contacts 103, 104 et 105 se ferment. Le relais 10 est dit être activé ou excité. Tant que l'électroaimant 101 est alimenté, les contacts 102, 103, 104 et 105 sont maintenus dans cet état et le relais 10 reste excité.
- Le relais 10 est ici un relais électromécanique à contacts guidés, c'est-à-dire que les contacts 102, 103, 104 et 105 sont couplés mécaniquement entre eux. Un tel relais à contacts guidés est par exemple décrit par la norme NF EN 50205.
- Ainsi, si un des contacts 102, 103, 104 et 105 reste accidentellement bloqué dans un état donné, quel que soit l'état de l'électroaimant 101, alors les autres contacts 102, 103, 104 et 105 sont maintenus bloqués dans un état correspondant. Par exemple, si le contact 102 reste bloqué dans l'état ouvert même en l'absence d'excitation de l'électroaimant 101, alors les contacts 103, 104 et 105 restent dans l'état fermé. Le relais 10 reste alors bloqué dans l'état excité. En d'autres termes, les contacts d'un tel relais ne peuvent pas commuter entre leurs états ouvert et fermé indépendamment les uns des autres.
- De façon analogue, le relais 11 comporte un électroaimant 111 et des contacts électriques mobiles 112, 113 et 114 couplés à l'électroaimant 111. Chacun des contacts 112, 113 et 114 est commutable entre un état ouvert et un état fermé au moyen de l'électroaimant 111. Dans cet exemple, le contact 112 est de type « normalement fermé », alors que les contacts 113 et 114 sont de type « normalement ouvert ». Sur la
figure 1 , le relais 11 est illustré dans son état inactif. Le relais 11 est également un relais électromécanique à contacts guidés. - Les contacts 105 et 114 sont connectés électriquement en série entre eux pour former le circuit d'interruption 2. Ainsi, le circuit 2 est dans l'état bloquant lorsqu'au moins un des contacts 105 et 114 est ouvert, et se trouve dans l'état passant uniquement lorsque les deux contacts 105 et 114 sont fermés.
- Avantageusement, les relais 10 et 11 appartiennent à des séries de fabrication différentes et/ou proviennent de constructeurs différents. Cela réduit considérablement le risque que les relais 10 et 11 soient tous deux affectés simultanément par un même défaut de fabrication susceptible de compromettre leur fonctionnement.
- De préférence, le relais 10 comporte un boîtier à l'intérieur duquel sont logés l'électroaimant 101 et les contacts 102, 103, 104 et 105. De même, le relais 11 comporte un boîtier à l'intérieur duquel sont logés l'électroaimant 111 et les contacts 112, 113 et 114.
- En variante, l'interrupteur 1 peut en outre comporter un ou plusieurs circuits d'interruption additionnels, analogues au circuit d'interruption 2. Par exemple, les relais 10 et 11 peuvent comporter des contacts mobiles supplémentaires, de type « normalement ouvert », qui sont couplés mécaniquement avec les contacts 102, 103, 104, 105 ou 112, 113 et 114, respectivement. Chaque circuit d'interruption additionnel peut comporter un contact supplémentaire du premier relais 10 et un contact supplémentaire du deuxième relais 11, connectés électriquement en série. Ce qui est décrit en référence au circuit d'interruption 2 s'applique donc également à ces circuits d'interruption additionnels.
- Selon une autre variante, les relais 10 et 11 peuvent comporter des contacts supplémentaires, qui ne sont pas connectés au circuit d'interconnexion 13 ni au circuit d'interruption 2.
- Avantageusement, l'interrupteur 1 comporte en outre une résistance 14 connectée en série entre l'électroaimant 111 et le contact 113 du deuxième relais 11. Selon des exemples, la résistance 14 est une résistance bobinée, bien qu'en variante d'autres implémentations sont possibles.
- Par exemple, la résistance 14 forme un pont diviseur de tension qui permet d'abaisser la tension électrique présente entre les bornes de la réserve d'énergie 12 lorsque celle-ci est dans une configuration de chargement, par exemple lorsque les contacts 104 et 113 sont fermés et que la tension de commande Vcc est appliquée entre les bornes 131 et 132.
- L'interrupteur 1 comporte avantageusement une réserve d'énergie rechargeable 12, dont le rôle est décrit plus en détail dans ce qui suit. Par exemple, la réserve d'énergie 12 est un condensateur.
- De préférence, l'électroaimant 101 du premier relais 10 présente une tension de commande différente de la tension de commande de l'électroaimant 111 du deuxième relais 11.
- L'expression « tension de commande » désigne ici la tension électrique qu'il est nécessaire d'appliquer aux bornes de l'électroaimant pour exciter le relais. En d'autres termes, le relais n'est pas excité si une tension inférieure à la tension de commande est appliquée entre les bornes de l'électroaimant.
- De préférence, la tension de commande de l'électroaimant 101 du premier relais 10 est supérieure à la tension de commande de l'électroaimant 111 du deuxième relais 11, de préférence encore supérieure à deux fois la tension de commande de l'électroaimant 111.
- Par exemple, la tension de commande de l'électroaimant 101 du premier relais 10 est égale à 24 Volts. La tension de commande de l'électroaimant 111 du deuxième relais 11 est égale à 6 Volts.
- Avantageusement, la réserve d'énergie 12 est dimensionnée pour que, une fois les relais 10 et 11 sont excités, la tension électrique qu'elle délivre en se déchargeant soit strictement inférieure à la tension de commande de l'électroaimant 101 du premier relais 10 tout en étant supérieure à la tension de commande de l'électroaimant 111 du deuxième relais 11.
- De préférence, la quantité d'énergie stockable par la réserve d'énergie, notée E, est supérieure ou égale à la quantité d'énergie, notée Emin, qui est nécessaire pour alimenter le deuxième électroaimant 111 de sorte à commuter le deuxième relais 11 de l'état inactif vers l'état excité. Par exemple, la quantité d'énergie E est supérieure ou égale à la quantité d'énergie Emin et est inférieure ou égale à 1,5 x Emin, ou inférieure ou égale à 1,2 x Emin.
- A titre d'exemple illustratif, la réserve d'énergie 12 est un condensateur de capacité égale à 47 µF. L'électroaimant 111 présente ici une résistance égale à 500 Ω.
- Le circuit d'interconnexion 13 connecte les relais 10 et 11 entre eux et, plus précisément, raccorde les électroaimants 101, 111 et les contacts 102, 103, 104, 112, 113 entre eux comme décrit ci-après. Le circuit d'interconnexion 13 raccorde en outre la réserve d'énergie 12 aux relais 10 et 11.
- De préférence, le circuit 13 est isolé électriquement du circuit d'interruption 2.
- Par exemple, le circuit 13 comporte un substrat sur lequel sont ménagées des pistes électriquement conductrices. Les relais 10 et 11 sont montés sur ce substrat et des électrodes correspondant aux électroaimants 101, 111 et aux contacts correspondants sont connectés à ces pistes électriquement conductrices.
- En variante, le circuit 13 peut être réalisé au moyen de câbles pour connecter les relais 10 et 11.
- Dans cet exemple, le circuit 13 comporte les électrodes de commande 131 et 132. En variante, le circuit 13 peut comporter d'autres électrodes de commande, par exemple une paire d'électrodes de commande dédiée à chacun des électroaimants 101 et 111 et destinés à recevoir un même signal de commande pour commander l'interrupteur 1.
- La
figure 2 représente le schéma électrique de l'interrupteur 1 lorsque le circuit 13 connecte les relais 10 et 11 et que les relais 10 et 11 sont inactifs. - Dans cet exemple, le premier électroaimant 101 est relié aux électrodes de commande 131, 132 par l'intermédiaire du contact 112 et du contact 103. Plus précisément, le contact 103 et le contact 112 sont connectés en parallèle l'un par rapport à l'autre. Le contact 103 et le contact 112 sont connectés tous deux entre l'électrode 132 et une première borne de l'électroaimant 101. Une deuxième borne de l'électroaimant 101 est connectée à l'autre électrode 131.
- De cette manière, la connexion de l'électroaimant 101 aux électrodes de commande 131, 132 est conditionnée par l'état du deuxième relais 11.
- Le deuxième électroaimant 111 est ici relié aux électrodes de commande 131, 132 par l'intermédiaire des contacts 102, 104 et 103 pour connecter ou, en alternance, déconnecter le deuxième électroaimant 111 des électrodes de commande 131, 132 en fonction de l'état du premier relais 10.
- En outre, la réserve d'énergie 12 est connectée aux électrodes 131, 132 et au deuxième électroaimant 111 par l'intermédiaire des contacts 102 et 104.
- Le circuit 13 est ainsi agencé pour que les contacts 102 et 104 :
- autorisent le chargement de la réserve d'énergie 12 depuis les électrodes de commande 131, 132 lorsque le contact 105 est ouvert, et
- autorisent le déchargement de la réserve d'énergie 12 dans le deuxième électroaimant 111 lorsque le premier contact 105 est fermé.
- A cet effet, le contact 104 relie une borne du deuxième électroaimant 111 à une première borne de la réserve d'énergie 12. Une deuxième borne de la réserve d'énergie 12 et l'autre borne de l'électroaimant 111 sont ici connectées à l'électrode 131. Le contact 102 relie la première borne de la réserve d'énergie 12 à une première borne de l'électroaimant 101 à laquelle sont connectés les contacts 103 et 112.
- Ainsi, la réserve d'énergie 12 ne peut être connectée à l'électrode 132 que par les contacts 102 ou 104.
- Le deuxième électroaimant 111 est en outre relié à l'électrode de commande 132 par l'intermédiaire du contact 113 du deuxième relais 11.
- Grâce à la configuration du circuit 13, lorsqu'un signal de commande est reçu sur les électrodes de commande 131, 132, les relais 10 et 11 sont commutés séquentiellement l'un après l'autre vers leur état actif.
- La commutation est toutefois empêchée si l'un des relais 10, 11 se trouve initialement dans un état anormal, par exemple parce que l'un des contacts 105 ou 114 est collé dans l'état fermé. Le circuit 2 reste alors dans la configuration bloquée, ce qui garantit que le circuit d'interruption de l'interrupteur 1 reste à l'état ouvert.
- La connexion des électroaimants 101 et 111 à l'électrode 132 par les contacts, respectivement, 103 et 113 permet d'assurer un maintien dans l'état excité du relais 10, 11 correspondant une fois que ce relais a basculé dans l'état excité et tant qu'un signal de commande est présent.
- De plus, lorsque le signal de commande cesse d'être reçu sur les électrodes 131, 132, si l'un des contacts 105 ou 114 reste bloqué dans l'état fermé, alors la commutation de l'autre contact 105, 114 est empêchée.
- Ainsi, une défaillance de fonctionnement de l'un ou de l'autre des contacts 105, 114, par exemple suite à un collage dans l'état fermé causé par une fusion partielle du contact, entraîne une commutation du circuit 2 dans l'état bloquant. Cela permet de maintenir l'interrupteur 1 dans un état sécurisé.
- Au contraire, si le signal de commande reçu sur les électrodes 131, 132 était directement appliqué simultanément sur les électroaimants 101 et 111 sans que ceux-ci ne soient conditionnés par les contacts des différents relais 10 et 11, alors la commutation des relais 10 et 11 serait simultanée quel que soit l'état de l'un ou de l'autre relais 10, 11.
- Grâce à l'invention, lors de la commutation de l'interrupteur 1, le contrôle de l'état des contacts 105, 114 est réalisé de façon intrinsèque, sans faire appel à une unité de commande électronique extérieure, et sans non plus faire appel à un dispositif mécanique tributaire de la gravitation terrestre pour son fonctionnement.
- De plus, les relais 10 et 11 subissent une usure différente du fait de la séquence de commutation choisie. Par exemple, le deuxième relais 11 tend à s'user plus rapidement que le premier relais 10 du fait qu'il subit des appels de courant plus fréquemment que le premier relais 10 notamment lors de la séquence de fermeture de la chaîne de sécurité. Cette usure différenciée permet d'éviter une que les deux relais 10 et 11 subissent une défaillance simultanée provenant d'une même cause d'usure.
- Selon une variante non illustrée, le deuxième électroaimant 111 peut être connecté à des deuxièmes électrodes de commande. Par exemple, le contact 113 peut relier l'électroaimant 111 à une deuxième électrode distincte de l'électrode 132. Le contact 102 peut également relier la première borne de la réserve d'énergie 12 à cette deuxième électrode. Le signal de commande est alors appliqué à la fois sur ces deuxièmes électrodes de commande et sur les électrodes 131 et 132.
- Un exemple de fonctionnement de l'interrupteur 1 est maintenant décrit, en référence aux
figures 2 à 5 . Dans cet exemple, le circuit 2 est commuté depuis l'état bloquant vers l'état passant en réponse à un signal de commande. - Comme illustré par la
figure 2 , les relais 10 et 11 sont initialement inactifs. Les contacts 102 et 112 sont dans l'état fermé, alors que les contacts 103, 104, 105, 113, 114 sont dans l'état ouvert. Aucun signal de commande n'est appliqué entre les électrodes 131, 132. Les contacts 105, 114 sont dans l'état ouvert et le circuit 2 est donc dans un état bloquant. - A ce stade, la réserve d'énergie 12 n'est pas en mesure d'alimenter la bobine 101 pour activer le premier relais, notamment car la tension maximale que peut délivrer la réserve d'énergie 12 est inférieure à la tension de commande de la bobine 101. De plus, en pratique, la réserve d'énergie 12 est généralement vide ou partiellement déchargée à ce stade.
- La réserve d'énergie 12 peut alors se décharger dans la bobine 101 sans pour autant arriver à changer l'état du relais 10, puisqu'elle ne peut pas fournir assez d'énergie.
- Comme illustré à la
figure 3 , un signal de commande, tel qu'une tension électrique Vcc, est appliqué entre les électrodes 131 et 132. - D'une part, la réserve d'énergie 12 est raccordée à l'électrode 132 par l'intermédiaire des contacts 102 et 112 qui sont tous deux dans l'état fermé. Elle est donc rechargée à partir d'une fraction de la tension électrique Vcc.En parallèle, l'électroaimant 101 est raccordé à l'électrode 132 par l'intermédiaire du contact 112. A ce stade, le contact 112 est dans l'état fermé et le contact 103 est dans l'état ouvert.
- Dans l'exemple de la
figure 3 , la tension électrique appliquée entre les bornes de la réserve d'énergie 12 est égale à la tension électrique appliquée entre les bornes du premier électroaimant 101. Cette tension électrique est, par exemple, supérieure à la tension de commande du premier électroaimant 101. - Comme la bobine 101 est alimentée avec une tension supérieure à sa tension de commande, le relais 10 est excité. Par exemple, la bobine 101 génère une force électromagnétique qui entraîne la commutation des contacts 102, 103, 104 et 105.
- Ainsi, comme illustré à la
figure 4 , le relais 10 commute vers l'état excité. Le contact 102 s'ouvre et les contacts 103, 104 et 105 se ferment. La flèche F1 illustre la fermeture du contact 105. - En pratique, cette commutation n'est pas instantanée mais se produit à l'issue d'un premier temps de commutation, par exemple inférieur ou égal à 100ms.
- A ce stade, le signal de commande est maintenu sur les électrodes 131, 132. Le circuit 2 est toujours dans un état bloquant, ce qui empêche la circulation du courant au travers du circuit 2.
- L'électroaimant 101 continue à être alimenté, cette fois par l'intermédiaire du contact 103 qui est fermé. Cela permet d'assurer le maintien du relais 10 dans l'état excité tant que le signal de commande est fourni à l'interrupteur 1.
- Cependant, du fait de la nouvelle configuration des contacts 103, 104 et 102 à l'issue de la commutation du relais 10, la réserve d'énergie 12 n'est plus connectée à l'électrode 132 et donc n'est plus rechargée électriquement à partir de la tension Vcc. En effet, le contact 102 est désormais dans l'état ouvert et le contact 113 est toujours dans l'état ouvert.
- En revanche, comme le contact 104 est fermé, l'électroaimant 111 se trouve connecté avec la réserve d'énergie 12, ce qui permet à la réserve d'énergie 12 de se décharger dans l'électroaimant 111 pour alimenter électriquement ce dernier.
- De cette manière, comme la tension fournie par la réserve d'énergie 12 est supérieure à la tension de commande de l'électroaimant 111, l'électroaimant 111 déclenche la commutation du relais 11 vers l'état excité, comme illustré à la
figure 5 . Le contact 112 s'ouvre et les contacts 113 et 114 se ferment. La flèche F2 illustre la fermeture du contact 114. - En pratique, cette commutation n'est pas instantanée mais se produit à l'issue d'un deuxième temps de commutation, par exemple inférieur ou égal à 100ms.
- Ainsi, le circuit 2 commute vers l'état passant, autorisant ainsi la circulation d'un courant électrique.
- A l'issue de cette commutation, l'électroaimant 111 continue à être alimenté, cette fois par l'intermédiaire du contact 113 qui est fermé. Cela permet d'assurer le maintien du relais 11 dans l'état excité tant que le signal de commande est fourni à l'interrupteur 1.
- De plus, grâce à la résistance 14, la tension électrique appliquée aux bornes de la réserve d'énergie 12 est diminuée pour atteindre une tension de maintien avec une valeur prédéfinie, choisie pour garantir que seule une faible quantité d'énergie soit effectivement stockée dans la réserve d'énergie 12. Cela permet, entre autres, de garantir une commutation rapide du relais 11 lorsque le signal de commande est interrompu, puisque la réserve d'énergie 12 ne sera pas en mesure de maintenir trop longtemps le relais 11 dans l'état excité.
- Lorsque le signal de commande est interrompu, les électroaimants 101 et 111 cessent d'être alimentés. Les relais 10 et 11 retournent dans leur état inactif. Les contacts 102, 112 se referment, alors que les contacts 103, 104, 105, 113 et 114 se rouvrent. Le circuit 2 commute alors vers l'état bloquant.
- Même si la réserve d'énergie 12 peut transitoirement se trouver connectée à l'électroaimant 111 lorsque les relais 10 et 11 retournent dans leur état inactif, elle ne contient pas suffisamment d'énergie pour exciter à nouveau le relais 11.
- De plus, la réserve d'énergie 12 est tout autant incapable d'exciter le relais 10 à la fin de la commutation, car bien qu'étant connectée à l'électroaimant 101 par l'intermédiaire du relais 102, qui retrouve son état fermé une fois le relais 10 redevenu inactif, la tension fournie par la réserve d'énergie 12 reste inférieure à la tension de commande nécessaire pour exciter l'électroaimant 101.
- Le fonctionnement de l'interrupteur 1 est dit être « sécurisé » en ce qu'il garantit que le circuit 2 ne peut pas basculer dans l'état passant si l'un des contacts 105 ou 114 reste collé dans l'état fermé lorsque le signal de commande est absent.
- En particulier, dans cet exemple, si le contact 105 est initialement anormalement collé dans son état fermé, alors le contact 114 ne peut pas être fermé lorsqu'un signal de commande est ensuite appliqué. En effet, comme les contacts du relais 10 sont couplés entre eux, alors les contacts 104 et 103 sont fermés et le contact 102 est ouvert lorsque le contact 105 est fermé, même en l'absence d'alimentation de l'électroaimant 101. Dans ce cas, l'électroaimant 111 est déconnecté de l'électrode 132, car les contacts 102 et 113 sont ouverts. L'électroaimant 111 est uniquement connecté à la réserve d'énergie 12 qui ne contient à ce stade pas d'énergie suffisante pour commuter le relais 11. L'électroaimant 111 ne peut donc pas être excité et donc le relais 11 ne peut pas être commuté vers l'état excité. Le circuit 2 reste dans l'état bloquant.
- Dans le cas où c'est le contact 114 qui est initialement anormalement collé dans son état fermé, alors le contact 105 ne peut pas être fermé lorsqu'un signal de commande est ensuite appliqué. En effet, comme les contacts du relais 11 sont couplés entre eux, alors le contact 113 est fermé et le contact 112 est ouvert lorsque le contact 114 est fermé, même en l'absence d'alimentation de l'électroaimant 111. Dans ce cas, l'électroaimant 101 est déconnecté de l'électrode 132, car les contacts 112 et 103 sont ouverts. L'électroaimant 101 ne peut donc pas être excité et donc le relais 10 ne peut pas être commuté vers l'état excité. Le circuit 2 reste dans l'état bloquant.
- Une telle défaillance de l'interrupteur 1 conduit donc au maintien du circuit 2 dans une configuration sécuritaire.
- La probabilité de défaillance simultanée des contacts 105 et 114 est ici extrêmement faible, par exemple inférieure à 10-9 occurrence par heure, ce qui garantit un bon niveau de sécurité de l'interrupteur 1.
- Les modes de réalisation et les variantes envisagés ci-dessus peuvent être combinés entre eux pour générer de nouveaux modes de réalisation.
Claims (8)
- Interrupteur (1), comportant :- un premier relais électromécanique (10) à contacts guidés comprenant un premier électroaimant (101) et une pluralité de contacts électriques (102, 103, 104, 105) ;- un deuxième relais électromécanique (11) à contacts guidés comprenant un deuxième électroaimant (111) et une pluralité de contacts électriques (112, 113, 114), un premier contact électrique (105) du premier relais et un premier contact électrique (114) du deuxième relais étant connectés électriquement en série entre des bornes (22) de l'interrupteur (1) ;- une réserve d'énergie (12) rechargeable ;- un circuit d'interconnexion (13) qui raccorde au moins une partie des autres contacts électriques (102, 103, 104, 112, 113) des premier et deuxième relais (10, 11),
caractérisé en ce que :- le premier électroaimant (101) est raccordé à des électrodes de commande (131, 132) de l'interrupteur (1) par l'intermédiaire de deuxièmes contacts électriques (112) du deuxième relais (11) et de deuxièmes contacts électriques (103) du premier relais (10) pour conditionner la connexion du premier électroaimant aux électrodes de commande (131, 132) à l'état du deuxième relais (11) ;- le deuxième électroaimant (111) est raccordé aux électrodes de commande (131, 132) par l'intermédiaire de troisième et quatrième contacts électriques (102, 104) du premier relais (10) et desdits deuxièmes contacts électriques (103, 112) pour connecter ou, en alternance, déconnecter le deuxième électroaimant (111) des électrodes de commande (131, 132) en fonction de l'état du premier relais, le troisième contact (102) étant un contact normalement fermé connecté entre la réserve d'énergie (12) et le premier électroaimant (101), le quatrième contact (104) étant un contact normalement ouvert connecté entre la réserve d'énergie (12) et le deuxième électroaimant (111) ; et- le deuxième électroaimant (111) est en outre relié à l'une des électrodes de commande (131, 132) par l'intermédiaire d'un troisième contact (113) du deuxième relais (11), ce troisième contact (113) étant un contact normalement ouvert. - Interrupteur selon la revendication 1, dans lequel la tension de commande du premier électroaimant (101) est différente de la tension de commande du deuxième électroaimant (111).
- Interrupteur selon la revendication 2, dans lequel la tension de commande du premier électroaimant (101) est supérieure à la tension de commande du deuxième électroaimant (111), de préférence supérieure à deux fois la tension de commande du deuxième électroaimant (111).
- Interrupteur selon l'une quelconque des revendications précédentes, dans lequel le deuxième contact (103) du premier relais (10) et le deuxième contact (112) du deuxième relais (11) sont connectés en parallèle entre eux, le deuxième contact (103) du premier relais (10) étant un contact normalement ouvert, le deuxième contact (112) du deuxième relais (11) étant un contact normalement fermé.
- Interrupteur selon l'une quelconque des revendications précédentes, lequel comporte une résistance (14) électrique connectée au deuxième électroaimant (111) et configurée pour abaisser la tension électrique aux bornes de la réserve d'énergie (12) lorsque celle-ci est dans une configuration de chargement.
- Interrupteur selon la revendication 5, dans lequel la résistance (14) est connectée en série entre le deuxième électroaimant (111) et le troisième contact (113) du deuxième relais (11).
- Interrupteur selon l'une quelconque des revendications précédentes, dans lequel la réserve d'énergie (12) est un condensateur.
- Interrupteur selon l'une quelconque des revendications précédentes, dans lequel la quantité d'énergie stockable par la réserve d'énergie (12) est supérieure ou égale à la quantité d'énergie nécessaire pour alimenter le deuxième électroaimant (111) afin de commuter le deuxième relais (11) vers un état excité.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1904314A FR3095548B1 (fr) | 2019-04-24 | 2019-04-24 | Interrupteur sécurisé |
PCT/EP2020/061302 WO2020216825A1 (fr) | 2019-04-24 | 2020-04-23 | Interrupteur sécurisé |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4088294A1 EP4088294A1 (fr) | 2022-11-16 |
EP4088294B1 true EP4088294B1 (fr) | 2024-04-24 |
Family
ID=67875598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20719471.3A Active EP4088294B1 (fr) | 2019-04-24 | 2020-04-23 | Interrupteur sécurisé |
Country Status (6)
Country | Link |
---|---|
US (1) | US11657994B2 (fr) |
EP (1) | EP4088294B1 (fr) |
CA (1) | CA3133328A1 (fr) |
ES (1) | ES2983669T3 (fr) |
FR (1) | FR3095548B1 (fr) |
WO (1) | WO2020216825A1 (fr) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3541338A1 (de) * | 1985-11-22 | 1987-05-27 | Pepperl & Fuchs | Schaltung mit selbstueberwachung |
DE4441171C1 (de) | 1994-11-18 | 1996-02-08 | Siemens Ag | Schützsicherheitskombination |
US6114816A (en) * | 1994-12-16 | 2000-09-05 | Hubbell Incorporated | Lighting control system for discharge lamps |
JP2002175751A (ja) * | 2000-12-05 | 2002-06-21 | Omron Corp | リレー装置 |
US6611416B1 (en) * | 2002-05-10 | 2003-08-26 | Rockwell Automation Technologies, Inc. | Safety relay circuit for large power contactors |
US7582989B2 (en) * | 2006-09-29 | 2009-09-01 | Fisher-Rosemount Systems, Inc. | Safety relay having independently testable contacts |
GB201315061D0 (en) * | 2013-08-22 | 2013-10-02 | Metroic Ltd | Power conversion apparatus |
DE102015214966A1 (de) * | 2015-08-05 | 2017-02-09 | Ellenberger & Poensgen Gmbh | Schutzschalter |
US11319915B2 (en) * | 2020-06-11 | 2022-05-03 | Kohler Co. | Engine system, and method of starting the engine |
-
2019
- 2019-04-24 FR FR1904314A patent/FR3095548B1/fr active Active
-
2020
- 2020-04-23 US US17/605,403 patent/US11657994B2/en active Active
- 2020-04-23 WO PCT/EP2020/061302 patent/WO2020216825A1/fr unknown
- 2020-04-23 CA CA3133328A patent/CA3133328A1/fr active Pending
- 2020-04-23 EP EP20719471.3A patent/EP4088294B1/fr active Active
- 2020-04-23 ES ES20719471T patent/ES2983669T3/es active Active
Also Published As
Publication number | Publication date |
---|---|
FR3095548B1 (fr) | 2021-05-07 |
US11657994B2 (en) | 2023-05-23 |
EP4088294A1 (fr) | 2022-11-16 |
FR3095548A1 (fr) | 2020-10-30 |
ES2983669T3 (es) | 2024-10-24 |
CA3133328A1 (fr) | 2020-10-29 |
WO2020216825A1 (fr) | 2020-10-29 |
US20220208493A1 (en) | 2022-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0017892B1 (fr) | Dispositif de commutation automatique de deux batteries chargées en parallèle et déchargées en série | |
WO1999031778A1 (fr) | Dispositif de protection contre des surintensites, notamment pour la protection rearmable d'un interrupteur controle | |
EP1111751B1 (fr) | Dispositif de sécurité pour batterie d'accumulateurs électriques et batterie équipée de ce dispositif | |
WO2009138603A1 (fr) | Interrupteur de protection mixte electromecanique / semi-conducteur | |
EP2363939B1 (fr) | Ensemble électrique et procédé d'alimentation sans interruption en courant alternatif d'une installation | |
EP4088294B1 (fr) | Interrupteur sécurisé | |
EP1815569A1 (fr) | Dispositif de protection contre les surtensions a capacite de deconnexion amelioree | |
EP3437115B1 (fr) | Système d'hybridation pour courant continu haute tension | |
EP3479448B1 (fr) | Dispositif de coupure a semi-conducteurs | |
FR2770050A1 (fr) | Dispositif de securite d'un accumulateur electrochimique | |
EP3979282B1 (fr) | Dispositif de communication pour un appareil de commutation électrique | |
EP4342047A1 (fr) | Dispositif de commutation électrique, système de commutation et procédé associés | |
FR2678781A1 (fr) | Dispositif de securite pour prise electrique. | |
WO2023280727A1 (fr) | Module de détection de coupure de tension d'une batterie de véhicule automobile | |
EP4167261A1 (fr) | Dispositif de commutation électrique, système de commutation et procédé associés | |
EP2882094A1 (fr) | Procédé d'évacuation de l'énergie stockée dans un stator d'un moteur électrique | |
WO2019229341A1 (fr) | Dispositif de commutation autoalimente et procede de fonctionnement d'un tel dispositif | |
FR2763181A1 (fr) | Element d'alimentation electrique et equipement electrique destine a etre alimente par l'element et a le recharger | |
FR3106447A1 (fr) | Element de stockage d’energie electrique et alimentation sauvegardee associee | |
EP4118670A1 (fr) | Dispositif d'interrupteur hybride et de commande | |
WO2019220022A1 (fr) | Appareil électrique de coupure différentiel | |
FR3089916A1 (fr) | Dispositif de pré-charge d’un réseau électrique de puissance | |
EP0085947A1 (fr) | Régulateur de charge d'une batterie | |
FR2935834A1 (fr) | Dispositif de commutation d'un courant electrique et vehicule automobile equipe d'un coffret de repartition electrique comportant un tel dispositif | |
FR2796502A1 (fr) | Installation de securite pour camera thermique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211021 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20231127 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602020029563 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240424 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1680547 Country of ref document: AT Kind code of ref document: T Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2983669 Country of ref document: ES Kind code of ref document: T3 Effective date: 20241024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240724 |