EP4072807B1 - Computergestütztes verfahren und steuereinrichtung zur bestimmung einer sichtbetonqualität - Google Patents

Computergestütztes verfahren und steuereinrichtung zur bestimmung einer sichtbetonqualität Download PDF

Info

Publication number
EP4072807B1
EP4072807B1 EP20800579.3A EP20800579A EP4072807B1 EP 4072807 B1 EP4072807 B1 EP 4072807B1 EP 20800579 A EP20800579 A EP 20800579A EP 4072807 B1 EP4072807 B1 EP 4072807B1
Authority
EP
European Patent Office
Prior art keywords
concrete
data
formwork
quality
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20800579.3A
Other languages
English (en)
French (fr)
Other versions
EP4072807A1 (de
Inventor
Henning STAVES
Wolfgang Span
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peri SE
Original Assignee
Peri SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peri SE filed Critical Peri SE
Publication of EP4072807A1 publication Critical patent/EP4072807A1/de
Application granted granted Critical
Publication of EP4072807B1 publication Critical patent/EP4072807B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/0063Control arrangements
    • B28B17/0081Process control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/0063Control arrangements
    • B28B17/0072Product control or inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9515Objects of complex shape, e.g. examined with use of a surface follower device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/2431Multiple classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/12Acquisition of 3D measurements of objects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a computer-aided method and a control device for producing a concrete component with an external surface in a defined exposed concrete quality by means of a formwork arrangement installed on a construction site or a precast factory, in which a suitable fresh concrete is to be filled as the starting material. Furthermore, the invention also relates to a computer program embodying the method, in particular for a computer-aided forecasting unit of the control device.
  • Exposed concrete refers to concrete components whose external surfaces, which serve as visible surfaces, are part of the architectural or interior design of the building. In the strictest sense, the term exposed concrete is limited to component surfaces that were in contact with the formwork skin of a formwork arrangement required for production during production. Although exterior surfaces Although exposed concrete exists in many different forms and manufacturing techniques, for example colored, stoneworked, acidified, washed and the like, all of these external surfaces are originally formwork surfaces and have an appearance that is more or less determined by the formlining. Reproducible surface quality plays a crucial role in the production of exposed concrete, as the end result depends on many influencing factors.
  • the service description for exposed concrete - for example for a smooth exposed concrete - generally contains the description of the required surface characteristics, such as exposed concrete class, smooth, produced with non-absorbent or weakly absorbent formwork and the like, the description of the surface structure using a formwork sample plan and some additional requirements with regard to the Color tint of the surfaces.
  • information about surface treatment or optional coloring of the surfaces may be added.
  • the planner selects the exposed concrete class from a service description table in the “Exposed Concrete Information Sheet”. With the selection and determination of the fair-faced concrete class SB1 to SB4, all surface characteristics belonging to this class as well as the condition of the formwork skin to be maintained are determined.
  • the superficial nature of the formwork skin has a decisive influence on the later appearance of exposed concrete surfaces. This applies all the more the less the desired design should deviate from the classic characteristics of a smooth exposed concrete surface made with a non-absorbent formwork skin. Board formwork made of untreated wood, rough-sawn or planed, or OSB panels give the exposed concrete surface a typical appearance, but depending on the wood or brand used, they can cause very large variations in the later appearance of the surface. So far, the practical study of exemplary areas on existing buildings has been helpful in deciding on the formwork skin. The decision for a specific formwork skin is usually made later, after construction has begun, through extensive testing. All of this also requires quite a lot of planning effort.
  • the color is influenced by the selection of cement, for example limestone cement for lighter surfaces or slate cement for darker surfaces, which is specified in the respective concrete recipe.
  • cement for example limestone cement for lighter surfaces or slate cement for darker surfaces, which is specified in the respective concrete recipe.
  • a very light, almost white surface color can only be achieved by using white cement.
  • Colored concrete is also possible by adding pigments.
  • the realization of colored exterior surfaces requires a very high degree of care during construction.
  • a colored exterior surface is usually not possible in exposed concrete quality SB4 if the humidity is too high.
  • precipitation water on the formlining before filling the formwork arrangement with fresh concrete can lead to later streaks on the outer surface.
  • various other influencing factors also have an impact on the achievable fair-faced concrete quality during construction.
  • smooth surfaces made with a non-absorbent formwork arrangement can show disturbing dark spots if they are made at average daily temperatures below 10°C.
  • the discoloration can vary depending on the temperature and sensitivity Replicating reinforcement near the edge, appearing in patches or even affecting entire component areas, usually in the lower part of a wall surface and often delimited by marked installation positions.
  • stripping the formwork as early as possible can avoid this dark spot.
  • the realization of the desired fair-faced concrete quality has been based on construction experience, which can of course vary greatly depending on the construction site and the personnel working there.
  • the “Exposed Concrete Information Sheet” recommends the creation of test areas. Such test areas serve to determine the quality that can be achieved under the actual conditions of the construction site and to develop and validate the technical procedure. These tests additionally increase the construction effort.
  • the pre-publication KR 2012 0080795 A generally discloses a computer-aided method for producing concrete parts using a formwork arrangement, into which a fresh concrete is filled as a starting material, data about the fresh concrete being provided and current physical environmental data being determined by sensors arranged on the construction site in order to compare the various types of data provided and measured with corresponding ones to compare stored historical data of similar concrete components for quality assurance.
  • this does not relate to the aspect of a specifically desired fair-faced concrete quality and specifically relevant data, especially with regard to the formlining class of the formwork arrangement.
  • claim 10 specifies a control device used to carry out this method and claim 14 contains a computer program embodying the method according to the invention with which at least partial steps of the method can be carried out.
  • the solution according to the invention is therefore based on providing the essential quality-relevant information about the material used, the tool used and the environmental conditions on the construction site in order to compare these different types of data with the data of concrete components of already known exposed concrete quality SB1 to SB4, which come from previous construction projects. If the various data that was once provided and measured is identical or similar to the various data provided and measured for the current construction project, it can be predicted that the same exposed concrete quality SB1 to SB4 can be achieved. This data pattern recognition becomes more precise the larger the data supply that can be used for the forecast.
  • the advantage of the invention is that it is very likely that a uniformly reproducible fair-faced concrete quality can be achieved, something which empirical values of a manual procedure alone would not be able to achieve due to the large number of influencing factors.
  • any unjustified complaints can be countered or, in the case of an incorrect concrete recipe, for example, the damage that has occurred can be assigned to the actual cause.
  • the forecast also makes it possible, for example, to determine that the planned fair-faced concrete quality cannot be achieved under the given circumstances, for example because formwork elements that are too old with insufficient flatness and too high an absorbency have been installed.
  • the formwork arrangement can be replaced in order to be able to produce the planned exposed concrete quality.
  • the added value of the solution according to the invention therefore also lies in the logistics of formwork elements for installation in formwork arrangements, which is known, for example, via transponder technology in order to be able to exchange unsuitable formwork elements for suitable formwork elements with sufficiently flat formlining if necessary. This prevents damage caused by using an incorrect formwork arrangement.
  • the physical environmental data to be measured as part of the solution according to the invention are preferably selected from a data group comprising outside temperature T, humidity F, precipitation N as well as the wind speed on the construction site, which influences the setting process.
  • This environmental data has a decisive influence on the quality of exposed concrete.
  • other environmental data that can be recorded using measurement technology can also be used for evaluation if they turn out to be relevant to quality.
  • the material temperature MT depends largely on the outside temperature during the transport of the fresh concrete from the concrete mixing plant to the construction site.
  • Formwork data is also taken into account as further influencing factors relating to the formwork arrangement, which can either be determined using sensors or are known from the characteristics of the formwork element used.
  • the evenness E of the formlining can be determined using sensors, for example using a laser scan.
  • the age-related water absorbency S of the formlining can be determined by the number of uses and the age of the formwork element, and the characteristics of the formwork element determine how large the formwork joint between adjacent formwork panels will be.
  • All of the above data relates to the phase before the fresh concrete delivered is installed.
  • data that arise during the installation of the delivered fresh concrete in the formwork arrangement are also relevant for the achievable fair-faced concrete quality, such as process parameters that are selected from a parameter group including the degree of compaction V of the fresh concrete, concrete maturity R and / or the formwork time Z.
  • process parameters which are largely determined in the implementation planning, can be compared with previously saved process parameters of concrete components with a known exposed concrete quality in order to increase the forecast reliability of the realizable exposed concrete quality SB1 to SB4.
  • the various data related to the actually realized fair-faced concrete quality SB1 to SB4 can also be included in the historical data database as a training data set for machine learning. This enriches the data base, which enables more precise prediction reliability for future forecasts.
  • the method according to the invention can be carried out primarily on a computer-aided control device, which essentially comprises a forecasting unit for comparing the various data provided and measured with corresponding historical data stored in a documentation database for similar concrete components of known exposed concrete quality SB1 to SB4.
  • a material database for providing data about the concrete recipe and/or concrete quality of the fresh concrete delivered or to be delivered to the construction site as well as a formwork logistics database for providing data about the at least formlining class of the formwork arrangement installed on the construction site are also connected to the forecasting unit.
  • the measured values of the various sensors are used to measure current physical Environmental data to the forecasting unit, which, based on the input data, uses data pattern recognition to issue a stochastic forecast as to which fair-faced concrete quality SB1 to SB4 can be used to realize the concrete component to be produced under the given circumstances.
  • an analysis unit connected downstream of the forecasting unit is provided in order to compare the actually realizable exposed concrete quality SB 1 to SB4 with the planned and/or predicted exposed concrete quality for testing purposes based on the external surface recorded by measurement. This quality check takes place after the concrete component has been removed from the formwork.
  • the analysis unit generates training data sets for the classification of exposed concrete qualities SB 1 to SB4 from the image data of the external surfaces in order to enrich the data base of the documentation database for future forecasts.
  • Fig. 1 comprises a control device for producing a concrete component 1 with an outer surface 2 in a defined exposed concrete quality, here SB3, by means of a formwork arrangement 4 installed on the construction site 3 for fresh concrete 5 to be filled therein, essentially a material database 6 for providing data about the concrete recipe 7 of the on the Fresh concrete 5 to be installed delivered to construction site 3.
  • a formwork logistics database 8 which provides data from at least formlining class H of the formwork arrangement 4 installed on construction site 3 via a formwork data set 9 assigned to the formwork arrangement 4.
  • sensors 10 to 12 measure current physical environmental data on the construction site 3.
  • the sensor 10 measures current precipitation N, for example drizzle, heavy rain and the like.
  • the sensor 11 measures the current humidity F on the construction site 3 and the sensor 12 is used to measure the current outside temperature T on the construction site 3. All of these measured data are fed to a forecasting unit 13 on the input side together with the data provided via the databases.
  • the forecasting unit 13 compares the various types of data provided and measured with corresponding historical data of similar components 1 'of known exposed concrete quality stored in a documentation database 14 in order to use data pattern recognition to predict with which exposed concrete quality the component 1 to be produced can be realized under the given circumstances.
  • the given circumstances are defined by the various types of data provided and measured mentioned above.
  • the outer surface 2 of the manufactured concrete component 1 is checked with regard to the predicted exposed concrete quality SB3. This is done via a 3D camera unit 15, whose measured image information is transmitted to an analysis unit 16.
  • the analysis unit 16 compares the actually realized fair-faced concrete quality based on the image data of the external surface 2 recorded by measurement with the predicted exposed concrete quality SB3, which also regularly corresponds to the planned exposed concrete quality SB3. Otherwise, environmental conditions are first changed, for example switching to a different concrete recipe.
  • the analysis unit 16 generates a training data set from the image data of the outer surface 2 for classifying exposed concrete qualities. If the exposed concrete quality SB3 is confirmed, the associated data provided from the material database 6, the formwork database 8 and the data measured via the sensors 10 to 12 can be fed to the documentation database 14 as a training data set in order to enrich its database. This allows future forecasts to be made more precisely.
  • the Fig. 2 illustrates the sequence of steps of the computer-aided method for producing a concrete component 1 using the control device described above.
  • data about the concrete recipe 7 of the fresh concrete to be installed is provided in a first step I.
  • This data includes the grain size K, the water content W and the material temperature M of the fresh concrete to be installed, which is selected here from the recipe specifications.
  • a parallel step II data about the formwork arrangement installed on the construction site is provided, which comes from the type description stored for this purpose and the lifecycle data of the formwork data set 9.
  • a sensor 10 is used to measure precipitation N.
  • a sensor 11 measures the current air humidity F and a sensor 12 measures the current outside temperature T on the construction site.
  • All of these different types of data provided and measured are then compared in a step IV by a forecasting unit with the corresponding stored historical data of similar concrete parts of known exposed concrete qualities. This is done with a computer-aided forecasting unit 13 using data pattern recognition.
  • the historical data used for pattern comparison is used from a documentation history of past construction projects and in this way it can be predicted with which exposed concrete quality the concrete component currently to be manufactured can be realized under the given circumstances.
  • step V after the concrete component has been removed from the formwork, it is analyzed whether the realized external surface 2 corresponds to the predicted and therefore planned exposed concrete quality SB3. This is done using the optical measuring means explained above.
  • the forecast of the fair-faced concrete quality is also possible for the forecast of the fair-faced concrete quality to be realized to be based on further data provided or measured, such as process parameters during the installation of the fresh concrete 5.
  • further data provided or measured such as process parameters during the installation of the fresh concrete 5.
  • its layer-by-layer degree of compaction V, the concrete maturity R and the formwork time Z can be used to expand the data set can be used for data pattern recognition.
  • the data set underlying the data pattern recognition need not include all of the various data provided above; is a partial selection of this sufficient, provided that an accurate forecast can be made about the achievable fair-faced concrete quality SB1 to SB4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Economics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Strategic Management (AREA)
  • Remote Sensing (AREA)
  • Marketing (AREA)
  • General Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Data Mining & Analysis (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Multimedia (AREA)
  • General Business, Economics & Management (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Artificial Intelligence (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Primary Health Care (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)

Description

  • Die vorliegende Anmeldung beansprucht die Priorität der deutschen Patentanmeldung Nr. 10 2019 219 269.6, eingereicht am 10. Dezember 2019 .
  • Die vorliegende Erfindung betrifft ein computergestütztes Verfahren sowie eine Steuereinrichtung zur Herstellung eines Betonbauteils mit einer Außenoberfläche in einer definierten Sichtbetonqualität mittels einer auf einer Baustelle oder einem Fertigteilwerk installierten Schalungsanordnung, in welcher ein geeigneter Frischbeton als Ausgangsmaterial eingefüllt werden soll. Ferner betrifft die Erfindung auch ein das Verfahren verkörperndes Computerprogramm, insbesondere für eine rechnergestützte Prognoseeinheit der Steuereinrichtung.
  • Das Einsatzgebiet der Erfindung erstreckt sich auf die Bautechnik und ist speziell auf die Herstellung von Sichtbeton gerichtet. Unter Sichtbeton sind Betonbauteile zu verstehen, deren als Ansichtsflächen dienenden Außenoberflächen Teil der architektonischen oder innenarchitektonischen Gebäudegestaltung sind. Im strengen Sinn ist die Bezeichnung Sichtbeton auf Bauteilflächen beschränkt, die bei der Herstellung Kontakt zur Schalungshaut einer für die Herstellung benötigten Schalungsanordnung hatten. Obwohl Außenoberflächen von Sichtbeton in vielen unterschiedlichen Ausprägungen und Herstellungstechniken existieren, beispielsweise gefärbt, steinmetzmäßig bearbeitet, gesäuert, gewaschen und dergleichen, sind dennoch all diese Außenoberflächen im Ursprung geschalte Flächen und zeigen ein mehr oder weniger durch die Schalhaut mitbestimmtes Aussehen. Bei der Herstellung von Sichtbeton stellt eine reproduzierbare Oberflächenqualität eine entscheidende Rolle, da das Endergebnis von recht vielen Einflussfaktoren abhängt.
  • Stand der Technik
  • Aus dem "Merkblatt Sichtbeton" (Herausgeber: Deutscher Beton- und Bautechnik-Verein e.V. und Verein Deutscher Zementwerke, 53-seitige Ausgabe, 2004) gehen konkrete Sichtbetonklassen SB1 bis SB4 hervor, die in der Praxis als Qualitätsmaßstab dienen. Mit diesen Sichtbetonklassen SB1 bis SB4 sind technische Anforderungen und gestalterische Einzelkriterien hinsichtlich der Qualität der Schalungshaut, des Betonmaterials und der zu leistenden Arbeitssorgfalt und dergleichen festgelegt. Die Einhaltung dieser Einzelkriterien soll eine reproduzierbare Sichtbetonqualität erleichtern.
  • In der Praxis enthält die Leistungsbeschreibung für Sichtbeton - beispielsweise für einem glatten Sichtbeton - im Allgemeinen die Beschreibung der geforderten Flächenmerkmale, wie Sichtbetonklasse, glatt, mit nicht oder schwach saugender Schalung hergestellt und dergleichen, die Beschreibung der Flächenstruktur per Schalungsmusterplan und einige zusätzliche Forderungen hinsichtlich der Farbtönung der Flächen. Je nach dem gewünschten Aussehen können Angaben zur Oberflächenbearbeitung oder zu einer optionalen Einfärbung der Flächen hinzukommen. Die Sichtbetonklasse wählt der Planer aus einer Leistungsbeschreibungstabelle des "Merkblatt Sichtbeton" aus. Mit der Wahl und Festlegung der Sichtbetonklasse SB1 bis SB4 sind alle zu dieser Klasse gehörigen Flächenmerkmale sowie der einzuhaltende Zustand der Schalungshaut festgelegt.
  • Die oberflächliche Beschaffenheit der Schalungshaut hat dabei einen entscheidenden Einfluss auf das spätere Aussehen von Sichtbetonflächen. Dies gilt umso mehr, je weniger die gewünschte Gestaltung von den klassischen Merkmalen einer glatten, mit einer nicht saugenden Schalungshaut hergestellten Sichtbetonfläche abweichen soll. Brettschalungen aus unbehandeltem Holz, sägerau oder gehobelt, oder OSB-Platten geben der Sichtbetonfläche ein typisches Aussehen, können aber je nach verwendetem Holz oder Fabrikat sehr große Varianzen im späteren Aussehen der Fläche bewirken. Hilfreich für die Entscheidung über die Schalungshaut ist daher bislang das praktische Studium exemplarischer Flächen an bestehenden Gebäuden. Die Entscheidung für eine bestimmte Schalungshaut wird später, nach Baubeginn, gewöhnlich durch aufwendige Erprobungen getroffen. All dies erfordert auch einen recht hohen Planungsaufwand.
  • Hinsichtlich der Materialauswahl für den zu verwendenden Frischbeton wird die Farbgebung durch die Auswahl des Zements beeinflusst, beispielsweise Kalksteinzemente für hellere oder Schieferzemente für dunklere Oberflächen, welche in der jeweiligen Betonrezeptur festgelegt ist. Eine sehr helle, fast weiße Flächenfärbung ist nur durch den Einsatz von weißen Zementen zu erreichen. Auch farbiger Beton ist durch die Zugabe von Pigmenten möglich. Die Realisierung farbiger Außenoberflächen erfordert jedoch ein sehr hohes Maß an Sorgfalt bei der Bauausführung. Denn eine farbige Außenoberfläche ist gewöhnlich nicht in Sichtbetonqualität SB4 ausführbar, falls eine zu hohe Luftfeuchtigkeit herrscht. Ferner kann Niederschlagwasser auf der Schalhaut vor dem Befüllen der Schalungsanordnung mit Frischbeton zu späteren Schlieren auf der Außenoberfläche führen. Aus diesen Gründen wirken auch während der Bauausführung verschiedene weitere Einflussfaktoren auf die realisierbare Sichtbetonqualität ein.
  • Vor allem glatte, mit einer nicht saugenden Schalungsanordnung hergestellte Flächen können, wenn diese bei mittleren Tagestemperaturen unter 10°C hergestellt werden, störende dunkle Flecken zeigen. Die Verfärbungen können je nach Temperatur und Empfindlichkeit die randnahe Bewehrung nachbilden, fleckenartig auftreten oder auch ganze Bauteilbereiche, meist im unteren Teil einer Wandfläche und oft abgegrenzt durch abgezeichnete Einbaulagen, betreffen. Als Gegenmaßnahmen kann ein möglichst frühes Ausschalen diese Dunkelfleckigkeit vermeiden. Bislang basiert die Realisierung einer gewünschten Sichtbetonqualität auf Bauerfahrungen, welche je nach Baustelle und dem dort ausführenden Personal natürlich stark variieren können.
  • Zur Sicherstellung einer gewünschten Sichtbetonqualität wird im "Merkblatt Sichtbeton" das Anlegen von Erprobungsflächen empfohlen. Solche Erprobungsflächen dienen dazu, die unter den tatsächlichen Randbedingungen der Baustelle herstellbare Qualität festzustellen, das technische Vorgehen zu entwickeln und abzusichern. Diese Tests erhöhen zusätzlich den Bauaufwand.
  • Die Vorveröffentlichung KR 2012 0080795 A offenbart allgemein ein computergestütztes Verfahren zur Herstellung von Betonteilen mittels Schalungsanordnung, in welche ein Frischbeton als Ausgangsmaterial eingefüllt wird, wobei Daten über den Frischbeton bereitgestellt werden und aktuell physikalische Umweltdaten durch auf der Baustelle angeordnete Sensoren ermittelt werden, um die bereitgestellten und gemessenen verschiedenartigen Daten mit entsprechenden abgespeicherten historischen Daten ähnlicher Betonbauteile zwecks Qualitätssicherung zu vergleichen. Dies bezieht sich allerdings nicht auf den Aspekt einer konkret gewünschten Sichtbetonqualität und hierfür speziell relevante Daten, insbesondere auch hinsichtlich der Schalhautklasse der Schalungsanordnung.
  • Aus der EP 2 743 427 A1 gehen wiederverwendbare Schalungselemente mit integrierten Temperatursensoren hervor, womit die Aushärtung des Betons überwacht werden kann, um die Qualität des Sichtbetons zu verbessern.
  • Es ist daher die Aufgabe der vorliegenden Erfindung, eine technische Lösung zur Herstellung eines Betonbauteils in Sichtbetonqualität bereitzustellen, mit deren Hilfe eine möglichst reproduzierbar gleiche Oberflächenqualität einer in der Ausführungsplanung festgelegten Qualitätsklasse erzielbar ist.
  • Offenbarung der Erfindung
  • Die Aufgabe wird hinsichtlich eines computergestützten Verfahrens durch Anspruch 1 gelöst. Der nebengeordnete Anspruch 10 gibt eine zur Durchführung dieses Verfahrens dienende Steuereinrichtung an und der Anspruch 14 beinhaltet ein das erfindungsgemäße Verfahren verkörperndes Computerprogramm, mit dem zumindest Teilschritte des Verfahrens ausführbar sind.
  • Die Erfindung schließt die verfahrenstechnische Lehre ein, dass zur Herstellung eines Betonbauteils mit einer Außenoberfläche in einer definierten Sichtbetonqualität SB1 bis SB4 oder einer anderen Klassifizierung mittels einer auf einer Baustelle installierten Schalungsanordnung, in welcher ein geeigneter Frischbeton als Ausgangsmaterial eingeführt wird, die folgenden Schritte umfasst:
    • Bereitstellen von Daten über die Betonrezeptur und/oder Betonqualität des zur Baustelle gelieferten oder zu liefernden Frischbetons,
    • Bereitstellen von Daten über die Schalhautklasse oder hierzu äquivalente Informationen der auf der Baustelle installierten Schalungsanordnung,
    • Messen von aktuellen physikalischen Umweltdaten durch auf der Baustelle angeordnete Sensoren,
    • Vergleichen der bereitgestellten und gemessenen verschiedenartigen Daten mit entsprechenden abgespeicherten historischen Daten ähnlicher Betonbauteile von bekannter Sichtbetonqualität SB1 bis SB4, um per
    • Datenmustererkennung zu prognostizieren, mit welcher Sichtbetonqualität SB1 bis SB4 sich das herzustellende Betonbauteil unter den gegebenen Umständen realisieren lässt.
  • Somit basiert die erfindungsgemäße Lösung auf einer Bereitstellung der wesentlichen qualitätsrelevanten Informationen über das verwendete Material, das verwendete Werkzeug sowie den baustellenseitigen Umweltbedingungen, um diese verschiedenartigen Daten mit den Daten von Betonbauteilen von bereits bekannter Sichtbetonqualität SB1 bis SB4 zu vergleichen, welche aus vorangegangenen Bauvorhaben stammen. Denn sind deren einst bereitgestellten und gemessenen verschiedenartigen Daten identisch oder ähnlich zu den für das aktuell auszuführende Bauvorhaben bereitgestellten und gemessenen verschiedenartigen Daten, so kann prognostiziert werden, dass damit auch dieselbe Sichtbetonqualität SB1 bis SB4 erzielbar ist. Diese Datenmustererkennung wird umso präziser, je größer der für die Prognose verwertbare Datenvorrat ist.
  • Der Vorteil der Erfindung liegt darin, dass mit hoher Wahrscheinlichkeit eine gleichmäßig reproduzierbare Sichtbetonqualität erzielbar ist, wozu allein Erfahrungswerte eines manuellen Vorgehens schon aufgrund der Vielzahl der Einflussfaktoren nicht imstande wären. Zusätzlich lässt sich über eine entsprechende Dokumentation realisierter Sichtbetonqualitäten SB1 bis SB4 und den dieser zugrunde liegenden Daten, etwaigen unberechtigten Reklamationen entgegentreten oder bei beispielsweise falscher Betonrezeptur den eingetretenen Schaden dem tatsächlichen Verursacher zuordnen. Ferner ermöglicht die Prognose beispielsweise auch eine Feststellung, dass unter den gegebenen Umständen die geplante Sichtbetonqualität nicht realisierbar ist, beispielsweise weil zu alte Schalungselemente mit nicht hinreichender Ebenheit und zu hoher Saugfähigkeit installiert wurden. In diesem Falle kann infolge der Prognose die Schalungsanordnung ausgetauscht werden, um die geplante Sichtbetonqualität herstellen zu können. Somit liegt der Mehrwert der erfindungsgemäßen Lösung auch in der Logistik von Schalungselementen zum Verbau für Schalungsanordnungen, welche beispielsweise über Transpondertechnik bekannt ist, um ungeeignete Schalungselemente gegebenenfalls gegen geeignete Schalungselemente mit hinreichend ebener Schalhaut austauschen zu können. Ein durch Verwendung einer falschen Schalungsanordnung entstehender Schaden wird hierdurch vermieden.
  • Die im Rahmen der erfindungsgemäßen Lösung zu messenden physikalischen Umweltdaten sind vorzugsweise ausgewählt aus einer Datengruppe, umfassend Außentemperatur T, Luftfeuchtigkeit F, Niederschlag N sowie auch die Windgeschwindigeit auf der Baustelle, welche den Abbindungsprozess beeinflusst. Denn diese Umweltdaten haben einen entscheidenden Einfluss auf die Sichtbetonqualität. Natürlich lassen sich auch andere messtechnisch zu erfassende Umweltdaten zur Auswertung hinzuziehen, falls sich diese als qualitätsrelevant herausstellen.
  • Analog dasselbe gilt für die die Betonqualität bestimmenden Daten, welche sich aus der Betonrezeptur ergeben, beispielsweise die Körnung K der verwendeten Kiese und Sande, der Wassergehalt W des zum Mischen zugegebenen Wassers und die Materialtemperatur MT des zu verbauenden Frischbetons, welche maßgeblich die Topfzeit mitbestimmt. Die Materialtemperatur MT ist wesentlich von der Außentemperatur während des Transports des Frischbetons vom Betonmischwerk zur Baustelle abhängig.
  • Als weitere, die Schalungsanordnung betreffende Einflussfaktoren werden auch Schalungsdaten berücksichtigt, welche sich entweder sensortechnisch ermitteln lassen oder durch die Kenndaten des verwendeten Schalungselements bekannt sind. So lässt sich sensortechnisch beispielsweise die Ebenheit E der Schalhaut ermitteln, beispielsweise per Laserscan. Die altersbedingte Wassersaugfähigkeit S der Schalhaut lässt sich über die Anzahl der Einsätze sowie das Alter des Schalungselements feststellen und die Kenndaten des Schalungselements legt fest, wie groß der Schalungsstoß zwischen benachbarten Schalplatten ausfällt. Diese Schalungsdaten sind ebenfalls maßgeblich für die Erzielung einer geplanten Sichtbetonqualität.
  • All die vorstehenden Daten betreffen die Phase vor dem Verbau des gelieferten Frischbetons. Darüber hinaus sind auch Daten für die erzielbare Sichtbetonqualität maßgeblich, welche während des Verbaus des gelieferten Frischbetons in der Schalungsanordnung anfallen, wie beispielsweise Prozessparameter, die ausgewählt sind aus einer Parametergruppe, umfassend Verdichtungsgrad V des Frischbetons, Betonreife R und/oder die Schalzeit Z. Auch all diese Prozessparameter, welche größtenteils mit der Ausführungsplanung feststehen, können mit früheren abgespeichert hinterlegten Prozessparametern von Betonbauteilen mit bekannter Sichtbetonqualität verglichen werden, um auf diese Weise die Prognosesicherheit der realisierbaren Sichtbetonqualität SB1 bis SB4 zu erhöhen.
  • Gemäß einer weiteren die Erfindung verbessernden Maßnahme wird vorgeschlagen, dass nach dem Entschalen die tatsächlich realisierte Sichtbetonqualität SB1 bis SB4 über optische Messmittel zur Analyse der Außenoberfläche bestimmt wird, um diese mit der geplanten und/oder prognostizierten Sichtbetonqualität SB1 bis SB4 zu vergleichen. Hierüber lässt sich eine zuverlässige und präzise Qualitätsprüfung vornehmen, welche aufgrund der datenverarbeitungstechnischen Ausführung in einfacher Weise durchführbar und dokumentierbar ist. Die Analyse der Außenoberfläche erfolgt dabei per Bildauswertung, indem Farbverläufe, Strukturmerkmale und dergleichen mit den im "Merkblatt Sichtbeton" oder anderen Vorschriften definierten Kriterien vergleichen werden. Voraussetzung hierfür ist, dass die textliche Beschreibung der Eigenschaften der verschiedenen Sichtbetonklassen in eine zu Vergleichszwecken heranziehbare Bildinformation übersetzt wird.
  • Neben der Qualitätsprüfung können die im Zusammenhang mit der tatsächlich realisierten Sichtbetonqualität SB1 bis SB4 stehenden verschiedenartigen Daten auch als Trainingsdatensatz zum maschinellen Lernen in den Datenbestand der historischen Daten mit übernommen werden. Hierdurch wird der Datenbestand angereichert, was eine präzisere Vorhersagesicherheit für zukünftige Prognosen ermöglicht.
  • Das erfindungsgemäße Verfahren lässt sich vornehmlich auf einer rechnergestützten Steuereinrichtung durchführen, welche im Kern eine Prognoseeinheit zum Vergleichen der bereitgestellten und gemessenen verschiedenartigen Daten mit entsprechenden in einer Dokumentationsdatenbank abgespeicherten historischen Daten ähnlicher Betonbauteile von bekannter Sichtbetonqualität SB1 bis SB4 umfasst. An der Prognoseeinheit sind ebenfalls eine Materialdatenbank zum Bereitstellen von Daten über die Betonrezeptur und/oder Betonqualität des zur Baustelle gelieferten oder zu liefernden Frischbetons angeschlossen sowie eine Schalungslogistikdatenbank zum Bereitstellen von Daten über die zumindest Schalhautklasse der auf der Baustelle installierten Schalungsanordnung. Außerdem gehen die Messwerte der verschiedenen Sensoren zum Messen von aktuellen physikalischen Umweltdaten an die Prognoseeinheit, welche ausgehend von den Eingangsdaten per Datenmustererkennung eine stochastische Prognose ausgibt, mit welcher Sichtbetonqualität SB1 bis SB4 sich das herzustellende Betonbauteil unter den gegebenen Umständen realisieren lässt.
  • Eine der Prognoseeinheit nachgeschaltete Analyseeinheit ist gemäß einer weiteren die erfindungsgemäße Lösung verbessernden Maßnahme vorgesehen, um anhand der messtechnisch erfassten Außenoberfläche die tatsächlich realisierbare Sichtbetonqualität SB 1 bis SB4 mit der geplanten und/oder prognostizierten Sichtbetonqualität zu Prüfzwecken zu vergleichen. Diese Qualitätsprüfung erfolgt nach dem Entschalen des Betonbauteils.
  • Zudem wird vorgeschlagen, dass die Analyseeinheit aus den Bilddaten der Außenoberflächen Trainingsdatensätze zur Klassifizierung von Sichtbetonqualitäten SB 1 bis SB4 erzeugt, um damit den Datenbestand der Dokumentationsdatenbank für zukünftige Prognosen anzureichern.
  • Detailbeschreibung anhand der Zeichnung
  • Weitere die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher dargestellt. Es zeigt:
  • Fig. 1
    eine schematische Darstellung einer Steuereinrichtung zur Herstellung eines Betonbauteils in Sichtbetonqualität auf Prognosebasis im Zusammenwirken mit Planungsdaten sowie der Baustelleneinrichtung, und
    Fig. 2
    einen Ablaufplan des mit der Steuereinrichtung ausgeführten Verfahrens zur Herstellung des Betonbauteils.
  • Gemäß Fig. 1 umfasst eine Steuereinrichtung zur Herstellung eines Betonbauteils 1 mit einer Außenoberfläche 2 in einer definierten Sichtbetonqualität, hier SB3, mittels einer auf der Baustelle 3 installierten Schalungsanordnung 4 für hierin einzufüllenden Frischbeton 5 im Wesentlichen eine Materialdatenbank 6 zur Bereitstellung von Daten über die Betonrezeptur 7 des auf die Baustelle 3 gelieferten zu verbauenden Frischbetons 5. Daneben existiert eine Schalungslogistikdatenbank 8, welche über einem der Schalungsanordnung 4 zugeordneten Schalungsdatensatz 9 Daten von zumindest der Schalhautklasse H der auf der Baustelle 3 installierten Schalungsanordnung 4 liefert.
  • Außerdem messen mehrere Sensoren 10 bis 12 aktuelle physikalische Umweltdaten auf der Baustelle 3. Dabei misst der Sensor 10 aktuelle Niederschläge N, beispielsweise Nieselregen, Starkregen und dergleichen. Der Sensor 11 misst die aktuelle Luftfeuchtigkeit F auf der Baustelle 3 und der Sensor 12 dient zum Messen der aktuellen Außentemperatur T auf der Baustelle 3. All diese gemessenen Daten werden gemeinsam mit den über die Datenbanken bereitgestellten Daten eingangsseitig einer Prognoseeinheit 13 zugeführt. Die Prognoseeinheit 13 vergleicht die bereitgestellten und gemessenen verschiedenartigen Daten mit entsprechenden in einer Dokumentationsdatenbank 14 abgespeicherten historischen Daten ähnlicher Bauteile 1' von bekannter Sichtbetonqualität, um per Datenmustererkennung zu prognostizieren, mit welcher Sichtbetonqualität sich das herzustellende Bauteil 1 unter den gegebenen Umständen realisieren lässt. Die gegebenen Umstände werden durch die vorstehend erwähnten bereitgestellten und gemessenen verschiedenartigen Daten definiert.
  • Nach dem Entschalen des Betonbauteils 1 wird die Außenoberfläche 2 des hergestellten Betonbauteils 1 hinsichtlich der prognostizierten Sichtbetonqualität SB3 geprüft. Dies erfolgt über eine 3D-Kameraeinheit 15, deren eingemessene Bildinformationen an eine Analyseeinheit 16 übertragen werden. Die Analyseeinheit 16 vergleicht anhand der Bilddaten der messtechnisch erfassten Außenoberfläche 2 die tatsächlich realisierte Sichtbetonqualität mit der prognostizierten Sichtbetonqualität SB3, welche regelmäßig auch der geplanten Sichtbetonqualität SB3 entspricht. Ansonsten werden zunächst Umweltbedingungen geändert, beispielsweise auf eine andere Betonrezeptur umgestellt.
  • Außerdem erzeugt die Analyseeinheit 16 aus den Bilddaten der Außenoberfläche 2 einen Trainingsdatensatz zur Klassifizierung von Sichtbetonqualitäten. Ist die Sichtbetonqualität SB3 bestätigt, so können die hiermit in Verbindung stehenden bereitgestellten Daten aus der Materialdatenbank 6, der Schalungsdatenbank 8 sowie mit den über die Sensoren 10 bis 12 gemessenen Daten als Trainingsdatensatz der Dokumentationsdatenbank 14 zugeführt werden, um deren Datenbestand anzureichern. Hierdurch lassen sich zukünftige Prognosen präziser treffen.
  • Die Fig. 2 veranschaulicht die Schrittabfolge des computergestützten Verfahrens zur Herstellung eines Betonbauteils 1 mithilfe der vorstehend beschriebenen Steuereinrichtung.
  • Für die zu treffende Prognose hinsichtlich einer realisierenden Sichtbetonqualität SB1 bis SB4 gemäß "Merkblatt Sichtbeton" werden in einem ersten Schritt I zunächst Daten über die Betonrezeptur 7 des zu verbauenden Frischbetons bereitgestellt. Diese Daten umfassen die Körnung K, den Wassergehalt W sowie die Materialtemperatur M des zu verbauenden Frischbetons, der hier aus den Rezepturvorschriften selektiert wird.
  • In einem parallelen Schritt II werden Daten über die auf der Baustelle installierten Schalungsanordnung bereitgestellt, welche aus der hierzu hinterlegten Typenbeschreibung sowie den Lifecycle-Daten des Schalungsdatensatzes 9 entstammen. Dies betrifft hauptsächlich die der Schalungsanordnung zuzuordnende Schalhautklasse H, welche die Sichtbetonoberfläche maßgeblich beeinflusst, aber auch die Ebenheit E der Schalhaut sowie die altersbedingte Wassersaugfähigkeit S.
  • Neben diesen aus Planungs- oder Dokumentationsdaten bereitgestellten Daten werden auch aktuell physikalische Umweltdaten in einem Schritt III auf der Baustelle gemessen. Hierzu dient ein Sensor 10 zum Messen von Niederschlag N. Ein Sensor 11 misst die aktuelle Luftfeuchtigkeit F und ein Sensor 12 misst die aktuelle Außentemperatur T auf der Baustelle.
  • All diese bereitgestellten und gemessenen verschiedenartigen Daten werden anschließend in einem Schritt IV durch eine Prognoseeinheit mit den entsprechenden abgespeicherten historischen Daten ähnlicher Betonteile von bekannten Sichtbetonqualitäten verglichen. Dies erfolgt mit einer rechnergestützten Prognoseeinheit 13 per Datenmustererkennung. Dabei werden die historischen Daten, welche zum Mustervergleich herangezogen werden, aus einer Dokumentationshistorie vergangener Bauvorhaben genutzt und es lässt sich auf diese Weise voraussagen, mit welcher Sichtbetonqualität sich das aktuell herzustellende Betonbauteil unter den gegebenen Umständen realisieren lässt.
  • In einem zusätzlichen Schritt V wird nach dem Entschalen des Betonbauteils analysiert, ob die realisierte Außenoberfläche 2 der prognostizierten und damit geplanten Sichtbetonqualität SB3 entspricht. Dies erfolgt über die vorstehend erläuterten optischen Messmittel.
  • Die Erfindung ist nicht beschränkt auf das vorstehend beschriebene bevorzugte Ausführungsbeispiel. Es sind vielmehr auch Abwandlungen hiervon denkbar, welche vom Schutzbereich der nachfolgenden Ansprüche mit umfasst sind. So ist es beispielsweise auch möglich, dass die Prognose der realisierenden Sichtbetonqualität auf weiteren bereitgestellten oder gemessenen Daten basiert, wie beispielsweise auf Prozessparametern während des Verbaus des Frischbetons 5. So können beispielsweise dessen schichtweise Verdichtungsgrad V die Betonreife R sowie die Schalzeit Z zur Erweiterung des Datensatzes für die Datenmustererkennung herangezogen werden. Andererseits braucht der der Datenmustererkennung zugrundeliegende Datensatz nicht alle die vorstehenden bereitgestellten und verschiedenartigen Daten umfassen; eine Teilauswahl hiervon ist hinreichend, sofern sich hieraus eine treffende Prognose über die realisierbare Sichtbetonqualität SB1 bis SB4 treffen lässt.
  • Bezugszeichenliste
  • 1
    Betonbauteil
    2
    Außenoberfläche
    3
    Baustelle
    4
    Schalungsanordnung
    5
    Frischbeton
    6
    Materialdatenbank
    7
    Betonrezeptur
    8
    Schalungslogistikdatenbank
    9
    Schalungsdatensatz
    10
    erster Sensor
    11
    zweiter Sensor
    12
    dritter Sensor
    13
    Prognoseeinheit
    14
    Dokumentationsdatenbank
    15
    3D-Kameraeinheit
    16
    Analyseeinheit
    SB1 ... SB4
    Sichtbetonqualitäten
    T
    Außentemperatur
    F
    Luftfeuchtigkeit
    N
    Niederschlag
    K
    Körnung
    W
    Wassergehalt
    M
    Materialtemperatur
    H
    Schalhautklasse
    E
    Ebenheit
    S
    Wassersaugfähigkeit
    V
    Verdichtungsgrad
    R
    Betonreife
    Z
    Schalzeit

Claims (14)

  1. Computergestütztes Verfahren zur Herstellung eines Betonbauteils (1) mit mindestens einer Außenoberfläche (2) in einer definierten Sichtbetonqualität (SB1 - SB4) mittels einer auf einer Baustelle (3) oder in einem Fertigteilwerk installierten Schalungsanordnung (4), in welche ein Frischbeton (5) als Ausgangsmaterial eingefüllt wird, umfassend die folgenden Schritte:
    - Bereitstellen (I) von Daten über die Betonrezeptur (7) und/oder Betonqualität des zur Baustelle (3) gelieferten oder zu liefernden Frischbetons (5),
    - Bereitstellen (II) von Daten über die Schalhautklasse (H) der auf der Baustelle (3) installierten Schalungsanordnung (4),
    - Messen (III) von aktuellen physikalischen Umweltdaten durch auf der Baustelle (3) angeordnete Sensoren (10, 11, 12),
    - Vergleichen (IV) der bereitgestellten und gemessenen verschiedenartigen Daten mit entsprechenden abgespeicherten historischen Daten ähnlicher Betonbauteile (1') von bekannter Sichtbetonqualität (SB1 - SB4), um per
    - Datenmustererkennung zu prognostizieren, mit welcher Sichtbetonqualität (SB 1 - SB4) sich das herzustellende Betonbauteil (1) unter den gegebenen Umständen realisieren lässt.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die prognostizierte Sichtbetonqualität (SB1 - SB4) mit der geplanten Sichtbetonqualität (SB1 - SB4) verglichen wird, um vor der Realisierung etwaige Abweichungen zu erkennen.
  3. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die physikalischen Umweltdaten ausgewählt sind aus einer Datengruppe, umfassend: Außentemperatur (T), Luftfeuchtigkeit (F), Niederschlag (N), Windgeschwindigkeit.
  4. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass als die Betonqualität bestimmenden Daten die Körnung (K), der Wassergehalt (W) und/oder die Materialtemperatur (M) des zu verbauenden Frischbetons (5) mit berücksichtigt werden.
  5. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass als die Schalungsanordnung (4) bestimmenden Daten außerdem die sensortechnisch gemessene Ebenheit (E) der Schalhaut der Schalungsanordnung (4), deren altersbedingte Wassersaugfähigkeit (S) und/oder der Schalungsstoß zwischen benachbarten Schalplatten der Schalungsanordnung (4) mit berücksichtigt werden.
  6. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass zum Verbau des gelieferten Frischbetons (5) in der Schalungsanordnung (4) auf abgespeichert hinterlegte Prozessparameter der als Vergleichsmaßstab herangezogenen Betonbauteile (1') von bekannter Sichtbetonqualität (SB1 - SB4) zurückgegriffen wird.
  7. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet, dass die Prozessparameter ausgewählt sind aus einer Parametergruppe, umfassend: Verdichtungsgrad (V) des Frischbetons (5), Betonreife (R) und/oder dessen Schalzeit (Z).
  8. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass nach dem Entschalen die tatsächlich realisierte Sichtbetonqualität (SB1 - SB4) über optische Messmittel zur Analyse (V) der Außenoberfläche (2) bestimmt wird, um diese mit der geplanten und/oder prognostizierten Sichtbetonqualität (SB1 - SB4) zu vergleichen.
  9. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die im Zusammenhang mit der tatsächlich realisierten Sichtbetonqualität (SB1 - SB4) stehenden verschiedenartigen Daten als Trainingsdatensatz zum maschinellen Lernen in den Datenbestand der historischen Daten mit übernommen werden.
  10. Steuereinrichtung zur Herstellung eines Betonbauteils (1) mit einer Außenoberfläche (2) in einer definierten Sichtbetonqualität (SB1 - SB4) mittels einer auf einer Baustelle (3) oder in einem Fertigteilwerk installierten Schalungsanordnung (4) für hierin einzufüllenden Frischbeton (5), wobei die Steuereinrichtung zur Durchführung des Verfahrens nach einem der vorstehenden Ansprüche die folgenden Komponenten umfasst:
    - eine Materialdatenbank (6) zum Bereitstellen von Daten über die Betonrezeptur (7) und/oder Betonqualität des zur Baustelle (3) gelieferten oder zu liefernden Frischbetons (5),
    - eine Schalungslogistikdatenbank (8) zum Bereitstellen von Daten über die zumindest Schalhautklasse (H) der auf der Baustelle (3) installierten Schalungsanordnung (4),
    - mehrere Sensoren (10, 11, 12) zum Messen von aktuellen physikalischen Umweltdaten auf der Baustelle (3),
    - eine Prognoseeinheit (13) zum Vergleichen der bereitgestellten und gemessenen verschiedenartigen Daten mit entsprechenden in einer Dokumentationsdatenbank (14) abgespeicherten historischen Daten ähnlicher Betonbauteile (1') von bekannter Sichtbetonqualität (SB1 - SB4), um per Datenmustererkennung zu prognostizieren, mit welche Sichtbetonqualität (SB1 - SB4) sich das herzustellende Betonbauteil (1) unter den gegebenen Umständen realisieren lässt.
  11. Steuereinrichtung nach Anspruch 10,
    dadurch gekennzeichnet, dass als optisches Messmittel für die Außenoberfläche (2) eine 3D-Kameraeinheit (15) oder ein Oberflächen-Laserscanner die tatsächlich realisierte Sichtbetonqualität (SB1 - SB4) erfasst.
  12. Steuereinrichtung nach Anspruch 10,
    dadurch gekennzeichnet, dass eine Analyseeinheit (16) anhand der messtechnisch erfassten Außenoberfläche (2) die tatsächlich realisierte Sichtbetonqualität (SB1 - SB4) mit der geplanten und/oder prognostizierten Sichtbetonqualität (SB1 - SB4) vergleicht.
  13. Steuereinrichtung nach Anspruch 12,
    dadurch gekennzeichnet, dass die Analyseeinheit (16) aus den Bilddaten der Außenoberflächen (2) Trainingsdatensätze zur Klassifizierung von Sichtbetonqualitäten (SB1 - SB4) erzeugt, um damit den Datenbestand der Dokumentationsdatenbank (14) für zukünftige Prognosen anzureichern.
  14. Computerprogramm, umfassend Befehle, die bewirken, dass die Steuereinrichtung des Anspruchs 10 die Verfahrensschritte nach Anspruch 1 ausführt.
EP20800579.3A 2019-12-10 2020-10-26 Computergestütztes verfahren und steuereinrichtung zur bestimmung einer sichtbetonqualität Active EP4072807B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019219269.6A DE102019219269A1 (de) 2019-12-10 2019-12-10 Computergestütztes Verfahren und Steuereinrichtung zur Bestimmung einer Sichtbetonqualität
PCT/EP2020/080062 WO2021115673A1 (de) 2019-12-10 2020-10-26 Computergestütztes verfahren und steuereinrichtung zur bestimmung einer sichtbetonqualität

Publications (2)

Publication Number Publication Date
EP4072807A1 EP4072807A1 (de) 2022-10-19
EP4072807B1 true EP4072807B1 (de) 2023-11-29

Family

ID=73043226

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20800579.3A Active EP4072807B1 (de) 2019-12-10 2020-10-26 Computergestütztes verfahren und steuereinrichtung zur bestimmung einer sichtbetonqualität
EP20821191.2A Active EP4072808B1 (de) 2019-12-10 2020-12-08 Computergestütztes verfahren und einrichtung zur prüfung einer sichtbetonqualität

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20821191.2A Active EP4072808B1 (de) 2019-12-10 2020-12-08 Computergestütztes verfahren und einrichtung zur prüfung einer sichtbetonqualität

Country Status (6)

Country Link
EP (2) EP4072807B1 (de)
DE (1) DE102019219269A1 (de)
DK (2) DK4072807T3 (de)
ES (2) ES2971699T3 (de)
PL (2) PL4072807T3 (de)
WO (2) WO2021115673A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116894610B (zh) * 2023-09-11 2023-12-01 山东万世机械科技有限公司 一种基于混凝土激光整平机的路面整平质量分析管理系统
CN117094686B (zh) * 2023-10-18 2024-01-26 中铁二十三局集团有限公司 混凝土生产施工全过程动态监控方法及系统
CN117434151B (zh) * 2023-12-15 2024-03-19 安徽省交通规划设计研究总院股份有限公司 声音处理视域下的透水混凝土路面透水系数确定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297633B1 (ko) * 2011-01-10 2013-08-20 자람기술 주식회사 콘크리트의 현장타설 프로세스 개선을 위한 통합정보 시스템
EP2743427B1 (de) * 2011-08-08 2016-03-23 Just.Will Co., Ltd. Wiederverwendbare schalung mit einem betontemperatursensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010015244A1 (de) * 2008-08-06 2010-02-11 Koegl Martin Schalungsplatte mit verbesserter identifikationsfähigkeit
DE102010038474A1 (de) * 2010-06-29 2011-12-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schalungselement und Vorrichtungen und Verfahren zum Zuordnen von Identifikatoren zu Schalungselementen
DE102010036758A1 (de) * 2010-07-30 2012-02-02 Bas Remote Sensing Bv Verfahren zur Bestimmung und Vorhersage der Druckfestigkeit von erhärtendem Beton
AT518000B1 (de) * 2015-11-16 2018-05-15 Oestu Stettin Hoch Und Tiefbau Gmbh Vorrichtung und Verfahren zum Ausbau eines Tunnels, insbesondere unter Messung eines Betondruckes
US10823681B2 (en) * 2016-03-30 2020-11-03 Agency For Science, Technology And Research System and method for imaging a surface defect on an object
US10546373B2 (en) * 2016-08-03 2020-01-28 Sightline Innovation Inc. System and method for integrated laser scanning and signal processing
CN108197802A (zh) * 2017-12-29 2018-06-22 湖南大学 一种基于bim技术对混凝土结构施工质量管控的方法及系统
CN110162925A (zh) * 2019-06-04 2019-08-23 保山市地下综合管廊投资管理有限责任公司 一种城市地下综合管廊混凝土工程质量评价方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297633B1 (ko) * 2011-01-10 2013-08-20 자람기술 주식회사 콘크리트의 현장타설 프로세스 개선을 위한 통합정보 시스템
EP2743427B1 (de) * 2011-08-08 2016-03-23 Just.Will Co., Ltd. Wiederverwendbare schalung mit einem betontemperatursensor

Also Published As

Publication number Publication date
WO2021115673A1 (de) 2021-06-17
PL4072808T3 (pl) 2024-05-20
EP4072807A1 (de) 2022-10-19
DK4072808T3 (da) 2024-01-22
EP4072808B1 (de) 2023-11-29
DE102019219269A1 (de) 2021-06-10
ES2973358T3 (es) 2024-06-19
DK4072807T3 (da) 2024-01-08
WO2021116093A1 (de) 2021-06-17
ES2971699T3 (es) 2024-06-06
EP4072808A1 (de) 2022-10-19
PL4072807T3 (pl) 2024-04-22

Similar Documents

Publication Publication Date Title
EP4072807B1 (de) Computergestütztes verfahren und steuereinrichtung zur bestimmung einer sichtbetonqualität
EP3770547B1 (de) Steinanalysevorrichtung und verfahren zur bewertung von steinen
DE102010030488A1 (de) Verfahren zum Abgleich eines Messgerätes in der Prozessanalysetechnik
DE102015221417A1 (de) Bereitstellen von vereinzelten Materialteilen und Verarbeiten solcher Materialteile
EP3793926B1 (de) Verfahren und vorrichtung zum überwachen eines zustands einer personentransportanlage unter verwendung eines digitalen doppelgängers
Gopal et al. A critical review on factors influencing labour productivity in construction
EP4051851A1 (de) Computergestütztes verfahren und system zur ermittlung und visualisierung von kraftflüssen in einem baugerüst
EP3961166A1 (de) Verfahren zum drucken eines dekors und vorrichtung dafür
DE3237090A1 (de) Verfahren zur pruefung von frischbeton sowie vorrichtung zum durchfuehren des verfahrens
DE102007032944B4 (de) Verfahren zur Festlegung von Parametern eines Druckprozesses zur Erzeugung standadisierter Drucke
DE112011100016B4 (de) Steuervorrichtung und Laserverarbeitungsmaschine
DE102019120864B3 (de) Verfahren und Vorrichtung zur Planung von Wartungsarbeiten an wenigstens einer Maschine
AT521971B1 (de) Verfahren zum Bearbeiten, insbesondere Zertrennen, wenigstens eines Betonteils
DE10250285A1 (de) Vorhersage des Termintreuegrads in der Serienfertigung
DE102020214959A1 (de) Simulator, numerische Steuervorrichtung und Simulationsverfahren
DE102008049859B4 (de) Verfahren und Prüfsystem zur optischen Prüfung einer Kontur eines Prüfobjekts
DE10055099C2 (de) Verfahren zur zerstörungsfreien, automatisierten Festigkeitsbestimmung an Prüfkörpern sowie Prüfvorrichtung zur zerstörungsfreien Festigkeitsbestimmung
DE102019106218B3 (de) Verfahren und Vorrichtung zum Klassifizieren von Holzprodukten
EP4300413A1 (de) Rechnersystem zur positionsbestimmung eines ankers und verfahren
DE102008049858B4 (de) Verfahren und Prüfsystem zur optischen Prüfung eines Prüfobjekts
DE10221464A1 (de) Verfahren zur handwerklichen Dienstleistungsplanung
WO2020030744A1 (de) Computerprogramm-produkt für disposition und logistik in der glasindustrie
DE102019216933A1 (de) Verfahren und System zum Bestimmen einer Pastenzusammensetzung zur Verwendung in einem Pastendruckprozess
DE102019108780A1 (de) Messung der Konsistenz von Frischbeton
CH713525B1 (de) Verfahren zur rechnergestützt automatisierten Erstellung von Kartierungen von Materialoberflächen, insbesondere von Gebäudeoberflächen und Tunnelwänden.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G06V 20/00 20220101ALI20230601BHEP

Ipc: G06Q 50/04 20120101ALI20230601BHEP

Ipc: G06Q 10/0639 20230101ALI20230601BHEP

Ipc: G06F 18/2431 20230101ALI20230601BHEP

Ipc: G01S 17/89 20200101ALI20230601BHEP

Ipc: G01S 17/88 20060101ALI20230601BHEP

Ipc: G01S 17/42 20060101ALI20230601BHEP

Ipc: G01N 21/95 20060101ALI20230601BHEP

Ipc: B28B 17/00 20060101AFI20230601BHEP

INTG Intention to grant announced

Effective date: 20230622

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231020

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020006230

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20240105

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240229

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2971699

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129