EP4069961A1 - Systeme d'injection de solution aqueuse embarque dans un vehicule avec une vanne mecanique - Google Patents

Systeme d'injection de solution aqueuse embarque dans un vehicule avec une vanne mecanique

Info

Publication number
EP4069961A1
EP4069961A1 EP20815849.3A EP20815849A EP4069961A1 EP 4069961 A1 EP4069961 A1 EP 4069961A1 EP 20815849 A EP20815849 A EP 20815849A EP 4069961 A1 EP4069961 A1 EP 4069961A1
Authority
EP
European Patent Office
Prior art keywords
chamber
mechanical valve
opening
aqueous solution
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20815849.3A
Other languages
German (de)
English (en)
Inventor
Rémi Thebault
Franck Dhaussy
Philippe CHAZALON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plastic Omnium Advanced Innovation and Research SA
Original Assignee
Plastic Omnium Advanced Innovation and Research SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2000480A external-priority patent/FR3106386B1/fr
Application filed by Plastic Omnium Advanced Innovation and Research SA filed Critical Plastic Omnium Advanced Innovation and Research SA
Publication of EP4069961A1 publication Critical patent/EP4069961A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/0221Details of the water supply system, e.g. pumps or arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/025Adding water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/01Adding substances to exhaust gases the substance being catalytic material in liquid form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/18Check valves with actuating mechanism; Combined check valves and actuated valves
    • F16K15/184Combined check valves and actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/18Check valves with actuating mechanism; Combined check valves and actuated valves
    • F16K15/184Combined check valves and actuated valves
    • F16K15/1843Combined check valves and actuated valves for ball check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/18Check valves with actuating mechanism; Combined check valves and actuated valves
    • F16K15/184Combined check valves and actuated valves
    • F16K15/1848Check valves combined with valves having a rotating tap or cock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/126Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/16Actuating devices; Operating means; Releasing devices actuated by fluid with a mechanism, other than pulling-or pushing-rod, between fluid motor and closure member
    • F16K31/165Actuating devices; Operating means; Releasing devices actuated by fluid with a mechanism, other than pulling-or pushing-rod, between fluid motor and closure member the fluid acting on a diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a mechanical valve for an aqueous solution injection system on board a vehicle.
  • the invention also relates to an aqueous solution injection system comprising said mechanical valve and a method for controlling the mechanical valve. More particularly, the invention relates to a mechanical valve for a water injection system in a heat engine on board a vehicle or for an injection system of aqueous urea solution within the exhaust line of combustion gas from a thermal internal combustion engine on board a motor vehicle.
  • a valve for a water injection system in an internal combustion engine on board a vehicle requires the use of energy, for example electric, to open and close the injection valve, but also to use.
  • an electronic control module (ECU) managing the opening and closing functions of said valve.
  • This control module also requires the use and development of control software. The costs associated with such a valve and with a system for injecting water into an internal combustion engine on board a vehicle comprising it are therefore considerably high.
  • the injection of aqueous urea solution into the exhaust line of the combustion gases of an internal combustion heat engine on board a motor vehicle also requires the injection pump to be kept in operation in order to maintain the pressure in the supply line of the aqueous urea solution injection system or / and the use of electrical energy to open and close the injection valve, but also to use a control module.
  • electronic control (ECU) managing the opening and closing functions of said valve.
  • a first object of the present invention is therefore to provide a valve, included in an aqueous solution injection system on board a vehicle, which overcomes the problems listed previously. More particularly, a first object of the invention relates to a mechanical valve included in a system for injecting water into a heat engine on board a vehicle or else included in a system for injecting an aqueous solution of urea within a system. the exhaust line of the combustion gases from an internal combustion heat engine on board a motor vehicle.
  • a second object of the invention is to provide a method of controlling said aqueous solution injection system on board a vehicle comprising said valve. More particularly, a second object of the invention relates to a method of controlling said water injection system in a heat engine on board a vehicle comprising said valve or else a method of controlling said injection system of aqueous solution of urea within the exhaust line of the combustion gases of an internal combustion heat engine on board a motor vehicle comprising said valve.
  • the invention relates to an aqueous solution injection system on board a vehicle comprising a mechanical valve.
  • such a system comprises a mechanical valve comprising at least a first chamber and a second chamber separated by a partition wall, said wall comprising a through hole, said through hole being provided with means for opening and closing. closing said through-hole, the opening and closing means comprising:
  • a first element comprising a unit for closing the through-hole located in the first chamber of the mechanical valve and having an extension unit extending into the second chamber of the mechanical valve comprising at least one rod integral with the unit shutter, the rod being configured to act as a lever arm around an axis in purge mode of an injection line of the injection system;
  • the deformable module of the second element of the opening and closing means is able to apply a force on the extension unit of the first element of the opening and closing means by modifying the shape of the deformable module of the second element by applying a pressure differential between the pressure in the second chamber and atmospheric pressure, said force allowing the two chambers to be placed in fluid communication by a displacement, in rotation about the axis, of the sealing unit of the first element; the mechanical valve being such that the first chamber is capable of being fluidly connected to at least one injector and the second chamber is capable of being fluidly connected to an aqueous solution distribution module.
  • the deformable module is fixed to a wall of the second chamber contiguous to the separation wall, said wall comprising the deformable module being preferably oriented parallel to the direction of flow of aqueous solution within the mechanical valve.
  • the general principle of the invention is based on the use of pressure differentials between atmospheric pressure and the pressure prevailing in the second chamber on the one hand but also between the second chamber and the first chamber on the other hand in order to control the pressure. opening and closing of the mechanical valve for the operations of injection, purging of the injection line by suction, and closing of said valve. These pressure variations resulting from the aspiration or injection activities of the aqueous solution injection module.
  • aqueous solution is understood to denote demineralized water, that is to say water having an electrical conductivity less than or equal to 50 microsiemens per centimeter (pS / cm) at 20 degrees Celsius (° C), or even less than or equal to 15 pS / cm at 20 ° C or else an aqueous solution comprising urea such as a solution of AdBlue® type comprising 32.5% by weight of urea and 67.5% by weight of water demineralized.
  • the aqueous solution injection system on board a vehicle comprises a mechanical valve such that the means for opening and closing said through-hole comprises a third element located in one of the two chambers. of the mechanical valve, said third element exerting a force on the shutter unit of the first element.
  • Said third element is preferably a spiral spring and / or a flexion bar.
  • the third element of the means for opening and closing said through hole is located in the first chamber of the mechanical valve.
  • valve according to the invention makes it possible to use the valve according to the invention in any orientation thanks to the force exerted by the third element on the shutter unit. Further, it is further understood that the fact that the opening of the through-hole is made by a rotation of the shutter unit rather than by a translation makes it possible not to have to compress the third member, so that a force less, provided by the deformable module, is necessary to open the through-hole.
  • the aqueous solution injection system on board a vehicle comprises a mechanical valve such that at least part of the partition wall including the through hole projects into the first chamber.
  • the aqueous solution injection system on board a vehicle comprises a mechanical valve such as the unit for closing the through-hole of the first element located in the first chamber of the mechanical valve.
  • a mechanical valve such as the unit for closing the through-hole of the first element located in the first chamber of the mechanical valve.
  • Such an embodiment makes it possible to obtain excellent sealing of the mechanical valve in the case of a valve whose closure unit has a spherical shape and whose seat obtained by the projection of part of the wall. comprising the through hole in the first chamber is conical in shape.
  • a valve with an ellipsoidal shutter unit makes it easier to open the valve at equal stress.
  • the closure unit is provided with a means for fixing the third element.
  • the spherical-shaped shutter unit advantageously comprises a valve allowing easier fluid communication between the two chambers.
  • the blocking unit of ellipsoidal shape can include an additional offset fulcrum making it possible to obtain a wider fluidic connection between the two chambers, advantageously a second fulcrum offset from the first makes it possible to obtain a fluidic connection. even more important.
  • plug is meant more particularly to denote a hole passing through the spherical closure unit, or a groove hollowed out in the closure unit or a geometric shape capable of constituting a fluidic communication channel between the two chambers, preferably the plug is a hole passing through the spherical shutter unit.
  • the vehicle-mounted aqueous solution injection system comprises a mechanical valve such that the extension unit extending into the second chamber of the mechanical valve of the first element includes at least one stem.
  • an extension unit in the form of a rod allows the benefit of a larger lever arm reducing the force to be exerted to move the shutter unit.
  • the aqueous solution injection system on board a vehicle comprises a mechanical valve such that the rod is curved or bent at least in one place, preferably in two places with opposite fold angles.
  • such a rod makes it possible to reduce the deformation of the deformation modulus in order to exert the necessary force on the extension unit of the first element of the opening and closing means, allowing the two chambers to be placed in fluid communication by a displacement. of the shutter unit of the first element.
  • the aqueous solution injection system on board a vehicle comprises a mechanical valve such that the stem is straight.
  • the aqueous solution injection system on board a vehicle comprises a mechanical valve such that the shape of the deformable module makes it possible to reduce the length of the extension unit of the first element of the means. opening and closing.
  • the aqueous solution injection system on board a vehicle comprises a mechanical valve such that the deformable module of the second element comprises an elastomeric membrane.
  • the aqueous solution injection system on board a vehicle comprises a mechanical valve such that the elastomeric membrane rests on a wall of the second chamber provided with at least one opening.
  • such a membrane makes it possible to exert a better transfer of the force resulting from the pressure differential between the pressure in the second chamber and the atmospheric pressure.
  • the presence of at least one opening in the wall of the second chamber makes it possible to effect the deformation at the location of the opening.
  • the membrane rests on a grid.
  • the wall provided with at least one opening, advantageously the grid is lined, on its exterior face relative to the second chamber, with retention elements in order to avoid excessive deformation of the membrane towards the exterior. .
  • the aqueous solution injection system on board a vehicle comprises a mechanical valve such that the elastomeric membrane comprises a rigid zone and a deformable zone, preferably the rigid zone is a central zone and the deformable zone is a peripheral zone.
  • the rigid zone makes it possible to have a firmer contact surface with the extension unit of the first element of the opening and closing means, the deformable zone allowing the raising or lowering of the rigid zone depending on the pressure differential between atmospheric pressure and the pressure prevailing in the second chamber.
  • rigid zone is meant that the rigid zone of the elastomeric membrane undergoes little or no change in shape compared to the deformable zone under the effect of the pressure differential.
  • the aqueous solution injection system on board a vehicle comprises a mechanical valve such that it comprises, within the second chamber of the mechanical valve, means limiting the deformation of the deformable module. of the second element of the opening and closing means.
  • the means limiting the deformation of the deformable module is a stop element.
  • the stop element is preferably located on a wall of the second chamber of the mechanical valve opposite the wall comprising the deformable module.
  • the stop element prevents excessive deformation of the deformable module, or even deterioration of the deformable module.
  • a second object of the present invention is also to provide a method of controlling a mechanical valve of an aqueous solution injection system on board a vehicle.
  • the method of controlling a mechanical valve of an aqueous solution system on board a vehicle comprises the following steps depending on the demand of the vehicle:
  • An aqueous solution injection step by opening the mechanical valve comprising:
  • pressurization with respect to atmospheric pressure or “pressurization with respect to atmospheric pressure”, is meant to denote a pressure value in the second chamber expressed in absolute magnitude.
  • Figure 1 is a cross-sectional schematic view of a first embodiment of a mechanical valve of an aqueous solution injection system on board a vehicle according to the invention.
  • Figure 2 is a schematic top view of a deformable elastomeric membrane module as used in the mechanical valve according to the invention.
  • FIG. 3 is a detailed cross-sectional schematic view illustrating an embodiment of the first element of the means for opening and closing the hole passing through the partition wall between the two chambers of the mechanical valve according to the invention.
  • FIG. 4 is a detailed transverse schematic view illustrating the mode of opening of the embodiment of the first element of the means for opening and closing the through hole of the partition wall between the two chambers of the mechanical valve according to l invention illustrated in Figure 3.
  • FIG. 5 is a detailed transverse schematic view illustrating the mode of opening of the embodiment of the first element of the means for opening and closing the through hole of the partition wall between the two chambers of the mechanical valve according to l invention illustrated in Figure 3.
  • FIG. 6 is a detailed transverse schematic view illustrating a variant of the embodiment of the first element of the means for opening and closing the through hole of the partition wall between the two chambers of the mechanical valve according to the invention.
  • FIG. 7 is a detailed transverse schematic view illustrating the mode of opening of the embodiment of the first element of the means for opening and closing the through hole of the partition wall between the two chambers of the mechanical valve according to l invention illustrated in Figure 6.
  • FIG. 8 is a detailed transverse schematic view illustrating another variant of the embodiment of the first element of the means for opening and closing the through hole of the partition wall between the two chambers of the mechanical valve according to the invention .
  • FIG. 9 is a detailed transverse schematic view illustrating the mode of opening of the embodiment of the first element of the means for opening and closing the through hole of the partition wall between the two chambers of the mechanical valve according to l invention illustrated in figure 8.
  • FIG. 10 is a detailed transverse schematic view illustrating another variant of the embodiment of the first element of the means for opening and closing the through hole of the partition wall between the two chambers of the mechanical valve according to the invention .
  • FIG. 11 is a detailed cross-sectional schematic view illustrating a variant of the embodiment of the third element of the means for opening and closing the through hole of the partition wall between the two chambers within the mechanical valve according to FIG. invention.
  • FIG. 12 is a detailed cross-sectional schematic view of the third element shown in FIG. 11 and illustrating the bending of the third element of the means opening and closing of the through hole of the partition wall between the two chambers within the mechanical valve according to the invention
  • FIG. 13 is a detailed transverse schematic view illustrating another variant of the embodiment of the third element of the means for opening and closing the through hole of the partition wall between the two chambers within the mechanical valve according to l 'invention.
  • FIG. 14 is a detailed transverse schematic view illustrating a different variant of the embodiment of the third element of the means for opening and closing the through hole of the partition wall between the two chambers within the mechanical valve according to l 'invention.
  • Figure 15 illustrates the operation of the mechanical valve according to the invention in injection mode.
  • Figure 16 illustrates the operation of the mechanical valve according to the invention in closed mode.
  • Figure 17 illustrates the operation of the mechanical valve according to the invention in purge mode of the injection line.
  • Figure 18 is a detailed cross-sectional schematic view illustrating a mechanical valve according to an alternative embodiment of the rod forming the extension unit.
  • Figure 19 is a detailed cross-sectional schematic view illustrating the mode of movement of the shutter unit of the mechanical valve of Figure 18.
  • Figure 20 is a detailed cross-sectional schematic view illustrating the shutter unit of the mechanical valve in the configuration of Figure 19.
  • FIG. 1 shows a first embodiment of a mechanical valve (1) of an aqueous solution injection system on board a vehicle according to the invention.
  • the mechanical valve (1) comprises a first chamber (10) and a second chamber (11) separated by a wall (12), said wall (12) comprising a through hole (120), at least part of the wall (12) ) comprising the through hole (120) projects into the first chamber (10).
  • the through hole (120) is provided with an opening and closing means (13).
  • the opening and closing means (13) of the through-hole (120) comprises a first element (130) comprising a shut-off unit (1300) of the through-hole (120) of flat shape located in the first chamber (10). of the mechanical valve (1) and having an extension unit (1301) extending into the second chamber (11) of the mechanical valve (1).
  • the extension unit (1301) is a rod (1302) bent at two places with opposite bend angles so as to reduce the distance between the rod (1302) and a second member (131) of the opening and closing means (13) of the through hole (120).
  • the second element (131) of the means for opening and closing (13) of the through-hole (120) is located in the second chamber (11) of the mechanical valve (1), said second element
  • the deformable module (1310) is preferably an elastomeric membrane (13100).
  • the deformable module (1310) of the second element (131) of the opening and closing means (13) is able to apply a force on the extension unit (1301) of the first element (130) of the opening means. and closing (13) by modifying the shape of the deformable module (1310) of the second element (131) by applying a pressure differential between the pressure in the second chamber (11) and the atmospheric pressure, said force allowing the placing the two chambers (10, 11) in fluid communication by a displacement, in rotation about an axis (X), of the sealing unit (1300) of the first element (130).
  • the deformable module (1310) made of elastomeric membrane (13100) rests on a wall (14) provided with at least one opening (140) of the second chamber (11) of the mechanical valve (1).
  • the wall (14) is a grid lined on its outer face with respect to the second chamber (11) of retention elements (15) in order to avoid too great a deformation of the membrane (13100) towards the outside.
  • the mechanical valve (1) is such that the first chamber (10) is capable of being fluidly connected to at least one injector, not shown, and the second chamber (11) is capable of being fluidly connected to a distribution module. of aqueous solution not shown.
  • the means for opening and closing (13) of the through hole (120) of the mechanical valve (1) comprises a third element
  • said third member (132) located in the first chamber (10) of the mechanical valve (1) said third member (132) exerting a force on the shutter unit (1300) of the first member (130) is a spiral spring.
  • FIG. 2 shows a deformable module (1310) made of an elastomeric membrane (13100) as used in the mechanical valve (1) according to the invention.
  • the elastomeric membrane (13100) includes a central rigid zone (131000) and a peripheral deformable zone (131001).
  • the central rigid zone (131000) makes it possible to have a firmer contact surface with the extension unit of the first element of the opening and closing means (not shown), the deformable zone (131001) allowing for its lifting. or the lowering of the rigid zone (131000) as a function of the pressure differential between atmospheric pressure and the pressure prevailing in the second chamber of the mechanical valve, not shown.
  • the elastomeric membrane (13100) comprises an additional rigid zone (131002) intended for fixing the membrane (13100) to a wall of the second chamber of the mechanical valve, not shown.
  • the first member (130) comprises a first member (130) comprising an ellipsoidal shaped through-hole (120) sealing unit (1300) located in the first chamber (10) of the mechanical valve (1) and having a unit extension (1301) extending into the second chamber (11) of the mechanical valve (1).
  • An ellipsoidal shape of the shutter unit (1300) allows easier opening of the valve (1).
  • the partition wall (12) between the two chambers (10, 11) of the mechanical valve (1) forms a conically shaped seat (121) in its part extending towards the first chamber (10) serving as a receptacle for the valve.
  • the shutter unit (1300) is also provided with a fixing means (13000) of the third element (132) of the opening and closing means (13) of the through hole (120).
  • the third element (132) is represented by the first turns of a spiral spring.
  • the ellipsoidal shutter unit (1300) also includes an additional offset fulcrum (13001) allowing a wider fluid connection between the two chambers (10, 11) and a second fulcrum (13001) to be obtained ( 13002) offset from the first (13001) to obtain an even greater fluidic connection.
  • the dashed line represents a reference plane of the first element (130) of the opening and closing means (13) in the closed position, it makes it possible to indicate the extent of the tilting and therefore of the opening.
  • FIG. 4 a detailed transverse schematic view illustrating the mode of opening of the embodiment of the first element (130) of the opening and closing means (13) of the through hole (120) of the wall of separation (12) between the two chambers (10, 11) of the mechanical valve (1) according to the invention illustrated in FIG. 3.
  • the dotted arrows indicate the direction of the liquid flow and its importance.
  • the dashed line is a reference plane of the first element (130) of the opening and closing means (13) in the closed position, it allows to indicate the extent of the tilting and therefore of the opening.
  • the first element (130) comprises a unit for closing the hole (1300) spherically shaped feedthrough (120) located in the first chamber (10) of the mechanical valve (1) and having an extension unit (1301) extending into the second chamber (11) of the mechanical valve (1).
  • a spherical shape of the closure unit (1300) makes it possible to obtain excellent sealing of the mechanical valve (1).
  • the partition wall (12) between the two chambers (10, 11) of the mechanical valve (1) forms a conically shaped seat (121) in its part extending towards the first chamber (10) serving as a receptacle for the valve.
  • shutter unit (1300) is also provided with a fixing means (13000) of the third element (132) of the opening and closing means (13) of the through hole (120).
  • the third element (132) is represented by the first turns of a spiral spring.
  • the spherically shaped sealing unit (1300) also includes a through hole (13003) to achieve a better controlled maximum fluid connection between the two chambers (10, 11).
  • FIG. 7 a detailed transverse schematic view illustrating the mode of opening of the embodiment of the first element (130) of the opening and closing means (13) of the through hole (120) of the partition wall. (12) between the two chambers (10, 11) of the mechanical valve (1) according to the invention illustrated in FIG. 6. The effect obtained by the presence of the through hole (13003) present in the unit is observed. 'spherical shaped seal (1300), the flow of liquid passing through the through hole (13003) when the fluid connection is established between the two chambers (10, 11). The dotted arrow indicates the direction of liquid flow.
  • the first element (130) comprises a shutter unit (1300) of the through-hole (120) of spherical shape provided with a plug (13004) located in the first chamber (10) of the mechanical valve (1) and having a extension unit (1301) extending into the second chamber (11) of the mechanical valve (1).
  • the partition wall (12) between the two chambers (10, 11) of the mechanical valve (1) forms a conically shaped seat (121) in its part extending towards the first chamber (10) serving as a receptacle for the valve. shutter unit (1300).
  • the sealing unit (1300) is also provided with a means for fixing (13000) the third element (132) of the means for opening and closing (13) of the through hole (120).
  • the third element (132) is represented by the first turns of a spiral spring.
  • the bushel (13004) is in the form of a groove made in the shutter unit (1300).
  • FIG. 9 a detailed transverse schematic view illustrating the opening mode of the embodiment of the first element (130) of the means opening and closing (13) of the through hole (120) of the separation wall (12) between the two chambers (10, 11) of the mechanical valve (1) according to the invention illustrated in FIG. observes the effect obtained by the presence of the plug (13004) present in the form of a hollow groove in the spherical-shaped shutter unit (1300). The liquid flow passes through the plug (13004) when the fluid connection is established between the two chambers (10, 11). The dotted arrow indicates the direction of liquid flow.
  • FIG. 10 shows an embodiment of a mechanical valve (1) for an aqueous solution injection system on board a vehicle according to the invention.
  • the mechanical valve (1) comprises a first chamber (10) and a second chamber (11) separated by a wall (12), said wall (12) comprising a through hole (120), at least part of the wall (12) ) comprising the through hole (120) projects into the first chamber (10).
  • the through hole (120) is provided with an opening and closing means (13).
  • the opening and closing means (13) of the through-hole (120) comprises a first element (130) comprising a shut-off unit (1300) of the through-hole (120) of flat shape located in the first chamber (10). of the mechanical valve (1) and having an extension unit (1301) extending into the second chamber (11) of the mechanical valve (1).
  • the extension unit (1301) is a rod (1302) bent at two places with opposite bend angles so as to reduce the distance between the rod (1302) and a second member (131) of the opening means and closure (13) of the through hole (120).
  • the second element (131) of the means for opening and closing (13) of the through-hole (120) is located in the second chamber (11) of the mechanical valve (1), said second element (131) comprising a deformable module (1310).
  • the deformable module (1310) is preferably an elastomeric membrane (13100).
  • the deformable module (1310) of the second element (131) of the opening and closing means (13) is able to apply a force on the extension unit (1301) of the first element (130) of the opening means.
  • the deformable module (1310) made of elastomeric membrane (13100) rests on a wall (14) provided with at least one opening (140) of the second chamber (11) of the mechanical valve (1).
  • the wall (14) is a grid lined on its outer face with respect to the second chamber (11) of retention elements (15) in order to avoid too great a deformation of the membrane (13100) towards the outside.
  • the mechanical valve (1) is such that the first chamber (10) is suitable for be fluidly connected to at least one injector, not shown, and the second chamber (11) is capable of being fluidly connected to an aqueous solution distribution module, not shown.
  • the means for opening and closing (13) the through hole (120) of the partition wall (12) of the mechanical valve (1) comprises a third element (132) located in the first chamber (10) of the valve.
  • mechanical (1), said third member (132) exerting a force on the shutter unit (1300) of the first member (130) is a spiral spring.
  • the shutter unit (1300) is provided with a fixing means (13000) of the third element (132) of the opening and closing means (13) of the through hole (120).
  • the fixing means (13000) is preferably a protuberance of slightly smaller diameter than that of the spiral spring in order to allow easy mounting of the valve by inserting the protuberance into the spiral spring.
  • FIG. 11 shows an embodiment of a mechanical valve (1) of an aqueous solution injection system on board a vehicle according to the invention.
  • the mechanical valve (1) comprises a first chamber (10) and a second chamber (11) separated by a wall (12), said wall (12) comprising a through hole (120), at least part of the wall (12) ) comprising the through hole (120) projects into the first chamber (10).
  • the through hole (120) is provided with an opening and closing means (13).
  • the opening and closing means (13) of the through-hole (120) comprises a first element (130) comprising a shut-off unit (1300) of the through-hole (120) of ellipsoidal shape located in the first chamber (10).
  • the sealing unit (1300) of the ellipsoidal-shaped through-hole (120) rests on a conical-shaped seat (121).
  • the extension unit (1301) is a rod (1302) bent at two places with opposite bend angles so as to reduce the distance between the rod (1302) and a second member (131) of the opening means and closure (13) of the through hole (120).
  • the second element (131) of the means for opening and closing (13) of the through-hole (120) is located in the second chamber (11) of the mechanical valve (1), said second element (131) comprising a deformable module (1310).
  • the deformable module (1310) is preferably an elastomeric membrane (13100).
  • the deformable module (1310) of the second element (131) of the opening and closing means (13) is able to apply a force on the extension unit (1301) of the first element (130) of the opening means. and closing (13) by modifying the shape of the deformable module (1310) of the second element (131) by applying a pressure differential between the pressure in the second chamber (11) and the atmospheric pressure, said force allowing the fluid communication between the two chambers (10, 11) by a displacement, in rotation about an axis (X), of the shutter unit (1300) of the first element (130).
  • the deformable module (1310) made of elastomeric membrane (13100) rests on a wall (14) provided with at least one opening (140) of the second chamber (11) of the mechanical valve (1).
  • the wall (14) is a grid lined on its outer face with respect to the second chamber (11) of retention elements (15) in order to avoid too great a deformation of the membrane (13100) towards the outside.
  • the mechanical valve (1) is such that the first chamber (10) is capable of being fluidly connected to at least one injector, not shown, and the second chamber (11) is capable of being fluidly connected to a distribution module. of aqueous solution not shown.
  • the means for opening and closing (13) of the through-hole (120) of the mechanical valve (1) comprises a third element (132) located in the first chamber (10) of the mechanical valve (1), said third element (132) exerting a force on the shutter unit (1300) of the first member (130) is a bending bar.
  • FIG. 12 shows the bending of the third element (132) of the opening and closing means (13) of the through hole (120) of the partition wall (12) between the two chambers (10, 11) at the within the mechanical valve (1) according to the invention as presented in FIG. 11 when the mechanical valve (1) is opened, placing the two chambers (10, 11) in fluid connection.
  • the deformable module (1310) of the second element (131) of the opening and closing means (13) applies a force to the extension unit (1301) of the first element (130) of the opening and closing means (13) by modifying the shape of the deformable module (1310) of the second element (131) by applying a pressure differential between the pressure in the second chamber (11) and atmospheric pressure, said force allowing communication to be placed fluidity of the two chambers (10, 11) by a displacement, in rotation about the axis (X), of the sealing unit (1300) of the first element (130).
  • the deformable module (1310) in elastomeric membrane (13100) moves away from the wall (14) provided with at least one opening (140) of the second chamber (11) of the mechanical valve (1) due to the differential pressures.
  • the wall (14) is a grid lined on its outer face with respect to the second chamber (11) of retention elements (15) in order to avoid excessive deformation of the membrane (13100) outwards.
  • FIG. 13 illustrates a third element (132) of the means for opening and closing (13) of the through hole (120) of the mechanical valve (1) according to the invention.
  • Said third element (132) is located in the first chamber (10) of the mechanical valve (1) and comprises a flexion bar and a spiral spring.
  • FIG. 14 illustrates a third element (132) of the means for opening and closing (13) of the through hole (120) of the mechanical valve (1) according to the invention.
  • Said third element (132) is located in the second chamber (11) of the mechanical valve (1) and comprises a spiral spring.
  • the spiral spring is connected to the rod (1302) forming the extension unit (1301) and a wall (14) of the second chamber (11) of the mechanical valve (1) according to the invention.
  • FIG. 15 shows an example of the operation of the mechanical valve (1) of an aqueous solution injection system on board a vehicle according to the invention in injection mode.
  • the step of injecting an aqueous solution by opening the mechanical valve (1) comprises putting overpressure relative to the atmospheric pressure of the second chamber (11) of the mechanical valve (1) to at least 2 bars, preferably 10 bars. This overpressure step is carried out via the pump of the aqueous solution injection module, not shown in the figure.
  • the opening of the through-hole (120) is effected by a displacement, in rotation around the axis (X), of the closing unit (1300) of the first element (130) of the opening and closing means. (13) of the through hole (120) of the partition wall (12) between the two chambers (10, 11).
  • This displacement results from the application of a force greater than the force exerted by the third element (132) located in the first chamber (10) of the mechanical valve (1).
  • the pressure prevailing in the second chamber (11) is therefore greater than atmospheric pressure.
  • This higher force is the hydraulic force resulting from the engagement of the pump of the aqueous solution injection module, not shown.
  • This injection is carried out at a flow rate of around 80 L / h, which results in a pressure drop of one bar between the inlet of the mechanical valve (1) in the second chamber
  • FIG. 16 shows an example of the operation of the mechanical valve (1) of an aqueous solution injection system on board a vehicle according to the invention in closed mode.
  • the step of closing the mechanical valve (1) comprises compressing the shutter unit (1300) of the through-hole (120) by the third member (132) of the opening and closing means (13) of the valve. through hole (120) of the partition wall (12) between the two chambers (10, 11). Said third element (132) is located in the first chamber (10) of the mechanical valve (1).
  • This closure is performed when the pressure in the second chamber (11) of the mechanical valve (1) is lower than the pressure in the first chamber (10), preferably, the pressure in the second chamber (11) is equal to atmospheric pressure, this resulting from the joint action of the pressure and elastic return forces of the spiral spring.
  • the pressure in the injection line on the side of the first chamber (10) of the mechanical valve (1) is of the order of 3 to 15 bars for example.
  • the pressure prevailing in the second chamber (11) of the mechanical valve (1) being equal to atmospheric pressure, this pressure difference between the two chambers (10, 11) also makes it possible to ensure the closing of the through hole (120) by the shutter unit (1300).
  • the dotted arrow indicates the return of water to the aqueous solution injection module is closed.
  • FIG. 17 shows an example of the operation of the mechanical valve (1) of an aqueous solution injection system on board a vehicle according to the invention in purge mode of the injection line.
  • the injection system line purge step includes pressurization from atmospheric pressure of the second chamber (11) of the mechanical valve (1) to at least - 200mbar. This pressurizing step is carried out by suction by the pump of the aqueous solution injection module, not shown, in other words the pump of the aqueous solution injection module operates in the opposite direction to the injection.
  • FIG 18 an embodiment of a mechanical valve (1) of an aqueous solution injection system on board a vehicle according to the invention. It differs from previous embodiments in that the extension unit is a straight rod (1302). As shown in figure 19, the operation of the mechanical valve (1) is similar to that of the valve of figure 1. In particular, with reference to Figure 20, the opening of the through hole (120) of the partition wall (12) is effected by a movement, in rotation about the axis (X), of the unit of obturation (1300).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Sliding Valves (AREA)

Abstract

L'invention concerne une vanne mécanique (1) pour système de solution aqueuse embarqué dans un véhicule, comprenant au moins une première chambre (10) et une deuxième chambre (11) séparées par une paroi de séparation (12), comprenant un trou traversant (120) muni d'un moyen d'ouverture et de fermeture (13) comprenant un premier élément (130) comprenant une unité d'obturation (1300) du trou traversant (120) située dans la première chambre (10) de la vanne mécanique (1) et ayant une unité d'extension (1301) s'étendant dans la deuxième chambre (11) de la vanne mécanique (1) et un deuxième élément (131) situé dans la deuxième chambre (11) de la vanne mécanique (1), ledit deuxième élément (131) comprenant un module déformable (1310); le module déformable (1310) du deuxième élément (131) du moyen d'ouverture et de fermeture (13) est apte à appliquer une force sur l'unité d'extension (1301) du premier élément (130) du moyen d'ouverture et de fermeture (13) par modification de la forme du module déformable (1310) du deuxième élément (13) par application d'un différentiel de pression entre la pression dans la deuxième chambre (11) et la pression atmosphérique, ladite force permettant la mise en communication fluidique des deux chambres (10, 11) par déplacement de l'unité d'obturation (1300) du premier élément (130); la vanne mécanique (1) étant telle que la première chambre (10) est apte à être connectée de manière fluidique à au moins un injecteur et la seconde chambre (11) est apte à être connectée de manière fluidique à un module de distribution de solution aqueuse.

Description

Description
Titre de l’invention :
SYSTEME D'INJECTION DE SOLUTION AQUEUSE EMBARQUE
DANS UN VEHICULE AVEC UNE VANNE MECANIQUE
L'invention concerne une vanne mécanique pour un système d'injection de solution aqueuse embarqué dans un véhicule. L'invention concerne également un système d'injection de solution aqueuse comprenant ladite vanne mécanique et un procédé de commande de la vanne mécanique. Plus particulièrement, l’invention concerne une vanne mécanique pour un système d'injection d’eau dans un moteur thermique embarqué dans un véhicule ou bien pour un système d'injection de solution aqueuse d’urée au sein de la ligne d’échappement des gaz de combustion d’un moteur thermique à combustion interne à bord d’un véhicule automobile.
La stratégie d’injection d’eau dans un moteur à combustion interne embarqué dans un véhicule nécessite que la pression dans la conduite d’alimentation du système d’injection d’eau soit maintenue dans les injecteurs afin d’éviter que l’eau n’entre en ébullition. Par conséquent, une vanne pour un système d'injection d'eau dans un moteur à combustion interne embarqué dans un véhicule nécessite l’utilisation d'énergie, par exemple électrique, pour ouvrir et fermer la vanne d’injection, mais également pour utiliser un module de commande électronique (ECU) gérant les fonctions d'ouverture et de fermeture de ladite vanne. Ce module de commande nécessite en outre l’utilisation et le développement d’un logiciel de contrôle. Les coûts liés à une telle vanne et à un système d'injection d'eau dans un moteur à combustion interne embarqué dans un véhicule la comprenant sont donc considérablement élevés. L’injection de solution aqueuse d’urée au sein de la ligne d’échappement des gaz de combustion d’un moteur thermique à combustion interne à bord d’un véhicule automobile nécessite en outre de maintenir la pompe d’injection en fonctionnement afin de maintenir la pression dans la conduite d’alimentation du système d’injection de solution aqueuse d’urée ou/et bien l’I’utilisation d'énergie électrique pour ouvrir et fermer la vanne d’injection, mais également pour utiliser un module de commande électronique (ECU) gérant les fonctions d'ouverture et de fermeture de ladite vanne.
Il existe donc un besoin d'une vanne pour un système d'injection de solution aqueuse embarqué dans un véhicule ayant un niveau de performance similaire aux vannes existantes mais nécessitant moins d'énergie dans ses commandes et moins de contrôle logiciel tout en présentant un coût inférieur.
Un premier objet de la présente invention est donc de proposer une vanne, comprise dans un système d'injection de solution aqueuse embarqué dans un véhicule, qui surmonte les problèmes énumérés précédemment. Plus particulièrement, un premier objet de l’invention concerne une vanne mécanique comprise dans un système d'injection d’eau dans un moteur thermique embarqué dans un véhicule ou bien comprise dans un système d'injection de solution aqueuse d’urée au sein de la ligne d’échappement des gaz de combustion d’un moteur thermique à combustion interne à bord d’un véhicule automobile.
Un second objet de l’invention est de fournir une méthode de contrôle dudit système d’injection de solution aqueuse embarqué dans un véhicule comportant ladite vanne. Plus particulièrement, un second objet de l’invention concerne une méthode de contrôle dudit système d’injection d’eau dans un moteur thermique embarqué dans un véhicule comprenant ladite vanne ou bien une méthode de contrôle dudit système d'injection de solution aqueuse d’urée au sein de la ligne d’échappement des gaz de combustion d’un moteur thermique à combustion interne à bord d’un véhicule automobile comprenant ladite vanne.
L'objectif ci-dessus est atteint par un système d'injection de solution aqueuse embarqué dans un véhicule comprenant une vanne mécanique selon la présente invention.
Conformément à un mode de réalisation particulier, l’invention concerne un système d’injection de solution aqueuse embarqué dans un véhicule comprenant une vanne mécanique.
Selon l’invention, un tel système comprend une vanne mécanique comprenant au moins une première chambre et une deuxième chambre séparées par une paroi de séparation, ladite paroi comprenant un trou traversant, ledit trou traversant étant muni d’un moyen d'ouverture et de fermeture dudit trou traversant, le moyen d'ouverture et de fermeture comprenant :
• un premier élément comprenant une unité d’obturation du trou traversant située dans la première chambre de la vanne mécanique et ayant une unité d'extension s’étendant dans la deuxième chambre de la vanne mécanique comprenant au moins une tige solidaire de l'unité d’obturation, la tige étant configurée pour servir de bras de levier autour d’un axe en mode purge d'une ligne d'injection du système d'injection ;
• un deuxième élément situé dans la deuxième chambre de la vanne mécanique, ledit deuxième élément comprenant un module déformable; dans lequel le module déformable du deuxième élément du moyen d'ouverture et de fermeture est apte à appliquer une force sur l'unité d'extension du premier élément du moyen d'ouverture et de fermeture par modification de la forme du module déformable du deuxième élément par application d’un différentiel de pression entre la pression dans la deuxième chambre et la pression atmosphérique, ladite force permettant la mise en communication fluidique des deux chambres par un déplacement, en rotation autour de l’axe, de l’unité d’obturation du premier élément ; la vanne mécanique étant telle que la première chambre est apte à être connectée de manière fluidique à au moins un injecteur et la seconde chambre est apte à être connectée de manière fluidique à un module de distribution de solution aqueuse. Préférentiellement, le module déformable est fixé sur une paroi de la deuxième chambre contigüe à la paroi de séparation, ladite paroi comprenant le module déformable étant préférentiellement orientée parallèlement à la direction d’écoulement de solution aqueuse au sein de la vanne mécanique.
Le principe général de l’invention repose sur l’utilisation de différentiels de pression entre la pression atmosphérique et la pression régnant dans la deuxième chambre d’une part mais également entre la deuxième chambre et la première chambre d’autre part afin de contrôler l’ouverture et la fermeture de la vanne mécanique pour les opérations d’injection, de purge de la ligne d’injection par aspiration, et de fermeture de ladite vanne. Ces variations de pressions résultant des activités d’aspiration ou d’injection du module d’injection de solution aqueuse.
Le fait que le déplacement de l’unité d’obturation pour ouvrir le trou traversant de la paroi de séparation se fasse par une rotation permet en outre de faciliter le déplacement de l’unité d’obturation. En effet, si l’unité d’obturation était configurée pour être déplacée en translation, il serait nécessaire de fournir une force s’exerçant sur l’unité d’obturation suffisante pour surpasser une force opposée agissant sur l’unité d’obturation pour le maintenir contre le trou traversant. Grâce au déplacement de l’unité d’obturation par rotation, on peut s’affranchir de cette contrainte, de sorte qu’une force moindre, fournie par le module déformable, est nécessaire pour ouvrir le trou traversant.
Par l’expression « solution aqueuse », on entend désigner une eau déminéralisée c’est-à-dire une eau présentant une conductivité électrique inférieure ou égale à 50 microsiemens par centimètre (pS/cm) à 20 degrés Celsius (°C), voire inférieure ou égale à 15 pS/cm à 20° C ou bien une solution aqueuse comprenant de l’urée telle qu’une solution de type AdBlue@ comprenant 32 ,5% en poids d’urée et 67.5% en poids d’eau déminéralisée.
Selon un mode de réalisation préféré de l’invention, le système d’injection de solution aqueuse embarqué dans un véhicule comprend une vanne mécanique telle que le moyen d'ouverture et de fermeture dudit trou traversant comprend un troisième élément situé dans une des deux chambres de la vanne mécanique, ledit troisième élément exerçant une force sur l'unité d’obturation du premier élément. Ledit troisième élément est préférentiellement un ressort spiral et/ou une barre de flexion. Préférentiellement, le troisième élément du moyen d'ouverture et de fermeture dudit trou traversant est situé dans la première chambre de la vanne mécanique.
Ainsi un tel mode de réalisation permet d’utiliser la vanne selon l’invention dans n’importe quel orientation grâce à la force exercée par le troisième élément sur l’unité d’obturation. En outre, on comprend davantage que le fait que l’ouverture du trou traversant se fasse par une rotation de l’unité d’obturation plutôt que par une translation permet de ne pas avoir à comprimer le troisième élément, de sorte qu’une force moindre, fournie par le module déformable, est nécessaire pour ouvrir le trou traversant.
Selon un mode de réalisation préféré de l’invention, le système d’injection de solution aqueuse embarqué dans un véhicule comprend une vanne mécanique telle qu’au moins une partie de la paroi de séparation comprenant le trou traversant se projette dans la première chambre.
Ainsi un tel mode de réalisation permet l’obtention d’un siège pour l’unité de d’obturation.
Selon un mode de réalisation préféré de l’invention, le système d’injection de solution aqueuse embarqué dans un véhicule comprend une vanne mécanique telle que l’unité d’obturation du trou traversant du premier élément située dans la première chambre de la vanne mécanique est de forme plane ou sphérique ou ellipsoïdale, préférentiellement ellipsoïdale de révolution.
Ainsi un tel mode de réalisation permet d’obtenir une excellente étanchéité de la vanne mécanique dans le cas d’une vanne dont l’unité d’obturation a une forme sphérique et dont le siège obtenu par la projection d’une partie de la paroi comprenant le trou traversant dans la première chambre est de forme conique. Alternativement, une vanne dont l’unité d’obturation est ellipsoïdale permet d’obtenir une ouverture plus facile de la vanne à contrainte égale.
Avantageusement, l’unité d’obturation est munie d’un moyen de fixation du troisième élément. L’unité d’obturation de forme sphérique comprend avantageusement un boisseau permettant une communication fluidique entre les deux chambres plus aisée. L’unité d’obturation de forme ellipsoïdale peut comprendre un point d’appui additionnel déporté permettant d’obtenir une connexion fluidique plus large entre les deux chambres, avantageusement un deuxième point d’appui en déport du premier permet d’obtenir une connexion fluidique encore plus importante. Par le terme boisseau, on entend plus particulièrement désigner un trou traversant l’unité d’obturation sphérique, ou une gorge creusée dans l’unité d’obturation ou une forme géométrique apte à constituer un canal de communication fluidique entre les deux chambres, préférentiellement le boisseau est un trou traversant l’unité d’obturation sphérique. Le système d’injection de solution aqueuse embarqué dans un véhicule comprend une vanne mécanique telle que l’unité d'extension s’étendant dans la deuxième chambre de la vanne mécanique du premier élément comprend au moins une tige.
Ainsi une unité d'extension sous forme de tige permet de bénéficier d’un bras de levier plus important réduisant la force à exercer pour déplacer l’unité d’obturation.
Selon un mode de réalisation préféré de l’invention du mode précédent, le système d’injection de solution aqueuse embarqué dans un véhicule comprend une vanne mécanique telle que la tige est incurvée ou pliée à au moins un endroit, préférentiellement à deux endroits avec des angles de pliure opposés.
Ainsi une telle tige permet de réduire la déformation du module de déformation afin d’exercer la force nécessaire sur l'unité d'extension du premier élément du moyen d'ouverture et de fermeture permettant la mise en communication fluidique des deux chambres par un déplacement de l’unité d’obturation du premier élément.
Selon une mode de réalisation alternatif au mode précédent, le système d’injection de solution aqueuse embarqué dans un véhicule comprend une vanne mécanique telle que la tige est droite.
Ainsi une telle tige permet un démoulage sans plan de joint dans la zone d’étanchéité.
Selon un mode de réalisation alternatif au mode précédent, le système d’injection de solution aqueuse embarqué dans un véhicule comprend une vanne mécanique telle que la forme du module déformable permet de réduire la longueur de l’unité d’extension du premier élément du moyen d'ouverture et de fermeture.
Selon un mode de réalisation préféré de l’invention, le système d’injection de solution aqueuse embarqué dans un véhicule comprend une vanne mécanique telle que le module déformable du deuxième élément comprend une membrane en élastomère.
Selon un mode de réalisation préféré du mode précédent, le système d’injection de solution aqueuse embarqué dans un véhicule comprend une vanne mécanique telle que la membrane en élastomère repose sur une paroi de la deuxième chambre munie d’au moins une ouverture.
Ainsi une telle membrane du fait de ses propriétés élastiques plus importantes permet d’exercer un meilleur transfert de la force résultant du différentiel de pression entre la pression dans la deuxième chambre et la pression atmosphérique. La présence d’au moins une ouverture dans la paroi de la deuxième chambre permet d’effectuer la déformation à l’endroit de l’ouverture. Préférentiellement la membrane repose sur une grille. Avantageusement, la paroi munie d’au moins une ouverture, avantageusement la grille, est doublée, sur sa face extérieure par rapport à la deuxième chambre, d’éléments de rétention afin d’éviter une déformation de la membrane trop importante vers l’extérieur. Selon un mode de réalisation préféré du mode précédent, le système d’injection de solution aqueuse embarqué dans un véhicule comprend une vanne mécanique telle que la membrane en élastomère comprend une zone rigide et une zone déformable, préférentiellement la zone rigide est une zone centrale et la zone déformable est une zone périphérique.
Ainsi la zone rigide permet d’avoir une surface de contact plus ferme avec l’unité d’extension du premier élément du moyen d'ouverture et de fermeture, la zone déformable permettant le soulèvement ou l’abaissement de la zone rigide en fonction du différentiel de pression entre la pression atmosphérique et la pression régnant dans la seconde chambre. Par l’expression zone rigide, on entend désigner que la zone rigide de la membrane d’élastomère ne subit pas ou peu de modification de forme par rapport à la zone déformable sous l’effet du différentiel de pression.
Selon un mode de réalisation préféré de l’invention, le système d’injection de solution aqueuse embarqué dans un véhicule comprend une vanne mécanique telle qu’elle comprend au sein de la deuxième chambre de la vanne mécanique un moyen limitant la déformation du module déformable du deuxième élément du moyen d'ouverture et de fermeture. Préférentiellement, le moyen limitant la déformation du module déformable est un élément de butée. L’élément de butée est préférentiellement situé sur une paroi de la deuxième chambre de la vanne mécanique en vis-à-vis de la paroi comprenant le module déformable. Avantageusement, l’élément de butée empêche une déformation trop importante du module déformable, voire une détérioration du module déformable.
Un second objet de la présente invention est également de fournir une méthode de contrôle d’une vanne mécanique d’un système d’injection de solution aqueuse embarqué dans un véhicule.
Selon un mode de mise en œuvre préféré de l’invention, la méthode de contrôle d’une vanne mécanique d’un système de solution aqueuse embarqué dans un véhicule selon l’invention, comprend les étapes suivantes en fonction de la demande du véhicule :
• Une étape d’injection de solution aqueuse par ouverture de la vanne mécanique comprenant :
I. Mise en surpression par rapport à la pression atmosphérique de la deuxième chambre de la vanne mécanique à au moins 2 bars, préférentiellement 10 bars ;
II. Ouverture du trou traversant par déplacement de l’unité d’obturation par application d’une force supérieure à la force exercée par le poids du premier élément ou par le troisième élément, troisième élément préférentiellement situé dans la première chambre, de la vanne mécanique; III. Mise en communication fluidique des deux chambres et injection de solution aqueuse ;
• Etape de fermeture de la vanne mécanique comprenant :
I. Compression de l’unité d’obturation du trou traversant par le débit inversé de fluide, par le poids du premier élément ou par le troisième élément, troisième élément préférentiellement situé dans la première chambre de la vanne mécanique, lorsque la pression dans la deuxième chambre de la vanne mécanique est inférieure à la pression dans la première chambre, préférentiellement égale à la pression atmosphérique ;
• Etape de purge de la ligne du système d’injection comprenant :
I. Mise en sous pression par rapport à la pression atmosphérique de la deuxième chambre de la vanne mécanique à au moins 200mbar ;
II. Déplacement de l’unité d’obturation par application d’une force sur l'unité d'extension du premier élément via une déformation du module déformable du deuxième élément du moyen d'ouverture et de fermeture;
III. Mise en communication fluidique des deux chambres et purge de la ligne.
Par les expressions « Mise en surpression par rapport à la pression atmosphérique » ou « Mise en sous pression par rapport à la pression atmosphérique », on entend désigner une valeur de pression dans la seconde chambre exprimée en grandeur absolue.
Brève description des figures
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels :
[Fig. 1] la figure 1 est une vue schématique transversale d’un premier mode de réalisation d’une vanne mécanique d’un système d’injection de solution aqueuse embarqué dans un véhicule selon l’invention.
[Fig. 2] la figure 2 est une représentation schématique en vue de dessus d’un module déformable en membrane en élastomère tel qu’utilisé dans la vanne mécanique selon l’invention.
[Fig. 3] la figure 3 est une vue schématique transversale détaillée illustrant un mode de réalisation du premier élément du moyen d'ouverture et de fermeture du trou traversant de la paroi de séparation entre les deux chambres de la vanne mécanique selon l’invention.
[Fig. 4] la figure 4 est une vue schématique transversale détaillée illustrant le mode d’ouverture du mode de réalisation du premier élément du moyen d'ouverture et de fermeture du trou traversant de la paroi de séparation entre les deux chambres de la vanne mécanique selon l’invention illustré à la figure 3.
[Fig. 5] la figure 5 est une vue schématique transversale détaillée illustrant le mode d’ouverture du mode de réalisation du premier élément du moyen d'ouverture et de fermeture du trou traversant de la paroi de séparation entre les deux chambres de la vanne mécanique selon l’invention illustré à la figure 3.
[Fig. 6] la figure 6 est une vue schématique transversale détaillée illustrant une variante du mode de réalisation du premier élément du moyen d'ouverture et de fermeture du trou traversant de la paroi de séparation entre les deux chambres de la vanne mécanique selon l’invention.
[Fig. 7] la figure 7 est une vue schématique transversale détaillée illustrant le mode d’ouverture du mode de réalisation du premier élément du moyen d'ouverture et de fermeture du trou traversant de la paroi de séparation entre les deux chambres de la vanne mécanique selon l’invention illustrée à la figure 6.
[Fig. 8] la figure 8 est une vue schématique transversale détaillée illustrant une autre variante du mode de réalisation du premier élément du moyen d'ouverture et de fermeture du trou traversant de la paroi de séparation entre les deux chambres de la vanne mécanique selon l’invention.
[Fig. 9] la figure 9 est une vue schématique transversale détaillée illustrant le mode d’ouverture du mode de réalisation du premier élément du moyen d'ouverture et de fermeture du trou traversant de la paroi de séparation entre les deux chambres de la vanne mécanique selon l’invention illustrée à la figure 8.
[Fig. 10] la figure 10 est une vue schématique transversale détaillée illustrant une autre variante du mode de réalisation du premier élément du moyen d'ouverture et de fermeture du trou traversant de la paroi de séparation entre les deux chambres de la vanne mécanique selon l’invention.
[Fig. 11] la figure 11 est une vue schématique transversale détaillée illustrant une variante du mode de réalisation du troisième élément du moyen d'ouverture et de fermeture du trou traversant de la paroi de séparation entre les deux chambres au sein de la vanne mécanique selon l’invention.
[Fig. 12] la figure 12 est une vue schématique transversale détaillée du troisième élément présenté à la figure 11 et illustrant la flexion du troisième élément du moyen d'ouverture et de fermeture du trou traversant de la paroi de séparation entre les deux chambres au sein de la vanne mécanique selon l’invention
[Fig. 13] la figure 13 est une vue schématique transversale détaillée illustrant une autre variante du mode de réalisation du troisième élément du moyen d'ouverture et de fermeture du trou traversant de la paroi de séparation entre les deux chambres au sein de la vanne mécanique selon l’invention.
[Fig. 14] la figure 14 est une vue schématique transversale détaillée illustrant une variante différente du mode de réalisation du troisième élément du moyen d'ouverture et de fermeture du trou traversant de la paroi de séparation entre les deux chambres au sein de la vanne mécanique selon l’invention.
[Fig. 15] la figure 15 illustre le fonctionnement de la vanne mécanique selon l’invention en mode injection.
[Fig. 16] la figure 16 illustre le fonctionnement de la vanne mécanique selon l’invention en mode fermeture.
[Fig. 17] la figure 17 illustre le fonctionnement de la vanne mécanique selon l’invention en mode purge de la ligne d’injection.
[Fig. 18] la figure 18 est une vue schématique transversale détaillée illustrant une vanne mécanique selon une variante de réalisation de la tige formant l’unité d’extension.
[Fig. 19] la figure 19 est une vue schématique transversale détaillée illustrant le mode de déplacement de l’unité d’obturation de la vanne mécanique de la figure 18.
[Fig. 20] la figure 20 est une vue schématique transversale détaillée illustrant l’unité d’obturation de la vanne mécanique dans la configuration de la figure 19.
Description détaillée
On a représenté sur la figure 1 un premier mode de réalisation d’une vanne mécanique (1 ) d’un système d’injection de solution aqueuse embarqué dans un véhicule selon l’invention. La vanne mécanique (1) comprend une première chambre (10) et une deuxième chambre (11 ) séparées par une paroi (12), ladite paroi (12) comprenant un trou traversant (120), au moins une partie de la paroi (12) comprenant le trou traversant (120) se projette dans la première chambre (10). Le trou traversant (120) est muni d’un moyen d'ouverture et de fermeture (13). Le moyen d'ouverture et de fermeture (13) du trou traversant (120) comprend un premier élément (130) comprenant une unité d’obturation (1300) du trou traversant (120) de forme plate située dans la première chambre (10) de la vanne mécanique (1 ) et ayant une unité d'extension (1301) s’étendant dans la deuxième chambre (11) de la vanne mécanique (1). L’unité d’extension (1301) est une tige (1302) pliée à deux endroits avec des angles de pliure opposés de manière à réduire la distance entre la tige (1302) et un deuxième élément (131 ) du moyen d'ouverture et de fermeture (13) du trou traversant (120). Le deuxième élément (131) du moyen d'ouverture et de fermeture (13) du trou traversant (120) est situé dans la deuxième chambre (11 ) de la vanne mécanique (1 ), ledit deuxième élément
(131 ) comprenant un module déformable (1310). Le module déformable (1310) est préférentiellement une membrane en élastomère (13100). Le module déformable (1310) du deuxième élément (131 ) du moyen d'ouverture et de fermeture (13) est apte à appliquer une force sur l'unité d'extension (1301) du premier élément (130) du moyen d'ouverture et de fermeture (13) par modification de la forme du module déformable (1310) du deuxième élément (131) par application d’un différentiel de pression entre la pression dans la deuxième chambre (11) et la pression atmosphérique, ladite force permettant la mise en communication fluidique des deux chambres (10, 11) par un déplacement, en rotation autour d’un axe (X), de l’unité d’obturation (1300) du premier élément (130). Le module déformable (1310) en membrane en élastomère (13100) repose sur une paroi (14) munie d’au moins une ouverture (140) de la deuxième chambre (11 ) de la vanne mécanique (1 ). Préférentiellement, la paroi (14) est une grille doublée sur sa face extérieure par rapport à la deuxième chambre (11) d’éléments de rétention (15) afin d’éviter une déformation de la membrane (13100) trop importante vers l’extérieur. La vanne mécanique (1) est telle que la première chambre (10) est apte à être connectée de manière fluidique à au moins un injecteur non représenté et la seconde chambre (11) est apte à être connectée de manière fluidique à un module de distribution de solution aqueuse non représenté. Le moyen d'ouverture et de fermeture (13) du trou traversant (120) de la vanne mécanique (1 ) comprend un troisième élément
(132) situé dans la première chambre (10) de la vanne mécanique (1), ledit troisième élément (132) exerçant une force sur l'unité d’obturation (1300) du premier élément (130) est un ressort spiral.
On a représenté sur la figure 2 un module déformable (1310) en membrane en élastomère (13100) tel qu’utilisé dans la vanne mécanique (1) selon l’invention. La membrane en élastomère (13100) comprend une zone rigide centrale (131000) et une zone déformable périphérique (131001). La zone rigide centrale (131000) permet d’avoir une surface de contact plus ferme avec l’unité d’extension du premier élément du moyen d'ouverture et de fermeture non représenté, la zone déformable (131001) permettant quant à elle le soulèvement ou l’abaissement de la zone rigide (131000) en fonction du différentiel de pression entre la pression atmosphérique et la pression régnant dans la seconde chambre de la vanne mécanique non représentée. On remarque que la membrane élastomère (13100) comprend une zone rigide additionnelle (131002) destinée à la fixation de la membrane (13100) sur une paroi de la deuxième chambre de la vanne mécanique non représentée. On a représenté à la figure 3 un premier mode de réalisation du premier élément (130) du moyen d'ouverture et de fermeture (13) du trou traversant (120) de la paroi de séparation (12) entre les deux chambres (10, 11) de la vanne mécanique (1 ) selon l’invention. Le premier élément (130) comprend un premier élément (130) comprenant une unité d’obturation (1300) du trou traversant (120) de forme ellipsoïdale située dans la première chambre (10) de la vanne mécanique (1 ) et ayant une unité d'extension (1301) s’étendant dans la deuxième chambre (11 ) de la vanne mécanique (1 ). Une forme ellipsoïdale de l’unité d’obturation (1300) permet d’obtenir une ouverture plus facile de la vanne (1). La paroi de séparation (12) entre les deux chambres (10, 11) de la vanne mécanique (1) forme un siège de forme conique (121) dans sa partie s’étendant vers la première chambre (10) servant de réceptacle à l’unité d’obturation (1300). L’unité d’obturation (1300) est également munie d’un moyen de fixation (13000) du troisième élément (132) du moyen d’ouverture et de fermeture (13) du trou traversant (120). Le troisième élément (132) est représenté par les premières spires d’un ressort spiral. L’unité d’obturation (1300) de forme ellipsoïdale comprend également un point d’appui additionnel (13001 ) déporté permettant d’obtenir une connexion fluidique plus large entre les deux chambres (10, 11) et un deuxième point d’appui (13002) en déport du premier (13001) permettant d’obtenir une connexion fluidique encore plus importante. La ligne en trait mixte représente un plan de référence du premier élément (130) du moyen d’ouverture et de fermeture (13) en position fermée, il permet d’indiquer l’importance du basculement et donc de l’ouverture.
On a représenté aux figures 4 et 5 une vue schématique transversale détaillée illustrant le mode d’ouverture du mode de réalisation du premier élément (130) du moyen d'ouverture et de fermeture (13) du trou traversant (120) de la paroi de séparation (12) entre les deux chambres (10, 11) de la vanne mécanique (1) selon l’invention illustré à la figure 3. On observe l’effet obtenu par la présence du point d’appui additionnel (13001) déporté permettant d’obtenir une connexion fluidique plus large entre les deux chambres (10, 11) (figure 4) et un deuxième point d’appui (13002) en déport du premier (13001) permettant d’obtenir une connexion fluidique encore plus importante (figure 5). Les flèches pointillées indiquent le sens du flux de liquide et son importance. La ligne en trait mixte est un plan de référence du premier élément (130) du moyen d’ouverture et de fermeture (13) en position fermée, il permet d’indiquer l’importance du basculement et donc de l’ouverture.
On a représenté à la figure 6 un second mode de réalisation du premier élément (130) du moyen d'ouverture et de fermeture (13) du trou traversant (120) de la paroi de séparation (12) entre les deux chambres (10, 11) de la vanne mécanique (1 ) selon l’invention. Le premier élément (130) comprend une unité d’obturation (1300) du trou traversant (120) de forme sphérique située dans la première chambre (10) de la vanne mécanique (1) et ayant une unité d'extension (1301) s’étendant dans la deuxième chambre (11) de la vanne mécanique (1). Une forme sphérique de l’unité d’obturation (1300) permet d’obtenir permet d’obtenir une excellente étanchéité de la vanne mécanique (1 ). La paroi de séparation (12) entre les deux chambres (10, 11 ) de la vanne mécanique (1 ) forme un siège de forme conique (121) dans sa partie s’étendant vers la première chambre (10) servant de réceptacle à l’unité d’obturation (1300). L’unité d’obturation (1300) est également munie d’un moyen de fixation (13000) du troisième élément (132) du moyen d’ouverture et de fermeture (13) du trou traversant (120). Le troisième élément (132) est représenté par les premières spires d’un ressort spiral. L’unité d’obturation (1300) de forme sphérique comprend également un trou traversant (13003) permettant d’obtenir une connexion fluidique maximale mieux contrôlée entre les deux chambres (10, 11 ).
On a représenté à la figure 7 une vue schématique transversale détaillée illustrant le mode d’ouverture du mode de réalisation du premier élément (130) du moyen d'ouverture et de fermeture (13) du trou traversant (120) de la paroi de séparation (12) entre les deux chambres (10, 11) de la vanne mécanique (1) selon l’invention illustré à la figure 6. On observe l’effet obtenu par la présence du trou traversant (13003) présent dans l’unité d’obturation de forme sphérique (1300), le flux de liquide passant par le trou traversant (13003) lorsque la connexion fluidique est établie entre les deux chambres (10, 11 ). La flèche pointillée indique le sens du flux de liquide.
On a représenté à la figure 8 un troisième mode de réalisation du premier élément (130) du moyen d'ouverture et de fermeture (13) du trou traversant (120) de la paroi de séparation (12) entre les deux chambres (10, 11) de la vanne mécanique (1 ) selon l’invention. Le premier élément (130) comprend une unité d’obturation (1300) du trou traversant (120) de forme sphérique munie d’un boisseau (13004) située dans la première chambre (10) de la vanne mécanique (1) et ayant une unité d'extension (1301) s’étendant dans la deuxième chambre (11) de la vanne mécanique (1). La paroi de séparation (12) entre les deux chambres (10, 11 ) de la vanne mécanique (1 ) forme un siège de forme conique (121) dans sa partie s’étendant vers la première chambre (10) servant de réceptacle à l’unité d’obturation (1300). L’unité d’obturation (1300) est également munie d’un moyen de fixation (13000) du troisième élément (132) du moyen d’ouverture et de fermeture (13) du trou traversant (120). Le troisième élément (132) est représenté par les premières spires d’un ressort spiral. Le boisseau (13004) se présente sous la forme d’une gorge creusée dans l’unité d’obturation (1300).
On a représenté à la figure 9 une vue schématique transversale détaillée illustrant le mode d’ouverture du mode de réalisation du premier élément (130) du moyen d'ouverture et de fermeture (13) du trou traversant (120) de la paroi de séparation (12) entre les deux chambres (10, 11) de la vanne mécanique (1) selon l’invention illustré à la figure 8. On observe l’effet obtenu par la présence du boisseau (13004) présent sous la forme d’une gorge creuse dans l’unité d’obturation de forme sphérique (1300). Le flux de liquide passe par le boisseau (13004) lorsque la connexion fluidique est établie entre les deux chambres (10, 11 ). La flèche pointillée indique le sens du flux de liquide.
On a représenté sur la figure 10 un mode de réalisation d’une vanne mécanique (1) pour système d’injection de solution aqueuse embarqué dans un véhicule selon l’invention. La vanne mécanique (1) comprend une première chambre (10) et une deuxième chambre (11) séparées par une paroi (12), ladite paroi (12) comprenant un trou traversant (120), au moins une partie de la paroi (12) comprenant le trou traversant (120) se projette dans la première chambre (10). Le trou traversant (120) est muni d’un moyen d'ouverture et de fermeture (13). Le moyen d'ouverture et de fermeture (13) du trou traversant (120) comprend un premier élément (130) comprenant une unité d’obturation (1300) du trou traversant (120) de forme plate située dans la première chambre (10) de la vanne mécanique (1) et ayant une unité d'extension (1301) s’étendant dans la deuxième chambre (11) de la vanne mécanique (1). L’unité d’extension (1301) est une tige (1302) pliée à deux endroits avec des angles de pliure opposés de manière à réduire la distance entre la tige (1302) et un deuxième élément (131 ) du moyen d'ouverture et de fermeture (13) du trou traversant (120). Le deuxième élément (131) du moyen d'ouverture et de fermeture (13) du trou traversant (120) est situé dans la deuxième chambre (11 ) de la vanne mécanique (1 ), ledit deuxième élément (131 ) comprenant un module déformable (1310). Le module déformable (1310) est préférentiellement une membrane en élastomère (13100). Le module déformable (1310) du deuxième élément (131) du moyen d'ouverture et de fermeture (13) est apte à appliquer une force sur l'unité d'extension (1301) du premier élément (130) du moyen d'ouverture et de fermeture (13) par modification de la forme du module déformable (1310) du deuxième élément (131) par application d’un différentiel de pression entre la pression dans la deuxième chambre (11 ) et la pression atmosphérique, ladite force permettant la mise en communication fluidique des deux chambres (10, 11) par un déplacement, en rotation autour d’un axe (X), de l’unité d’obturation (1300) du premier élément (130). Le module déformable (1310) en membrane en élastomère (13100) repose sur une paroi (14) munie d’au moins une ouverture (140) de la deuxième chambre (11 ) de la vanne mécanique (1 ). Préférentiellement, la paroi (14) est une grille doublée sur sa face extérieure par rapport à la deuxième chambre (11) d’éléments de rétention (15) afin d’éviter une déformation de la membrane (13100) trop importante vers l’extérieur. La vanne mécanique (1 ) est telle que la première chambre (10) est apte à être connectée de manière fluidique à au moins un injecteur non représenté et la seconde chambre (11) est apte à être connectée de manière fluidique à un module de distribution de solution aqueuse non représenté. Le moyen d'ouverture et de fermeture (13) du trou traversant (120) de la paroi de séparation (12) de la vanne mécanique (1) comprend un troisième élément (132) situé dans la première chambre (10) de la vanne mécanique (1), ledit troisième élément (132) exerçant une force sur l'unité d’obturation (1300) du premier élément (130) est un ressort spiral. L’unité d’obturation (1300) est munie d’un moyen de fixation (13000) du troisième élément (132) du moyen d’ouverture et de fermeture (13) du trou traversant (120). Le moyen de fixation (13000) est préférentiellement une protubérance de diamètre légèrement inférieur à celui du ressort spiral afin de permettre un montage aisé de la vanne par insertion de la protubérance dans le ressort spiral.
On a représenté sur la figure 11 un mode de réalisation d’une vanne mécanique (1) d’un système d’injection de solution aqueuse embarqué dans un véhicule selon l’invention. La vanne mécanique (1) comprend une première chambre (10) et une deuxième chambre (11) séparées par une paroi (12), ladite paroi (12) comprenant un trou traversant (120), au moins une partie de la paroi (12) comprenant le trou traversant (120) se projette dans la première chambre (10). Le trou traversant (120) est muni d’un moyen d'ouverture et de fermeture (13). Le moyen d'ouverture et de fermeture (13) du trou traversant (120) comprend un premier élément (130) comprenant une unité d’obturation (1300) du trou traversant (120) de forme ellipsoïdale située dans la première chambre (10) de la vanne mécanique (1) et ayant une unité d'extension (1301) s’étendant dans la deuxième chambre (11) de la vanne mécanique (1). L’unité d’obturation (1300) du trou traversant (120) de forme ellipsoïdale repose sur un siège de forme conique (121). L’unité d’extension (1301) est une tige (1302) pliée à deux endroits avec des angles de pliure opposés de manière à réduire la distance entre la tige (1302) et un deuxième élément (131 ) du moyen d'ouverture et de fermeture (13) du trou traversant (120). Le deuxième élément (131) du moyen d'ouverture et de fermeture (13) du trou traversant (120) est situé dans la deuxième chambre (11 ) de la vanne mécanique (1 ), ledit deuxième élément (131 ) comprenant un module déformable (1310). Le module déformable (1310) est préférentiellement une membrane en élastomère (13100). Le module déformable (1310) du deuxième élément (131) du moyen d'ouverture et de fermeture (13) est apte à appliquer une force sur l'unité d'extension (1301 ) du premier élément (130) du moyen d'ouverture et de fermeture (13) par modification de la forme du module déformable (1310) du deuxième élément (131) par application d’un différentiel de pression entre la pression dans la deuxième chambre (11) et la pression atmosphérique, ladite force permettant la mise en communication fluidique des deux chambres (10, 11) par un déplacement, en rotation autour d’un axe (X), de l’unité d’obturation (1300) du premier élément (130). Le module déformable (1310) en membrane en élastomère (13100) repose sur une paroi (14) munie d’au moins une ouverture (140) de la deuxième chambre (11) de la vanne mécanique (1). Préférentiellement, la paroi (14) est une grille doublée sur sa face extérieure par rapport à la deuxième chambre (11) d’éléments de rétention (15) afin d’éviter une déformation de la membrane (13100) trop importante vers l’extérieur. La vanne mécanique (1) est telle que la première chambre (10) est apte à être connectée de manière fluidique à au moins un injecteur non représenté et la seconde chambre (11) est apte à être connectée de manière fluidique à un module de distribution de solution aqueuse non représenté. Le moyen d'ouverture et de fermeture (13) du trou traversant (120) de la vanne mécanique (1 ) comprend un troisième élément (132) situé dans la première chambre (10) de la vanne mécanique (1), ledit troisième élément (132) exerçant une force sur l'unité d’obturation (1300) du premier élément (130) est une barre de flexion.
On a représenté sur la figure 12 la flexion du troisième élément (132) du moyen d'ouverture et de fermeture (13) du trou traversant (120) de la paroi de séparation (12) entre les deux chambres (10, 11 ) au sein de la vanne mécanique (1 ) selon l’invention tel que présenté à la figure 11 lors de l’ouverture de la vanne mécanique (1) mettant en connexion fluidique les deux chambres (10, 11). Le module déformable (1310) du deuxième élément (131 ) du moyen d'ouverture et de fermeture (13) applique une force sur l'unité d'extension (1301 ) du premier élément (130) du moyen d'ouverture et de fermeture (13) par modification de la forme du module déformable (1310) du deuxième élément (131) par application d’un différentiel de pression entre la pression dans la deuxième chambre (11) et la pression atmosphérique, ladite force permettant la mise en communication fluidique des deux chambres (10, 11) par un déplacement, en rotation autour de l’axe (X), de l’unité d’obturation (1300) du premier élément (130). Le module déformable (1310) en membrane en élastomère (13100) s’éloigne de la paroi (14) munie d’au moins une ouverture (140) de la deuxième chambre (11) de la vanne mécanique (1 ) du fait du différentiel de pressions. La paroi (14) est une grille doublée sur sa face extérieure par rapport à la deuxième chambre (11) d’éléments de rétention (15) afin d’éviter une déformation de la membrane (13100) trop importante vers l’extérieur.
On a représenté sur les figures 13 et 14 des alternatives du mode de réalisation du troisième élément (132) du moyen d'ouverture et de fermeture (13) du trou traversant (120) de la paroi de séparation (12) entre les deux chambres (10, 11 ) au sein de la vanne mécanique (1 ) selon l’invention. La figure 13 illustre un troisième élément (132) du moyen d’ouverture et de fermeture (13) du trou traversant (120) de la vanne mécanique (1 ) selon l’invention. Ledit troisième élément (132) est localisé dans la première chambre (10) de la vanne mécanique (1 ) et comprend une barre de flexion et un ressort spiral. La figure 14 illustre un troisième élément (132) du moyen d’ouverture et de fermeture (13) du trou traversant (120) de la vanne mécanique (1 ) selon l’invention. Ledit troisième élément (132) est localisé dans le deuxième chambre (11 ) de la vanne mécanique (1 ) et comprend un ressort spiral. Le ressort spiral est connecté sur la tige (1302) formant l’unité d’extension (1301) et une paroi (14) de la deuxième chambre (11 ) de la vanne mécanique (1 ) selon l’invention.
On a représenté sur la figure 15 un exemple de fonctionnement de la vanne mécanique (1) d’un système d’injection de solution aqueuse embarqué dans un véhicule selon l’invention en mode injection. L’étape d’injection de solution aqueuse par ouverture de la vanne mécanique (1) comprend la mise en surpression par rapport à la pression atmosphérique de la deuxième chambre (11) de la vanne mécanique (1 ) à au moins 2 bars, préférentiellement 10 bars. Cette étape de mise en surpression s’effectue via la pompe du module d’injection de solution aqueuse non représenté sur la figure. L’ouverture du trou traversant (120) est effectuée par un déplacement, en rotation autour de l’axe (X), de l’unité d’obturation (1300) du premier élément (130) du moyen d'ouverture et de fermeture (13) du trou traversant (120) de la paroi de séparation (12) entre les deux chambres (10, 11). Ce déplacement résulte de l’application d’une force supérieure à la force exercée par le troisième élément (132) situé dans la première chambre (10) de la vanne mécanique (1 ). La pression régnant dans la deuxième chambre (11) est donc supérieure à la pression atmosphérique. Cette force supérieure est la force hydraulique résultant de l’enclenchement de la pompe du module d’injection de solution aqueuse non représentée. Il s’en suit une mise en communication fluidique des deux chambres (10, 11 ) de la vanne mécanique (1 ) et l’injection de solution aqueuse. Cette injection est effectuée à un débit de l’ordre de 80 L/h ce qui entraîne une chute de pression d’un bar entre l’entrée de la vanne mécanique (1 ) dans la deuxième chambre
(11) et la sortie de la vanne mécanique (1) dans la première chambre (10). Les flèches pointillées indiquent le sens de circulation de l’eau en considérant le sens d’injection.
On a représenté sur la figure 16 un exemple de fonctionnement de la vanne mécanique (1) d’un système d’injection de solution aqueuse embarqué dans un véhicule selon l’invention en mode fermeture. L’étape de fermeture de la vanne mécanique (1) comprend une compression de l’unité d’obturation (1300) du trou traversant (120) par le troisième élément (132) du moyen d'ouverture et de fermeture (13) du trou traversant (120) de la paroi de séparation (12) entre les deux chambres (10, 11). Ledit troisième élément (132) est situé dans la première chambre (10) de la vanne mécanique (1). Cette fermeture est effectuée lorsque la pression dans la deuxième chambre (11) de la vanne mécanique (1) est inférieure à la pression dans la première chambre (10), préférentiellement la pression dans la deuxième chambre (11) est égale à la pression atmosphérique, ceci résultant de l’action conjointe des forces de pression et de rappel élastique du ressort spiral. La pression dans la ligne d’injection du côté de la première chambre (10) de la vanne mécanique (1 ) est de l’ordre de 3 à 15 bars par exemple. La pression régnant dans la deuxième chambre (11 ) de la vanne mécanique (1 ) étant égale à la pression atmosphérique, cette différence de pression entre les deux chambres (10, 11 ) permet également d’assurer la fermeture du trou traversant (120) par l’unité d’obturation (1300). La flèche pointillée indique le retour de l’eau vers le module d’injection de solution aqueuse est fermé.
On a représenté sur la figure 17 un exemple de fonctionnement de la vanne mécanique (1) d’un système d’injection de solution aqueuse embarqué dans un véhicule selon l’invention en mode purge de la ligne d’injection. L’étape de purge de la ligne du système d’injection comprend une mise en sous pression par rapport à la pression atmosphérique de la deuxième chambre (11) de la vanne mécanique (1) à au moins - 200mbar. Cette étape de mise en sous pression est effectuée par aspiration par la pompe du module d’injection de solution aqueuse non représentée, en d’autres termes la pompe du module d’injection de solution aqueuse fonctionne en sens contraire de l’injection. Il en résulte un déplacement, en rotation autour de l’axe (X), de l’unité d’obturation (1300) par l’application d’une force sur l'unité d'extension (1301) du premier élément (130) via une déformation du module déformable (1310) du deuxième élément (131 ) du moyen d'ouverture et de fermeture (13), le module déformable (1310) étant déformé vers l’intérieur de la deuxième chambre (11). Cette force résulte de la mise en sous pression de la deuxième chambre (11 ). Il s’en suit une mise en communication fluidique des deux chambres (10, 11 ) et une purge de la ligne. La flèche pointillée indique le sens d’écoulement du liquide.
On a représenté sur la figure 18 un mode de réalisation d’une vanne mécanique (1) d’un système d’injection de solution aqueuse embarqué dans un véhicule selon l’invention. Elle diffère des précédents modes de réalisation en ce que l’unité d’extension est une tige droite (1302). Comme cela est représenté sur la figure 19, le fonctionnement de la vanne mécanique (1) est similaire à celui de la vanne de la figure 1 . En particulier, en référence à la figure 20, l’ouverture du trou traversant (120) de la paroi de séparation (12) est effectuée par un déplacement, en rotation autour de l’axe (X), de l’unité d’obturation (1300).

Claims

Revendications
[Revendication 1] Système d’injection de solution aqueuse embarqué dans un véhicule comportant une vanne mécanique (1) comprenant au moins une première chambre (10) et une deuxième chambre (11) séparées par une paroi de séparation (12), ladite paroi (12) comprenant un trou traversant (120), ledit trou traversant (120) étant muni d’un moyen d'ouverture et de fermeture (13) dudit trou traversant (120), le moyen d'ouverture et de fermeture (13) comprenant :
• un premier élément (130) comprenant une unité d’obturation (1300) du trou traversant (120) située dans la première chambre
(10) de la vanne mécanique (1) et ayant une unité d'extension (1301) s’étendant dans la deuxième chambre (11) de la vanne mécanique (1) comprenant au moins une tige (1302) solidaire de l'unité d’obturation (1300), la tige (1302) étant configurée pour servir de bras de levier autour d’un axe (X) en mode purge d'une ligne d'injection du système d'injection ;
• un deuxième élément (131) situé dans la deuxième chambre
(11) de la vanne mécanique (1), ledit deuxième élément (131) comprenant un module déformable (1310); dans lequel le module déformable (1310) du deuxième élément (131) du moyen d'ouverture et de fermeture (13) est apte à appliquer une force sur l'unité d'extension (1301) du premier élément (130) du moyen d'ouverture et de fermeture (13) par modification de la forme du module déformable (1310) du deuxième élément (131) par application d’un différentiel de pression entre la pression dans la deuxième chambre (11) et la pression atmosphérique, ladite force permettant la mise en communication fluidique des deux chambres (10, 11) par un déplacement, en rotation autour de l’axe (X), de l’unité d’obturation (1300) du premier élément (130); la vanne mécanique (1) étant telle que la première chambre (10) est apte à être connectée de manière fluidique à au moins un injecteur et la seconde chambre (11) est apte à être connectée de manière fluidique à un module de distribution de solution aqueuse. [Revendication 2] Système d’injection de solution aqueuse embarqué dans un véhicule selon la revendication 1 , tel qu’il comprend un troisième élément (132) situé dans la première chambre (10) de la vanne mécanique (1 ), ledit troisième élément (132) exerçant une force sur l'unité d’obturation (1300) du premier élément (130);
[Revendication 3] Système d’injection de solution aqueuse embarqué dans un véhicule selon une quelconque des revendications précédentes, tel qu’au moins une partie de la paroi de séparation (12) comprenant le trou traversant (120) se projette dans la première chambre (10).
[Revendication 4] Système d’injection de solution aqueuse embarqué dans un véhicule selon une quelconque des revendications précédentes, tel que l’unité d’obturation (1300) du trou traversant (120) du premier élément (130) située dans la première chambre (10) de la vanne mécanique (1) est de forme plane ou sphérique ou ellipsoïdale, préférentiellement ellipsoïdale.
[Revendication 5] Système d’injection de solution aqueuse embarqué dans un véhicule selon une quelconque des revendications précédentes, tel que la tige (1302) est incurvée ou pliée à au moins un endroit, préférentiellement à deux endroits avec des angles de pliure opposés.
[Revendication 6] Système d’injection de solution aqueuse embarqué dans un véhicule selon une quelconque des revendications 1 à 4, tel que la tige (1302) est droite.
[Revendication 7] Système d’injection de solution aqueuse embarqué dans un véhicule selon une quelconque des revendications précédentes, tel que le module déformable (1310) du deuxième élément (131) comprend une membrane en élastomère (13100).
[Revendication 8] Système d’injection de solution aqueuse embarqué dans un véhicule selon la revendication 7, tel que la membrane en élastomère (13100) repose sur une paroi (14) de la deuxième chambre (11) munie d’au moins une ouverture (140).
[Revendication 9] Système d’injection de solution aqueuse embarqué dans un véhicule selon la revendication 8, tel que la membrane en élastomère (13100) comprend une zone rigide (131000) et une zone déformable (131001 ).
[Revendication 10] Méthode de contrôle d’une vanne mécanique (1 ) d’un système d’injection de solution aqueuse embarqué dans un véhicule selon une quelconque des revendications précédentes, comprenant les étapes suivantes en fonction de la demande du véhicule :
• Une étape d’injection de solution aqueuse par ouverture de la vanne mécanique (1) comprenant :
I. Mise en surpression par rapport à la pression atmosphérique de la deuxième chambre (11) de la vanne mécanique (1) à au moins 2 bar, préférentiellement 10 bars ;
II. Ouverture du trou traversant (120) par déplacement de l’unité d’obturation (1300) par application d’une force supérieure à la force exercée par le poids du premier élément (130) ou par le troisième élément
(132), troisième élément (132) préférentiellement situé dans la première chambre (10), de la vanne mécanique (1);
III. Mise en communication fluidique des deux chambres (10, 11 ) et injection de solution aqueuse ;
• Etape de fermeture de la vanne mécanique (1) comprenant :
I. Compression de l’unité d’obturation (1300) du trou traversant (120) par le poids du premier élément (130) ou par le troisième élément (132), troisième élément (132) préférentiellement situé dans la première chambre (10) de la vanne mécanique (1), lorsque la pression dans la deuxième chambre (11) de la vanne mécanique (1) est inférieure à la pression dans la première chambre (10), préférentiellement égale à la pression atmosphérique ;
• Etape de purge de la ligne du système d’injection comprenant :
I. Mise en sous pression par rapport à la pression atmosphérique de la deuxième chambre (11) de la vanne mécanique (1) à au moins -200mbar ;
II. Déplacement de l’unité d’obturation (1300) par application d’une force sur l'unité d'extension (1301) du premier élément (130) via une déformation du module déformable (1310) du deuxième élément (131) du moyen d'ouverture et de fermeture (13); III. Mise en communication fluidique des deux chambres (10, 11 ) et purge de la ligne.
EP20815849.3A 2019-12-03 2020-12-02 Systeme d'injection de solution aqueuse embarque dans un vehicule avec une vanne mecanique Pending EP4069961A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1913680 2019-12-03
FR2000480A FR3106386B1 (fr) 2020-01-17 2020-01-17 Vanne mécanique pour un système d'injection de solution aqueuse embarqué dans un véhicule
PCT/EP2020/084335 WO2021110780A1 (fr) 2019-12-03 2020-12-02 Systeme d'injection de solution aqueuse embarque dans un vehicule avec une vanne mecanique

Publications (1)

Publication Number Publication Date
EP4069961A1 true EP4069961A1 (fr) 2022-10-12

Family

ID=73598889

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20815849.3A Pending EP4069961A1 (fr) 2019-12-03 2020-12-02 Systeme d'injection de solution aqueuse embarque dans un vehicule avec une vanne mecanique

Country Status (3)

Country Link
EP (1) EP4069961A1 (fr)
CN (1) CN114787496B (fr)
WO (1) WO2021110780A1 (fr)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1087590A (fr) * 1977-06-30 1980-10-14 James V. Davidson Robinet a tournant excentrique avec ergot permettant une regulation plus precise
DE2946765C2 (de) * 1979-11-20 1986-04-30 Thyssen Industrie Ag, 4300 Essen Entsperrbares Rückschlagventil
US6050295A (en) * 1998-06-04 2000-04-18 Fastest, Inc. High flow valved fitting
DE202004011532U1 (de) * 2004-07-22 2004-09-30 Bümach Engineering International B.V. Ventil
AU2007342106B2 (en) * 2007-01-03 2013-01-24 Cook Medical Technologies Llc Valve assembly
FR2919425B1 (fr) * 2007-07-24 2009-10-02 Itt Ind Soc Par Actions Simpli Commutateur electrique a voies de commutation multiples.
US9080687B2 (en) * 2012-05-24 2015-07-14 Honeywell International Inc. Pressure and flow altitude compensated shutoff valve
WO2016028259A1 (fr) * 2014-08-18 2016-02-25 Colgate-Palmolive Company Instrument de soins bucco-dentaires
FR3030666B1 (fr) * 2014-12-18 2017-07-21 Coutier Moulage Gen Ind Vanne raccordee a un circuit d’alimentation, circuit d’alimentation comprenant une telle vanne et procede d’alimentation operant un tel circuit d’alimentation
CN106286881B (zh) * 2016-10-12 2018-06-15 龙口诚峰智远科技有限公司 水处理阀及其控制装置
FR3077614B1 (fr) * 2018-02-07 2021-01-15 Plastic Omnium Advanced Innovation & Res Systeme d'interdiction selective de passage d'un fluide
DE102018208012A1 (de) * 2018-05-22 2019-11-28 Robert Bosch Gmbh Wassereinspritzsystem für Brennkraftmaschinen mit entsperrbarem Rückschlagventil

Also Published As

Publication number Publication date
CN114787496A (zh) 2022-07-22
CN114787496B (zh) 2023-04-14
WO2021110780A1 (fr) 2021-06-10

Similar Documents

Publication Publication Date Title
CA2822042C (fr) Vanne tubulaire de commande d'un moteur a rapport volumetrique variable
EP2964933B1 (fr) Dispositif de dosage compact pour injecteur a deux circuits de carburant pour une turbomachine d'aeronef
FR2763097A1 (fr) Dispositif permettant de controler la position de la cremaillere de commande d'un moteur a cylindree variable
FR2819221A1 (fr) Dispositif de mise a l'air libre destine a un reservoir de vehicule automobile
EP3491229A1 (fr) Régulateur de débit de ventilation pour un réservoir pressurisé de véhicule
FR2865776A1 (fr) Systeme d'injection de carburant pour un moteur a combustion interne
EP1354158B1 (fr) Clapet de controle de la pression gazeuse interne d'un reservoir
EP4069961A1 (fr) Systeme d'injection de solution aqueuse embarque dans un vehicule avec une vanne mecanique
FR2797916A1 (fr) Raccord de fuite et injecteur de carburant equipe d'un tel raccord de fuite
EP2172639B1 (fr) Dispositif d'admission d'air, apte à former au moins une portion de ligne d'admission d'air pour moteur à combustion interne de véhicule automobile
EP3708899B1 (fr) Robinet, récipient de fluide sous pression et procédés de remplissage et de soutirage
FR2917799A1 (fr) Vanne a longue course de regulation avec fonction d'arret.
FR3106386A1 (fr) Vanne mécanique pour un système d'injection de solution aqueuse embarqué dans un véhicule
WO1996007817A1 (fr) Moteur deux temps a dispositif d'injection ameliore et procede d'injection associe
FR2918121A1 (fr) Injecteur de carburant a commutation rapide pour des pressions d'injection elevees
FR3056670A1 (fr) Vanne tubulaire a commande hydraulique
EP2126334B1 (fr) Injecteur de carburant pour moteur a combustion interne
FR2866938A1 (fr) Soupape
EP2273126A1 (fr) Clapet anti-retour à recirculation automatique améliorée
FR2872881A3 (fr) Soupape de surete pour chaudieres murales
FR2897396A1 (fr) Vanne de commande pour chambre de commande d'un injecteur a aiguille pour moteur a combustion interne
FR2827362A1 (fr) Vanne d'alimentation pour vehicule fonctionnant au gaz naturel comprime
FR2908835A1 (fr) Injecteur de carburant pour moteur a combustion interne
FR2907873A1 (fr) Dispositif d'alimentation en fluide gazeux,pour circuit de circulation de fluide gazeux et dispositif de filtration equipe d'un tel dispositif d'alimentation en fluide gazeux
WO2012164196A2 (fr) Systeme hydraulique pour l'alimentation d'un circuit hydraulique.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

RIC1 Information provided on ipc code assigned before grant

Ipc: F16K 31/165 20060101ALN20240425BHEP

Ipc: F16K 31/126 20060101ALN20240425BHEP

Ipc: F16K 15/18 20060101ALN20240425BHEP

Ipc: F16K 37/00 20060101ALN20240425BHEP

Ipc: F01N 9/00 20060101ALI20240425BHEP

Ipc: F02M 25/025 20060101ALI20240425BHEP

Ipc: F16K 15/06 20060101ALI20240425BHEP

Ipc: F16K 15/04 20060101ALI20240425BHEP

Ipc: F01N 3/20 20060101ALI20240425BHEP

Ipc: F02M 25/022 20060101AFI20240425BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED