EP4054931A1 - Ballon captif à assiette nulle - Google Patents

Ballon captif à assiette nulle

Info

Publication number
EP4054931A1
EP4054931A1 EP20800129.7A EP20800129A EP4054931A1 EP 4054931 A1 EP4054931 A1 EP 4054931A1 EP 20800129 A EP20800129 A EP 20800129A EP 4054931 A1 EP4054931 A1 EP 4054931A1
Authority
EP
European Patent Office
Prior art keywords
balloon
ioo
captive balloon
captive
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20800129.7A
Other languages
German (de)
English (en)
Inventor
Philippe Tixier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dirisolar Sas
Original Assignee
Dirisolar Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dirisolar Sas filed Critical Dirisolar Sas
Publication of EP4054931A1 publication Critical patent/EP4054931A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/40Balloons
    • B64B1/50Captive balloons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/06Rigid airships; Semi-rigid airships
    • B64B1/38Controlling position of centre of gravity

Definitions

  • the present invention is in the field of non-motorized aerostats.
  • the invention relates to a captive balloon.
  • a tethered balloon is known whose lift is provided by a lighter-than-air gas, such as helium, which the tethered balloon contains.
  • the captive balloon is connected to the ground by means of a cable, one end of which can be wound on a winch fixed to the ground. As the cable is unwound from the winch, the tethered balloon rises to a high point in altitude.
  • the captive balloon comprises in particular an envelope which is for example ovoid in shape and which extends around a longitudinal axis between a front end and a rear end of the envelope.
  • a longitudinal axis is in particular an axis of symmetry of the envelope.
  • the longitudinal axis forms an angle with a horizontal axis, commonly referred to as the plate.
  • Such a captive balloon is intended in particular to carry payloads for carrying out observations and / or physical, chemical, meteorological or similar measurements from the high point.
  • a general problem posed by current known tethered balloons lies in the fact that, in a strong wind, the attitude of such a tethered balloon of the prior art becomes non-zero, which constitutes a drawback for the observations and / or the observations. measurements made or for any other application carried out on board the captive balloon.
  • the present invention improves the situation.
  • a captive balloon of the present invention is a captive balloon comprising an envelope which extends mainly along a longitudinal axis and which carries at least one attachment point for receiving a cable.
  • the attachment point is provided on a transverse axis which is orthogonal to the longitudinal axis.
  • the transverse axis and the longitudinal axis intersect at a point of intersection.
  • the envelope houses at least one bag containing a carrier gas providing a center of lift.
  • the center of lift, the point of intersection and a center of gravity of the captive balloon are located on a vertical axis orthogonal to the longitudinal axis and to the transverse axis.
  • the captive balloon advantageously comprises any at least of the following technical characteristics, taken alone or in combination:
  • the envelope comprises a rigid structure carrying a canvas
  • the envelope has a generally ovoid conformation
  • the rigid structure is tubular and made of a light material, aluminum for example,
  • the longitudinal axis is an axis of symmetry of revolution of the envelope
  • the attachment point is carried by an attachment device from the rigid structure
  • the center of gravity of the tethered balloon is the center of gravity of the tethered balloon equipped with the equipment necessary for carrying out experiments, measurements or observations,
  • each attachment point is equipped with a pivot link
  • the pivot link allows the cable to rotate around the transverse axis
  • an interstitial space is provided between a lower wall of the bag that includes the bag and a lower wall of the envelope that includes the envelope,
  • a focus of the aerodynamic forces in horizontal flight of the captive balloon is located on the longitudinal axis by being placed between the point of intersection and a rear end of the captive balloon
  • the carrier gas is either hydrogen or helium
  • the casing houses a device for capturing moisture and electrolysis of condensed water, at least one battery intended to supply said device with electrical energy and at least a solar panel to supply the battery with electrical energy,
  • the envelope accommodates a plurality of bags
  • the envelope has a tail unit located near a rear end of the captive balloon.
  • the captive balloon further comprises a winch and a cable interposed between the captive balloon and the winch.
  • the captive balloon has two attachment points intended to receive the cable, the attachment points being provided on either side of the casing on the transverse axis (A2).
  • the pivot connection is preferably made between each attachment point and a respective strand from the same cable.
  • the captive balloon has a single attachment point positioned at the point of intersection P.
  • the captive balloon has a cavity open at the bottom, extending longitudinally in the direction of the longitudinal axis Ai and being symmetrical with respect to the median plane Pi passing through the longitudinal axes Ai and vertical A3, the cavity comprising the pivot link.
  • a bottom of the cavity passes through the point of intersection P.
  • FIG. 1 is a schematic side view of a captive balloon according to the present invention.
  • FIG. 2 is a schematic cross-sectional view of the captive balloon shown in Figure 1.
  • FIG. 3 is a schematic longitudinal sectional view of the captive balloon shown in Figures 1 and 2.
  • FIG. 4 is a schematic view of the captive balloon shown in Figures 1 to 3 equipped with its cable and winch.
  • FIG. 5 is a schematic perspective view of the captive balloon shown in Figures 1 to 3.
  • FIG. 6 - Figure 6 is a partial schematic view of the captive balloon shown in Figure 4.
  • FIG. g - Figure h is a schematic view of an alternative embodiment of the captive balloon illustrated in Figures 1, 2, 3 and 5.
  • FIG. 8 is a schematic side view of a second embodiment of a captive balloon according to the invention.
  • FIG. 9 is a schematic bottom view of the captive balloon of Figure 8.
  • FIG. 10 is a schematic cross-sectional view of the captive balloon of Figure 8.
  • FIG. 11 is a schematic perspective view of a third embodiment of a captive balloon according to the invention.
  • a captive balloon 1,100,110 according to the present invention is shown inside an orthonormal frame Oxyz, in which the axis Ox is a horizontal axis, parallel to the surface of the ground, the axis Oy is an axis transverse and the Oz axis is a vertical axis, parallel to a direction of Earth's gravity.
  • the captive balloon 1 comprises an envelope 2 having an elongated shape which extends mainly along a longitudinal axis Ai, parallel to the axis Ox, between a front end 3 of the envelope 2 and a rear end 4 of the casing 2.
  • the longitudinal axis Ai is an axis of symmetry of the casing 2 which has a substantially ovoid conformation.
  • the envelope 2 is provided with a tail device 5, located near the rear end 4 of the envelope 2, the tail device 5 being provided to ensure stability to the captive balloon 1 in the air.
  • the tail unit 5 comprises for example at least three branches 6 whose role is to ensure the intrinsic stability of the captive balloon 1 immersed in a relative wind 7, which can reach a speed of 220 km / h.
  • the captive balloon 1 is thus advantageously stable in horizontal flight without the need for an attitude control or yaw.
  • the casing 2 comprises a canvas 8 which is carried by a rigid structure 9.
  • the rigid structure 9 has in particular a section circular according to a section made in the Oyz plane.
  • the rigid structure 9 is tubular and made of aluminum to be light.
  • the rigid structure 9 is provided with two hooking devices 11, 12, including a first hooking device 11 and a second hooking device 12, which are provided on the outside of the casing 2. More particularly, the hooking devices 11, 12 are arranged vis-à-vis one another along a transverse axis A2 which is parallel to the axis Oy. Each hooking device 11, 12 is intended to be connected to the sol via a cable as described below in Figure 4.
  • the casing 2 accommodates a plurality of bags 13 filled with a carrier gas 14 which is lighter than air, such as helium, hydrogen or the like.
  • a carrier gas 14 which is lighter than air, such as helium, hydrogen or the like.
  • the rigid structure 9 is compartmentalized and arranged to house the bags 13 containing the carrier gas 14.
  • Each bag 13 has a bag height H which is greater than a bag length L.
  • the bag height H is taken according to a direction parallel to the axis Oz between an upper wall of the bag 15 and a lower wall of the bag 16.
  • the length of the bag L is taken in a direction parallel to the axis Ox between a front wall of the bag 17 and a rear wall of bag 18.
  • each bag 13 has a dead volume available for expansion of the bag 13 in order to at least partially occupy the interstitial volume 19.
  • a center of lift Ci of the whole of the carrier gas 14 is located above the longitudinal axis Ai due to the fact that the bags 13 are not completely filled and tend to come into contact. with a part of the rigid structure 9 located at an upper wall of the casing 21.
  • the upper casing wall 21 is a portion of the casing 2 which is arranged opposite and vis-à-vis the lower envelope wall 20.
  • a center of gravity C2 of the tethered balloon i associated with the equipment on board by the latter is located vertically under the center of lift Ci.
  • the center of lift Ci of the tethered balloon i overhangs the center of gravity C2 of the captive balloon î.
  • the longitudinal axis Ai overhangs the center of gravity C2.
  • the longitudinal axis Ai is interposed between the center of lift Ci and the center of gravity C2.
  • the center of lift Ci is located within a range of center of lift 22 which overhangs the longitudinal axis Ai and the axis of gravity C2.
  • the captive balloon i is statically stable. In other words, the captive balloon i exhibits noticeably no attitude except that generated by weak oscillations due to air turbulence.
  • an altitude of the captive balloon i is a function of a filling rate of the bags 13 with carrier gas 14. It is also noted that the more the bags 13 with carrier gas 14 are partially filled at ground level, the more l The accessible altitude is large, but when the accessible altitude increases, then the payload that can be carried on board decreases.
  • the captive balloon 1 further comprises a winch 23 and a cable 25.
  • the captive balloon 1 is connected to the winch 23 located on the ground 24 by means of the cable 25.
  • the cable 25 has a first end 25a which is connected to the winch 23 so that the cable 25 can wind up on the winch 23.
  • the cable 25 has a second end 25b which is split into two strands 26, 27, a first strand of which is connected to a first point of attachment 28 of the first attachment device 11 and a second strand 27 connected to a second attachment point 29 of the second attachment device 12. More particularly, each strand 26, 27 is connected to the attachment point 28, 29 to which it is affected by a link pivot 30 which allows a rocking of the strand 26, 27 around the transverse axis A2 which connects the attachment points 28, 29.
  • the longitudinal axis Al and the transverse axis A2 intersect at a point of intersection P which is located vertically under the center of lift Ci of the carrier gas bags 13 14.
  • the center of lift Ci and the point of intersection P of the longitudinal axis Ai and of the transverse axis A2 are placed in the median plane Pi and the center of lift Ci overhangs the point of intersection P.
  • the center of lift Ci, the point of intersection P and the center of gravity C2 are located on the same vertical axis A3, parallel to the axis Oz. More particularly, the point of intersection P is interposed between the center of lift Ci and the center of gravity C2 on the vertical axis A3.
  • the captive balloon 1 is kept substantially horizontal due in particular to a pivoting of the cable 25 around the transverse axis A2 as illustrated in FIG. 6.
  • the cable 25 is shown in three successive positions 101, 102, 103 taken respectively according to an increasing force of the relative wind 7, including a first position 101 in which the speed of the relative wind 7 is zero, a second position in which the speed of the relative wind 7 is average and a third position 103 in which the speed of the relative wind 7 is high, the passage of the cable 25 from one position to another being obtained by means of the pivot connection 30 formed at the points d 'hooking 28, 29.
  • the more the speed of the relative wind 7 increases the more the cable 25 tilts with respect to a direction parallel to the axis Oz.
  • FIG. 7 is shown an alternative embodiment of the captive balloon 1 in which the carrier gas 14 consists of hydrogen.
  • the captive balloon is for example equipped with a device 32 for capturing moisture in the air which is capable of carrying out hydrolysis of the condensed water resulting from this moisture in order to produce hydrogen which is reinjected inside the bags 13. This makes it possible to compensate for a loss of hydrogen outside the bags and thus makes it possible to prolong an observation mission carried out by the captive balloon 1.
  • Said device 32 is for example supplied with electrical energy by at least a battery 33 itself powered by at least one solar panel 34.
  • FIG. 8 to 10 there is shown a second embodiment of a captive balloon 100 according to the invention.
  • the captive balloon 100 according to the invention differs from the captive balloon 1 according to the invention described above in that it comprises a cavity 210 open downwards, of generally parallelepipedal shape.
  • This cavity 210 extends longitudinally in the direction of the longitudinal axis Ai and is symmetrical with respect to the median plane Pi passing through the longitudinal Ai and vertical axes A3.
  • the cavity 210 comprises a bottom 215 which is substantially planar along the longitudinal Ai and transverse axes A2 and passing through the point of intersection P.
  • the captive balloon 100 At the level of the point of intersection P, the captive balloon 100 comprises a pivot connection 30 formed by a point d 'direct attachment of the cable 25 at its second end 25b.
  • the longitudinal shape of the cavity 210 is arranged so as to allow, in collaboration with the pivot connection 30, the different positions of the cable 25 as a function of the wind as described previously in relation to FIG. 6.
  • the behavior of the captive balloon 100 according to the invention is similar to that of the captive balloon 1 according to the invention described above.
  • FIG. 11 is illustrated a third embodiment of a captive balloon 110.
  • the captive balloon 110 according to the invention differs from the captive balloon 100 according to the invention described above in that it comprises a cavity 211 comprising on a bottom the pivot connection 30 formed by a direct attachment point of three cables 25, the pivot connection 30 being at the level of the point of intersection P.
  • the cavity 211 is open downwards and extends longitudinally in the direction of the longitudinal axis Ai and east symmetrical with respect to the median plane Pi passing through the longitudinal Ai and vertical A3 axes.
  • the cavity 211 has the shape of a portion of a sphere whose apex is at the level of the point of. intersection P, therefore at the level of the pivot connection 30.
  • the shape of the cavity 211 is an ovoid portion.
  • the shape of the cavity 211 is in two cylinder portions (preferably of revolution), mirror-symmetrical with respect to the plane Pi, the generatrices of which form an angle of between 5 and 180 degrees.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Abstract

La présente invention a pour objet un ballon captif comprenant une enveloppe (2) qui s'étend principalement selon un axe longitudinal (A1) et qui porte au moins un point d'accrochage destiné à recevoir un câble. Le point d'accrochage est ménagé sur un axe transverse (A2) qui est orthogonal à l'axe longitudinal (A1). L'axe transverse (A2) et l'axe longitudinal (A1) sont sécants en un point d'intersection (P). L'enveloppe (2) loge au moins un sac contenant un gaz porteur procurant un centre de portance (C1). Le centre de portance (C1), le point d'intersection (P) et un centre de gravité (C2) du ballon captif sont situés sur un axe vertical (A3) orthogonal à l'axe longitudinal (A1) et à l'axe transverse (A2).

Description

BALLON CAPTIF À ASSIETTE NULLE
La présente invention est du domaine des aérostats non motorisés. En particulier, l’invention a pour objet un ballon captif.
On connaît un ballon captif dont une sustentation est assurée par un gaz plus léger que l’air, tel que de l’hélium, que le ballon captif contient. Le ballon captif est relié au sol par l’intermédiaire d’un câble dont une extrémité est enroulable sur un treuil fixé au sol. Au fur et à mesure que le câble est déroulé du treuil, le ballon captif s’élève jusqu’à atteindre un point haut en altitude.
Le ballon captif comprend notamment une enveloppe qui est par exemple de forme ovoïde et qui s’étend autour d’un axe longitudinal entre une extrémité avant et une extrémité arrière de l’enveloppe. Lin tel axe longitudinal est notamment un axe de symétrie de l’enveloppe. L’axe longitudinal forme avec un axe horizontal un angle, communément dénommé assiette. Lorsqu’il n’y a pas de vent, le ballon captif est dans une position stabilisée au point haut avec une assiette nulle.
Un tel ballon captif est notamment destiné à emporter des charges utiles pour effectuer des observations et/ou des mesures physiques, chimiques, météorologiques ou analogues depuis le point haut. Pour connaître un environnement technologique proche de la présente invention, on pourra se reporter au document RU159572, par exemple.
Un problème général posé par les ballons captifs connus actuels réside dans le fait que, par vent fort, l’assiette d’un tel ballon captif de l’art antérieur devient non-nulle ce qui constitue un inconvénient pour les observations et/ou les mesures effectuées ou pour toute autre application réalisée à bord du ballon captif.
D’autre part, le fait que par un vent fort pouvant atteindre 220 km/h, l’assiette du ballon captif devient très importante : cela induit une portance aérodynamique et une augmentation de la traînée qui décuplent les efforts sur l’enveloppe du ballon captif menant généralement à la destruction de ce dernier.
La présente invention vient améliorer la situation.
Un ballon captif de la présente invention est un ballon captif comprenant une enveloppe qui s’étend principalement selon un axe longitudinal et qui porte au moins un point d’accrochage destiné à recevoir un câble. Le point d’accrochage est ménagé sur un axe transverse qui est orthogonal à l’axe longitudinal. L’axe transverse et l’axe longitudinal sont sécants en un point d’intersection. L’enveloppe loge au moins un sac contenant un gaz porteur procurant un centre de portance.
Selon la présente invention, le centre de portance, le point d’intersection et un centre de gravité du ballon captif sont situés sur un axe vertical orthogonal à l’axe longitudinal et à l’axe transverse.
Le ballon captif comprend avantageusement l’une quelconque au moins des caractéristiques techniques suivantes, prises seules ou en combinaison :
- l’enveloppe comprend une structure rigide porteuse d’une toile,
- l’enveloppe présente une conformation globalement ovoïde,
- la structure rigide est tubulaire et réalisée en un matériau léger, aluminium par exemple,
- l’axe longitudinal est un axe de symétrie de révolution de l’enveloppe,
- le point d’accrochage est porté par un dispositif d’accrochage issu de la structure rigide,
- on comprend que le centre de gravité du ballon captif est le centre de gravité du ballon captif équipé d’équipements nécessaires à la réalisation d’expériences, de mesures ou d’observations,
- un tel agencement du centre de portance, du point d’intersection et du centre de gravité sur un même axe vertical orthogonal à l’axe longitudinal et à l’axe transverse permet au ballon captif de ne prendre aucune assiette, y compris lorsqu’un vent relatif atteint 220 km/h,
- l’axe vertical est parallèle à la direction de la gravité terrestre,
- le point d’intersection est interposé entre le centre de portance et le centre de gravité sur l’axe vertical,
- chaque point d’accrochage est équipé d’une liaison pivot,
- la liaison pivot permet une rotation du câble autour de l’axe transverse,
- un espace interstitiel est ménagé entre une paroi inférieure de sac que comprend le sac et une paroi inférieure d’enveloppe que comprend l’enveloppe,
- un foyer des forces aérodynamiques en vol horizontal du ballon captif est situé sur l’axe longitudinal en étant placé entre le point d’intersection et une extrémité arrière du ballon captif,
- le gaz porteur est indifféremment constitué d’hydrogène ou d’hélium,
- dans le cas où le gaz porteur est constitué d’hydrogène, l’enveloppe loge un dispositif de capture d’une humidité et d’électrolyse d’eau condensée, au moins une batterie destinée à alimenter en énergie électrique ledit dispositif et au moins un panneau solaire pour alimenter en énergie électrique la batterie,
- l’enveloppe loge une pluralité de sacs,
- l’enveloppe comporte un dispositif d’empennage situé à proximité d’une extrémité arrière du ballon captif.
Le ballon captif comprend, en outre, un treuil et un câble interposé entre le ballon captif et le treuil. Le ballon captif comporte deux points d’accrochage destinés à recevoir le câble, les points d’accrochage étant ménagés de part et d’autre de l’enveloppe sur l’axe transverse (A2).
La liaison pivot est préférentiellement ménagée entre chaque point d’accrochage et un brin respectif issu du même câble.
Le ballon captif comporte un seul point d’accrochage positionné au niveau du point d’intersection P.
Le ballon captif comporte une cavité ouverte vers le bas, s’étendant longitudinalement selon la direction de l’axe longitudinal Ai et étant symétrique par rapport au plan médian Pi passant par les axes longitudinal Ai et vertical A3, la cavité comprenant la liaison pivot.
Un fond de la cavité passe par le point d’intersection P.
L'invention sera mieux comprise à la lecture de la description non limitative qui suit, rédigée au regard des dessins annexés, dans lesquels :
[Fig. 1] - La figure 1 est une vue schématique de côté d’un ballon captif selon la présente invention.
[Fig. 2] - La figure 2 est une vue schématique en coupe transversale du ballon captif représenté sur la figure 1.
[Fig. 3] - La figure 3 est une vue schématique en coupe longitudinale du ballon captif représenté sur les figures 1 et 2.
[Fig. 4] - La figure 4 est une vue schématique du ballon captif représenté sur les figures 1 à 3 équipé de ses câble et treuil.
[Fig. 5] - La figure 5 est une vue schématique en perspective du ballon captif représenté sur les figures 1 à 3.
[Fig. 6] - La figure 6 est une vue schématique partielle du ballon captif représenté sur la figure 4. [Fig. g] - La figure h est une vue schématique d’une variante de réalisation du ballon captif illustré sur les figures î, 2, 3 et 5.
[Fig. 8] - La figure 8 est une vue schématique de côté d’un deuxième mode de réalisation d’un ballon captif selon l’invention.
[Fig. 9] - La figure 9 est une vue schématique de dessous du ballon captif de la figure 8.
[Fig. 10] - La figure 10 est une vue schématique en coupe transversale du ballon captif de la figure 8.
[Fig. 11] - La figure 11 est une vue schématique en perspective d’un troisième mode de réalisation d’un ballon captif selon l’invention.
Sur les figures, un ballon captif 1,100,110 selon la présente invention est représenté à l’intérieur d’un repère orthonormé Oxyz, dans lequel l’axe Ox est un axe horizontal, parallèle à la surface du sol, l’axe Oy est un axe transversal et l’axe Oz est un axe vertical, parallèle à une direction de la gravité terrestre.
Sur la figure 1, le ballon captif 1 comprend une enveloppe 2 présentant une forme allongée qui s’étend principalement selon un axe longitudinal Ai, parallèle à l’axe Ox, entre une extrémité avant 3 de l’enveloppe 2 et une extrémité arrière 4 de l’enveloppe 2. Préférentiellement, l’axe longitudinal Ai est un axe de symétrie de l’enveloppe 2 qui présente une conformation sensiblement ovoïde. L’enveloppe 2 est pourvue d’un dispositif d’empennage 5, située à proximité de l’extrémité arrière 4 de l’enveloppe 2, le dispositif d’empennage 5 étant prévu pour assurer une stabilité au ballon captif 1 dans l’air. Le dispositif d’empennage 5 comprend par exemple au moins trois branches 6 dont le rôle est d'assurer la stabilité intrinsèque du ballon captif 1 plongé dans un vent relatif 7, qui peut atteindre une vitesse de 220 km/h. Le ballon captif 1 est ainsi avantageusement stable en vol horizontal sans besoin d'une commande d'assiette, ni de lacet.
Sur la figure 2, l’enveloppe 2 comprend une toile 8 qui est portée par une structure rigide 9. La structure rigide 9 présente notamment une section circulaire selon une coupe réalisée dans le plan Oyz. La structure rigide 9 est tubulaire et réalisée en aluminium pour être légère. La structure rigide 9 est pourvue de deux dispositifs d’accrochage 11, 12, dont un premier dispositif d’accrochage 11 et un deuxième dispositif d’accrochage 12, qui sont ménagés à l’extérieur de l’enveloppe 2. Plus particulièrement, les dispositifs d’accrochage 11, 12 sont ménagés en vis-à-vis l’un de l’autre selon un axe transverse A2 qui est parallèle à l’axe Oy. Chaque dispositif d’accrochage 11, 12 est destiné à être relié au sol par l’intermédiaire d’un câble comme décrit ci-après sur la figure 4. En se reportant également sur la figure 3, l’enveloppe 2 loge une pluralité de sacs 13 remplis d’un gaz porteur 14 qui est plus léger que l’air, tel que l’hélium, l’hydrogène ou analogue. Autrement dit, la structure rigide 9 est compartimentée et agencée pour loger les sacs 13 contenant le gaz porteur 14. Chaque sac 13 présente une hauteur de sac H qui est supérieure à une longueur de sac L. La hauteur de sac H est prise selon une direction parallèle à l’axe Oz entre une paroi supérieure de sac 15 et une paroi inférieure de sac 16. La longueur de sac L est prise selon une direction parallèle à l’axe Ox entre une paroi avant de sac 17 et une paroi arrière de sac 18. Un espace interstitiel 19 est ménagé entre la paroi inférieure de sac 16 et une paroi inférieure d’enveloppe 20 qui est la paroi du ballon captif 1 en vis-à-vis du sol. Autrement dit, chaque sac 13 comporte un volume mort disponible pour une expansion du sac 13 afin d’occuper au moins partiellement le volume interstitiel 19.
Il résulte de ces dispositions qu’un centre de portance Ci de l’ensemble du gaz porteur 14 est situé au-dessus de l’axe longitudinal Ai en raison du fait que les sacs 13 ne sont pas totalement remplis et tendent à venir au contact avec une partie de la structure rigide 9 située au niveau d’une paroi supérieure d’enveloppe 21. La paroi supérieure d’enveloppe 21 est une portion d’enveloppe 2 qui est ménagée à l’opposé et en vis-à-vis de la paroi inférieure d’enveloppe 20. Ainsi, cela permet de conserver un espace de ventilation entre la toile 8 et les sacs 13 au niveau de la paroi supérieure d’enveloppe 21. Il résulte aussi de ces dispositions qu’un centre de gravité C2 du ballon captif î associé aux équipements embarqués par ce dernier est situé à la verticale sous le centre de portance Ci. Autrement dit, le centre de portance Ci du ballon captif i surplombe le centre de gravité C2 du ballon captif î.
Il résulte encore de ces dispositions que l’axe longitudinal Ai surplombe le centre de gravité C2. Autrement dit, dans un plan médian Pi, parallèle au plan Oxz, l’axe longitudinal Ai est interposé entre le centre de portance Ci et le centre de gravité C2.
On note que dans un plan longitudinal P2, parallèle au plan Oxz, le centre de portance Ci est situé à l’intérieur d’une plage de centre de portance 22 qui surplombe l’axe longitudinal Ai et l’axe de gravité C2.
Il découle de l’ensemble de ces dispositions que le ballon captif i est statiquement stable. Autrement dit, le ballon captif i ne présente sensiblement aucune assiette si ce n’est celle générée par de faibles oscillations dues aux turbulences de l’air.
On comprend aussi qu’une altitude du ballon captif i est fonction d’un taux de remplissage des sacs 13 en gaz porteur 14. On note également que plus le remplissage des sacs 13 en gaz porteur 14 est partiel au niveau du sol, plus l’altitude accessible est grande mais que quand l’altitude accessible augmente, alors la charge utile susceptible d’être embarquée diminue.
Sur la figure 4, le ballon captif 1 comporte en outre un treuil 23 et un câble 25. Le ballon captif 1 est relié au treuil 23 situé au sol 24 par l’intermédiaire du câble 25. Le câble 25 comporte une première extrémité 25a qui est relié au treuil 23 de telle sorte que le câble 25 puisse s’enrouler sur le treuil 23. Le câble 25 comporte une deuxième extrémité 25b qui est scindée en deux brins 26, 27, dont un premier brin relié à un premier point d’accrochage 28 du premier dispositif d’accrochage 11 et un deuxième brin 27 relié à un deuxième point d’accrochage 29 du deuxième dispositif d’accrochage 12. Plus particulièrement, chaque brin 26, 27 est relié au point d’accrochage 28, 29 auquel il est affecté par l’intermédiaire d’une liaison pivot 30 qui permet une bascule du brin 26, 27 autour de l’axe transverse A2 qui relie les points d’accrochage 28, 29.
L’axe longitudinal Al et l’axe transverse A2 sont sécants en un point d’intersection P qui est situé à la verticale sous le centre de portance Ci des sacs 13 de gaz porteur 14. Autrement dit, le centre de portance Ci et le point d’intersection P de l’axe longitudinal Ai et de l’axe transverse A2 sont placés dans le plan médian Pi et le centre de portance Ci surplombe le point d’intersection P.
Sur la figure 5, le centre de portance Ci, le point d’intersection P et le centre de gravité C2 sont situés sur un même axe vertical A3, parallèle à l’axe Oz. Plus particulièrement, le point d’intersection P est interposé entre le centre de portance Ci et le centre de gravité C2 sur l’axe vertical A3.
Ces dispositions sont telles qu’un foyer des forces aérodynamiques F en vol horizontal du ballon captif 1 est situé sur l’axe longitudinal Ai en arrière du point d’intersection P en étant compris à l’intérieur d’une plage de foyer des forces aérodynamiques 31.
Il en résulte que, quel que soit un vent relatif 7, le ballon captif 1 est maintenu sensiblement horizontal en raison notamment d’un pivotement du câble 25 autour de l’axe transverse A2 tel qu’illustré sur la figure 6. Ainsi, sur cette figure, le câble 25 est représenté selon trois positions successives 101, 102, 103 prises respectivement selon une force croissante du vent relatif 7, dont une première position 101 dans laquelle la vitesse du vent relatif 7 est nulle, une deuxième position dans laquelle la vitesse du vent relatif 7 est moyenne et une troisième position 103 dans laquelle la vitesse du vent relatif 7 est forte, le passage du câble 25 d’une position à une autre étant obtenue par l’intermédiaire de la liaison pivot 30 ménagée aux points d’accrochage 28, 29. Ainsi, plus la vitesse du vent relatif 7 augmente, plus le câble 25 s’incline par rapport à une direction parallèle à l’axe Oz.
Sur la figure 7, est représentée une variante de réalisation du ballon captif 1 dans laquelle le gaz porteur 14 est constitué d’hydrogène. Dans ce cas- là, le ballon captif est par exemple équipé d’un dispositif 32 de capture d’une humidité dans l’air qui est apte à réaliser une hydrolyse de l’eau condensée issue de cette humidité afin de produire de l’hydrogène qui est réinjecté à l’intérieur des sacs 13. Ceci permet de compenser une perte d’hydrogène hors des sacs et permet ainsi de prolonger une mission d’observation effectuée par le ballon captif 1. Ledit dispositif 32 est par exemple alimenté en énergie électrique par au moins une batterie 33 elle-même alimentée par au moins un panneau solaire 34.
Sur les figures 8 à 10, est représenté un deuxième mode de réalisation d’un ballon captif 100 selon l’invention. Le ballon captif 100 selon l’invention se différencie du ballon captif 1 selon l’invention précédemment décrit en ce qu’il comporte une cavité 210 ouverte vers le bas, de forme globalement parallélépipédique. Cette cavité 210 s’étend longitudinalement selon la direction de l’axe longitudinal Ai et est symétrique par rapport au plan médian Pi passant par les axes longitudinal Ai et vertical A3. La cavité 210 comporte un fond 215 sensiblement plan selon les axes longitudinal Ai et transverse A2 et passant par le point d’intersection P. Au niveau du point d’intersection P, le ballon captif 100 comporte une liaison pivot 30 formée par un point d’accrochage direct du câble 25 au niveau de sa deuxième extrémité 25b. La forme longitudinale de la cavité 210 est agencée de sorte à permettre, en collaboration avec la liaison pivot 30, les différentes positions du câble 25 en fonction du vent comme décrit précédemment en relation avec la figure 6.
Le comportement du ballon captif 100 selon l’invention est similaire à celui du ballon captif 1 selon l’invention décrit précédemment.
Sur la figure 11 est illustré un troisième mode de réalisation d’un ballon captif 110. Le ballon captif 110 selon l’invention diffère du ballon captif 100 selon l’invention précédemment décrit en ce qu’il comporte une cavité 211 comportant sur un fond la liaison pivot 30 formée par un point d’accrochage direct de trois câbles 25, la liaison pivot 30 étant au niveau du point d’intersection P. La cavité 211 est ouverte vers le bas et s’étend longitudinalement selon la direction de l’axe longitudinal Ai et est symétrique par rapport au plan médian Pi passant par les axes longitudinal Ai et vertical A3. Afin de permettre le positionnement des trois câbles 25 orientés différemment les uns des autres ainsi que leurs variations de positionnement selon la force du vent, la cavité 211 présente une forme d’une portion de sphère dont l’apex est au niveau du point d’intersection P, donc au niveau de la liaison pivot 30. En variante, la forme de la cavité 211 est une portion d’ovoïde. En variante encore, la forme de la cavité 211 est en deux portions de cylindre (de préférence de révolution), symétriques en miroir par rapport au plan Pi dont les génératrices forment un angle compris entre 5 et 180 degrés.

Claims

REVENDICATIONS
1. Ballon captif (i;ioo;iio) comprenant une enveloppe (2) qui s’étend principalement selon un axe longitudinal (Al) et qui porte au moins un point d’accrochage (28, 29) destiné à recevoir un câble (25), le point d’accrochage (28, 29) étant ménagé sur un axe transverse (A2) qui est orthogonal à l’axe longitudinal (Ai), l’axe transverse (A2) et l’axe longitudinal (Al) étant sécants en un point d’intersection (P), l’enveloppe (2) logeant au moins un sac (13) contenant un gaz porteur (14) procurant un centre de portance (Ci), dans lequel le centre de portance (Cl), le point d’intersection (P) et un centre de gravité (C2) du ballon captif (i;ioo;iio) sont situés sur un axe vertical (A3) orthogonal à l’axe longitudinal (Ai) et à l’axe transverse (A2).
2. Ballon captif (i;ioo;iio) selon la revendication 1, dans lequel le point d’intersection (P) est interposé entre le centre de portance (Ci) et le centre de gravité (C2) sur l’axe vertical (A3).
3. Ballon captif (i;ioo;iio) selon l’une quelconque des revendications précédentes, dans lequel le point d’accrochage (28, 29) est équipé d’une liaison pivot (30).
4. Ballon captif (i;ioo;iio) selon l’une quelconque des revendications précédentes, dans lequel un espace interstitiel (19) est ménagé entre une paroi inférieure de sac (16) que comprend le sac (13) et une paroi inférieure d’enveloppe (20) que comprend l’enveloppe (2).
5. Ballon captif (i;ioo;no) selon l’une quelconque des revendications précédentes, dans lequel un foyer des forces aérodynamiques (F) en vol horizontal du ballon captif (i;ioo;no) est situé sur l’axe longitudinal (Ai) en étant placé entre le point d’intersection (P) et une extrémité arrière (4) du ballon captif (1).
6. Ballon captif (i;ioo;iio) selon l’une quelconque des revendications précédentes, dans lequel le gaz porteur (14) est indifféremment constitué d’hydrogène ou d’hélium.
7. Ballon captif (i;ioo;iio) selon la revendication 6, dans lequel, dans le cas où le gaz porteur (14) est constitué d’hydrogène, l’enveloppe (2) loge un dispositif (32) de capture d’une humidité et d’électrolyse d’eau condensée, au moins une batterie (33) destinée à alimenter en énergie électrique ledit dispositif (32) et au moins un panneau solaire (34) pour alimenter en énergie électrique la batterie (33).
8. Ballon captif (i;ioo;iio) selon l’une quelconque des revendications précédentes, dans lequel l’enveloppe (2) loge une pluralité de sacs (13).
9. Ballon captif (i;ioo;no) selon l’une quelconque des revendications précédentes, dans lequel l’enveloppe comporte (2) un dispositif d’empennage (5) situé à proximité d’une extrémité arrière (4) du ballon captif.
10. Ballon captif (i;ioo;no) selon l’une quelconque des revendications précédentes, dans lequel le ballon captif (i;ioo;no) comprend en outre un treuil (23) et un câble (25) interposé entre le ballon captif (1; 100; 110) et le treuil (23).
11. Ballon captif (1) selon l’une quelconque des revendications précédentes, dans lequel le ballon captif (1) comporte deux points d’accrochage (28, 29) destinés à recevoir le câble (25), les points d’accrochage (28, 29) étant ménagés de part et d’autre de l’enveloppe (2) sur l’axe transverse (A2).
12. Ballon captif (1) selon les revendications 10 et 11 et la revendication 3, dans lequel la liaison pivot (30) est ménagée entre chaque point d’accrochage (28, 29) et un brin respectif (26, 27) issu du même câble
(25).
13. Ballon captif (ioo;no) selon l’une quelconques des revendications 1 à 10, dans lequel le ballon captif (ioo;no) comporte un seul point d’accrochage positionné au niveau du point d’intersection P.
14. Ballon captif (100; 110) selon la revendication 13, dans lequel le ballon captif (ioo;iio) comporte une cavité (2io;2ii) ouverte vers le bas, s’étendant longitudinalement selon la direction de l’axe longitudinal Ai et étant symétrique par rapport au plan médian Pi passant par les axes longitudinal Al et vertical A3, la cavité (210; 211) comprenant la liaison pivot (30).
15. Ballon captif (10; 110) selon la revendication 14, dans lequel un fond (215) de la cavité (210; 211) passe par le point d’intersection P.
EP20800129.7A 2019-11-04 2020-10-30 Ballon captif à assiette nulle Withdrawn EP4054931A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19306428.4A EP3816036A1 (fr) 2019-11-04 2019-11-04 Ballon captif à assiette nulle
PCT/EP2020/080542 WO2021089431A1 (fr) 2019-11-04 2020-10-30 Ballon captif à assiette nulle

Publications (1)

Publication Number Publication Date
EP4054931A1 true EP4054931A1 (fr) 2022-09-14

Family

ID=68618095

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19306428.4A Withdrawn EP3816036A1 (fr) 2019-11-04 2019-11-04 Ballon captif à assiette nulle
EP20800129.7A Withdrawn EP4054931A1 (fr) 2019-11-04 2020-10-30 Ballon captif à assiette nulle

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19306428.4A Withdrawn EP3816036A1 (fr) 2019-11-04 2019-11-04 Ballon captif à assiette nulle

Country Status (2)

Country Link
EP (2) EP3816036A1 (fr)
WO (1) WO2021089431A1 (fr)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620486A (en) * 1969-07-09 1971-11-16 Goodyear Aerospace Corp Autostable circular tethered wing balloon
US5470032A (en) * 1994-04-18 1995-11-28 Williams, Jr.; Joseph B. Airborne monitoring system and method
AU4822200A (en) * 1999-05-05 2000-11-17 Arthur W. Mears Balloon lifting system
IT1395110B1 (it) * 2009-07-28 2012-09-05 Noce S R L Aerostato autostabile perfezionato e relativo sistema di involo e di recupero
JP5697782B1 (ja) * 2014-06-23 2015-04-08 ソフトバンクモバイル株式会社 係留気球
RU159572U1 (ru) 2015-09-30 2016-02-10 Закрытое акционерное общество "Межрегиональное производственное объединение технического комплектования "ТЕХНОКОМПЛЕКТ" (ЗАО "МПОТК "ТЕХНОКОМПЛЕКТ") Аэродинамически стабилизированная аэростатическая система
US10469021B2 (en) * 2016-10-17 2019-11-05 Aetherix Corporation Airborne renewable energy generation and storage

Also Published As

Publication number Publication date
WO2021089431A1 (fr) 2021-05-14
EP3816036A1 (fr) 2021-05-05

Similar Documents

Publication Publication Date Title
CA2153087C (fr) Dispositif de pulverisation, notamment d'eau sous forme de micro-gouttelettes, apte a fonctionner dans un milieu non stationnaire
EP2691299B1 (fr) Micro/nano véhicule aérien commande à distance comportant un système de roulage au sol, de décollage vertical et d'atterrissage
US9004397B2 (en) Autonomous stratospheric unmanned airship
FR3052677A1 (fr) Drone comprenant des ailes portantes.
FR2662995A1 (fr) Dirigeable a ossature composee de couples triangulaires et de longerons.
JP3903202B2 (ja) 成層圏用飛行船
EP2996937A1 (fr) Drone haute altitude
FR3048956A1 (fr) Aeronef a voilure tournante
EP1242279A1 (fr) Appareil volant radiocommande de taille reduite
EP4054931A1 (fr) Ballon captif à assiette nulle
CA2709461C (fr) Dispositif de maintien en altitude d'une charge utile dont la source d'energie de maintien en altitude est permanente et extraite du milieu
EP2488409B1 (fr) Ballon dirigeable.
WO2019101892A1 (fr) Plateforme flottante pour la réception d'aéronefs comprenant un dispositif de stabilisation
EP1427632B1 (fr) Aerostat captif et equipement de commande associe
FR2735645A1 (fr) Emetteur acoustique remorque
WO1993014973A2 (fr) Vaisseau spatial en forme de soucoupe volante
WO2014198630A1 (fr) Dirigeable à portance variable et procédé de pilotage d'un tel dispositif à portance variable
FR2681307A1 (fr) Ballon dirigeable a portance aerodynamique amelioree.
FR3112329A1 (fr) Dispositif volant à décollage vertical
FR2880615A1 (fr) Aeronef a decollage vertical de type pendulaire hybride utilisant une enveloppe d'allegement de systeme de propulsion
FR2468501A1 (fr) Dirigeables utilisables notamment pour la lutte contre les incendies
FR2655309A1 (fr) Systeme de propulsion et de sustentation eoliennes pour engins de vitesse nautiques, terrestres ou amphibies.
EP1515886A1 (fr) Aeronef plus leger que l'air comprenant plusieurs ballons relies par un chassis
FR3104131A1 (fr) Aéronef muni d’une enveloppe remplie d’un gaz plus léger que l’air.
FR2851224A1 (fr) Aeronefs hybrides, comportant un systeme d'allegement torique et une voilure tournante centrale

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230103