EP4053320B1 - Nozzle strip for generating fluid jets for hydrodynamic consolidation of a sheet of material and system for consolidating such a sheet - Google Patents

Nozzle strip for generating fluid jets for hydrodynamic consolidation of a sheet of material and system for consolidating such a sheet Download PDF

Info

Publication number
EP4053320B1
EP4053320B1 EP22155647.5A EP22155647A EP4053320B1 EP 4053320 B1 EP4053320 B1 EP 4053320B1 EP 22155647 A EP22155647 A EP 22155647A EP 4053320 B1 EP4053320 B1 EP 4053320B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
strip
row
rows
nozzle openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22155647.5A
Other languages
German (de)
French (fr)
Other versions
EP4053320A1 (en
Inventor
Ullrich MÜNSTERMANN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Truetzschler Group SE
Original Assignee
Truetzschler Group SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Truetzschler Group SE filed Critical Truetzschler Group SE
Publication of EP4053320A1 publication Critical patent/EP4053320A1/en
Application granted granted Critical
Publication of EP4053320B1 publication Critical patent/EP4053320B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H18/00Needling machines
    • D04H18/04Needling machines with water jets

Definitions

  • the invention relates to a nozzle strip for generating fluid jets for the hydrodynamic solidification of a material web and a system for solidifying such a material web, comprising a nozzle bar and a nozzle strip according to the invention.
  • Such devices are used for hydroentanglement, for example, of material webs formed from fibers.
  • nonwovens from low to very high nonwoven weights made from natural fibers, synthetic fibers and spunbonds can be consolidated.
  • structuring and/or perforations of the material web are possible with such a nozzle strip.
  • JP H06 184895 A , EP 1 309 743 B1 and EP 1 621 655 A1 disclose examples of such devices.
  • a nozzle strip is provided in each case, which has a large number of oblique nozzle openings.
  • the nozzle openings are arranged, for example, in two rows running parallel to one another. Within the same row, the longitudinal axes of all nozzle openings also run parallel to each other, like the teeth of a comb.
  • the disadvantage of such a parallel alignment of the nozzle openings is that there are limits to the solidification of the material web.
  • the object on which the invention is based is achieved by a nozzle strip and a corresponding system for solidifying a material web.
  • Preferred embodiments of the invention are specified in the subclaims, which can optionally be combined with one another.
  • the solidification of the material web is significantly increased by cleverly orienting the oblique bores.
  • the longitudinal axes become direct to each other adjacent nozzle openings of one and the same row and the longitudinal axes of directly opposite nozzle openings of directly adjacent rows are each oriented so that the emerging fluid jets are skewed to one another.
  • all nozzle openings in one and the same row as well as directly adjacent nozzle openings in directly adjacent rows never run parallel to one another.
  • Due to the differently aligned fluid jets i.e. the many changes of direction among each other, more turbulence of fibers occurs when the fluid jets hit the material web.
  • the fibers intertwine even more strongly, which results in an increased strength of the material web compared to the prior art.
  • material web when the term material web is mentioned according to the invention, what is meant is a fibrous web made from fibers. This can be in the form of woven fabrics, knitted fabric webs or nonwovens and preferably include the fibers mentioned at the beginning.
  • skewed means that the longitudinal axes of the nozzle openings neither intersect nor are parallel to one another. This refers to the part of the longitudinal axes that extends along the nozzle opening of the nozzle strip and beyond in the direction of delivery of the fluid.
  • the distances are always meant in a top view of the nozzle strip (XY plane), i.e. seen on the fluid inlet side. The distances from the respective intersection of the longitudinal axis of the corresponding nozzle opening with the XY plane are measured.
  • Oblique bores mean that the fluid jets or the longitudinal axes of the nozzle openings are inclined at an angle of inclination relative to a perpendicular to the XY plane of the nozzle strip or the material web. They can be aligned in such a way that these longitudinal axes lie in planes that are in turn perpendicular to the XY plane.
  • the location of one Longitudinal axis, which can be assumed to be a straight line, can be defined by a unit vector in space.
  • the nozzle strip is prismatic and has a length (X), width (Y) and height (Z) extent.
  • the designations X, Y, Z correspond to the axis designations of the same name in a Cartesian coordinate system.
  • the respective longitudinal axes of the corresponding nozzle openings are at an angle of inclination of 1° to 20°, preferably 1° to 10°, particularly preferably 1, relative to a perpendicular to an XY plane, which is spanned by the width and length extension of the nozzle strip ° inclined to 5°. This angle has proven to be particularly advantageous in order to produce particularly favorable swirling of the fibers of the material web.
  • the size of the angle of inclination depends, among other things, on the distance of the nozzle strip from the surface of the web or material web. For short distances, for example up to 10 mm, the angle of inclination can be chosen larger. For large distances, for example over 25 mm, an angle of inclination in the range of 1° to 5° can be advantageous.
  • the distances between the holes from one another also play a role here. In principle, it can be provided that all oblique bores and thus all longitudinal axes of the nozzle openings in a row have the same angle of inclination.
  • the at least two rows are preferably arranged spaced apart from one another in the width extension (Y) of the nozzle strip.
  • the rows can be arranged parallel or at an angle to one another.
  • the length extension Y
  • the longitudinal axes of directly successive nozzle openings of a respective row can be mirrored in their orientation relative to a respective plane of symmetry arranged between two adjacent nozzle openings of the respective row or point-mirrored to a point of symmetry arranged therein, so that oblique bores are alternately mirrored from nozzle opening to nozzle opening within a row of the nozzle strip.
  • a symmetrical arrangement of individual nozzle openings that are directly adjacent to one another can be created. The advantages of the symmetry of the arrangement will be discussed later.
  • the longitudinal axes of two directly adjacent nozzle openings of directly adjacent rows can lie in planes that are angled or orthogonal to one another and are preferably both perpendicular to the XY plane. This also promotes the symmetry of the arrangement of adjacent nozzle openings with one another.
  • nozzle openings These can be arranged within a row - viewed in the longitudinal direction of the row and thus in the length extension (X) of the nozzle strip - each spaced apart from one another by a distance X1.
  • directly adjacent rows of nozzle openings are arranged offset from one another by half the distance X1 in the longitudinal direction of the row, i.e. viewed in the length extension (X), the distance directly adjacent rows are not directly opposite each other when viewed in the direction of the width extension (Y) of the nozzle strip. This achieves a high level of symmetry and a high packing density of the nozzle openings in the nozzle strip.
  • Such a symmetrical arrangement of the nozzle openings according to the invention describes the longitudinal axes of immediately adjacent nozzle openings - including those across directly adjacent rows - as lines of a single-shell hyperboloid. Individual or all longitudinal axes of the nozzle openings arranged in this way of directly adjacent nozzle openings, even across directly adjacent rows, are thus arranged in such a way that they form parts of the lines of a hyperboloid.
  • This arrangement causes these nozzle openings to produce fluid jets that create a swirl around a virtual center of the nozzle openings. This twist leads to better turbulence of the fibers and thus to increased solidification of the material web.
  • the swirl is generated without the nozzles themselves having to rotate. This avoids a complex construction.
  • the nozzle openings of the first and third rows which are arranged on both sides of the middle second row - viewed in the longitudinal direction of the row and thus in the length extension (X) of the nozzle strip - are opposite the middle one row offset.
  • the outer two rows are minimally offset from the inclination of the fluid jet at a distance from the nozzle openings.
  • the offset refers to the distance between the center of the nozzle opening on the top of the nozzle strip and the center of the nozzle opening on the bottom of the nozzle strip.
  • the first row is offset from the middle row by a distance of 0.5*X1+X2 and the second row is offset from the middle row by a distance of 0.5*X1-X2, whereby the distance X2 results from the following formula: 0 .5 times the height of the nozzle strip times the tangent of the inclination angle of the respective longitudinal axis of the nozzle opening. This slightly deviates from such a symmetry of directly adjacent nozzle openings compared to the arrangements from alternative A.
  • nozzle openings within the middle row - seen in the longitudinal direction of the row and thus in the length extension (X) of the nozzle strip - are each arranged spaced apart from one another by a distance X3, the nozzle openings being The remaining two rows within the row in question are alternately spaced apart by the distance 2*X3 and 4*X3, so that the nozzle openings of directly adjacent rows are not directly opposite one another when viewed in the direction of the width extension (Y) of the nozzle strip, and that individual nozzle openings are directly adjacent to one another Rows always have the same distance X3 from one another in the length extension (X) of the nozzle strip. This always results in equidistant distances from nozzle opening to nozzle opening, whereby the impact of the fluid jets on the material web is standardized and thus the turbulence along the entire web width of the material web is improved.
  • nozzle openings in the middle row are alternately shifted towards one of the two rows along the width extension (Y) of the nozzle strip. This results in an even better, namely square, distribution of the impact points over the full width of the material web to be solidified.
  • the nozzles of the nozzle strip can be arranged so that in at least two rows of nozzles the nozzles form a square, rectangle or diamond, the longitudinal axes of the nozzles being aligned with points of a virtual circle on the plane of the material web, which is within the square or Rectangle is arranged.
  • the arrangement of the nozzles does not have to be on the corner points of the square or rectangle, but can be arranged on one of the outer edges.
  • a twist is generated, which improves the turbulence of the fibers among themselves and thus the isotropy of the material web, at least on the surface.
  • the swirl generated changes from nozzle arrangement to nozzle arrangement in a clockwise and counterclockwise direction.
  • the present invention also relates to a system for solidifying a material web, comprising at least one nozzle bar and one that conducts fluid connectable nozzle strips for generating fluid jets for hydrodynamic solidification of the material web, the nozzle strip being designed according to the invention. Further measures improving the invention are shown in more detail below together with the description of a preferred exemplary embodiment of the invention with reference to the figures.
  • Fig. 1 shows a highly schematic, partially sectioned side view of a system 1 according to the invention for solidifying a material web 2, comprising a nozzle bar 3 and a nozzle strip 4 according to the invention.
  • a material web 2 is transported on a rotating belt 7 and solidified by means of fluid jets 6.
  • the nozzle bar 3 has a nozzle strip 4 with two rows of nozzle openings 5.
  • the nozzle bar 3 is fluidly connected to a reservoir of fluid, such as water, for example with the interposition of pumps (not shown).
  • a nozzle strip 4 is arranged interchangeably.
  • the fluid under pressure reaches the nozzle strip 4 via the nozzle bar 3. From there it emerges from a large number of nozzle openings 5 arranged in the nozzle strip 4, which are designed as oblique bores.
  • the fluid forms a large number of fluid jets 6 at the outlet of the nozzle openings 5 from the nozzle strip 4. These act on the material web 2 passing underneath to hydrodynamically solidify it.
  • a suction device 8 for removing the fluid penetrating the material web 2.
  • FIG. 2a to 2d each show a sectional view of the nozzle strip according to section AA Fig. 1 the four different alternatives A to D of the invention mentioned at the beginning.
  • This sectional view in the figures mentioned of the prismatic nozzle strip 4 also corresponds to the XY plane, where The nozzle openings 5 are indicated as circles in the figures.
  • the nozzle strip has three parallel rows of nozzles 5, namely the first row R1, the second or middle row R2 and the third row R3.
  • a large number of nozzles 5 are assigned to each row of nozzles, with only a maximum of 5 nozzles in a row being shown here and in the following figures.
  • the nozzles are named according to the rows, i.e.
  • the nozzle openings 5 are each in two ( Fig. 2d ) or three ( Fig. 2a to 2c ) - here arranged in parallel rows.
  • the arrows following the circles should represent the longitudinal axes L of the respective nozzle openings 5: Since the nozzle openings 5 are designed as oblique bores, one must imagine their course corresponding to the longitudinal axis L.
  • the arrows can be understood here as vectors. These vectors correspond to projections of the unit vectors, which describe the respective longitudinal axis L as a straight line in space, onto the XY plane.
  • Fig. 4 The course of the oblique bore is indicated in a section A1-A1, and the angle of inclination of the longitudinal axis relative to the vertical (lower part) is also indicated.
  • nozzle strip According to the illustration in Fig. 2a This is achieved by defining the nozzle strip according to the features of claim 6.
  • the longitudinal axes L of the nozzle openings 5.11, 5.22, 5.31 and 5.21 are partly shown as lines of a single-shell hyperboloid (see bold solid lines in Fig. 3 ) to understand.
  • the latter can be achieved by rotating the longitudinal axis L of the nozzle opening 5 about a center 5.5 - for example, which lies between the nozzle openings 5.11, 5.22, 5.31 and 5.21 and which can be an axis of symmetry.
  • the remaining longitudinal axes L of the nozzle openings 5.22, 5.31 and 5.21 are created from 90 ° rotations of the longitudinal axis L of the nozzle opening 5.11 about this center 5.5.
  • This special symmetrical arrangement gives the fluid jets emerging from the nozzle openings a twist that runs to the right around the center 5.5 (see also the lower part of the longitudinal axes L of the Figure 3 , with an excessive number of longitudinal axes shown here). If you look in the Fig. 2a further to the right, then you will notice that the neighboring group of nozzle openings 5.12, 5.23, 5.32 and 5.22 is a mirror image of the nozzle openings 5.11, 5.22, 5.31 and 5.21 just described. The twist runs to the left.
  • the outer two rows R1, R3 are minimally offset from the inclination of the fluid jet 6 at a distance X1 from the nozzle openings 5.
  • the offset refers to the distance between the center of the nozzle opening on the top of the nozzle strip and the center of the nozzle opening on the bottom of the nozzle strip.
  • the first row R1 is offset from the second and middle row R2 by a distance of 0.5*X1+X2 and the third row R3 by a distance of 0.5*X1-X2, with the distance X2 increasing
  • the following formula results in: 0.5 times the height of the nozzle strip 4 times the tangent of the inclination angle of the respective longitudinal axis the nozzle opening 5.
  • FIG. 2c the third alternative C of the invention is described when providing three rows of nozzle openings 5.
  • the nozzle openings 5.21, 5.22, 5.23, 5.24 within the second and middle row R2 - seen in the longitudinal direction of the row R2 and thus in the length extension (X) of the nozzle strip - are each at a distance of 3x X3 from one another.
  • the center 5.5 of a swirling unit is now formed by nozzles 5.11, 5.22, 5.31, 5.21 arranged offset from one another, which are arranged in the longitudinal direction X of the nozzle strip 4 by the distance X3.
  • the nozzle opening 5.21 is arranged at a distance X3 from the nozzle opening 5.11, this at a distance X3 from the nozzle opening 5.31 and this at a distance X3 from the nozzle opening 5.22.
  • the nozzle openings of the remaining two rows within the relevant row R1, R3 are arranged alternately at a distance of 1x X3 and 3x X3, so that the nozzle openings of directly adjacent rows R1, R2; R2, R3 are not directly opposite each other when viewed in the direction of the width extension (Y) of the nozzle strip, and that individual nozzle openings in directly adjacent rows always have the same distance X3 from one another when viewed in the length extension (X) of the nozzle strip.
  • FIG. 2d the alternative D of the nozzle strip 4 according to the invention described at the beginning.
  • alternative C Fig. 2c The nozzle openings 5 of the middle row R2 have been moved one after the other and alternately into the first row R1 or third row R3, which lie on both sides of the middle row R2. There are therefore only two rows R1, R3 of nozzle openings 5. This measure also serves to improve the symmetry of the impact of the fluid jets on the material web 2.
  • Figure 3 shows the effect of the fluid jets 6 striking a material web 2 through the arrangement of the nozzle openings 5. Due to the arrangement according to the invention Nozzle openings 5 create a swirl around a virtual center 5.5 of the nozzle openings. This twist leads to better turbulence of the fibers and thus to increased solidification of the material web 2. The twist is generated without the nozzles themselves having to rotate. This avoids a complex construction.
  • Such a symmetrical arrangement of the nozzle openings according to the invention describes the longitudinal axes L of immediately adjacent nozzle openings - including those across directly adjacent rows - as lines of a single-shell hyperboloid.
  • Figure 4 shows a section through a nozzle opening 5 along the section plane A1-A1 from the Figures 2a - 2d .
  • the nozzle strip 4 is prismatic and has a length (X), width (Y) and height (Z) extent.
  • the designations X, Y, Z correspond to the axis designations of the same name in a Cartesian coordinate system.
  • the respective longitudinal axes L of the corresponding nozzle openings are at an angle of inclination ⁇ of 1° to 20°, preferably 1° to 10°, particularly preferably 1, relative to a perpendicular to an XY plane, which is spanned by the width and length extension of the nozzle strip ° inclined to 5°.
  • This angle has proven to be particularly advantageous in order to generate particularly favorable swirling of the fibers of the material web 2.
  • all oblique bores and thus all longitudinal axes of the nozzle openings 5 have the same angle of inclination.
  • the at least two rows R1, R2 are preferably arranged spaced apart from one another in the width extension (Y) of the nozzle strip.
  • the rows can be arranged parallel or at an angle to one another.
  • the length X of the nozzle strip essentially corresponds to the width of the material web 2.
  • FIG. 5 to 7 an arrangement of two rows R1, R2 of nozzles of a nozzle strip 4 is shown, the nozzle openings 5 of which are directed towards a virtual circle or ellipse.
  • the virtual circle or ellipse lies in the plane of the material web, i.e. by the distance hit.
  • the nozzles of the first 5.11, 5.12 and second row 5.21, 5.22 have a distance in the X direction of X1.
  • the distance between the rows of nozzles is X3.
  • the distances X1 and Or the fluid jets 6 strike tangentially on a virtual path of a circle or an ellipse, which lies in the plane of the material web 2.
  • the fluid jets 6 create a clockwise or counterclockwise twist in the plane of the material web 2, with which the fibers intertwine with one another in addition to the known swirling.
  • the effect is contrary to the previous orientation of the fibers, which are arranged on one side in the production direction (MD direction) in accordance with the production direction of the material web 2 in the MD/CD ratio.
  • Figure 5 The groups of nozzles alternately produce a clockwise or counterclockwise twist on the material web 2.
  • the cutting plane AA is in Figure 7 shown.
  • the twist direction changes in the direction of the working width (X direction).
  • the size of the virtual circle is determined by the distance X4 between the nozzle strip 4 and the surface of the material web 2, by the inclination angle ⁇ of the nozzle opening in the nozzle strip 4 and by one of the angles ⁇ or ⁇ , and by the angle ⁇ .
  • a symmetrical arrangement of the virtual circle between the nozzles 5.11, 5.12, 5.21, 5.22 is shown.
  • the virtual circle can also be arranged asymmetrically within the rectangle X1, X3, in which the angles ⁇ or ⁇ and ⁇ are varied.
  • the angle ⁇ represents the orientation of the fluid jet 6 or the inclination of the nozzle opening 5 to the center of the virtual circle or the ellipse.
  • the angle ⁇ represents the orientation of the fluid jet 6 or the inclination of the nozzle opening 5 to the longitudinal axis of the nozzle bar 3, i.e. to X direction.
  • the angle ⁇ represents the orientation of the fluid jet 6 or the inclination of the nozzle opening 5 to the production direction, i.e. to the Z direction.
  • the angles ⁇ and ⁇ together form a right angle.
  • the alignment of the nozzle openings 5 according to the Figures 2a to 3 always takes place in the direction of the longitudinal axis of the nozzle bar 3 (X direction) and in the production direction of the material web 2 (Y direction).
  • the fluid jets created in this way are parts of the lines of a hyperboloid.
  • the alignment of the nozzle openings 5 according to the Figures 5 to 7 takes place within a rectangle or square of nozzles 5.11, 5.12, 5.21, 5.22, and are all directed inwards towards a virtual circle, with the rays hitting the virtual circle tangentially.
  • four nozzles 5.11, 5.12, 5.21, 5.22 are inclined to the common center of a virtual circle.
  • the circle lies in the plane of the material web 2 to be processed at a distance X4 mm below the nozzle strip 4.
  • four fluid jets produce a swirl in the plane of the material web 2 Clockwise, which swirls the fibers together.
  • the four other nozzles 5.13, 5.14, 5.23, 5.24 arranged next to it produce a suitable inclination as in the Figure 5 a counterclockwise twist.
  • the 4 neighboring rays in the middle of Figure 5 are inclined in such a way that a counterclockwise twist is created.
  • the other four nozzles 5.15, 5.16, 5.25, 5.26 in Figure 5 in turn create a clockwise twist.
  • the twist direction is therefore seen alternately in the direction of the working width or longitudinal axis of the nozzle bar 3 (X direction).
  • the nozzles 5.11, 5.22, 5.31 and 5.21 from three rows of nozzles R1, R2, R3 can lie on the edges or lines of a square or rectangle and their longitudinal axes L can also be aligned with a virtual circle with the center 5.5.
  • the invention does not require that the nozzles have to be arranged on the corner points of a square. They can also be arranged on the corner points of an arbitrarily arranged rhombus or on the outer edges of a square, rectangle or rhombus, whereby the points struck by the fluid jets on the virtual circle or ellipse in the plane of the material web lie within this geometric shape in order to achieve the desired To create a swirl effect.
  • the angle ⁇ is the same for all nozzle openings.
  • the distance X3 can also be smaller or larger than the distance X1.
  • the angles ⁇ or ⁇ and ⁇ can be adjusted so that the impact points of the four fluid jets 6 lie on a virtual circle or an ellipse.
  • the nozzle opening 5 of all nozzles can be 0.12 mm and the distances X1, X2, X3 can each be 1.5 mm.
  • the diameter of the virtual circle is according to the exemplary embodiments Figures 5 to 7 smaller than dimension X1, at least 0.5 mm. If the diameter of the virtual circle becomes smaller, no significant swirl is generated at these dimensions because the fluid jets almost all hit one point.
  • the angle of inclination ⁇ is in the range from 1° to 20°, preferably from 1° to 10°, particularly preferably from 1° to 5°. This angle has proven to be particularly advantageous in order to produce particularly favorable swirling of the fibers of the material web.
  • the size of the angle of inclination depends, among other things, on the distance of the nozzle strip from the surface of the web or material web. For short distances, for example X4 to 10 mm, the angle of inclination can be chosen larger. For large distances, for example X4 > 25 mm, an angle of inclination in the range of 1° to 5° can be advantageous. Of course, the distances between the nozzle openings and one another also play a role here.

Description

Die Erfindung betrifft einen Düsenstreifen zur Erzeugung von Fluidstrahlen zur hydrodynamischen Verfestigung einer Materialbahn sowie eine Anlage zur Verfestigung einer solchen Materialbahn, umfassend einen Düsenbalken und einen erfindungsgemäßen Düsenstreifen.The invention relates to a nozzle strip for generating fluid jets for the hydrodynamic solidification of a material web and a system for solidifying such a material web, comprising a nozzle bar and a nozzle strip according to the invention.

Derartige Vorrichtungen werden zur Wasserstrahlverfestigung z.B. von aus Fasern gebildeten Materialbahnen verwendet. Mittels der Erfindung können also beispielsweise Vliese von niedrigen bis zu sehr hohen Vliesgewichten aus Naturfasern, Synthesefasern und Spinnvliesen verfestigt werden. Zusätzlich dazu sind Strukturierungen und/oder Perforierungen der Materialbahn mit einem solchen Düsenstreifen möglich.Such devices are used for hydroentanglement, for example, of material webs formed from fibers. By means of the invention, for example, nonwovens from low to very high nonwoven weights made from natural fibers, synthetic fibers and spunbonds can be consolidated. In addition, structuring and/or perforations of the material web are possible with such a nozzle strip.

JP H06 184895 A , EP 1 309 743 B1 und EP 1 621 655 A1 offenbaren exemplarisch derartige Vorrichtungen. So ist jeweils ein Düsenstreifen vorgesehen, der eine Vielzahl von schräg verlaufenden Düsenöffnungen aufweist. Die Düsenöffnungen sind beispielsweise in zwei parallel zueinander verlaufenden Reihen angeordnet. Innerhalb einer gleichen Reihe verlaufen die Längsachsen aller Düsenöffnungen ebenfalls jeweils parallel zueinander, wie die Zinken eines Kammes. Nachteilig an einer solchen parallelen Ausrichtung der Düsenöffnungen ist, dass der Verfestigung der Materialbahn Grenzen gesetzt sind. JP H06 184895 A , EP 1 309 743 B1 and EP 1 621 655 A1 disclose examples of such devices. A nozzle strip is provided in each case, which has a large number of oblique nozzle openings. The nozzle openings are arranged, for example, in two rows running parallel to one another. Within the same row, the longitudinal axes of all nozzle openings also run parallel to each other, like the teeth of a comb. The disadvantage of such a parallel alignment of the nozzle openings is that there are limits to the solidification of the material web.

Es ist daher die Aufgabe der Erfindung einen Düsenstreifen und eine Anlage zur Verfestigung einer Materialbahn bereitzustellen, mittels dem sich die Verfestigung einer solchen noch weiter verbessern lässt, ohne den konstruktiven Aufwand der Vorrichtung zu erhöhen.It is therefore the object of the invention to provide a nozzle strip and a system for solidifying a material web, by means of which the solidification of such a web can be further improved without increasing the design effort of the device.

Die der Erfindung zu Grunde liegende Aufgabe wird durch einen Düsenstreifen sowie eine entsprechende Anlage zur Verfestigung einer Materialbahn gelöst. Bevorzugte Ausführungsformen der Erfindung sind in den Unteransprüchen angegeben, die wahlweise miteinander kombiniert werden können.The object on which the invention is based is achieved by a nozzle strip and a corresponding system for solidifying a material web. Preferred embodiments of the invention are specified in the subclaims, which can optionally be combined with one another.

Erfindungsgemäß wird durch eine geschickte Orientierung der schrägen Bohrungen die Verfestigung der Materialbahn signifikant erhöht. Dazu werden die Längsachsen einander direkt benachbarter Düsenöffnungen ein- und derselben Reihe und die Längsachsen einander direkt gegenüberliegender Düsenöffnungen direkt benachbarter Reihen jeweils so orientiert, dass die austretenden Fluidstrahlen windschief zueinander verlaufen. Anders ausgedrückt, verlaufen alle Düsenöffnungen in ein- und derselben Reihe sowie direkt benachbarte Düsenöffnungen direkt angrenzender Reihen nie parallel zueinander. Durch die jeweils unterschiedlich ausgerichteten Fluidstrahlen, also die vielen Richtungswechsel untereinander, entstehen zusammengenommen mehr Verwirbelungen von Fasern beim Auftreffen der Fluidstrahlen auf die Materialbahn. Infolge der erhöhten Verwirbelung verschlingen die Fasern noch stärker ineinander, wodurch sich eine gegenüber dem Stand der Technik erhöhte Festigkeit der Materialbahn ergibt.According to the invention, the solidification of the material web is significantly increased by cleverly orienting the oblique bores. To do this, the longitudinal axes become direct to each other adjacent nozzle openings of one and the same row and the longitudinal axes of directly opposite nozzle openings of directly adjacent rows are each oriented so that the emerging fluid jets are skewed to one another. In other words, all nozzle openings in one and the same row as well as directly adjacent nozzle openings in directly adjacent rows never run parallel to one another. Due to the differently aligned fluid jets, i.e. the many changes of direction among each other, more turbulence of fibers occurs when the fluid jets hit the material web. As a result of the increased turbulence, the fibers intertwine even more strongly, which results in an increased strength of the material web compared to the prior art.

Wenn gemäß der Erfindung von Materialbahn die Rede ist, dann ist damit eine aus Fasern hergestellte Faserstoffbahn gemeint. Diese kann in Form von Geweben, Gewebegewirkbahnen oder Vliesen vorliegen und bevorzugt die eingangs genannten Fasern umfassen.When the term material web is mentioned according to the invention, what is meant is a fibrous web made from fibers. This can be in the form of woven fabrics, knitted fabric webs or nonwovens and preferably include the fibers mentioned at the beginning.

Der Begriff "windschief" meint, dass sich die Längsachsen der Düsenöffnungen weder schneiden noch parallel zueinander sind. Dabei ist der Teil der Längsachsen gemeint, der in Ausbringungsrichtung des Fluids sich entlang der Düsenöffnung des Düsenstreifens und darüber hinaus erstreckt.The term “skewed” means that the longitudinal axes of the nozzle openings neither intersect nor are parallel to one another. This refers to the part of the longitudinal axes that extends along the nozzle opening of the nozzle strip and beyond in the direction of delivery of the fluid.

Ist die Rede von Längsachsen der Düsenöffnungen, dann sind darunter z.B. die Symmetrieachsen selbiger gemeint. Da die Längsachsen im Wesentlichen der Ausbringungsrichtung der Fluidstrahlen entsprechen, gilt das zu den Längsachsen Gesagte grundsätzlich auch für die Fluidstrahlen selbst.If we are talking about the longitudinal axes of the nozzle openings, this means, for example, the axes of symmetry of the nozzle openings. Since the longitudinal axes essentially correspond to the direction of application of the fluid jets, what has been said about the longitudinal axes basically also applies to the fluid jets themselves.

Wenn gemäß der Erfindung die Rede davon ist, dass die Düsenöffnungen zueinander beabstandet sind, dann sind stets die Abstände jeweils in Draufsicht auf den Düsenstreifen (XY-Ebene), also auf der Fluideintrittsseite gesehen gemeint. Dabei werden die Abstände von dem jeweiligen Schnittpunkt der Längsachse der entsprechenden Düsenöffnung mit der XY-Ebene gemessen.If, according to the invention, it is said that the nozzle openings are spaced apart from one another, then the distances are always meant in a top view of the nozzle strip (XY plane), i.e. seen on the fluid inlet side. The distances from the respective intersection of the longitudinal axis of the corresponding nozzle opening with the XY plane are measured.

Unter schrägen Bohrungen wird verstanden, dass die Fluidstrahlen, bzw. die Längsachsen der Düsenöffnungen gegen eine Lotrechte auf die XY-Ebene des Düsenstreifens bzw. der Materialbahn unter einem Neigungswinkel geneigt sind. Sie können derart ausgerichtet sein, dass diese Längsachsen in Ebenen liegen, die wiederum senkrecht auf der XY-Ebene stehen.Oblique bores mean that the fluid jets or the longitudinal axes of the nozzle openings are inclined at an angle of inclination relative to a perpendicular to the XY plane of the nozzle strip or the material web. They can be aligned in such a way that these longitudinal axes lie in planes that are in turn perpendicular to the XY plane.

Wenn gemäß der Erfindung von Orientierung die Rede ist, dann ist damit die Lage einer Längsachse im Raum, in einem kartesischen Koordinatensystem gemeint. Die Lage einer Längsachse, die als Gerade angenommen werden kann, kann durch einen Einheitsvektor im Raum definiert werden.When we talk about orientation according to the invention, this means the position of a longitudinal axis in space, in a Cartesian coordinate system. The location of one Longitudinal axis, which can be assumed to be a straight line, can be defined by a unit vector in space.

Der Düsenstreifen ist prismatisch ausgeführt und weist eine Längen- (X), Breiten- (Y) und Höhenerstreckung (Z) auf. Die Bezeichnungen X, Y, Z entsprechen den gleichnamigen Achsenbezeichnungen eines kartesischen Koordinatensystems. Die jeweiligen Längsachsen der entsprechenden Düsenöffnungen sind gegenüber einer Lotrechten auf eine XY-Ebene, die von der Breiten- und Längenerstreckung des Düsenstreifens aufgespannt wird, um einen Neigungswinkel von 1° bis 20°, bevorzugt von 1° bis 10°, besonders bevorzugt von 1° bis 5° geneigt. Dieser Winkel hat sich als besonders vorteilhaft erwiesen, um eine besonders günstige Verwirbelung der Fasern der Materialbahn zu erzeugen. Die Größe des Neigungswinkels hängt dabei unter anderem vom Abstand des Düsenstreifens von der Oberfläche der Warenbahn bzw. Materialbahn ab. Bei kurzen Abständen, beispielsweise bis 10 mm, kann der Neigungswinkel größer gewählt werden. Bei großen Abständen, beispielsweise über 25 mm, kann ein Neigungswinkel im Bereich von 1° bis 5° vorteilhaft sein. Hier spielen aber auch die Abstände der Bohrungen zueinander eine Rolle. Grundsätzlich kann vorgesehen sein, dass alle schrägen Bohrungen und damit alle Längsachsen der Düsenöffnungen einer Reihe denselben Neigungswinkel aufweisen. Bevorzugt sind die mindestens zwei Reihen zueinander in Breitenerstreckung (Y) des Düsenstreifens beabstandet angeordnet. Die Reihen können parallel aber auch winklig zueinander angeordnet sein. Die Längenerstreckung X des Düsenstreifens entspricht der Breitenerstreckung der Materialbahn, also im Wesentlichen der Arbeitsbreite der Anlage, und umgekehrt entspricht die Breitenerstreckung Y des Düsenstreifens der Längenerstreckung der Materialbahn unter dem Düsenbalken für einen kurzen Zeitraum, jeweils im eingebauten Zustand des Düsenstreifens gesehen.The nozzle strip is prismatic and has a length (X), width (Y) and height (Z) extent. The designations X, Y, Z correspond to the axis designations of the same name in a Cartesian coordinate system. The respective longitudinal axes of the corresponding nozzle openings are at an angle of inclination of 1° to 20°, preferably 1° to 10°, particularly preferably 1, relative to a perpendicular to an XY plane, which is spanned by the width and length extension of the nozzle strip ° inclined to 5°. This angle has proven to be particularly advantageous in order to produce particularly favorable swirling of the fibers of the material web. The size of the angle of inclination depends, among other things, on the distance of the nozzle strip from the surface of the web or material web. For short distances, for example up to 10 mm, the angle of inclination can be chosen larger. For large distances, for example over 25 mm, an angle of inclination in the range of 1° to 5° can be advantageous. The distances between the holes from one another also play a role here. In principle, it can be provided that all oblique bores and thus all longitudinal axes of the nozzle openings in a row have the same angle of inclination. The at least two rows are preferably arranged spaced apart from one another in the width extension (Y) of the nozzle strip. The rows can be arranged parallel or at an angle to one another. The length extension

Vorteilhaft können die Längsachsen direkt aufeinander folgender Düsenöffnungen einer jeweiligen Reihe in ihrer Orientierung gegenüber einer jeweiligen, zwischen zwei benachbarten Düsenöffnungen der jeweiligen Reihe angeordneten Symmetrieebene gespiegelt oder einem darin angeordneten Symmetriepunkt punktgespiegelt sein, sodass sich von Düsenöffnung zu Düsenöffnung innerhalb einer Reihe abwechselnd gespiegelt orientierte schräge Bohrungen des Düsenstreifens ergeben. So kann z.B. eine symmetrische Anordnung einzelner, direkt untereinander benachbarter Düsenöffnungen erzeugt werden. Auf die Vorteile der Symmetrie der Anordnung wird noch später eingegangen.Advantageously, the longitudinal axes of directly successive nozzle openings of a respective row can be mirrored in their orientation relative to a respective plane of symmetry arranged between two adjacent nozzle openings of the respective row or point-mirrored to a point of symmetry arranged therein, so that oblique bores are alternately mirrored from nozzle opening to nozzle opening within a row of the nozzle strip. For example, a symmetrical arrangement of individual nozzle openings that are directly adjacent to one another can be created. The advantages of the symmetry of the arrangement will be discussed later.

Gemäß einer weiteren Ausführungsform können die Längsachsen zweier direkt benachbarter Düsenöffnungen von direkt benachbarten Reihen in Ebenen liegen, die winklig oder orthogonal zueinander verlaufen und bevorzugt beide senkrecht auf der XY-Ebene stehen. Auch dies fördert die Symmetrie der Anordnung benachbarter Düsenöffnungen untereinander.According to a further embodiment, the longitudinal axes of two directly adjacent nozzle openings of directly adjacent rows can lie in planes that are angled or orthogonal to one another and are preferably both perpendicular to the XY plane. This also promotes the symmetry of the arrangement of adjacent nozzle openings with one another.

Gleiches gilt für die Anordnung der Düsenöffnungen: Diese können innerhalb einer Reihe - in Längsrichtung der Reihe gesehen und damit in Längenerstreckung (X) des Düsenstreifens - jeweils um einen Abstand X1 zueinander beabstandet angeordnet sein.The same applies to the arrangement of the nozzle openings: These can be arranged within a row - viewed in the longitudinal direction of the row and thus in the length extension (X) of the nozzle strip - each spaced apart from one another by a distance X1.

Gemäß einer ersten Alternative A der Erfindung sind direkt benachbarte Reihen von Düsenöffnungen in Längsrichtung der Reihe, also in Längenerstreckung (X) gesehen, um den halben Abstand X1 gegeneinander versetzt angeordnet, wobei der Abstand X1 einem Mehrfachen des Durchmessers der Düsenöffnungen entspricht, sodass die Düsenöffnungen direkt benachbarter Reihen in Richtung der Breitenerstreckung (Y) des Düsenstreifens gesehen einander nicht direkt gegenüberliegen. Hierdurch wird eine hohe Symmetrie und eine große Packungsdichte der Düsenöffnungen im Düsenstreifen erzielt.According to a first alternative A of the invention, directly adjacent rows of nozzle openings are arranged offset from one another by half the distance X1 in the longitudinal direction of the row, i.e. viewed in the length extension (X), the distance directly adjacent rows are not directly opposite each other when viewed in the direction of the width extension (Y) of the nozzle strip. This achieves a high level of symmetry and a high packing density of the nozzle openings in the nozzle strip.

Eine derartige symmetrische Anordnung der erfindungsgemäßen Düsenöffnungen, wie sie bis hierher beschrieben wurde, beschreibt die Längsachsen einander unmittelbar benachbarter Düsenöffnungen - auch diejeniger, die über direkt benachbarte Reihen hinweg - als Linien, eines einschaligen Hyperboloids. Einzelne oder alle so angeordnete Längsachsen der Düsenöffnungen einander direkt benachbarter Düsenöffnungen, auch über direkt benachbarte Reihen hinweg, sind somit so angeordnet, dass sie Teile der Linien eines Hyperboloids bilden. Diese Anordnung bewirkt, dass diese Düsenöffnungen Fluidstrahlen erzeugen, die einen Drall um ein virtuelles Zentrum der Düsenöffnungen erzeugt. Dieser Drall führt zu einer besseren Verwirbelung der Fasern und damit zu einer erhöhten Verfestigung der Materialbahn. Der Drall wird erzeugt, ohne dass die Düsen selbst rotieren müssen. Dadurch wird eine aufwändige Konstruktion vermieden.Such a symmetrical arrangement of the nozzle openings according to the invention, as described up to this point, describes the longitudinal axes of immediately adjacent nozzle openings - including those across directly adjacent rows - as lines of a single-shell hyperboloid. Individual or all longitudinal axes of the nozzle openings arranged in this way of directly adjacent nozzle openings, even across directly adjacent rows, are thus arranged in such a way that they form parts of the lines of a hyperboloid. This arrangement causes these nozzle openings to produce fluid jets that create a swirl around a virtual center of the nozzle openings. This twist leads to better turbulence of the fibers and thus to increased solidification of the material web. The swirl is generated without the nozzles themselves having to rotate. This avoids a complex construction.

Gemäß einer zweiten Alternative B der Erfindung sind bei Vorsehen von drei Reihen an Düsenöffnungen die Düsenöffnungen der ersten und dritten Reihe, die beiderseits der mittleren zweiten Reihe angeordnet sind - in Längsrichtung der Reihe und damit in Längenerstreckung (X) des Düsenstreifens gesehen - gegen die mittlere Reihe versetzt. Die äußeren beiden Reihen sind im Abstand der Düsenöffnungen minimal gegen die Neigung des Fluidstrahls versetzt. Der Versatz betrifft den Abstand zwischen Mitte Düsenöffnung auf der Oberseite des Düsenstreifens zur Mitte Düsenöffnung auf der Unterseite des Düsenstreifens. Dabei ist die erste Reihe um einen Abstand von 0,5*X1+X2 und die zweite Reihe um einen Abstand von 0,5*X1-X2 gegen die mittlere Reihe versetzt angeordnet ist, wobei sich der Abstand X2 nach folgender Formel ergibt: 0,5 mal die Höhe des Düsenstreifens mal den Tangens des Neigungswinkels der jeweiligen Längsachse der Düsenöffnung. Hierdurch wird leicht von einer solchen Symmetrie direkt benachbarter Düsenöffnungen gegenüber der Anordnungen aus der Alternative A abgewichen. Der Grund hierfür ist, dass das Abbild der Fluidstrahlen beim Auftreffen auf die Materialbahn infolge der erfindungsgemäßen Orientierung der Längsachsen gegenüber der Anordnung, wie sie in einer Draufsicht auf den Düsenstreifen in Ausbringungsrichtung des Fluids (Lotrechte auf die XY-Ebene) ist, vorschoben ist. Hierdurch wird dies korrigiert, sodass die Auftreffpunkte auf der Materialbahn gleichmäßiger verteilt sind, was wiederum eine verbesserte Verwirbelung mit sich bringt.According to a second alternative B of the invention, when three rows of nozzle openings are provided, the nozzle openings of the first and third rows, which are arranged on both sides of the middle second row - viewed in the longitudinal direction of the row and thus in the length extension (X) of the nozzle strip - are opposite the middle one row offset. The outer two rows are minimally offset from the inclination of the fluid jet at a distance from the nozzle openings. The offset refers to the distance between the center of the nozzle opening on the top of the nozzle strip and the center of the nozzle opening on the bottom of the nozzle strip. The first row is offset from the middle row by a distance of 0.5*X1+X2 and the second row is offset from the middle row by a distance of 0.5*X1-X2, whereby the distance X2 results from the following formula: 0 .5 times the height of the nozzle strip times the tangent of the inclination angle of the respective longitudinal axis of the nozzle opening. This slightly deviates from such a symmetry of directly adjacent nozzle openings compared to the arrangements from alternative A. The reason for this is that the image of the fluid jets when hitting the material web is due to the orientation of the longitudinal axes according to the invention is advanced compared to the arrangement as it is in a top view of the nozzle strip in the direction of application of the fluid (perpendicular to the XY plane). This corrects this so that the impact points on the material web are distributed more evenly, which in turn results in improved turbulence.

Gemäß einer dritten Alternative C der Erfindung sind bei Vorsehen von drei Reihen an Düsenöffnungen die Düsenöffnungen innerhalb der mittleren Reihe - in Längsrichtung der Reihe und damit in Längenerstreckung (X) des Düsenstreifens gesehen - jeweils um einen Abstand X3 zueinander beabstandet angeordnet, wobei die Düsenöffnungen der verbleibenden beiden Reihen innerhalb der betreffenden Reihe abwechselnd zueinander um den Abstand 2*X3 und 4*X3 beabstandet sind, sodass die Düsenöffnungen direkt benachbarter Reihen in Richtung der Breitenerstreckung (Y) des Düsenstreifens gesehen einander nicht direkt gegenüberliegen, und dass einzelne Düsenöffnungen einander direkt benachbarter Reihen stets den selben Abstand X3 in Längenerstreckung (X) des Düsenstreifens gesehen zueinander aufweisen. Hierdurch ergeben sich von Düsenöffnungen zu Düsenöffnung stets äquidistante Abstände, wodurch das Auftreffen der Fluidstrahlen auf die Materialbahn vereinheitlicht wird und somit die Verwirbelung entlang der gesamten Bahnbreite der Materialbahn verbessert wird.According to a third alternative C of the invention, when three rows of nozzle openings are provided, the nozzle openings within the middle row - seen in the longitudinal direction of the row and thus in the length extension (X) of the nozzle strip - are each arranged spaced apart from one another by a distance X3, the nozzle openings being The remaining two rows within the row in question are alternately spaced apart by the distance 2*X3 and 4*X3, so that the nozzle openings of directly adjacent rows are not directly opposite one another when viewed in the direction of the width extension (Y) of the nozzle strip, and that individual nozzle openings are directly adjacent to one another Rows always have the same distance X3 from one another in the length extension (X) of the nozzle strip. This always results in equidistant distances from nozzle opening to nozzle opening, whereby the impact of the fluid jets on the material web is standardized and thus the turbulence along the entire web width of the material web is improved.

Gemäß einer vierten Alternative D der Erfindung sind einzelne oder alle Düsenöffnungen der mittleren Reihe abwechselnd, entlang der Breitenerstreckung (Y) des Düsenstreifens zu einer der beiden Reihen hin verschoben. Hierdurch wird nochmals eine bessere, nämlich quadratische Verteilung der Auftreffpunkte über der vollen Breite der zu verfestigenden Materialbahn erzielt.According to a fourth alternative D of the invention, individual or all nozzle openings in the middle row are alternately shifted towards one of the two rows along the width extension (Y) of the nozzle strip. This results in an even better, namely square, distribution of the impact points over the full width of the material web to be solidified.

Vorzugsweise können die Düsen des Düsenstreifens so angeordnet sein, dass in mindestens zwei Reihen von Düsen die Düsen ein Quadrat, Rechteck oder Raute bilden, wobei die Längsachsen der Düsen auf Punkte eines virtuellen Kreises auf der Ebene der Materialbahn ausgerichtet sind, der innerhalb des Quadrates oder Rechteckes angeordnet ist. Die Anordnung der Düsen muss nicht auf den Eckpunkten des Quadrates oder Rechteckes liegen, sondern kann auf einer der Außenkanten angeordnet sein. Durch die Ausrichtung der Düsen auf einen virtuellen Kreis oder einer virtuellen Ellipse in der Ebene der Materialbahn wird ein Drall erzeugt, der die Verwirbelung der Fasern untereinander und damit die Isotropie der Materialbahn zumindest an der Oberfläche verbessert. Vorzugsweise wechselt der erzeugte Drall von Düsenanordnung zu Düsenanordnung im Uhrzeigersinn und gegen den Uhrzeigersinn.Preferably, the nozzles of the nozzle strip can be arranged so that in at least two rows of nozzles the nozzles form a square, rectangle or diamond, the longitudinal axes of the nozzles being aligned with points of a virtual circle on the plane of the material web, which is within the square or Rectangle is arranged. The arrangement of the nozzles does not have to be on the corner points of the square or rectangle, but can be arranged on one of the outer edges. By aligning the nozzles to a virtual circle or a virtual ellipse in the plane of the material web, a twist is generated, which improves the turbulence of the fibers among themselves and thus the isotropy of the material web, at least on the surface. Preferably, the swirl generated changes from nozzle arrangement to nozzle arrangement in a clockwise and counterclockwise direction.

Schließlich betrifft die vorliegende Erfindung auch eine Anlage zur Verfestigung einer Materialbahn, umfassend wenigstens einen Düsenbalken und einen damit fluidleitend verbindbaren Düsenstreifen zur Erzeugung von Fluidstrahlen zur hydrodynamischen Verfestigung der Materialbahn, wobei der Düsenstreifen gemäß der Erfindung ausgeführt ist. Weitere, die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher dargestellt.Finally, the present invention also relates to a system for solidifying a material web, comprising at least one nozzle bar and one that conducts fluid connectable nozzle strips for generating fluid jets for hydrodynamic solidification of the material web, the nozzle strip being designed according to the invention. Further measures improving the invention are shown in more detail below together with the description of a preferred exemplary embodiment of the invention with reference to the figures.

Es zeigen:

Fig. 1:
eine Ausführungsform der Anlage gemäß der Erfindung;
Fig. 2a bis 2d:
die Alternativen A bis D des erfindungsgemäßen Düsenstreifens in einem Schnitt A-A gemäß Fig. 1;
Fig. 3:
die erfindungsgemäße Orientierung der Längsachsen L der Düsenöffnungen als Linien eines einschaligen Hyperboloids;
Fig. 4:
eine Schnittdarstellung gemäß Schnittlinie A1-A1 in den Fig. 2a bis 2d;
Fig. 5:
eine Draufsicht auf einen Düsenstreifen einer weiteren Ausführungsform;
Fig. 6:
eine vergrößerte Draufsicht auf den Düsenstreifen der Figur 5;
Fig. 7:
eine Schnittdarstellung durch den Düsenstreifen der Figur 5 mit dem auftreffenden Fluidstrahl auf die Materialbahn.
Show it:
Fig. 1:
an embodiment of the system according to the invention;
Fig. 2a to 2d:
the alternatives A to D of the nozzle strip according to the invention in a section AA according to Fig. 1 ;
Fig. 3:
the orientation according to the invention of the longitudinal axes L of the nozzle openings as lines of a single-shell hyperboloid;
Fig. 4:
a sectional view according to section line A1-A1 in the Fig. 2a to 2d ;
Fig. 5:
a top view of a nozzle strip of a further embodiment;
Fig. 6:
an enlarged top view of the jet strip of the Figure 5 ;
Fig. 7:
a sectional view through the nozzle strip of the Figure 5 with the incident fluid jet on the material web.

Fig. 1 zeigt in einer stark schematischen, teilgeschnittenen Seitenansicht auf eine erfindungsgemäße Anlage 1 zur Verfestigung einer Materialbahn 2, umfassend einen Düsenbalken 3 und einen erfindungsgemäßen Düsenstreifen 4. Eine Materialbahn 2 wird auf einem umlaufenden Band 7 transportiert und mittels Fluidstrahlen 6 verfestigt. In diesem Ausführungsbeispiel weist der Düsenbalken 3 einen Düsenstreifen 4 mit zwei Reihen an Düsenöffnungen 5 auf. Es können erfindungsgemäß auch drei Reihen an Düsenöffnungen 5 sein. Der Düsenbalken 3 ist mit einem Reservoir an Fluid, wie Wasser z.B. unter Zwischenschaltung von nicht gezeigten Pumpen fluidleitend verbunden. Im Bereich des Wasseraustritts aus dem Düsenbalken 3 ist austauschbar ein Düsenstreifen 4 angeordnet. Im bestimmungsgemäßen Betrieb der Anlage 1 gelangt somit das unter Druck stehende Fluid über den Düsenbalken 3 zum Düsenstreifen 4. Von dort tritt es aus einer Vielzahl von im Düsenstreifen 4 angeordneten Düsenöffnungen 5, welche als schräge Bohrungen ausgebildet sind, aus. Das Fluid bildet am Austritt der Düsenöffnungen 5 aus dem Düsenstreifen 4 eine Vielzahl von Fluidstrahlen 6. Diese beaufschlagen die darunter vorbeilaufende Materialbahn 2 zu deren hydrodynamischen Verfestigung. Unterhalb des Bandes 7 ist eine Absaugvorrichtung 8 zum Abführen des die Materialbahn 2 durchdringenden Fluids angeordnet. Fig. 1 shows a highly schematic, partially sectioned side view of a system 1 according to the invention for solidifying a material web 2, comprising a nozzle bar 3 and a nozzle strip 4 according to the invention. A material web 2 is transported on a rotating belt 7 and solidified by means of fluid jets 6. In this exemplary embodiment, the nozzle bar 3 has a nozzle strip 4 with two rows of nozzle openings 5. According to the invention, there can also be three rows of nozzle openings 5. The nozzle bar 3 is fluidly connected to a reservoir of fluid, such as water, for example with the interposition of pumps (not shown). In the area of the water outlet from the nozzle bar 3, a nozzle strip 4 is arranged interchangeably. When the system 1 is operating as intended, the fluid under pressure reaches the nozzle strip 4 via the nozzle bar 3. From there it emerges from a large number of nozzle openings 5 arranged in the nozzle strip 4, which are designed as oblique bores. The fluid forms a large number of fluid jets 6 at the outlet of the nozzle openings 5 from the nozzle strip 4. These act on the material web 2 passing underneath to hydrodynamically solidify it. Below the belt 7 there is a suction device 8 for removing the fluid penetrating the material web 2.

Die Darstellungen der Fig. 2a bis 2d zeigen jeweils in einer Schnittansicht auf den Düsenstreifen gemäß dem Schnitt A-A aus Fig. 1 die vier eingangs angesprochenen, unterschiedliche Alternativen A bis D der Erfindung. Diese Schnittdarstellung in den genannten Figuren des prismatisch ausgebildeten Düsenstreifens 4 entspricht auch der XY-Ebene, wobei X die Längenerstreckung des Düsenstreifens 4 und Y die Breitenerstreckung desselben anzeigt, sobald der Düsenstreifen 4, wie hier in einem kartesischen Koordinatensystem abgebildet wird. Dabei sind in den Figuren die Düsenöffnungen 5 als Kreise angedeutet. In Figur 2a weist der Düsenstreifen drei parallele Reihen an Düsen 5 auf, nämlich die erste Reihe R1, die zweite oder mittlere Reihe R2 und die dritte Reihe R3. Jeder Düsenreihe sind eine Vielzahl an Düsen 5 zugeordnet, wobei hier und in den nachfolgenden Figuren nur maximal 5 Düsen einer Reihe dargestellt sind. Die Bezeichnung der Düsen erfolgt nach den Reihen, also für die Reihe R1 die Düsen 5.11, 5.12 und 5.13. Wie erkennbar, sind die Düsenöffnungen 5 jeweils in zwei (Fig. 2d) bzw. drei (Fig. 2a, bis 2c) - hier in zueinander parallelen Reihen - angeordnet. Die sich an die Kreise anschließenden Pfeile sollen die Längsachsen L der jeweiligen Düsenöffnungen 5 darstellen: Da die Düsenöffnungen 5 als schräge Bohrungen ausgeführt sind, muss man sich deren Verlauf entsprechend der Längsachse L vorstellen. Die Pfeile können hier als Vektoren verstanden werden. Diese Vektoren entsprechen Projektionen der Einheitsvektoren, die die jeweilige Längsachse L als Gerade im Raum beschreiben, auf die XY-Ebene. Zur Verdeutlichung ist in Fig. 4 jeweils in einem Schnitt A1-A1 der Verlauf der schrägen Bohrung angedeutet, es ist auch der Neigungswinkel der Längsachse gegenüber der Lotrechten (unterer Teil) angedeutet.The representations of the Fig. 2a to 2d each show a sectional view of the nozzle strip according to section AA Fig. 1 the four different alternatives A to D of the invention mentioned at the beginning. This sectional view in the figures mentioned of the prismatic nozzle strip 4 also corresponds to the XY plane, where The nozzle openings 5 are indicated as circles in the figures. In Figure 2a the nozzle strip has three parallel rows of nozzles 5, namely the first row R1, the second or middle row R2 and the third row R3. A large number of nozzles 5 are assigned to each row of nozzles, with only a maximum of 5 nozzles in a row being shown here and in the following figures. The nozzles are named according to the rows, i.e. for row R1 the nozzles 5.11, 5.12 and 5.13. As can be seen, the nozzle openings 5 are each in two ( Fig. 2d ) or three ( Fig. 2a to 2c ) - here arranged in parallel rows. The arrows following the circles should represent the longitudinal axes L of the respective nozzle openings 5: Since the nozzle openings 5 are designed as oblique bores, one must imagine their course corresponding to the longitudinal axis L. The arrows can be understood here as vectors. These vectors correspond to projections of the unit vectors, which describe the respective longitudinal axis L as a straight line in space, onto the XY plane. For clarification, in Fig. 4 The course of the oblique bore is indicated in a section A1-A1, and the angle of inclination of the longitudinal axis relative to the vertical (lower part) is also indicated.

In den Darstellungen der Fig. 2a bis 2c erkennt man drei Reihen R1, R2, R3 von Düsenöffnungen 5. Dabei sind die Düsenöffnungen 5.21 - 5.24 der mittleren Reihe R2 in den Fig. 2a und 2b stets um einen Abstand X1 voneinander beabstandet. In Fig. 2a sind die erste und dritte Reihe R1, R3, die beidseits der zweiten und mittleren Reihe R2 angeordnet sind, in Längenerstreckung X des Düsenstreifens 4 gegen um den halben Abstand X1 gegen die mittlere Reihe R2 verschoben. So stehen sich in Richtung der Breitenerstreckung Y des Düsenstreifens 4 von Reihe zu Reihe die Düsenöffnungen 5 nicht unmittelbar gegenüber.In the representations of the Fig. 2a to 2c You can see three rows R1, R2, R3 of nozzle openings 5. The nozzle openings 5.21 - 5.24 of the middle row R2 are in the Figs. 2a and 2b always spaced apart by a distance X1. In Fig. 2a the first and third rows R1, R3, which are arranged on both sides of the second and middle row R2, are shifted in the length X of the nozzle strip 4 by half the distance X1 from the middle row R2. In the direction of the width extension Y of the nozzle strip 4, the nozzle openings 5 are not directly opposite one another from row to row.

Mit Blick auf die Fig. 2a bis 2d fällt auf, dass die Orientierungen der Düsenöffnungen 5 in ein- und derselben Reihe von Düsenöffnung 5 zu Düsenöffnung 5 abwechseln. Dies ist z.B. in der ersten Reihe R1 von Düsenöffnungen 5 an den gegensinnig zueinander verlaufenden Längsachsen L zweier direkt benachbarter Düsenöffnungen 5.11 und 5.12 oder 5.12 und 5.13 zu erkennen (siehe z.B. Fig. 2a). Betrachtet man die direkt zueinander benachbarten Düsenöffnungen 5 direkt aneinander angrenzender Reihen, so fällt auf, dass deren Orientierungen im Raum ebenfalls anders sind. So sind beispielsweise die Längsachsen L der direkt (auch über die Reihen hinweg) benachbarten Düsenöffnungen immer windschief zueinander. Dies zeigt sich an den Orientierungen der Pfeile, die als Vektoren gelten können:With view on Fig. 2a to 2d It is noticeable that the orientations of the nozzle openings 5 alternate in one and the same row from nozzle opening 5 to nozzle opening 5. This can be seen, for example, in the first row R1 of nozzle openings 5 on the opposite longitudinal axes L of two directly adjacent nozzle openings 5.11 and 5.12 or 5.12 and 5.13 (see e.g Fig. 2a ). If you look at the directly adjacent nozzle openings 5 of directly adjacent rows, it is noticeable that their orientations in space are also different. For example, the longitudinal axes L of the directly adjacent nozzle openings (even across the rows) are always skewed to one another. This can be seen in the orientations of the arrows, which can be considered vectors:

Diese sind im Uhrzeigersinn "rotierend" angeordnet. Gemäß der Darstellung in Fig. 2a wird dies durch die Definition des Düsenstreifens gemäß den Merkmalen von Anspruch 6 erzielt. Die Längsachsen L der Düsenöffnungen 5.11, 5.22, 5.31 und 5.21 sind teilweise als Linien eines einschaligen Hyperboloids (siehe fett ausgezogene Linien in Fig. 3) zu verstehen. Letzterer kann durch Rotation der Längsachse L der Düsenöffnung 5 um ein Zentrum 5.5 - z.B. das zwischen den Düsenöffnungen 5.11, 5.22, 5.31 und 5.21 liegt und das eine Symmetrieachse sein kann - erzielt werden. Somit sind die verbleibenden Längsachsen L der Düsenöffnungen 5.22, 5.31 und 5.21 aus 90°-Drehungen der Längsachse L der Düsenöffnung 5.11 um dieses Zentrum 5.5 entstanden. Durch diese besondere symmetrische Anordnung erhalten die aus den Düsenöffnungen austretenden Fluidstrahlen einen Drall, der rechtsherum um das Zentrum 5.5 läuft (siehe auch den unteren Teil der Längsachsen L der Figur 3, wobei hier übertrieben viele Längsachsen dargestellt sind). Schaut man in der Fig. 2a weiter nach rechts, dann fällt auf, dass die benachbarte Gruppe an Düsenöffnungen 5.12, 5.23, 5.32 und 5.22 spiegelbildlich zu der eben beschrieben Düsenöffnungen 5.11, 5.22, 5.31 und 5.21 verläuft. Der Drall läuft linksherum. Durch diese besondere Anordnung und Orientierung der Längsachsen L der Düsenöffnungen 5, wie sie auch von den Ansprüchen 3 bis 5 geschützt ist, kann eine besonders vorteilhafte Verwirbelung der Fasern der Materialbahn 2 durch das Mitreißen dieser infolge der in Drall versetzen Fluidstrahlen 6 erzielt werden. Hierdurch wird die Festigkeit der hydrodynamisch verfestigten Materialbahn 2 deutlich erhöht.These are arranged "rotating" in a clockwise direction. According to the illustration in Fig. 2a This is achieved by defining the nozzle strip according to the features of claim 6. The longitudinal axes L of the nozzle openings 5.11, 5.22, 5.31 and 5.21 are partly shown as lines of a single-shell hyperboloid (see bold solid lines in Fig. 3 ) to understand. The latter can be achieved by rotating the longitudinal axis L of the nozzle opening 5 about a center 5.5 - for example, which lies between the nozzle openings 5.11, 5.22, 5.31 and 5.21 and which can be an axis of symmetry. Thus, the remaining longitudinal axes L of the nozzle openings 5.22, 5.31 and 5.21 are created from 90 ° rotations of the longitudinal axis L of the nozzle opening 5.11 about this center 5.5. This special symmetrical arrangement gives the fluid jets emerging from the nozzle openings a twist that runs to the right around the center 5.5 (see also the lower part of the longitudinal axes L of the Figure 3 , with an excessive number of longitudinal axes shown here). If you look in the Fig. 2a further to the right, then you will notice that the neighboring group of nozzle openings 5.12, 5.23, 5.32 and 5.22 is a mirror image of the nozzle openings 5.11, 5.22, 5.31 and 5.21 just described. The twist runs to the left. Through this special arrangement and orientation of the longitudinal axes L of the nozzle openings 5, as is also protected by claims 3 to 5, a particularly advantageous swirling of the fibers of the material web 2 can be achieved by entraining them as a result of the swirling fluid jets 6. This significantly increases the strength of the hydrodynamically consolidated material web 2.

Bei den Darstellungen der Fig. 2b und 2c handelt es sich um die oben beschriebenen Alternativen B und C des Düsenstreifens 4. Dabei sind die ersten und zweiten Reihen gemäß den Merkmalen der Ansprüche 7 und 8 gegen die mittlere Reihe in Längenerstreckungsrichtung X versetzt. Dies wird gemacht, um ein homogeneres Auftreffmuster ("Abbild") der Fluidstrahlen 6 infolge der nun zueinander äquidistant angeordneten der Düsenöffnungen 5 auf der Materialbahn 2 und damit eine gleichmäßigere und verbesserte Verwirbelung über die gesamte Länge des Düsenstreifens 4 und somit über die Breite der Materialbahn 2 zu erzielen. In Figur 2b sind bei Vorsehen von drei Reihen R1, R2, R3 an Düsenöffnungen 5 die Düsenöffnungen der ersten und dritten Reihe R1, R3, die beiderseits der mittleren zweiten Reihe R2 angeordnet sind - in Längsrichtung der Reihen R1, R3 und damit in Längenerstreckung (X) des Düsenstreifens gesehen - gegen die mittlere Reihe R2 versetzt.In the representations of the Fig. 2b and 2c These are the above-described alternatives B and C of the nozzle strip 4. The first and second rows are offset from the middle row in the longitudinal direction X in accordance with the features of claims 7 and 8. This is done in order to achieve a more homogeneous impact pattern ("image") of the fluid jets 6 as a result of the nozzle openings 5 now being arranged equidistant from one another on the material web 2 and thus a more uniform and improved swirling over the entire length of the nozzle strip 4 and thus over the width of the material web 2 to achieve. In Figure 2b When three rows R1, R2, R3 are provided at nozzle openings 5, the nozzle openings of the first and third rows R1, R3, which are arranged on both sides of the middle second row R2 - in the longitudinal direction of the rows R1, R3 and thus in the length extension (X) of the Jet strip seen - offset from the middle row R2.

Die äußeren beiden Reihen R1, R3 sind im Abstand X1 der Düsenöffnungen 5 minimal gegen die Neigung des Fluidstrahls 6 versetzt. Der Versatz betrifft den Abstand zwischen Mitte Düsenöffnung auf der Oberseite des Düsenstreifens zur Mitte Düsenöffnung auf der Unterseite des Düsenstreifens. Dabei ist die erste Reihe R1 um einen Abstand von 0,5*X1+X2 und die dritte Reihe R3 um einen Abstand von 0,5*X1-X2 gegen die zweite und mittlere Reihe R2 versetzt angeordnet ist, wobei sich der Abstand X2 nach folgender Formel ergibt: 0,5 mal die Höhe des Düsenstreifens 4 mal den Tangens des Neigungswinkels der jeweiligen Längsachse der Düsenöffnung 5. Hierdurch wird leicht von einer solchen Symmetrie direkt benachbarter Düsenöffnungen gegenüber der Anordnungen aus der Alternative A abgewichen. Der Grund hierfür ist, dass das Abbild der Fluidstrahlen 6 beim Auftreffen auf die Materialbahn 2 infolge der erfindungsgemäßen Orientierung der Längsachsen gegenüber der Anordnung, wie sie in einer Draufsicht auf den Düsenstreifen 4 in Ausbringungsrichtung des Fluids (Lotrechte auf die XY-Ebene) ist, vorschoben ist. Hierdurch wird dies korrigiert, sodass die Auftreffpunkte auf der Materialbahn 2 gleichmäßiger verteilt sind, was wiederum eine verbesserte Verwirbelung mit sich bringt.The outer two rows R1, R3 are minimally offset from the inclination of the fluid jet 6 at a distance X1 from the nozzle openings 5. The offset refers to the distance between the center of the nozzle opening on the top of the nozzle strip and the center of the nozzle opening on the bottom of the nozzle strip. The first row R1 is offset from the second and middle row R2 by a distance of 0.5*X1+X2 and the third row R3 by a distance of 0.5*X1-X2, with the distance X2 increasing The following formula results in: 0.5 times the height of the nozzle strip 4 times the tangent of the inclination angle of the respective longitudinal axis the nozzle opening 5. This slightly deviates from such a symmetry of directly adjacent nozzle openings compared to the arrangements from alternative A. The reason for this is that the image of the fluid jets 6 when striking the material web 2 due to the orientation of the longitudinal axes according to the invention compared to the arrangement as it is in a top view of the nozzle strip 4 in the direction of application of the fluid (perpendicular to the XY plane), is advanced. This corrects this so that the impact points on the material web 2 are more evenly distributed, which in turn results in improved turbulence.

In Figur 2c wird die dritte Alternative C der Erfindung bei Vorsehen von drei Reihen an Düsenöffnungen 5 beschrieben. Dabei weisen die Düsenöffnungen 5.21, 5.22, 5.23, 5.24 innerhalb der zweiten und mittleren Reihe R2 - in Längsrichtung der Reihe R2 und damit in Längenerstreckung (X) des Düsenstreifens gesehen - jeweils einen Abstand 3x X3 zueinander auf. Das Zentrum 5.5 einer Verwirbelungseinheit wird jetzt durch versetzt zueinander angeordnete Düsen 5.11, 5.22, 5.31, 5.21 gebildet, die in Längsrichtung X des Düsenstreifens 4 jeweils um den Abstand X3 angeordnet ist. Die Düsenöffnung 5.21 ist im Abstand X3 zur Düsenöffnung 5.11 angeordnet, diese im Abstand X3 zur Düsenöffnung 5.31 und diese im Abstand X3 zur Düsenöffnung 5.22.In Figure 2c the third alternative C of the invention is described when providing three rows of nozzle openings 5. The nozzle openings 5.21, 5.22, 5.23, 5.24 within the second and middle row R2 - seen in the longitudinal direction of the row R2 and thus in the length extension (X) of the nozzle strip - are each at a distance of 3x X3 from one another. The center 5.5 of a swirling unit is now formed by nozzles 5.11, 5.22, 5.31, 5.21 arranged offset from one another, which are arranged in the longitudinal direction X of the nozzle strip 4 by the distance X3. The nozzle opening 5.21 is arranged at a distance X3 from the nozzle opening 5.11, this at a distance X3 from the nozzle opening 5.31 and this at a distance X3 from the nozzle opening 5.22.

Dabei sind die Düsenöffnungen der verbleibenden beiden Reihen innerhalb der betreffenden Reihe R1, R3 abwechselnd zueinander um den Abstand 1x X3 und 3x X3 beabstandet angeordnet, sodass die Düsenöffnungen direkt benachbarter Reihen R1, R2; R2, R3 in Richtung der Breitenerstreckung (Y) des Düsenstreifens gesehen einander nicht direkt gegenüberliegen, und dass einzelne Düsenöffnungen einander direkt benachbarter Reihen stets den selben Abstand X3 in Längenerstreckung (X) des Düsenstreifens gesehen zueinander aufweisen. Hierdurch ergeben sich von Düsenöffnungen zu Düsenöffnung stets äquidistante Abstände, wodurch das Auftreffen der Fluidstrahlen auf die Materialbahn vereinheitlicht wird und somit die Verwirbelung entlang der gesamten Bahnbreite der Materialbahn verbessert wird.The nozzle openings of the remaining two rows within the relevant row R1, R3 are arranged alternately at a distance of 1x X3 and 3x X3, so that the nozzle openings of directly adjacent rows R1, R2; R2, R3 are not directly opposite each other when viewed in the direction of the width extension (Y) of the nozzle strip, and that individual nozzle openings in directly adjacent rows always have the same distance X3 from one another when viewed in the length extension (X) of the nozzle strip. This always results in equidistant distances from nozzle opening to nozzle opening, whereby the impact of the fluid jets on the material web is standardized and thus the turbulence along the entire web width of the material web is improved.

Schließlich zeigt die Darstellung der Fig. 2d die eingangs beschriebene Alternative D des erfindungsgemäßen Düsenstreifens 4. Es handelt sich um eine Weiterbildung der Alternative C aus Fig. 2c. So sind die Düsenöffnungen 5 der mittleren Reihe R2 nacheinander und abwechselnd in die erste Reihe R1 oder dritte Reihe R3, die beiderseits der mittleren Reihe R2 liegen, verschoben worden. Es ergeben sich somit nur noch zwei Reihen R1, R3 an Düsenöffnungen 5. Auch diese Maßnahme dient einer Verbesserung der Symmetrie des Auftreffens der Fluidstrahlen auf der Materialbahn 2.Finally, the representation shows the Fig. 2d the alternative D of the nozzle strip 4 according to the invention described at the beginning. It is a further development of alternative C Fig. 2c . The nozzle openings 5 of the middle row R2 have been moved one after the other and alternately into the first row R1 or third row R3, which lie on both sides of the middle row R2. There are therefore only two rows R1, R3 of nozzle openings 5. This measure also serves to improve the symmetry of the impact of the fluid jets on the material web 2.

Figur 3 zeigt die Wirkung der durch die Anordnung der Düsenöffnungen 5 auftreffenden Fluidstrahlen 6 auf eine Materialbahn 2. Durch die erfindungsgemäße Anordnung der Düsenöffnungen 5 wird ein Drall um ein virtuelles Zentrum 5.5 der Düsenöffnungen erzeugt. Dieser Drall führt zu einer besseren Verwirbelung der Fasern und damit zu einer erhöhten Verfestigung der Materialbahn 2. Der Drall wird erzeugt, ohne dass die Düsen selbst rotieren müssen. Dadurch wird eine aufwändige Konstruktion vermieden. Eine derartige symmetrische Anordnung der erfindungsgemäßen Düsenöffnungen, wie sie bis hierher beschrieben wurde, beschreibt die Längsachsen L einander unmittelbar benachbarter Düsenöffnungen - auch diejeniger, die über direkt benachbarte Reihen hinweg - als Linien, eines einschaligen Hyperboloids. Einzelne oder alle so angeordnete Längsachsen der Düsenöffnungen einander direkt benachbarter Düsenöffnungen, auch über direkt benachbarte Reihen hinweg, sind somit so angeordnet, dass sie Teile der Linien eines Hyperboloids bilden. Diese Anordnung erzeugt einen Drall aus Fluidstrahlen 6, ohne dass ein Bauteil rotieren muss. Figure 3 shows the effect of the fluid jets 6 striking a material web 2 through the arrangement of the nozzle openings 5. Due to the arrangement according to the invention Nozzle openings 5 create a swirl around a virtual center 5.5 of the nozzle openings. This twist leads to better turbulence of the fibers and thus to increased solidification of the material web 2. The twist is generated without the nozzles themselves having to rotate. This avoids a complex construction. Such a symmetrical arrangement of the nozzle openings according to the invention, as described up to this point, describes the longitudinal axes L of immediately adjacent nozzle openings - including those across directly adjacent rows - as lines of a single-shell hyperboloid. Individual or all longitudinal axes of the nozzle openings arranged in this way of directly adjacent nozzle openings, even across directly adjacent rows, are thus arranged in such a way that they form parts of the lines of a hyperboloid. This arrangement creates a swirl of fluid jets 6 without any component having to rotate.

Figur 4 zeigt einen Schnitt durch eine Düsenöffnung 5 entlang der Schnittebene A1-A1 aus den Figuren 2a - 2d. Der Düsenstreifen 4 ist prismatisch ausgeführt und weist eine Längen- (X), Breiten- (Y) und Höhenerstreckung (Z) auf. Die Bezeichnungen X, Y, Z entsprechen den gleichnamigen Achsenbezeichnungen eines kartesischen Koordinatensystems. Die jeweiligen Längsachsen L der entsprechenden Düsenöffnungen sind gegenüber einer Lotrechten auf eine XY-Ebene, die von der Breiten- und Längenerstreckung des Düsenstreifens aufgespannt wird, um einen Neigungswinkel α von 1° bis 20°, bevorzugt 1° bis 10°, besonders bevorzugt 1° bis 5° geneigt. Dieser Winkel hat sich als besonders vorteilhaft erwiesen, um den eine besonders günstige Verwirbelung der Fasern der Materialbahn 2 zu erzeugen. Grundsätzlich kann vorgesehen sein, dass alle schrägen Bohrungen und damit alle Längsachsen der Düsenöffnungen 5 denselben Neigungswinkel aufweisen. Bevorzugt sind die mindestens zwei Reihen R1, R2 zueinander in Breitenerstreckung (Y) des Düsenstreifens beabstandet angeordnet. Die Reihen können parallel aber auch winklig zueinander angeordnet sein. Die Längenerstreckung X des Düsenstreifens entspricht im Wesentlichen der Breitenerstreckung der Materialbahn 2. Figure 4 shows a section through a nozzle opening 5 along the section plane A1-A1 from the Figures 2a - 2d . The nozzle strip 4 is prismatic and has a length (X), width (Y) and height (Z) extent. The designations X, Y, Z correspond to the axis designations of the same name in a Cartesian coordinate system. The respective longitudinal axes L of the corresponding nozzle openings are at an angle of inclination α of 1° to 20°, preferably 1° to 10°, particularly preferably 1, relative to a perpendicular to an XY plane, which is spanned by the width and length extension of the nozzle strip ° inclined to 5°. This angle has proven to be particularly advantageous in order to generate particularly favorable swirling of the fibers of the material web 2. In principle, it can be provided that all oblique bores and thus all longitudinal axes of the nozzle openings 5 have the same angle of inclination. The at least two rows R1, R2 are preferably arranged spaced apart from one another in the width extension (Y) of the nozzle strip. The rows can be arranged parallel or at an angle to one another. The length X of the nozzle strip essentially corresponds to the width of the material web 2.

In einem weiteren Ausführungsbeispiel der Figuren 5 bis 7 wird eine Anordnung von zwei Reihen R1, R2 von Düsen eines Düsenstreifens 4 dargestellt, deren Düsenöffnungen 5 auf einen virtuellen Kreis oder Ellipse gerichtet sind. Der virtuelle Kreis oder Ellipse liegt dabei in der Ebene der Materialbahn, also um den Abstand X4 unterhalb der Düsenöffnungen 5. Jeweils vier Fluidstrahlen 6 von vier Düsenöffnungen 5 sind so ausgerichtet, dass die Fluidstrahlen 6 auf Punkte eines virtuellen Kreises oder einer Ellipse der Materialbahn 2 auftreffen. Die Düsen der ersten 5.11, 5.12 und zweiten Reihe 5.21, 5.22 weisen einen Abstand in X-Richtung von X1 auf. Der Abstand der Düsenreihen zueinander beträgt X3. Die Abstände X1 und X3 können bei gleicher Ausrichtung der Düsenöffnungen 5 gleich groß sein, so dass die austretenden Fluidstrahlen 6 auf der Materialbahn 2 auf Punkten eines virtuellen Kreises auftreffen. Oder anders ausgedrückt, die Fluidstrahlen 6 treffen tangential auf einer virtuellen Bahn eines Kreises oder einer Ellipse auf, die in der Ebene der Materialbahn 2 liegt. Sind die Abstände X1 und X3 unterschiedlich, können bei gleicher Ausrichtung der Düsenöffnungen 5 die austretenden Fluidstrahlen 6 auf der Materialbahn auf Punkten einer virtuellen Ellipse auftreffen. Die Fluidstrahlen 6 erzeugen in der Ebene der Materialbahn 2 einen Drall in oder gegen den Uhrzeigersinn, mit dem die Fasern zusätzlich zur bekannten Verwirbelung miteinander verschlingt. Die Wirkung ist entgegen der bisherigen Ausrichtung der Fasern, die entsprechend der Produktionsrichtung der Materialbahn 2 im MD/CD-Verhältnis einseitig in Produktionsrichtung (MD-Richtung) angeordnet sind. Durch die Anordnung bzw. das Auftreffen der Fluidstrahlen 6 auf der virtuellen Kreisbahn wird die Ausrichtung der Fasern im MD/CD-Verhältnis in der Materialbahn 2 vergleichmäßigt, und gleichzeitig durch die drallförmige Verwirbelung der Fasern untereinander die Festigkeit der Materialbahn 2 erhöht. Im Ausführungsbeispiel der Figur 5 erzeugen die Gruppen von Düsen abwechselnd einen Drall in Uhrzeigerrichtung oder gegen die Uhrzeigerrichtung auf der Materialbahn 2. Die Schnittebene A-A wird in Figur 7 dargestellt. Die Drallrichtung wechselt damit in Richtung der Arbeitsbreite (X-Richtung). Die Größe des virtuellen Kreises wird durch den Abstand X4 zwischen dem Düsenstreifen 4 und der Oberfläche der Materialbahn 2 bestimmt, durch den Neigungswinkel α der Düsenöffnung im Düsenstreifen 4 und durch einen der Winkel β oder γ, und durch den Winkel δ. In den Figuren 5 und 6 ist eine symmetrischen Anordnung des virtuellen Kreises zwischen den Düsen 5.11, 5.12, 5.21, 5.22 dargestellt. Der virtuelle Kreis kann aber auch unsymmetrisch innerhalb des Rechteckes X1, X3 angeordnet sein, in dem die Winkel β oder γ, und δ variiert werden. Der Winkel δ stellt die Ausrichtung des Fluidstrahls 6 bzw. die Neigung der Düsenöffnung 5 zum Mittelpunkt des virtuellen Kreises oder der Ellipse dar. Der Winkel β stellt die Ausrichtung des Fluidstrahls 6 bzw. die Neigung der Düsenöffnung 5 zur Längsachse des Düsenbalkens 3, also zur X-Richtung dar. Der Winkel γ stellt die Ausrichtung des Fluidstrahls 6 bzw. die Neigung der Düsenöffnung 5 zur Produktionsrichtung, also zur Z-Richtung dar. Dabei ergeben die Winkel β und γ zusammen einen rechten Winkel.In a further exemplary embodiment the Figures 5 to 7 an arrangement of two rows R1, R2 of nozzles of a nozzle strip 4 is shown, the nozzle openings 5 of which are directed towards a virtual circle or ellipse. The virtual circle or ellipse lies in the plane of the material web, i.e. by the distance hit. The nozzles of the first 5.11, 5.12 and second row 5.21, 5.22 have a distance in the X direction of X1. The distance between the rows of nozzles is X3. The distances X1 and Or In other words, the fluid jets 6 strike tangentially on a virtual path of a circle or an ellipse, which lies in the plane of the material web 2. If the distances X1 and The fluid jets 6 create a clockwise or counterclockwise twist in the plane of the material web 2, with which the fibers intertwine with one another in addition to the known swirling. The effect is contrary to the previous orientation of the fibers, which are arranged on one side in the production direction (MD direction) in accordance with the production direction of the material web 2 in the MD/CD ratio. By arranging or impinging the fluid jets 6 on the virtual circular path, the alignment of the fibers in the MD/CD ratio in the material web 2 is evened out, and at the same time the strength of the material web 2 is increased due to the swirling swirling of the fibers among themselves. In the exemplary embodiment Figure 5 The groups of nozzles alternately produce a clockwise or counterclockwise twist on the material web 2. The cutting plane AA is in Figure 7 shown. The twist direction changes in the direction of the working width (X direction). The size of the virtual circle is determined by the distance X4 between the nozzle strip 4 and the surface of the material web 2, by the inclination angle α of the nozzle opening in the nozzle strip 4 and by one of the angles β or γ, and by the angle δ. In the Figures 5 and 6 a symmetrical arrangement of the virtual circle between the nozzles 5.11, 5.12, 5.21, 5.22 is shown. The virtual circle can also be arranged asymmetrically within the rectangle X1, X3, in which the angles β or γ and δ are varied. The angle δ represents the orientation of the fluid jet 6 or the inclination of the nozzle opening 5 to the center of the virtual circle or the ellipse. The angle β represents the orientation of the fluid jet 6 or the inclination of the nozzle opening 5 to the longitudinal axis of the nozzle bar 3, i.e. to X direction. The angle γ represents the orientation of the fluid jet 6 or the inclination of the nozzle opening 5 to the production direction, i.e. to the Z direction. The angles β and γ together form a right angle.

Die Ausrichtung der Düsenöffnungen 5 nach den Figuren 2a bis 3 erfolgt immer in Richtung der Längsachse des Düsenbalkens 3 (X-Richtung) und in Produktionsrichtung der Materialbahn 2 (Y-Richtung). Die so erzeugten Fluidstrahlen sind Teile der Linien eines Hyperboloids.The alignment of the nozzle openings 5 according to the Figures 2a to 3 always takes place in the direction of the longitudinal axis of the nozzle bar 3 (X direction) and in the production direction of the material web 2 (Y direction). The fluid jets created in this way are parts of the lines of a hyperboloid.

Die Ausrichtung der Düsenöffnungen 5 nach den Figuren 5 bis 7 erfolgt innerhalb eines Rechteckes oder Quadrates von Düsen 5.11, 5.12, 5.21, 5.22, und sind alle nach innen auf einen virtuellen Kreis gerichtet, wobei die Strahlen tangential auf den virtuellen Kreis treffen. In Z-Richtung gesehen sind jeweils vier Düsen 5.11, 5.12, 5.21, 5.22 so zum gemeinsamen Zentrum eines virtuellen Kreises geneigt. Der Kreis liegt in der Ebene der zu bearbeitenden Materialbahn 2 im Abstand X4 mm unterhalb des Düsenstreifens 4. In diesem Ausführungsbeispiel erzeugen vier Fluidstrahlen in der Ebene der Materialbahn 2 einen Drall im Uhrzeigersinn, der die Fasern miteinander verwirbelt. Die vier weiteren daneben angeordneten Düsen 5.13, 5.14, 5.23, 5.24 erzeugen durch passende Neigung wie in der Figur 5 einen Drall gegen den Uhrzeigersinn. Die 4 Nachbarstrahlen im Bild 5 Mitte sind so geneigt, dass ein Drall gegen den Uhrzeigersinn entsteht. Die weiteren vier Düsen 5.15, 5.16, 5.25, 5.26 in Figur 5 erzeugen wiederum einen Drall im Uhrzeigersinn. Die Drallrichtung ist damit abwechselnd in Richtung der Arbeitsbreite oder Längsachse des Düsenbalkens 3 (X-Richtung) gesehen.The alignment of the nozzle openings 5 according to the Figures 5 to 7 takes place within a rectangle or square of nozzles 5.11, 5.12, 5.21, 5.22, and are all directed inwards towards a virtual circle, with the rays hitting the virtual circle tangentially. Seen in the Z direction, four nozzles 5.11, 5.12, 5.21, 5.22 are inclined to the common center of a virtual circle. The circle lies in the plane of the material web 2 to be processed at a distance X4 mm below the nozzle strip 4. In this exemplary embodiment, four fluid jets produce a swirl in the plane of the material web 2 Clockwise, which swirls the fibers together. The four other nozzles 5.13, 5.14, 5.23, 5.24 arranged next to it produce a suitable inclination as in the Figure 5 a counterclockwise twist. The 4 neighboring rays in the middle of Figure 5 are inclined in such a way that a counterclockwise twist is created. The other four nozzles 5.15, 5.16, 5.25, 5.26 in Figure 5 in turn create a clockwise twist. The twist direction is therefore seen alternately in the direction of the working width or longitudinal axis of the nozzle bar 3 (X direction).

Übertragen auf das Ausführungsbeispiel der Figuren 2a bis 2c können die Düsen 5.11, 5.22, 5.31 und 5.21 aus drei Düsenreihen R1, R2, R3 auf den Kanten bzw. Linien eines Quadrates oder Rechteckes liegen und deren Längsachsen L ebenfalls auf einen virtuellen Kreis mit dem Zentrum 5.5 ausgerichtet sein. Die Erfindung setzt nicht voraus, dass die Düsen auf den Eckpunkten eines Quadrates angeordnet sein müssen. Sie können ebenfalls auf den Eckpunkten einer beliebig angeordneten Raute oder auf den Außenkanten eines Quadrates, Rechteckes oder Raute angeordnet sein, wobei die durch die Fluidstrahlen auftreffenden Punkte auf dem virtuellen Kreis oder Ellipse in der Ebene der Materialbahn innerhalb dieser geometrischen Form liegt, um den gewünschten Dralleffekt zu erzeugen.Transferred to the exemplary embodiment of Figures 2a to 2c the nozzles 5.11, 5.22, 5.31 and 5.21 from three rows of nozzles R1, R2, R3 can lie on the edges or lines of a square or rectangle and their longitudinal axes L can also be aligned with a virtual circle with the center 5.5. The invention does not require that the nozzles have to be arranged on the corner points of a square. They can also be arranged on the corner points of an arbitrarily arranged rhombus or on the outer edges of a square, rectangle or rhombus, whereby the points struck by the fluid jets on the virtual circle or ellipse in the plane of the material web lie within this geometric shape in order to achieve the desired To create a swirl effect.

Vorzugsweise bilden vier Düsen aus zwei Düsenreihen R1, R2 ein Quadrat, so dass X1 = X3 ist. Der Winkel α ist für alle Düsenöffnungen gleich.Preferably, four nozzles from two rows of nozzles R1, R2 form a square, so that X1 = X3. The angle α is the same for all nozzle openings.

Der Abstand X3 kann auch kleiner oder größer sein als der Abstand X1. Dabei können aber die Winkel β oder γ, und δ so angepasst werden, dass die Auftreffpunkte der vier Fluidstrahlen 6 auf einem virtuellen Kreis oder einer Ellipse liegen.The distance X3 can also be smaller or larger than the distance X1. However, the angles β or γ and δ can be adjusted so that the impact points of the four fluid jets 6 lie on a virtual circle or an ellipse.

Beispielsweise kann die Düsenöffnung 5 aller Düsen 0,12 mm betragen und die Abstände X1, X2, X3 jeweils 1,5 mm. Der Durchmesser des virtuellen Kreises ist nach den Ausführungsbeispielen der Figuren 5 bis 7 kleiner als das Maß X1, mindestens 0,5 mm. Wird der Durchmesser des virtuellen Kreises kleiner, wird kein nennenswerter Drall bei diesen Abmessungen mehr erzeugt, da die Fluidstrahlen fast alle auf einen Punkt treffen.For example, the nozzle opening 5 of all nozzles can be 0.12 mm and the distances X1, X2, X3 can each be 1.5 mm. The diameter of the virtual circle is according to the exemplary embodiments Figures 5 to 7 smaller than dimension X1, at least 0.5 mm. If the diameter of the virtual circle becomes smaller, no significant swirl is generated at these dimensions because the fluid jets almost all hit one point.

Der Neigungswinkel α liegt im Bereich von 1° bis 20°, bevorzugt von 1° bis 10°, besonders bevorzugt von 1° bis 5°. Dieser Winkel hat sich als besonders vorteilhaft erwiesen, um eine besonders günstige Verwirbelung der Fasern der Materialbahn zu erzeugen. Die Größe des Neigungswinkels hängt dabei unter anderem vom Abstand des Düsenstreifens von der Oberfläche der Warenbahn bzw. Materialbahn ab. Bei kurzen Abständen, beispielsweise X4 bis 10 mm, kann der Neigungswinkel größer gewählt werden. Bei großen Abständen, beispielsweise X4 > 25 mm, kann ein Neigungswinkel im Bereich von 1° bis 5° vorteilhaft sein. Hier spielen natürlich auch die Abstände der Düsenöffnungen zueinander eine Rolle. Erfindungsgemäß wird eine zusätzliche Verwirbelung und damit Verknotung der Fasern oder Filamente erreicht, so dass die Einbindung von Fasern oder Filamenten an der Vliesoberfläche verbessert wird. Die Materialbahn wird zumindest an der Oberfläche isotroper und damit die Festigkeit bzw. das MD/CD-Verhältnis vergleichmäßigt.The angle of inclination α is in the range from 1° to 20°, preferably from 1° to 10°, particularly preferably from 1° to 5°. This angle has proven to be particularly advantageous in order to produce particularly favorable swirling of the fibers of the material web. The size of the angle of inclination depends, among other things, on the distance of the nozzle strip from the surface of the web or material web. For short distances, for example X4 to 10 mm, the angle of inclination can be chosen larger. For large distances, for example X4 > 25 mm, an angle of inclination in the range of 1° to 5° can be advantageous. Of course, the distances between the nozzle openings and one another also play a role here. According to the invention, additional swirling and thus knotting of the fibers or filaments is achieved, so that the integration of fibers or filaments on the fleece surface is improved. The material web becomes more isotropic, at least on the surface, and thus the strength or the MD/CD ratio is evened out.

BezugszeichenReference symbols

11
AnlageAttachment
22
Materialbahnmaterial web
33
Düsenbalkennozzle bar
44
Düsenstreifenjet strips
55
Düsenöffnungnozzle opening
5.11-5.155.11-5.15
Düsen der ersten DüsenreiheNozzles of the first row of nozzles
5.21-5.245.21-5.24
Düsen der zweiten DüsenreiheNozzles of the second row of nozzles
5.31-5.355.31-5.35
Düsen der dritten DüsenreiheNozzles of the third row of nozzles
5.55.5
Zentrumcenter
66
FluidstrahlFluid jet
77
Bandtape
88th
AbsaugvorrichtungSuction device
LL
Längsachse DüseLongitudinal axis nozzle
X, Y, ZX, Y, Z
Längs-, Breiten-, Höhenerstreckung des DüsenstreifensLongitudinal, width and height extent of the jet strip
X1X1
Abstand von Düsen einer ReiheDistance between nozzles in a row
X2X2
Versatz von Düseneintritt zu DüsenaustrittOffset from nozzle inlet to nozzle outlet
X3X3
Abstand von Düsen verschiedener ReihenDistance between nozzles in different rows
X4X4
Abstand der Materialbahn von dem DüsenstreifenDistance of the material web from the nozzle strip
X5X5
Abstand von Düsen einer ReiheDistance between nozzles in a row
A-AA-A
Schnittebenecutting plane
R1-R3R1-R3
Düsenreiherow of nozzles
αα
NeigungswinkelAngle of inclination
ββ
NeigungswinkelAngle of inclination
γγ
NeigungswinkelAngle of inclination
δδ
NeigungswinkelAngle of inclination

Claims (14)

  1. Nozzle strip (4) for generating fluid jets (6) for the hydrodynamic entanglement of a sheet of material (2), having a plurality of nozzle openings (5) which are arranged spaced apart from one another in at least two rows (R1, R2, R3) and are to deliver the fluid jets (6) to the sheet of material (2), wherein the nozzle openings (5) have been introduced into the nozzle strip (4) in the form of angled holes, so that the fluid jets (6) emerge from the nozzle strip (4) along the longitudinal axes (L) of the nozzle openings (5), wherein the nozzle strip (4) is configured in such a manner that the longitudinal axes (L) of directly adjacent nozzle openings (5) of the same row and the longitudinal axes (L) of directly opposite nozzle openings (5) of directly adjacent rows in each case run skew to one another.
  2. Nozzle strip (4) according to claim 1, characterised in that the nozzle strip (4) has a length extent (X), a width extent (Y) and a height extent (Z), and the longitudinal axes (L) of the corresponding nozzle openings (5) are inclined relative to a perpendicular to an XY plane which is spanned by the width and length extent of the nozzle strip (4) by an angle of inclination (α) of from 1° to 20°, preferably by from 1 to 10°, particularly preferably by from 1 to 5°, wherein preferably the at least two rows are arranged spaced apart from one another in the width extent (Y) of the nozzle strip (4).
  3. Nozzle strip (4) according to claim 1 or 2, characterised in that the longitudinal axes (L) of nozzle openings (5) of a row that follow one another directly are mirrored in their orientation relative to a respective plane of symmetry arranged between two adjacent nozzle openings (5) of the row in question or are mirrored pointwise about a point of symmetry arranged in said plane, so that there are obtained angled holes of the nozzle strip (4) which are oriented in an alternately mirrored manner from nozzle opening (5) to nozzle opening (5) within a row.
  4. Nozzle strip (4) according to claim 2 or 3, characterised in that the longitudinal axes (L) of two directly adjacent nozzle openings (5) of directly adjacent rows lie in planes which run at an angle or orthogonally to one another and preferably are both perpendicular to the XY plane.
  5. Nozzle strip (4) according to any one of claims 1 to 4, characterised in that the nozzle openings (5) within a row - when seen in the longitudinal direction of the row and thus in the length extent (X) of the nozzle strip (4) - are in each case arranged spaced apart from one another by a distance (X1).
  6. Nozzle strip (4) according to any one of claims 2 to 5, characterised in that directly adjacent rows of nozzle openings (5), when seen in the longitudinal direction of the row, that is to say in the length extent (X), are arranged offset relative to one another by half the distance (X1), wherein the distance (X1) corresponds to a multiple of the diameter of the nozzle openings (5), so that the nozzle openings (5) of directly adjacent rows, when seen in the direction of the width extent (Y) of the nozzle strip (4), are not located directly opposite one another.
  7. Nozzle strip (4) according to claim 6, characterised in that, where three rows of nozzle openings (5) are provided, the nozzle openings (5) of the first and third rows (R1, R3), which are arranged on either side of the middle row (R2) - when seen in the longitudinal direction of the row and thus in the length extent (X) of the nozzle strip (4) - are offset relative to the middle row (R2), wherein the first row (R1) is arranged offset by a distance of 0.5*X1+X2 and the third row (R3) is arranged offset by a distance of 0.5*X1-X2 relative to the second middle row (R2), wherein the distance X2 is given by the following formula: 0.5 times the height of the nozzle strip (4) times the tangent of the angle of inclination of the longitudinal axis (L) of the nozzle opening (5).
  8. Nozzle strip (4) according to any one of claims 2 to 4, characterised in that, where three rows of nozzle openings (5) are provided, the nozzle openings (5) within the middle row (R2) - when seen in the longitudinal direction of the row and thus in the length extent (X) of the nozzle strip (4) - are arranged spaced apart from one another in each case by a distance n*X3, wherein the nozzle openings (5) of the other two rows (R1, R3) are spaced apart from one another within the row in question alternately by the distance (n-1)*X3 and (n+1)*X3, so that the nozzle openings (5) of directly adjacent rows, when seen in the direction of the width extent (Y) of the nozzle strip (4), are not located directly opposite one another, and in that individual nozzle openings (5) of directly adjacent rows are always at the same distance X3 from one another when seen in the length extent (X) of the nozzle strip (4), wherein n is preferably three.
  9. Nozzle strip (4) according to claim 8, characterised in that individual or all the nozzle openings (5) of the middle row are alternately displaced along the width extent (Y) of the nozzle strip (4) towards one of the two rows.
  10. Nozzle strip (4) according to claim 1 or 2, characterised in that, in at least two rows (R1, R2, R3) of nozzles, the nozzles form a square or rectangle, wherein the longitudinal axes (L) of the nozzles are oriented at points of a virtual circle, on the plane of the sheet of material (2), that is arranged within the square or rectangle.
  11. Nozzle strip (4) according to claim 10, characterised in that at least four nozzles (5.11, 5.12, 5.21, 5.22) from two rows (R1, R2) are oriented tangentially to a virtual circle which lies inside the arrangement of the at least four nozzles (5.11, 5.12, 5.21, 5.22) in the plane of the sheet of material (2).
  12. Nozzle strip (4) according to either claim 10 or claim 11, characterised in that each nozzle is arranged at an angle (δ) which is formed between a line connecting the nozzle to the centre (5.5) of the virtual circle and a tangent from the nozzle to the virtual circle in the plane of the sheet of material (2).
  13. Nozzle strip (4) according to either claim 10 or claim 11, characterised in that the inclination of each nozzle is arranged at an angle (β) and (γ), wherein the angle (β) is given by the inclination of the nozzle opening (5) relative to the longitudinal axis of the nozzle beam (3), that is to say relative to the X-direction, and the angle (γ) is given by the inclination of the nozzle opening (5) relative to the production direction, that is to say relative to the Z-direction.
  14. Installation (1) for the entanglement of a sheet of material (2), comprising at least one nozzle beam (3) and a nozzle strip (4) which can be connected thereto in a fluid-conducting manner for generating fluid jets (6) for the hydrodynamic entanglement of the sheet of material (2), wherein the nozzle strip (4) is configured according to any one of the preceding claims.
EP22155647.5A 2021-03-04 2022-02-08 Nozzle strip for generating fluid jets for hydrodynamic consolidation of a sheet of material and system for consolidating such a sheet Active EP4053320B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021105196.7A DE102021105196A1 (en) 2021-03-04 2021-03-04 Jet strips for generating fluid jets for hydrodynamic bonding of a web of material and system for bonding such

Publications (2)

Publication Number Publication Date
EP4053320A1 EP4053320A1 (en) 2022-09-07
EP4053320B1 true EP4053320B1 (en) 2023-11-08

Family

ID=80445835

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22155647.5A Active EP4053320B1 (en) 2021-03-04 2022-02-08 Nozzle strip for generating fluid jets for hydrodynamic consolidation of a sheet of material and system for consolidating such a sheet

Country Status (3)

Country Link
EP (1) EP4053320B1 (en)
CN (1) CN115029868A (en)
DE (1) DE102021105196A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE543963C2 (en) * 2020-02-28 2021-10-12 Baldwin Jimek Ab Spray applicator and spray unit comprising two groups of spray nozzles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3142094B2 (en) * 1992-12-15 2001-03-07 日本バイリーン株式会社 Nozzle plate
JP3172306B2 (en) * 1992-12-15 2001-06-04 日本バイリーン株式会社 nozzle plate
JP2000290863A (en) * 1999-04-05 2000-10-17 Uni Charm Corp Apparatus for producing nonwoven fabric
US6877196B2 (en) 2000-08-04 2005-04-12 E. I. Du Pont De Nemours And Company Process and apparatus for increasing the isotropy in nonwoven fabrics
DE102004036906A1 (en) 2004-07-29 2006-03-23 Fleissner Gmbh Device for treating in particular a tissue by means of hydrodynamic needling
DE102005060615A1 (en) * 2005-12-19 2007-06-21 Saurer Gmbh & Co. Kg Fleece web strengthening method, involves selecting amplitude for back and forth movement of fluid in such a manner, that meeting points produced by adjacent fluid flows, in fleece web do not cross separator line in running direction
JP2016121411A (en) * 2014-12-24 2016-07-07 日本ノズル株式会社 Nonwoven fabric manufacturing device

Also Published As

Publication number Publication date
EP4053320A1 (en) 2022-09-07
DE102021105196A1 (en) 2022-09-08
CN115029868A (en) 2022-09-09

Similar Documents

Publication Publication Date Title
EP2302120B1 (en) Injector for a textile processing machine
EP2888394B1 (en) Device for hydrodynamically strengthening nonwovens, wovens or knitted fabrics
EP3317546B1 (en) Fluidic component
EP3289131B1 (en) System and method for consolidating and structuring fibres into a nonwoven
EP1624099B1 (en) Needle for needle punching of textile fabrics
EP0959228A1 (en) Film-cooling holes in staggered rows
EP4053320B1 (en) Nozzle strip for generating fluid jets for hydrodynamic consolidation of a sheet of material and system for consolidating such a sheet
DE102013100257A1 (en) Electronic assembly with a housing with a pressure compensation element between the housing interior and the environment
EP3165660B1 (en) Needle board
AT411271B (en) DEVICE FOR NEEDING A FLEECE
EP2596230B1 (en) Injection device having improved spray preparation
EP2907909B1 (en) Assembly for the continuous production of a woven material
EP2065499B1 (en) Nozzle bar
DE60011900T2 (en) DEVICE FOR TREATING FOIL MATERIALS BY PRESSURE WATER JETS
EP2135980B1 (en) Filament drawing device
EP0867559B1 (en) Cleaning device
EP3744889A1 (en) Retention plate and needle plate for a needle machine
DE2220575C3 (en) Device for producing a thread fleece
DE2927737B1 (en) Flat jet nozzle for spraying liquids
EP1030938B1 (en) Device and process for intermingling yarn
EP2853629B1 (en) Device for the hydrodynamic consolidation of nonwoven fabrics, woven fabrics or knitted fabrics
DE3625786C2 (en) Edge hardening on textile fabrics
DE202010009563U1 (en) Nozzle strips for a textile processing machine
DE19640752A1 (en) Device for needling a fleece
DE3924890A1 (en) LID SET FOR A CARD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230307

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230622

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MUENSTERMANN, ULLRICH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230622

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502022000241

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240209

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240208

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308