EP4051445A1 - Verfahren zur generativen fertigung - Google Patents

Verfahren zur generativen fertigung

Info

Publication number
EP4051445A1
EP4051445A1 EP20803895.0A EP20803895A EP4051445A1 EP 4051445 A1 EP4051445 A1 EP 4051445A1 EP 20803895 A EP20803895 A EP 20803895A EP 4051445 A1 EP4051445 A1 EP 4051445A1
Authority
EP
European Patent Office
Prior art keywords
build platform
product
vibrating
powder
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20803895.0A
Other languages
English (en)
French (fr)
Inventor
Atte ANTIKAINEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valtion Teknillinen Tutkimuskeskus
Original Assignee
Valtion Teknillinen Tutkimuskeskus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valtion Teknillinen Tutkimuskeskus filed Critical Valtion Teknillinen Tutkimuskeskus
Publication of EP4051445A1 publication Critical patent/EP4051445A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • B29C64/194Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control during lay-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/01Use of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the field of additive manufacturing. More precisely the invention relates to method for additive manufacturing of metal products in layers on a build platform, which layers are fused during the layer formation to the previ- ously formed layers for forming the metal product.
  • One known additive manufacturing method for forming products is powder bed fu sion process.
  • the product is formed on a build platform in layers, wherein the powder is first spread in an even layer on the build platform, then the powder is melt and fused solid with energy beam, the build plat- form is lowered a step and new powder level is spread on the build platform and on the solidified layer of the product to be formed. This is repeated until the whole prod uct is finished.
  • the typical methods for melting and fus ing the metal powder are electron beam melting (EBM), laser powder-bed fusion (L- PBF), selective laser melting (SLM) and direct metal laser sintering (DMLS), for ex- ample.
  • EBM electron beam melting
  • L- PBF laser powder-bed fusion
  • SLM selective laser melting
  • DMLS direct metal laser sintering
  • directed energy deposition pro cess Another known additive manufacturing process is directed energy deposition pro cess.
  • the layer formation of the product to be manufactured is implemented by melting material as it is being deposited on the build platform.
  • metal powders can be used in this process.
  • wire can also be used with direct energy deposition method.
  • HIP hot isostatic pressing
  • the present invention provides a novel solution for removing the pores and bubbles from the solidified metal during the additive manufacturing process so that the qual- ity of the manufactured metal product increases and need for further finishing ac tions and steps is minimized.
  • the present invention also provides additional manu facturing parameter for the additive manufacturing process, which may be utilized for speeding up the manufacturing process and thus lowering the manufacturing costs.
  • a metal product is formed on a build platform in layers and during the layer formation the metal ma terial is fused to the previously formed layers, wherein during the layer formation process the build platform onto which the product is formed, and via the build plat form the formed portion of the product on the build platform, are vibrated.
  • the additive manufacturing method is powder bed fusion process or directed energy deposition process.
  • the layer formation of the product takes place at two fusing steps and the vibrating is utilized in the second fusing step. This allows the first fusing step to sufficiently solidify the powder material, for exam ple, so that the vibrating does not move the material away from its place during the layer formation.
  • the frequency of the vibrating is changed during formation of the product. This allows avoiding of the natural fre quencies of the product to be manufactured, which natural frequencies also change along the proceeding of the manufacturing process.
  • the vibrating is applied in stages, wherein the frequency of the vibrations within a single stage preferably changes during the stage.
  • the vibrating is started after the forming of the product on the build platform has started.
  • the vibrating is implemented with a vibrating device integrated or connected to the build platform.
  • the vibrating device may also be integrated or connected to a part directly connected to the build plat form.
  • the vibrating device is preferably ultrasonic device, but can also be a mechan ical vibrator, for example.
  • the method may be implemented with an apparatus for additive manufacturing of products, which apparatus comprises a build platform, devices for forming a metal layer on the build platform for forming of a product, and devices for fusing the metal layer to previously formed layers on the build platform during the layer formation, wherein the build platform comprises, or to the build platform is connected, a vibrat ing device for vibrating the build platform.
  • the devices for forming a metal layer on the build platform may comprise devices for spreading a layer of metal powder onto the build platform and a printing head through which an energy beam is conveyed in the powder on the build platform for selectively fusing the powder substantially solid.
  • the devices for forming a metal layer on the build platform may com prise devices for melting the metal powder as it is deposited on the build platform.
  • the apparatus may comprise a plurality of vibrating devices capable of applying different vibrating frequencies during the manufacturing process.
  • the apparatus may comprise a device for changing the vibration frequency of the vibrating device during the manufacturing process.
  • the vibrating device may be installed below the build platform. This allows the vi brating device to be a fixed part of the apparatus and not removable with the build platform.
  • the vibrating device may be an ultrasonic device. Mechanical vibrators may also be used.
  • FIG 1 shows schematically an embodiment of an apparatus of the invention.
  • Figure 1 shows schematically an embodiment of an apparatus 1 of the invention for additive manufacturing of products 2 with powder bed fusion process.
  • the apparatus 1 comprises a printer head 3, which redirects and guides an energy beam 4 created by energy beam generator 5.
  • the energy beam 4 can be for exam ple a laser beam.
  • the energy beam 4 is directed into a powder bed 6 formed on build platform 7 for layer-by-layer fusion of the powder in the powder bed for forming the product 2.
  • the apparatus 1 also comprises a powder stock 8, which is located next to and separated with a partition wall from the powder bed 6 on other side, and an overflow bin 9.
  • the powder stock 8 is on a vertically movable powder platform 10, and the overflow bin 9 has vertically movable overflow platform 11 .
  • a new layer of powder is spread on the powder bed 6 and on the already formed portion of the product 2. This is achieved by moving the build platform 7 lower for a distance equaling to the thick ness of a new powder layer and raising the powder platform 10 substantially equal distance (in this embodiment), which raises the upper surface of the powder stock 8 above the edge of the partition wall between the powder bed 6 and the powder stock 8.
  • a powder recoater 12 is moved first over the powder stock 8 at the level of the upper edge of the partition wall between the powder bed 6 and the powder stock 8 surface towards the powder bed 6, which forces the powder from the powder stock to the area of the powder bed.
  • the movement of the powder recoater 12 is then continued over the whole area of the powder bed 6, which creates and levels a new powder layer over the previous layer on the powder bed. After this is done the powder recoater 12 is re turned to its starting position, and new fusion step is started with the energy beam 4. This is then repeated until the whole product 2 to be manufactured is formed.
  • the product 2 After the product 2 has been formed with the powder bed fusion process, it is re moved from the powder bed and finished with suitable finishing steps if necessary.
  • the apparatus 1 also comprises a plurality of ultrasound devices 13 (three in this embodiment), which in this embodiment are located under the build platform 7 and connected to the lower surface of the build platform for vibrating the build platform within ultrasonic frequencies, and via the build platform the product to be formed on the build platform during the powder bed fusion process.
  • a plurality of ultrasound devices 13 three in this embodiment, which in this embodiment are located under the build platform 7 and connected to the lower surface of the build platform for vibrating the build platform within ultrasonic frequencies, and via the build platform the product to be formed on the build platform during the powder bed fusion process.
  • the ultrasonic device or devices 13 may also be connected or integrated in the support part 14 of the build platform 7, on which support part the build platform is fixed during the powder bed manufacturing process.
  • the ultra sonic vibrations proceed via mechanical connections from the support part 14 to the build platform 7 and to a product 2 on the build platform.
  • the vibrations from the ultrasonic devices 13 are conveyed to the product to be formed during the fusing of the powder to solid.
  • This fusing can also be implements in two stages, where in the first fusing stage the powder is preliminary fused with suitable parameters and low heat supply quickly to somewhat solid without vibrating, and in the second stage the fusing is applied with high heat supply and more slowly with vibrating. With this two-stage fusing the undesired movement of the powder due to vibrations during fusing stage can be avoided.
  • the present invention may also be utilized sim- ilarly with directed energy deposition process, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)
EP20803895.0A 2019-10-30 2020-10-30 Verfahren zur generativen fertigung Pending EP4051445A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20195928A FI20195928A1 (en) 2019-10-30 2019-10-30 Method and equipment for material-adding manufacturing
PCT/FI2020/050714 WO2021084162A1 (en) 2019-10-30 2020-10-30 Method for additive manufacturing

Publications (1)

Publication Number Publication Date
EP4051445A1 true EP4051445A1 (de) 2022-09-07

Family

ID=73198343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20803895.0A Pending EP4051445A1 (de) 2019-10-30 2020-10-30 Verfahren zur generativen fertigung

Country Status (3)

Country Link
EP (1) EP4051445A1 (de)
FI (1) FI20195928A1 (de)
WO (1) WO2021084162A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11772330B2 (en) * 2020-05-12 2023-10-03 Honeywell International Inc. Tunable system and method for stress resolution in additive manufacturing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103442830B (zh) * 2011-03-17 2015-09-09 松下电器产业株式会社 三维形状造型物的制造方法以及三维形状造型物
US10556270B2 (en) * 2014-05-01 2020-02-11 United Technologies Corporation Additive manufacturing system for minimizing thermal stresses
GB201600629D0 (en) * 2016-01-13 2016-02-24 Renishaw Plc Powder bed fusion apparatus and methods
DE102017223259A1 (de) * 2017-12-19 2019-06-19 MTU Aero Engines AG Verfahren und vorrichtung zur reinigung teilweise hergestellter bauteile während der generativen herstellung
CN108176857A (zh) * 2018-03-05 2018-06-19 广东工业大学 一种金属3d打印复合制造方法及其装置

Also Published As

Publication number Publication date
WO2021084162A1 (en) 2021-05-06
FI20195928A1 (en) 2021-05-01

Similar Documents

Publication Publication Date Title
KR102458119B1 (ko) 적층 제조를 위한 다수의 재료들 및 인쇄 파라미터들
KR102359288B1 (ko) 광빔을 사용하는 적층 제조를 위한 방법 및 시스템
CN108025498B (zh) 一种涂覆流体的方法和设备
JP3010312B2 (ja) 三次元物体の作製方法および装置
CA2717834C (en) Method to apply multiple materials with selective laser melting on a 3d article
US6309711B1 (en) Method for manufacturing a three-dimensional object
US6372178B1 (en) Method for freeform fabrication of a three-dimensional object
US9975199B2 (en) Rapid manufacturing process by using a focused ultrasound beam
US11185927B2 (en) Ultrasonically assisted powder bed additive manufacturing
EP3486008B1 (de) Pulverreduzierungsvorrichtung
EP1201404A2 (de) Verfahren zur Verbesserung der Oberflächen bei selektiv ablagernder Modellierung
Fang et al. Building three‐dimensional objects by deposition of molten metal droplets
TWI774785B (zh) 使用多鏡掃描器的積層製造
JP2005533172A (ja) レーザ材料加工ユニット又は光造形ユニットにおいて三次元成形品を製造する方法
WO2021084162A1 (en) Method for additive manufacturing
CN107810072A (zh) 用于添加式地制造构件的方法和装置
US6845710B2 (en) Process and apparatus for compressing metallic powder into a compact
JP2004536229A (ja) 精密な幾何学的形状の工作物の製造方法及び製造装置
JP6192677B2 (ja) 積層造形方法および積層造形装置
RU2733520C1 (ru) Способ и устройство для изготовления изделий из порошков посредством послойного селективного выращивания
JP7122171B2 (ja) 3次元造形方法および3次元造形装置
US11084096B2 (en) Movable wall for additive powder bed
RU2728375C1 (ru) Способ и устройство для изготовления изделий из порошков посредством послойного селективного выращивания
JP2020084195A (ja) 付加製造装置、付加製造方法及び付加製造物
JP6817561B2 (ja) 三次元形状造形物の製造方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)