EP4031380B1 - Method for producing a security element, and security element - Google Patents

Method for producing a security element, and security element Download PDF

Info

Publication number
EP4031380B1
EP4031380B1 EP20775818.6A EP20775818A EP4031380B1 EP 4031380 B1 EP4031380 B1 EP 4031380B1 EP 20775818 A EP20775818 A EP 20775818A EP 4031380 B1 EP4031380 B1 EP 4031380B1
Authority
EP
European Patent Office
Prior art keywords
polymer film
production method
layer
microfibril
structured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20775818.6A
Other languages
German (de)
French (fr)
Other versions
EP4031380A1 (en
Inventor
Tobias Sattler
Thomas Gerhardt
Michael Rahm
Christian Fuhse
Katalin Szendrei-Temesi
Kerstin GOTTSCHLING
Udo SCHAUMBURGER
Maik Rudolf Johann Scherer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient Currency Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102019006653.7A external-priority patent/DE102019006653A1/en
Priority claimed from DE102019008021.1A external-priority patent/DE102019008021A1/en
Application filed by Giesecke and Devrient Currency Technology GmbH filed Critical Giesecke and Devrient Currency Technology GmbH
Publication of EP4031380A1 publication Critical patent/EP4031380A1/en
Application granted granted Critical
Publication of EP4031380B1 publication Critical patent/EP4031380B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/43Marking by removal of material
    • B42D25/435Marking by removal of material using electromagnetic radiation, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/43Marking by removal of material
    • B42D25/445Marking by removal of material using chemical means, e.g. etching

Definitions

  • the invention relates to a manufacturing method for a security element that produces a colorful, optically variable motif.
  • the invention further relates to such a security element.
  • Photosensitive layers which change their physical and chemical properties when exposed to light irradiation are known in the art. They are mainly used for the production of micro and nanostructures. The structures are created with the help of UV lacquers or so-called photoresists, i.e. ultimately with methods of microlithography.
  • color-shift layer structures One way of producing layers with iridescent colors are so-called color-shift layer structures. Although they can be applied to the entire surface of a substrate using a vapor deposition process, multicolored structures require many work steps and are therefore expensive to produce. In particular, registration problems in individual work steps must be taken into account.
  • Volume holograms are also known, which produce a three-dimensional image for the viewer through light diffraction and interference. Volume holograms store both the intensity and phases of incident light rays in a light-sensitive medium. The large-scale production of volume holograms is complicated and expensive, since complex equipment is required for exposure and, as a rule, very expensive photoresists have to be used for production.
  • the invention is based on the object of specifying a production method for the simple production of a security element that produces a colorful, optically variable motif, and such a security element.
  • the optically variable security element for producing documents of value has a polymer film and optionally a reflector layer arranged under the polymer film.
  • Laterally structured microfibrils are formed in the polymer film, which give the polymer film a color effect that appears as a colorful motif.
  • the microfibrils are produced according to the principle described in the Nature article mentioned. They are consequently organized according to standing light waves. These originate, for example, from the interference of coherent light beams, which lead to places of constructive interference in the polymer film and thus produce a (usually locally varying) cross-linking in the polymer, which is then exposed using suitable solvents.
  • This microfibrillation method described in Nature is carried out in a variant 1 with a reflector layer which is structured laterally with regard to the degree of reflection and/or profiling, so that when exposed to light in incident light above the reflector layer, the interference between incident and reflected radiation and ultimately the microfibril structure for the colorful motif is created.
  • the reflector layer ensures the crosslinking in such a way that the microfibrils have the lateral structure that leads to the colorful motif.
  • the reflector layer can, for. B. be formed as a metallic mirror layer and also be removed after the microfibrillation process.
  • interference between two incident beams is generated in the polymer film. Then you don't need a reflector layer and you can write a volume hologram directly into the polymer film, for example.
  • the polymer film is thus designed by microfibrillation with regard to a color effect, in particular as a volume hologram, and has a spongy structure in which individual planes and/or holes are arranged periodically. This creates structural colors.
  • the polymer film is quasi "exposed” by light that is applied in the form of standing waves, with variant 1 also structuring the lateral structuring of the reflector layer and the exposure, and subsequently developed by solvent-based removal of the non-crosslinked components. Because the laterally structured reflector layer is effective for the exposure step, the motif is very easy to produce.
  • water-soluble polymers such as PVA, PA, PVP, PAA or PAM is particularly advantageous and environmentally friendly. With these, the non-crosslinked areas can only be removed with water and thus without a solvent.
  • the reflector layer is laterally modulated in terms of the degree of reflection, in particular pixelated. This can be done, for example, in the form of a pixel structure.
  • the distance between the reflector layer and the polymer layer can also be laterally modulated.
  • the degree of reflection can be varied over the thickness of a metallic layer, which can vary between a maximum reflective layer thickness and zero.
  • Metals such as Al, Cu, Cr, Ni, Au, Ag etc. and their alloys are preferred as materials for the reflector layer, as well as ZnS, SiO2, MgF2 or thin-film interference layer systems known from the prior art. Special dielectrics or layer systems made from the materials mentioned are also possible.
  • the reflector layer During microfibrillation formation, the reflector layer generates an intensity modulation of a displayed motif in the polymer, which in turn leads to the formation of laterally structured microfibrils during the development process. These can be viewed as laterally structured Bragg planes that cause a color component. In particular, a laterally varying structuring of the polymer film can then be dispensed with. Since a reflector layer can be produced relatively easily and structured laterally, these embodiments have particular advantages in terms of simple manufacturability. Nevertheless, they are difficult to imitate or even counterfeit.
  • the polymer film laterally with regard to the color effect.
  • This can e.g. B. be achieved by appropriate exposure to standing light waves that are lateral, spectral and / or different in intensity.
  • the microfibril structure provides a type of volume hologram in embodiments.
  • the polymer film is exposed, as is known for reflection, transmission or Denisjuk holograms.
  • the reflector layer is designed as a relief structure, which has a corresponding relief for representing a motif, so that during exposure, the light reflected from this laterally structured surface in the sense of an object beam is superimposed in the polymer layer and thus interferes with the incident beam, which serves as a reference.
  • the surface relief ensures a phase modulation of the light reflected by the reflective layer, so that this relief structure affects the color effect.
  • the relief structure can in particular bring about a laterally varying distance between the polymer layer and the reflector layer. It can be produced using micro- and nanolithography methods and transferred or duplicated using various embossing processes.
  • the relief structure can have: plateaus in different height levels that affect the color effect and are at different distances from the polymer structure, micromirrors, a blazed grating structure, a Fresnel structure, a moth's eye structure, a sub-wavelength grating with sharp or rounded edges, a sine grating structure, a columnar structure or a stepped grating structure with sloping or vertical flanks.
  • Various of these lattice structures can also be used in adjacent areas.
  • the relief structure can be designed as a free-form surface.
  • motifs typical of banknotes can be displayed, with three-dimensional motifs also being possible.
  • the optically variable effect is at suitable illumination can also be observed without a laterally structured reflection layer.
  • the microfibril structure creates a multicolored pixilated image, wherein a pixel structure that causes the pixelated image is formed in the reflector layer (if not removed), the polymer layer, or both.
  • the microfibril structure is structured perpendicularly to the surface of the polymer film.
  • the spongy structure of the polymer film, in which individual layers and/or holes are arranged, is created in such a way that the standing waves with which the polymer film is exposed are applied in such a way that the microfibril structure does not form periodically when the polymer film comes into contact with the solvent. This can be realized, for example, by irradiating the polymer layer with standing waves of different wavelengths.
  • imperfections are built into the microfibril structure in a targeted manner.
  • Individual layers in the microfibril structure are referred to as defects, for example, which are made thicker or thinner in a targeted manner than the other layers of the microfibril structure by irradiation with the standing waves and the subsequent solvent-based removal of non-crosslinked components in the polymer film. This creates a minimum/maximum in the reflection spectrum within the highly reflective range (band gap) and the color impression changes compared to a periodic development of the microfibril structure.
  • the thickness of the layers of the microfibril structure is formed by irradiating the polymer structure with the standing waves in such a way that the thickness of the layers increases continuously or gradually the further away the layers are from the substrate.
  • the increase in the thickness of the layers can be achieved, for example, by using different photoinitiators the further away the layers are from the substrate.
  • Photoinitiators are chemical compounds that break down after absorbing light, forming reactive particles that can start a reaction. The photoinitiators are exposed to light sources of different wavelengths, which results in different layer thicknesses in the different layers, e.g.
  • one photoinitiator A can be used for the layers that are closer to the substrate, another photoinitiator B for the layers that are further away from the substrate, and another photoinitiator C for the layers that are furthest away from the substrate.
  • Photoinitiators are chemical compounds that break down after absorbing light, forming reactive particles that can start a reaction. The photoinitiators are exposed to light sources of different wavelengths, resulting in different layer thicknesses in the different layers.
  • multiple polymer films of different polymers are applied in multiple passes, and exposure and development is performed in one pass.
  • Development means the solvent-based removal of the non-crosslinked components of the polymers.
  • Different developer mixtures such as concentrations of acetic acid in water or mixtures of acetic acid in different solvents, develop the different layers of the microfibril structure in the polymer film at different rates.
  • the layer thickness variation described is achieved by setting the development time, i.e. the time that individual layers require for the solvent-based removal of the non-crosslinked components of the polymers, differently for the layers, so that e.g. upper layers are already fully developed and lower ones are not yet, or only partially.
  • One type of polymer and photoinitiator can be used consistently, and exposure and development are performed in one operation.
  • developer mixtures can be used not only for structuring the microfibril structure perpendicular to the surface of the polymer film, but also for lateral structuring.
  • Different developer mixtures can be used laterally next to each other on the polymer film in order to achieve different degrees of development laterally and thus different structural colors.
  • the developer mixtures are applied to the polymer film laterally with a time offset. This can be done in two steps, for example. First, a developer mixture is applied to the polymeric film at a first location. Then the same developer mixture is also applied to a second location on the polymer film. At the In the first location on the polymeric film, this gives the developer mixture more time to interact with the polymeric film than in the second location, and development is more advanced at the first location, producing different structural colors at laterally different locations.
  • the polymer layer is designed to be elastically or plastically deformable.
  • a reversible or irreversible change in the color of the polymer layer can be produced by mechanical pressure on a part or the entire surface of the polymer layer by changing the layer thickness of the polymer layer.
  • the color or the reflected (or transmitted) wavelength of the polymer layer is changed by changing its layer thickness, the thinner the layer, the more the color impression shifts towards the bluish. For example, if the polymer layer is red and mechanical pressure is applied to it with a finger, the polymer layer is compressed in this area, the layer thickness decreases and the structural color can change from red to yellow and green to blue, for example.
  • a plastic and thus permanent deformation of the polymer layer takes place, for example, with an embossing process, preferably by means of intaglio printing.
  • the spongy structure of the polymer film consists of microfibrils and cavities. If these cavities are at least partially open-pored, they can be filled with a liquid or gaseous medium according to a further embodiment. For example, if part of the cavities is filled with water and air remains in another part, regions in the area of the filled cavities show different colors, since air has an index of refraction of 1 and water of 1.33. It is also possible for the polymer layer to become transparent if the refractive index of the microfibrils and the medium in the cavities are the same.
  • the reflector layer can remain on the polymer layer.
  • the polymer layer can be coated with a dark or black color on the surface that is not viewed.
  • the polymer layer can be modified by adding carbon black or carbon black to bring out the interference colors to their best advantage.
  • transparent, high-refractive particles for example made of TiO2 are added to the polymer so that the difference in refractive index between the fibrillated layers and continuous layers is further increased. Suppression with a diffusely scattering color also leads to different, in particular complementary, colors when viewed specularly or non-specularly.
  • the aspects mentioned for the security element also apply equally to the production process, which follows the principle mentioned in the Nature article with regard to the production of the microfibrils.
  • a security element is provided which is produced or obtainable using one of the production methods mentioned.
  • the polymer layer according to the invention is cured in a subsequent process step.
  • This has the particular advantage that the resistance of the polymer layer to, for example, mechanical abrasion, subsequent mechanical pressure, solvents or other environmental influences is increased.
  • the hardening is particularly preferably carried out by irradiating the polymer layer with ultraviolet radiation.
  • a further increase in the durability of the polymer layer and the reflector layer remaining on the polymer layer results from embedding the polymer layer between protective layers and/or films.
  • the invention also relates to a document of value with a security element of the type mentioned.
  • the document of value is embodied as a bank note or check, for example.
  • the security element according to the invention can be combined with any other security elements of the document of value, for example holograms, micro-mirrors, e.g. with running effects or 3D surfaces (Fresnel-like), micro-concave mirrors or sub-wavelength structures.
  • this preferably takes place in such a way that the reflective layer generates the reflection for generating the standing wave and generates the other features described in other lateral partial areas.
  • the part that generates the standing wave is removed after exposure, which can be done, for example, by etching.
  • magnet, conductivity, fluorescence, phosphorescence any of these other security elements are particularly preferably arranged laterally next to the microfibrils.
  • FIG. 1 shows a schematic plan view of a bank note 2 which has a number of security elements.
  • a security element 4 is designed in the form of a patch, another security element in the form of a security strip or security thread 6.
  • the specific two-dimensional design of the security element can be selected depending on the application. The description below refers to the security element 4 purely by way of example.
  • FIG. 2 shows a sectional view through the security element 4. It is applied to a substrate 8, for example banknote paper of the banknote 2, with an intermediate carrier also being used as the substrate 8 can, which is then applied to a banknote paper of the banknote 2, so that the security element 4 is then designed as a so-called transfer element.
  • Variant 1 works with a reflector layer under the polymer layer. Then an incident ray is the reference ray, the ray reflected at the reflector layer is the object ray. In an alternative variant 2, the object and reference beams are irradiated independently.
  • the microfibril structure 13 includes microfibrils 13a and cavities 13b (cf. 3 ).
  • it is produced by irradiating a commercially available, flat polymer, such as a polystyrene or polycarbonate sheet or a corresponding film (preferably parallel to its surface normal) with radiation whose coherence length is greater than the thickness of the polymer layer 12. UV radiation is preferably used.
  • a reflector layer under the polymer layer 12 (cf. Figures 3-8 ), so that the object beam is created in back reflection.
  • the object and reference beam are irradiated independently.
  • the thickness of the polymer layer 12 is less than the coherence length of the radiation(s) used, as a result of which standing waves form within the polymer layer 12.
  • the polymer becomes cross-linked, and a periodic mechanical stress field is formed between cross-linked and non-cross-linked areas, with the latter lying at the nodal points of the standing waves.
  • An additional photoinitiator is preferably added to the polymer.
  • the microfibril structure 13 exposed in this way is then exposed according to FIG 3 formed, wherein individual levels of the micro-glasses 13a and the cavities 13b automatically arrange themselves periodically according to the standing wave structure.
  • the polymer layer 12 When it has been exposed and developed in this way, the polymer layer 12 produces a laterally modulated color effect which, in variant 1, is influenced by a lateral structuring of the reflector layer 10 lying underneath during the exposure - even if the polymer layer 12 is used in the security element without a reflector layer 10 lying underneath.
  • FIG. 3A 12 shows an embodiment in which a wide field exposure 16 exposes the entire polymer layer 12 uniformly.
  • An additionally laterally structured reflector layer 10 creates a laterally structured microfibril structure 13 and thus the colorful motif.
  • the substrate 8 on which the polymer layer 12 is located is not shown here or in the following. It can be arranged between the polymer layer 12 and the reflector layer 10 or on the upper side or the side of the polymer layer 12 facing the exposure 16 . In both cases, the substrate 10 must be transparent to the illumination wavelengths required to structure the polymer layer 12 .
  • Figure 3B shows that by using a mask 18, a structured exposure can also take place.
  • the mask 18 blocks the wide-field exposure 16 at individual points, so that light can only strike the polymer layer 12 at the gaps in the mask 18 .
  • light can also only be reflected on the reflector layer in these areas and interfere with the incident light if there is a reflection effect in these illuminated areas.
  • the color effect only occurs at the points where light falls through the mask and is also reflected at the reflector layer.
  • a structuring, z. B. pixelation in the polymer layer 12 this pixelation affects the color.
  • the exposure can also take place with different wavelengths, so that the color tone generated by the polymer layer 12 differs laterally, e.g. with tri-color pixels formed from sub-pixels in primary colors (e.g. red, green, blue).
  • primary colors e.g. red, green, blue
  • several wide-field exposures 16a, 16b are used one after the other at different wavelengths or in different wavelength ranges.
  • the additional lateral structuring is carried out by different masks 18a, 18b, which each act on the corresponding wide-field exposure 16a, 16b.
  • Figure 3C illustrates these sequential exposures in a common representation.
  • the multicolor is not limited to two colors, of course; Equally, three, four or more different exposure steps can also take place, with each exposure step exposing a different partial area of the polymer layer 12 and providing it with a color effect. After being exposed multiple times in this way, the polymer layer 12 is developed by using the solvent in order to form the then laterally structured microfibril structure 13 .
  • the mask remains on the security feature, for example in order to form holograms or other optically variable features in certain areas.
  • a metal layer that exists in certain areas is preferably used as a mask for this purpose. Areas of the mask are preferably removed from the polymer layer after exposure.
  • the mask remaining on the substrate is particularly preferably transparent in the visible spectral range (ie not visible in the end product or at least inconspicuous) and opaque or at least semitransparent in the UV range.
  • the mask consists, for example, of a 50 nm thick layer of TiO 2 . This is largely transparent in the visible range, but shows only very low transmission in the UV range at wavelengths around or below 300 nm.
  • the mask can be separate from the film web.
  • the tilt angle-dependent color effect is also caused by interference when illuminated - possibly even without a reflector layer 10.
  • the microfibrils are formed, with their distance from one another may deviate from the original distance of the antinodes during exposure due to the development process. In this way it is possible that with exposure wavelengths in the UV range after development of the polymer layer the Bragg maxima are in the visible range of the spectrum when observed.
  • An alternative to wide-field exposure is exposure with a rasterized light beam 20 (e.g., from a laser or LED) having the required coherence length and swept across the polymer layer 12 according to a scan pattern 22 .
  • a rasterized light beam 20 e.g., from a laser or LED
  • the wavelength of the laser radiation can be designed differently at the individual locations in order to produce a lateral structuring of the polymer layer 12 with regard to the color effect.
  • additional structuring options allow e.g. B. to provide the reflector layer 10 with a pixel structure for the motif, which is related to the brightness, and by the additional structuring (masks or grid) to provide each pixel with its color-adjusting sub-pixels.
  • the laterally structured reflector layer 10 below the polymer layer 12 can be present both over the entire surface, as in the Figures 2 and 3 is shown, as well as partially.
  • 4 shows a pixelation of the reflector layer 10 consisting of reflector pixels 24 with high reflection and reflector pixels 26 with low reflection or without reflection.
  • the standing wave then only forms at the pixels at which the reflector layer 10 has sufficient reflection, or the intensity depends on the pixel reflectance and/or area coverage. In this way, a colored, rasterized pixel image can be generated.
  • an additional screening of the polymer layer 12 can also result from the exposure, so that this polymer layer has pixels 28 and 30, such as figure 5 shows in which the color impression differs after developing with the solvent. This makes a colorful pixel image possible. Of course, more than two different pixel types are also possible.
  • the principle of Figures 4 and 5 can of course also be combined, like 6 shows.
  • the pixel grid of reflector pixels and polymer layer pixels does not necessarily have to be identical, even if this can be advantageous.
  • a very high pixel density in the reflector layer allows the brightness of an individual color within a color pixel, which is formed by a polymer layer pixel, to be adjusted in a location-dependent manner.
  • the brightness for each color point can be freely selected to create a motif.
  • both the polymer layer 12 and the reflector layer 10 have a pixel structure, with the pixel density in the reflector layer 10 being at least twice the pixel density of the polymer layer 12 .
  • the fact that the reflector layer 10 is responsible for the intensity at one point and the polymer layer 12 for the color can be used particularly favorably.
  • each plateau 32, 34, 36 produces a different color intensity with an otherwise unchanged polymer layer 12.
  • This approach is used in particular with a non-structured polymer layer 12, as is the case, for example, with the wide-field exposure 16 according to Figure 3A is obtained, in order to distribute different color intensities laterally structured.
  • the reflector layer 10 has a relief structure on its side facing the polymer layer 12 .
  • the relief structure is designed in such a way that it reflects a three-dimensional optical impression, for example. Due to the exposure to this reflector layer 10, a corresponding object beam and overall a polymer containing microfibrils then arises, with the microfibrils functioning similarly to the Bragg planes in a volume hologram which also offers a three-dimensional representation from a wide variety of viewing angles.
  • Object beam and reference beam are irradiated as separate beams 42, 44 capable of interference.
  • the object beam 44 does not come from the back reflection of the reference beam, as was the case with variant 1. It is therefore not a reflector layer intended. Rather, the object beam 44 is modulated by an object 46 as in the case of a holographic recording. Alternatively, the modulation is generated by means of optical beam shaping elements (eg DMD or the like).
  • the two (or more) beams can be irradiated from the same or from opposite sides of the polymer layer 12 .
  • Full or at least partial illumination can also be provided by a self-illuminating display or a self-illuminating screen.
  • the display or screen illuminates the entire surface or the polymer in a pattern.
  • the exposure can alternatively also be carried out by lines arranged in a row LEDs are done with the line aligned parallel to the axis of rotation of a roller.
  • the polymer is illuminated directly by the LEDs or by imaging optics between the LEDs and the polymer.
  • the microfibrillation method has the advantage that light can be modulated on micrometer length scales by using DOE/SLM/DMD in combination with LEDs or lasers as the light source. Thus, resolutions of up to 25,000 DPI can be achieved with the microfibrillation process. At the same time, the flexibility of the optical elements allows a high degree of customization. Since the microfibrils that represent the Bragg planes are embedded in the polymer film, no imprints or molds can be made for counterfeiting purposes, which leads to a high level of protection against counterfeiting.
  • Irradiation with light of different wavelengths produces different structural colors. It is thus possible to cover a large color space through additive color mixing of RGB pixels.
  • the exposures could be generated sequentially or simultaneously by a different colored display of the display, monochromatic lasers or LEDs with different emission wavelengths.
  • the polymer film could, for example, be successively covered with different masks 18 and exposed through them with monochromatic radiation ( 3D ).
  • the reflective layer below the polymer can be present both over the entire surface and over part of the surface. If the reflective layer covers the entire surface, the color could be screened pixel by pixel simply by modulating the light source. If the reflective layer is gridded, standing waves only form in the pixels below which there is a reflective layer. It is thus possible to create a grid.
  • the embossed structure can consist of all possible relief structures such as micromirrors, Fresnel-like micromirrors, blazed gratings, moth-eye structures, sub-wavelength gratings, sinusoidal gratings, Manhattan gratings or Aztec structures. Structuring by applying a dark color, for example, is also possible, with the color being applied to the side of the relief structure that faces the illumination. These and other structures can also be arranged next to one another or superimposed. It is thus possible, for example, to suppress the reflection in certain areas by means of moth-eye structures arranged in certain areas or other light-absorbing structures and not to produce any microfibrils in the polymer layer in these areas.
  • the Reliefmaster can either
  • the use of the pixel image is also advantageous for security features with micro-imaging elements such as micro-lenses, where the pixel image can function as a microstructure image in the focal plane of the micro-imaging elements.
  • the use of the pixel image also makes sense for security features with micro-imaging elements such as micro-lenses. This would enable an upgrading of microlens features that already exist in the banknote market, since these have only been monochromatic to date.
  • volume holograms that are produced using the microfibrillation process are referred to as microfibrillation holograms.
  • a photoresist can be replaced by the polymer film, e.g. commercially available polymers to which small amounts of photoinitiators have been added.
  • the production process is otherwise identical to the usual production of volume holograms by exposure to interfering rays.
  • the hologram can be recorded in all the forms already described, such as B. as a reflection, transmission or Denisjuk hologram.
  • the hologram can also be produced without using a physical object. So the object beam can be generated by using an SLM or DMD (reflection hologram only).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Finance (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Credit Cards Or The Like (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)

Description

Die Erfindung betrifft ein Herstellverfahren für ein Sicherheitselement, das ein buntes, optisch variables Motiv erzeugt. Die Erfindung betrifft weiter solches Sicherheitselement.The invention relates to a manufacturing method for a security element that produces a colorful, optically variable motif. The invention further relates to such a security element.

Im Stand der Technik sind fotosensitive Schichten, die ihre physikalischen und chemischen Eigenschaften ändern, wenn sie der Bestrahlung durch Licht ausgesetzt sind, bekannt. Sie werden vor allem für die Herstellung von Mikro- und Nanostrukturen eingesetzt. Die Strukturen werden mithilfe von UV-Lacken oder sogenannten Photoresists erzeugt, also letztlich mit Methoden der Mikrolithographie.Photosensitive layers which change their physical and chemical properties when exposed to light irradiation are known in the art. They are mainly used for the production of micro and nanostructures. The structures are created with the help of UV lacquers or so-called photoresists, i.e. ultimately with methods of microlithography.

Eine Möglichkeit, Schichten mit irisierenden Farben herzustellen, sind sogenannte Color-Shift-Schichtaufbauten. Sie können zwar über ein Bedampfungsverfahren vollflächig auf ein Substrat aufgebracht werden, mehrfarbige Strukturen erfordern jedoch viele Arbeitsgänge und sind damit aufwändig herzustellen. Insbesondere sind Registerhaltigkeitsprobleme bei einzelnen Arbeitsschritten zu beachten.One way of producing layers with iridescent colors are so-called color-shift layer structures. Although they can be applied to the entire surface of a substrate using a vapor deposition process, multicolored structures require many work steps and are therefore expensive to produce. In particular, registration problems in individual work steps must be taken into account.

Ebenfalls bekannt sind Volumenhologramme, die durch Lichtbeugung und Interferenz beim Betrachter ein dreidimensional wirkendes Bild erzeugen. Volumenhologramme speichern sowohl Intensität als auch Phasen einfallender Lichtstrahlen in einem lichtsensitiven Medium. Die großtechnische Herstellung von Volumenhologrammen ist kompliziert und teuer, da für die Belichtung eine aufwändige Apparatur erforderlich ist und in der Regel sehr teure Photoresists zur Herstellung verwendet werden müssen.Volume holograms are also known, which produce a three-dimensional image for the viewer through light diffraction and interference. Volume holograms store both the intensity and phases of incident light rays in a light-sensitive medium. The large-scale production of volume holograms is complicated and expensive, since complex equipment is required for exposure and, as a rule, very expensive photoresists have to be used for production.

Aus der Publikation M. Ito et al., "Structural colour using organized microfibrillation in glassy polymer films", Nature, 20. Juni 2019, Vol. 570, Seiten 363-367 , ist es bekannt, ein Polymer durch stehende Lichtwellen zu vernetzen und somit eine Struktur aus Mikrofibrillen zu bilden, die ein buntes Motiv erzeugen.From the publication M. Ito et al., "Structural color using organized microfibrillation in glassy polymer films", Nature, 20 June 2019, Vol. 570, pages 363-367 , it is known to crosslink a polymer by standing light waves, thus forming a structure of microfibrils that create a colorful motif.

Das Dokument GB 2452066 A offenbart ein:
Herstellungsverfahren für ein Sicherheitselement zur Herstellung von Wertdokumenten, wobei das Herstellungsverfahren folgende Schritte aufweist

  • Bereitstellen eines Polymerfilms
  • Bilden einer Struktur in dem Polymerfilm durch Einwirken von stehenden Lichtwellen durch Interferenz einer Referenzstrahlung mit einer modulierten Objektstrahlung zu einer ortsabhängigen Vernetzung im Polymerfilm und Entwickeln, so dass der Polymerfilm in Draufsicht auf das Sicherheitselement ein optisch variables Motiv erzeugt.
The document GB 2452066A reveals a:
Production method for a security element for the production of documents of value, the production method having the following steps
  • providing a polymer film
  • Forming a structure in the polymer film by the action of standing light waves by interference of a reference radiation with a modulated object radiation to a location-dependent crosslinking in the polymer film and development, so that the polymer film produces an optically variable motif in plan view of the security element.

Der Erfindung liegt die Aufgabe zugrunde, ein Herstellungsverfahren zur einfachen Produktion eines Sicherheitselements, das ein buntes, optisch variables Motiv erzeugt, sowie ein solches Sicherheitselement anzugeben.The invention is based on the object of specifying a production method for the simple production of a security element that produces a colorful, optically variable motif, and such a security element.

Die Erfindung ist in den unabhängigen Ansprüchen definiert; die abhängigen Ansprüche betreffen bevorzugte Weiterbildungen.The invention is defined in the independent claims; the dependent claims relate to preferred developments.

Das optisch variable Sicherheitselement zur Herstellung von Wertdokumenten, wie Banknoten, Schecks oder dergleichen weist einen Polymerfilm und optional eine unter dem Polymerfilm angeordnete Reflektorschicht auf. Im Polymerfilm sind lateral strukturierte Mikrofibrillen gebildet, die dem Polymerfilm einen Farbeffekt verleihen, der als ein buntes Motiv erscheint. Die Mikrofibrillen sind dabei gemäß dem Prinzip erzeugt, wie es im genannten Nature-Artikel beschrieben ist. Sie sind folglich gemäß stehender Lichtwellen organisiert. Diese stammen z.B. aus der Interferenz kohärenter Lichtstrahlen, die zu Orten konstruktiver Interferenz im Polymerfilm führen und so eine (i.d.R. lokal variierende) Kreuzvernetzung im Polymer erzeugen, die dann mittels geeigneter Lösungsmittel freigelegt wird.The optically variable security element for producing documents of value, such as banknotes, checks or the like, has a polymer film and optionally a reflector layer arranged under the polymer film. Laterally structured microfibrils are formed in the polymer film, which give the polymer film a color effect that appears as a colorful motif. The microfibrils are produced according to the principle described in the Nature article mentioned. They are consequently organized according to standing light waves. These originate, for example, from the interference of coherent light beams, which lead to places of constructive interference in the polymer film and thus produce a (usually locally varying) cross-linking in the polymer, which is then exposed using suitable solvents.

Dieses, in Nature beschriebene Mikrofibrillierungsverfahren wird in einer Variante 1 mit einer Reflektorschicht ausgeführt, die lateral strukturiert ist hinsichtlich Reflexionsgrad und/oder Profilierung, so dass dadurch bei Belichtung im Auflicht über der Reflektorschicht die Interferenz zwischen einfallender und rückreflektierter Strahlung und so letztlich die Mikrofibrillenstruktur für das bunte Motiv entsteht. Die Reflektorschicht sorgt für die Vernetzung derart, dass die Mikrofibrillen die laterale Struktur haben, die zum bunten Motiv führt. Die Reflektorschicht kann z. B. als metallische Spiegelschicht ausgebildet sein und nach dem Mikrofibrillierungsverfahren auch entfernt werden. In einer Variante 2 wird im Polymerfilm Interferenz zwischen zwei einfallenden Strahlen erzeugt. Dann benötigt man keine Reflektorschicht und kann z.B. ein Volumenhologramm direkt in den Polymerfilm einschreiben.This microfibrillation method described in Nature is carried out in a variant 1 with a reflector layer which is structured laterally with regard to the degree of reflection and/or profiling, so that when exposed to light in incident light above the reflector layer, the interference between incident and reflected radiation and ultimately the microfibril structure for the colorful motif is created. The reflector layer ensures the crosslinking in such a way that the microfibrils have the lateral structure that leads to the colorful motif. The reflector layer can, for. B. be formed as a metallic mirror layer and also be removed after the microfibrillation process. In a variant 2, interference between two incident beams is generated in the polymer film. Then you don't need a reflector layer and you can write a volume hologram directly into the polymer film, for example.

Der Polymerfilm ist somit durch Mikrofibrillation hinsichtlich eines Farbeffektes, insbesondere als Volumenhologramm, ausgestaltet und weist eine schwammartige Struktur auf, in der einzelne Ebenen und/ oder Löcher periodisch angeordnet sind. Hierdurch werden Strukturfarben erzeugt.The polymer film is thus designed by microfibrillation with regard to a color effect, in particular as a volume hologram, and has a spongy structure in which individual planes and/or holes are arranged periodically. This creates structural colors.

Der Polymerfilm wird durch Licht, das in Form stehender Wellen aufgebracht wird, quasi "belichtet", wobei in Variante 1 die laterale Strukturierung der Reflektorschicht auch die Belichtung strukturiert, und nachfolgend durch lösungsmittelbasiertes Entfernen der nicht vernetzten Bestandteile entwickelt. Dadurch dass die lateral strukturierte Reflektorschicht für den Belichtungsschritt wirkt, ist das Motiv sehr einfach herzustellen.The polymer film is quasi "exposed" by light that is applied in the form of standing waves, with variant 1 also structuring the lateral structuring of the reflector layer and the exposure, and subsequently developed by solvent-based removal of the non-crosslinked components. Because the laterally structured reflector layer is effective for the exposure step, the motif is very easy to produce.

Besonders vorteilhaft und umweltschonend ist die Verwendung von wasserlöslichen Polymeren, wie beispielsweise PVA, PA, PVP, PAA oder PAM. Bei diesen können die nichtvernetzten Bereiche nur mittels Wasser und somit ohne Lösungsmittel entfernt werden.The use of water-soluble polymers such as PVA, PA, PVP, PAA or PAM is particularly advantageous and environmentally friendly. With these, the non-crosslinked areas can only be removed with water and thus without a solvent.

In Ausführungsformen ist die Reflektorschicht lateral reflexionsgradmoduliert, insbesondere pixeliert. Dies kann beispielsweise in Form einer Pixelstruktur erfolgen. Zusätzlich/ alternativ kann auch der Abstand der Reflektorschicht zur Polymerschicht lateral moduliert sein. Der Reflexionsgrad kann zum Beispiel über die Dicke einer metallischen Schicht variiert werden, die zwischen einer maximal reflektierenden Schichtdicke und Null schwanken kann. Als Materialien für die Reflektorschicht kommen bevorzugt Metalle wie Al, Cu, Cr, Ni, Au, Ag etc. sowie deren Legierungen infrage, ebenso wie ZnS, SiO2, MgF2 oder aus dem Stand der Technik bekannte Dünnfilm-Interferenzschicht-Systeme. Auch spezielle Dielektrika oder Schichtsysteme aus den genannten Materialien sind möglich.In embodiments, the reflector layer is laterally modulated in terms of the degree of reflection, in particular pixelated. This can be done, for example, in the form of a pixel structure. In addition/alternatively, the distance between the reflector layer and the polymer layer can also be laterally modulated. For example, the degree of reflection can be varied over the thickness of a metallic layer, which can vary between a maximum reflective layer thickness and zero. Metals such as Al, Cu, Cr, Ni, Au, Ag etc. and their alloys are preferred as materials for the reflector layer, as well as ZnS, SiO2, MgF2 or thin-film interference layer systems known from the prior art. Special dielectrics or layer systems made from the materials mentioned are also possible.

Die Reflektorschicht erzeugt bei der Mikrofibrillierungsbildung eine Intensitätsmodulation eines dargestellten Motivs im Polymer, die wiederum während des Entwicklungsprozesses zur Bildung lateral strukturierter Mikrofibrillen führt. Diese können als lateral strukturierte Braggebenen betrachtet werden, die eine Farbkomponente bewirken. Insbesondere kann dann auf eine lateral variierende Strukturierung des Polymerfilms verzichtet werden. Da eine Reflektorschicht relativ einfach hergestellt und lateral strukturiert werden kann, haben diese Ausführungsformen besondere Vorteile hinsichtlich einfacher Herstellbarkeit. Dennoch sind sie schwer nachzuahmen oder gar zu fälschen.During microfibrillation formation, the reflector layer generates an intensity modulation of a displayed motif in the polymer, which in turn leads to the formation of laterally structured microfibrils during the development process. These can be viewed as laterally structured Bragg planes that cause a color component. In particular, a laterally varying structuring of the polymer film can then be dispensed with. Since a reflector layer can be produced relatively easily and structured laterally, these embodiments have particular advantages in terms of simple manufacturability. Nevertheless, they are difficult to imitate or even counterfeit.

Natürlich ist es als Alternative oder als zusätzliche Weiterbildung gleichermaßen möglich, den Polymerfilm hinsichtlich des Farbeffektes lateral zu strukturieren. Dies kann z. B. durch entsprechende Belichtung mit stehenden Lichtwellen erreicht werden, die lateral, spektral und/oder in der Intensität unterschiedlich sind.Of course, as an alternative or as an additional development, it is equally possible to structure the polymer film laterally with regard to the color effect. This can e.g. B. be achieved by appropriate exposure to standing light waves that are lateral, spectral and / or different in intensity.

Die Mikrofibrillenstruktur stellt in Ausführungsformen eine Art Volumenhologramm bereit. Dazu wird in Ausführungsformen der Polymerfilm belichtet, wie dies für Reflexions-, Transmissions- oder Denisjuk-Hologramme bekannt ist. In anderen Ausführungsformen wird die Reflektorschicht als Reliefstruktur ausgebildet, welche ein entsprechendes Relief zum Darstellen eines Motivs aufweist, so dass beim Belichten das von dieser lateral strukturierten Oberfläche reflektierte Licht im Sinne eines Objektstrahls mit dem einfallenden Strahl, der als Referenz dient, in der Polymerschicht zur Überlagerung und damit Interferenz kommt. Das Oberflächenrelief sorgt für eine Phasenmodulation des von der Reflexionsschicht reflektierten Lichts, so dass diese Reliefstruktur sich auf den Farbeffekt auswirkt.The microfibril structure provides a type of volume hologram in embodiments. For this purpose, in embodiments, the polymer film is exposed, as is known for reflection, transmission or Denisjuk holograms. In other embodiments, the reflector layer is designed as a relief structure, which has a corresponding relief for representing a motif, so that during exposure, the light reflected from this laterally structured surface in the sense of an object beam is superimposed in the polymer layer and thus interferes with the incident beam, which serves as a reference. The surface relief ensures a phase modulation of the light reflected by the reflective layer, so that this relief structure affects the color effect.

Die Reliefstruktur kann insbesondere einen lateral variierenden Abstand zwischen Polymerschicht und Reflektorschicht bewirken. Sie kann mit den Methoden der Mikro- und Nanolithographie hergestellt und durch diverse Prägeverfahren übertragen oder vervielfacht werden. Insbesondere kann die Reliefstruktur aufweisen: Plateaus in verschiedenen, den Farbeffekt beeinflussenden Höhenniveaus unterschiedlichen Abstandes zur Polymerstruktur, Mikrospiegel, eine geblazede Gitterstruktur, eine Fresnelstruktur, eine Mottenaugenstruktur, ein Subwellenlängengitter mit scharfen oder abgerundeten Kanten, eine Sinusgitterstruktur, eine Säulenstruktur oder eine Stufengitterstruktur mit schrägen oder senkrechten Flanken. In nebeneinander liegenden Bereichen können auch verschiedene dieser Gitterstrukturen zur Anwendung kommen. Die genannten Strukturen können sich auch überlagern, vor allem, wenn die mittleren Perioden oder Quasiperioden bzw. die Einzelstrukturgrößen unterschiedliche Größenordnungen aufweisen. Ganz allgemein kann die Reliefstruktur als Freiformfläche ausgeführt sein. Beispielsweise können banknotentypische Motive dargestellt werden, wobei auch dreidimensionale Motive möglich sind. Die optisch variable Wirkung ist bei geeigneter Beleuchtung auch ohne lateral strukturierte Reflexionsschicht beobachtbar.The relief structure can in particular bring about a laterally varying distance between the polymer layer and the reflector layer. It can be produced using micro- and nanolithography methods and transferred or duplicated using various embossing processes. In particular, the relief structure can have: plateaus in different height levels that affect the color effect and are at different distances from the polymer structure, micromirrors, a blazed grating structure, a Fresnel structure, a moth's eye structure, a sub-wavelength grating with sharp or rounded edges, a sine grating structure, a columnar structure or a stepped grating structure with sloping or vertical flanks. Various of these lattice structures can also be used in adjacent areas. The structures mentioned can also overlap, especially if the mean periods or quasi-periods or the individual structure sizes have different orders of magnitude. In very general terms, the relief structure can be designed as a free-form surface. For example, motifs typical of banknotes can be displayed, with three-dimensional motifs also being possible. The optically variable effect is at suitable illumination can also be observed without a laterally structured reflection layer.

In weiteren Ausführungsformen erzeugt die Mikrofibrillenstruktur ein mehrfarbiges Pixelbild, wobei eine Pixelstruktur, die das Pixelbild bewirkt, in der Reflektorschicht (soweit nicht entfernt), der Polymerschicht oder beiden ausgebildet ist.In other embodiments, the microfibril structure creates a multicolored pixilated image, wherein a pixel structure that causes the pixelated image is formed in the reflector layer (if not removed), the polymer layer, or both.

In einer weiteren Ausführungsform erfolgt eine Strukturierung der Mikrofibrillenstruktur senkrecht zur Oberfläche des Polymerfilms. Dabei wird die schwammartige Struktur des Polymerfilms, in der einzelne Schichten und/ oder Löcher angeordnet sind, derart erzeugt, dass die stehenden Wellen, mit denen der Polymerfilm belichtet wird, so aufgebracht werden, dass sich die Mikrofibrillenstruktur nicht periodisch ausbildet, wenn der Polymerfilm in Kontakt mit dem Lösungsmittel kommt. Dies kann beispielsweise durch die Bestrahlung der Polymerschicht mit stehenden Wellen unterschiedlicher Wellenlänge realisiert werden.In a further embodiment, the microfibril structure is structured perpendicularly to the surface of the polymer film. The spongy structure of the polymer film, in which individual layers and/or holes are arranged, is created in such a way that the standing waves with which the polymer film is exposed are applied in such a way that the microfibril structure does not form periodically when the polymer film comes into contact with the solvent. This can be realized, for example, by irradiating the polymer layer with standing waves of different wavelengths.

In einer ersten Variante dieser Ausführungsform werden gezielt Störstellen in die Mikrofibrillenstruktur eingebaut. Als Störstellen werden beispielsweise einzelne Schichten in der Mikrofibrillenstruktur bezeichnet, die durch die Bestrahlung mit den stehenden Wellen und das anschließende lösungsmittelbasierte Entfernen nicht vernetzter Bestandteile im Polymerfilm gezielt dicker oder dünner gestaltet werden, als die übrigen Schichten der Mikrofibrillenstruktur. Dadurch entsteht im Reflexionsspektrum innerhalb des hochreflektierenden Bereichs (Bandlücke) ein Minimum/Maximum und der Farbeindruck verändert sich im Vergleich zu einer periodischen Ausbildung der Mikrofibrillenstruktur.In a first variant of this embodiment, imperfections are built into the microfibril structure in a targeted manner. Individual layers in the microfibril structure are referred to as defects, for example, which are made thicker or thinner in a targeted manner than the other layers of the microfibril structure by irradiation with the standing waves and the subsequent solvent-based removal of non-crosslinked components in the polymer film. This creates a minimum/maximum in the reflection spectrum within the highly reflective range (band gap) and the color impression changes compared to a periodic development of the microfibril structure.

In einer zweiten Variante dieser Ausführungsform werden die Schichten der Mikrofibrillenstruktur hinsichtlich ihrer Dicke durch die Bestrahlung der Polymerstruktur mit den stehenden Wellen derart ausgebildet, dass die Dicke der Schichten kontinuierlich oder graduell ansteigt, je weiter die Schichten vom Substrat entfernt liegen. Dies erzeugt eine Verbreiterung des Reflexionsspektrums. Der Anstieg der Dicke der Schichten kann beispielsweise dadurch erzielt werden, dass unterschiedliche Photoinitiatoren verwendet werden, je weiter die Schichten vom Substrat wegliegen. Photoinitiatoren sind chemische Verbindungen, die nach Absorption von Licht zerfallen und so reaktive Teilchen bilden, die eine Reaktion starten können. Die Photoinitiatoren werden mit Lichtquellen unterschiedlicher Wellenlänge belichtet und dadurch entstehen in den unterschiedlichen Schichten unterschiedliche Schichtdicken, z.B. kann für die Schichten, die näher am Substrat liegen, ein Photoinitiator A, für die Schichten, die weiter vom Substrat wegliegen, ein anderer Photoinitiator B und für die Schichten, die am weitesten vom Substrat wegliegen ein anderer Photoinitiator C eingesetzt werden. Photoinitiatoren sind chemische Verbindungen, die nach Absorption von Licht zerfallen und so reaktive Teilchen bilden, die eine Reaktion starten können. Die Photoinitiatoren werden mit Lichtquellen unterschiedlicher Wellenlänge belichtet und dadurch entstehen in den unterschiedlichen Schichten unterschiedliche Schichtdicken.In a second variant of this embodiment, the thickness of the layers of the microfibril structure is formed by irradiating the polymer structure with the standing waves in such a way that the thickness of the layers increases continuously or gradually the further away the layers are from the substrate. This creates a broadening of the reflectance spectrum. The increase in the thickness of the layers can be achieved, for example, by using different photoinitiators the further away the layers are from the substrate. Photoinitiators are chemical compounds that break down after absorbing light, forming reactive particles that can start a reaction. The photoinitiators are exposed to light sources of different wavelengths, which results in different layer thicknesses in the different layers, e.g. one photoinitiator A can be used for the layers that are closer to the substrate, another photoinitiator B for the layers that are further away from the substrate, and another photoinitiator C for the layers that are furthest away from the substrate. Photoinitiators are chemical compounds that break down after absorbing light, forming reactive particles that can start a reaction. The photoinitiators are exposed to light sources of different wavelengths, resulting in different layer thicknesses in the different layers.

In Abwandlungen werden unterschiedliche Polymermaterialien für die einzelnen Polymerschichten und der gleiche Photoinitiator verwendet. Unterschiedliche Polymere erzeugen unterschiedliche Bandlücken, weil die Schichtdicken und die Brechungsindizes je nach Polymer variieren.In modifications, different polymer materials are used for the individual polymer layers and the same photoinitiator. Different polymers produce different band gaps because layer thicknesses and refractive indices vary by polymer.

In Ausführungsformen werden mehrere Polymerfilme unterschiedlicher Polymere in mehreren Arbeitsgängen aufgebracht, und die Belichtung und Entwicklung wird in einem Arbeitsgang ausgeführt. Unter Entwicklung ist hier das lösungsmittelbasierte Entfernen der nicht vernetzten Bestandteile der Polymere zu verstehen. Unterschiedliche Entwicklermischungen, wie beispielsweise Konzentrationen von Essigsäure in Wasser oder Mischungen von Essigsäure in unterschiedlichen Lösungsmitteln, entwickeln die unterschiedlichen Schichten der Mikrofibrillenstruktur im Polymerfilm mit unterschiedlichen Geschwindigkeiten. In Abwandlungen wird die beschriebene Schichtdickenvariation erzielt, indem die Entwicklungsdauer, also die Dauer, die einzelne Schichten zum lösungsmittelbasierten Entfernen der nicht vernetzten Bestandteile der Polymere benötigen, für die Schichten unterschiedlich eingestellt wird, so dass z.B. obere Schichten bereits voll entwickelt sind und untere noch nicht, oder nur teilweise. Dabei kann durchgängig eine Art von Polymer und Photoinitiator verwendet werden, und die Belichtung und Entwicklung wird in einem Arbeitsgang durchgeführt.In embodiments, multiple polymer films of different polymers are applied in multiple passes, and exposure and development is performed in one pass. Development here means the solvent-based removal of the non-crosslinked components of the polymers. Different developer mixtures, such as concentrations of acetic acid in water or mixtures of acetic acid in different solvents, develop the different layers of the microfibril structure in the polymer film at different rates. In modifications, the layer thickness variation described is achieved by setting the development time, i.e. the time that individual layers require for the solvent-based removal of the non-crosslinked components of the polymers, differently for the layers, so that e.g. upper layers are already fully developed and lower ones are not yet, or only partially. One type of polymer and photoinitiator can be used consistently, and exposure and development are performed in one operation.

Diese Verwendung unterschiedlicher Entwicklermischungen kann nicht nur für eine Strukturierung der Mikrofibrillenstruktur senkrecht zur Oberfläche des Polymerfilms genutzt werden, sondern auch für eine laterale Strukturierung. Es können unterschiedliche Entwicklermischungen lateral nebeneinander auf dem Polymerfilm eingesetzt werden, um lateral unterschiedliche Entwicklungsgrade und damit unterschiedliche strukturelle Farben zu erzielen.This use of different developer mixtures can be used not only for structuring the microfibril structure perpendicular to the surface of the polymer film, but also for lateral structuring. Different developer mixtures can be used laterally next to each other on the polymer film in order to achieve different degrees of development laterally and thus different structural colors.

In Ausführungsformen werden die Entwicklermischungen lateral zeitversetzt auf den Polymerfilm aufgebracht. Dies kann beispielsweise in zwei Arbeitsschritten erfolgen. Zuerst wird eine Entwicklermischung auf einer ersten Stelle auf den Polymerfilm aufgebracht. Dann wird die gleiche Entwicklermischung auch auf eine zweite Stelle auf den Polymerfilm aufgebracht. An der ersten Stelle auf dem Polymerfilm hat dadurch die Entwicklermischung mehr Zeit mit dem Polymerfilm zu wechselwirken als an der zweiten Stelle, und die Entwicklung ist an der ersten Stelle weiter fortgeschritten, wodurch an lateral unterschiedlichen Stellen unterschiedliche strukturelle Farben erzeugt werden.In embodiments, the developer mixtures are applied to the polymer film laterally with a time offset. This can be done in two steps, for example. First, a developer mixture is applied to the polymeric film at a first location. Then the same developer mixture is also applied to a second location on the polymer film. At the In the first location on the polymeric film, this gives the developer mixture more time to interact with the polymeric film than in the second location, and development is more advanced at the first location, producing different structural colors at laterally different locations.

Gemäß einer weiteren Ausführungsform ist die Polymerschicht elastisch oder plastisch verformbar ausgeführt. Hierdurch kann durch mechanischen Druck auf einen Teil oder die gesamte Oberfläche der Polymerschicht durch eine Veränderung der Schichtdicke der Polymerschicht eine reversible oder irreversible Änderung der Farbe der Polymerschicht erzeugt werden. Die Farbe bzw. die reflektierte (oder transmittierte) Wellenlänge der Polymerschicht wird durch die Änderung ihrer Schichtdicke verändert, je dünner die Schicht, desto mehr verschiebt sich der Farbeindruck ins Bläuliche. Weist die Polymerschicht beispielsweise die Farbe Rot auf und wird mit einem Finger mechanischer Druck auf sie ausgeübt, dann wird die Polymerschicht in diesem Bereich zusammengedrückt, die Schichtdicke wird kleiner und die Strukturfarbe kann sich dadurch beispielsweise von Rot über Gelb und Grün bis zu Blau ändern.According to a further embodiment, the polymer layer is designed to be elastically or plastically deformable. As a result, a reversible or irreversible change in the color of the polymer layer can be produced by mechanical pressure on a part or the entire surface of the polymer layer by changing the layer thickness of the polymer layer. The color or the reflected (or transmitted) wavelength of the polymer layer is changed by changing its layer thickness, the thinner the layer, the more the color impression shifts towards the bluish. For example, if the polymer layer is red and mechanical pressure is applied to it with a finger, the polymer layer is compressed in this area, the layer thickness decreases and the structural color can change from red to yellow and green to blue, for example.

Ein plastisches und damit dauerhaftes Verformen der Polymerschicht erfolgt beispielsweise mit einem Prägeverfahren, bevorzugt mittels Stichtiefdruck.A plastic and thus permanent deformation of the polymer layer takes place, for example, with an embossing process, preferably by means of intaglio printing.

Die schwammartige Struktur des Polymerfilms besteht aus Mikrofibrillen und Hohlräumen. Sind diese Hohlräume mindestens teilweise offenporig, können sie gemäß einer weiteren Ausführungsform mit einem flüssigen oder gasförmigen Medium befüllt werden. Wird beispielsweise ein Teil der Hohlräume mit Wasser befüllt und verbleibt in einem anderen Teil Luft, weisen Regionen im Bereich der befüllten Hohlräume unterschiedliche Farben auf, da Luft einen Brechungsindex von 1 und Wasser von 1,33 hat. Es ist auch möglich, dass die Polymerschicht transparent wird, wenn der Brechungsindex der Mikrofibrillen und des Mediums in den Hohlräumen gleich groß ist.The spongy structure of the polymer film consists of microfibrils and cavities. If these cavities are at least partially open-pored, they can be filled with a liquid or gaseous medium according to a further embodiment. For example, if part of the cavities is filled with water and air remains in another part, regions in the area of the filled cavities show different colors, since air has an index of refraction of 1 and water of 1.33. It is also possible for the polymer layer to become transparent if the refractive index of the microfibrils and the medium in the cavities are the same.

Gemäß einer weiteren bevorzugten Ausführungsform kann die Reflektorschicht auf der Polymerschicht verbleiben. Alternativ kann die Polymerschicht auf der der Betrachtung abgewandten Oberfläche mit einer dunklen oder schwarzen Farbe beschichtet werden. Alternativ kann die Polymerschicht durch Zugabe von Ruß oder Carbon Black modifiziert werden, um die Interferenzfarben optimal zur Geltung zu bringen. Zu einer weiteren Erhöhung der Farbintensität werden transparente hochbrechende Partikel, zum Beispiel aus TiO2, dem Polymer zugegeben, damit die Brechzahldifferenz zwischen den fibrillierten Schichten und durchgehenden Schichten weiter gesteigert wird. Auch ein Unterdrücken mit einer diffus streuenden Farbe führt zu unterschiedlichen, insbesondere komplementären Farben bei spekularer bzw. nichtspekularer Betrachtung.According to a further preferred embodiment, the reflector layer can remain on the polymer layer. Alternatively, the polymer layer can be coated with a dark or black color on the surface that is not viewed. Alternatively, the polymer layer can be modified by adding carbon black or carbon black to bring out the interference colors to their best advantage. To further increase the color intensity, transparent, high-refractive particles, for example made of TiO2, are added to the polymer so that the difference in refractive index between the fibrillated layers and continuous layers is further increased. Suppression with a diffusely scattering color also leads to different, in particular complementary, colors when viewed specularly or non-specularly.

Die zum Sicherheitselement genannten Aspekte gelten natürlich gleichermaßen auch für das Herstellverfahren, das hinsichtlich der Erzeugung der Mikrofibrillen dem aus dem genannten Nature-Artikel genannten Prinzip folgt. Insbesondere ist ein Sicherheitselement vorgesehen, das mit einem der genannten Herstellverfahren hergestellt oder erhältlich ist.Of course, the aspects mentioned for the security element also apply equally to the production process, which follows the principle mentioned in the Nature article with regard to the production of the microfibrils. In particular, a security element is provided which is produced or obtainable using one of the production methods mentioned.

Gemäß einer weiteren bevorzugten Ausführungsform wird die erfindungsgemäße Polymerschicht in einem nachfolgenden Prozessschritt ausgehärtet. Dies hat den besonderen Vorteil, dass die Beständigkeit der Polymerschicht beispielsweise gegen mechanischen Abrieb, nachträglichen mechanischen Druck, Lösemittel oder andere Umwelteinflüsse erhöht wird. Das Aushärten erfolgt besonders bevorzugt durch Bestrahlen der Polymerschicht mit Ultravioletter-Strahlung. Eine weitere Erhöhung der Beständigkeit der Polymerschicht und der auf der Polymerschicht verbleibenden Reflektorschicht ergibt sich durch Einbetten der Polymerschicht zwischen Schutzschichten und/ oder Folien.According to a further preferred embodiment, the polymer layer according to the invention is cured in a subsequent process step. This has the particular advantage that the resistance of the polymer layer to, for example, mechanical abrasion, subsequent mechanical pressure, solvents or other environmental influences is increased. The hardening is particularly preferably carried out by irradiating the polymer layer with ultraviolet radiation. A further increase in the durability of the polymer layer and the reflector layer remaining on the polymer layer results from embedding the polymer layer between protective layers and/or films.

Die Erfindung bezieht sich auch auf ein Wertdokument mit einem Sicherheitselement der genannten Art. In einer Ausgestaltung ist das Wertdokument beispielsweise als Banknote oder Scheck ausgeführt.The invention also relates to a document of value with a security element of the type mentioned. In one embodiment, the document of value is embodied as a bank note or check, for example.

Das erfindungsgemäße Sicherheitselement kann mit beliebigen anderen Sicherheitselementen des Wertdokuments kombiniert werden, beispielsweise Hologrammen, Mikrospiegeln, z.B. mit Laufeffekten oder 3D-Oberflächen (fresnelartig), Mikrohohlspiegeln oder Subwellenlängenstrukturen. Dies erfolgt jeweils bevorzugt so, dass die reflektierende Schicht die Reflexion zur Erzeugung der stehenden Welle erzeugt und in anderen lateralen Teilbereichen die beschriebenen anderen Merkmale erzeugt. Optional wird der Teil, der die stehende Welle erzeugt, nach der Belichtung entfernt, was beispielsweise durch Ätzen geschehen kann. Weiterhin ist die Kombination mit folgenden Merkmalen möglich: Magnet, Leitfähigkeit, Fluoreszenz, Phosphoreszenz. Diese beliebigen anderen Sicherheitselemente werden dabei besonders bevorzugt lateral neben den Mikrofibrillen angeordnet.The security element according to the invention can be combined with any other security elements of the document of value, for example holograms, micro-mirrors, e.g. with running effects or 3D surfaces (Fresnel-like), micro-concave mirrors or sub-wavelength structures. In each case, this preferably takes place in such a way that the reflective layer generates the reflection for generating the standing wave and generates the other features described in other lateral partial areas. Optionally, the part that generates the standing wave is removed after exposure, which can be done, for example, by etching. Furthermore, the combination with the following features is possible: magnet, conductivity, fluorescence, phosphorescence. Any of these other security elements are particularly preferably arranged laterally next to the microfibrils.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Zeichnungen, die ebenfalls erfindungswesentliche Merkmale offenbaren, noch näher erläutert. Diese Ausführungsbeispiele dienen lediglich der Veranschaulichung und sind nicht als einschränkend auszulegen. Beispielsweise ist eine Beschreibung eines Ausführungsbeispiels mit einer Vielzahl von Elementen oder Komponenten nicht dahingehend auszulegen, dass alle diese Elemente oder Komponenten zur Implementierung notwendig sind. Vielmehr können andere Ausführungsbeispiele auch alternative Elemente und Komponenten, weniger Elemente oder Komponenten oder zusätzliche Elemente oder Komponenten enthalten. Elemente oder Komponenten verschiedener Ausführungsbespiele können miteinander kombiniert werden, sofern nichts anderes angegeben ist. Modifikationen und Abwandlungen, welche für eines der Ausführungsbeispiele beschrieben werden, können auch auf andere Ausführungsbeispiele anwendbar sein. Zur Vermeidung von Wiederholungen werden gleiche oder einander entsprechende Elemente in verschiedenen Figuren mit gleichen Bezugszeichen bezeichnet und nicht mehrmals erläutert. In den Figuren zeigen:

Fig. 1
eine schematische Darstellung einer Banknote mit mehreren Sicherheitselementen,
Fig. 2
eine Schnittdarstellung durch eines des Sicherheitselemente der Fig. 1,
Fig. 3
eine schematische Schnittdarstellung einer Polymerschicht im Sicherheitselement der Fig. 2,
Fig. 3A bis 3D
verschiedene Möglichkeiten zur Belichtung der Polymerschicht, um die Struktur gemäß Fig. 3 auszubilden,
Fig. 4
ein Sicherheitselement ähnlich dem der Fig. 2, jedoch mit Pixel-artig strukturierter Reflektorschicht,
Fig. 5
eine Schnittdarstellung ähnlich der Fig. 2, jedoch mit Pixelartig strukturierter Polymerschicht,
Fig. 6
eine Darstellung ähnlich der Fig. 4 und 5, wobei sowohl Reflektorschicht als auch Polymerschicht Pixel-artig strukturiert sind,
Fig. 7
eine Ausführungsform des Sicherheitselementes mit einer Reflektorschicht, die verschiedene Plateaus aufweist,
Fig. 8
eine Darstellung einer Ausführungsform ähnlich der Fig. 2 zur Bereitstellung eines Sicherheitsmerkmals in Art eines Volumenhologramms und
Fig. 9
eine Darstellung einer Ausführungsform zur Bereitstellung eines Sicherheitsmerkmals in Art eines Volumenhologramms wobei bei der Herstellung zwei interferierende Strahlen verwendet werden.
The invention is explained in more detail below using exemplary embodiments with reference to the accompanying drawings, which also disclose features that are essential to the invention. These embodiments are provided for illustration only and are not to be construed as limiting. For example, is a description of an embodiment having a plurality of elements or components should not be construed as implying that all such elements or components are necessary for implementation. Rather, other embodiments may include alternative elements and components, fewer elements or components, or additional elements or components. Elements or components of different exemplary embodiments can be combined with one another unless otherwise stated. Modifications and variations that are described for one of the embodiments can also be applicable to other embodiments. To avoid repetition, the same or corresponding elements in different figures are denoted by the same reference symbols and are not explained more than once. In the figures show:
1
a schematic representation of a bank note with several security elements,
2
a sectional view through one of the security elements 1 ,
3
a schematic sectional view of a polymer layer in the security element 2 ,
Figures 3A to 3D
different ways of exposing the polymer layer according to the structure 3 to train
4
a security element similar to that of 2 , but with a pixel-like structured reflector layer,
figure 5
a sectional view similar to that 2 , but with a pixel-like structured polymer layer,
6
a representation similar to that Figures 4 and 5 , whereby both the reflector layer and the polymer layer have a pixel-like structure,
7
an embodiment of the security element with a reflector layer that has different plateaus,
8
a representation of an embodiment similar to that of FIG 2 to provide a security feature in the form of a volume hologram and
9
a representation of an embodiment for providing a security feature in the form of a volume hologram, two interfering beams being used in the production.

Fig. 1 zeigt in Draufsicht schematisch eine Banknote 2, die mehrere Sicherheitselemente aufweist. Ein Sicherheitselement 4 ist in Form eines Patches gestaltet, ein anderes Sicherheitselement in Form eines Sicherheitsstreifens oder Sicherheitsfadens 6. Die konkrete flächige Ausgestaltung des Sicherheitselementes kann applikationsabhängig gewählt werden. Nachfolgend bezieht sich die Beschreibung rein exemplarisch auf das Sicherheitselement 4. 1 FIG. 1 shows a schematic plan view of a bank note 2 which has a number of security elements. A security element 4 is designed in the form of a patch, another security element in the form of a security strip or security thread 6. The specific two-dimensional design of the security element can be selected depending on the application. The description below refers to the security element 4 purely by way of example.

Fig. 2 zeigt eine Schnittdarstellung durch das Sicherheitselement 4. Es ist auf einem Substrat 8, beispielsweise Banknotenpapier der Banknote 2 aufgebracht, wobei als Substrat 8 auch ein Zwischenträger verwendet werden kann, der dann auf ein Banknotenpapier der Banknote 2 aufgebracht wird, so dass das Sicherheitselement 4 dann als sogenanntes Transferelement ausgebildet ist. 2 shows a sectional view through the security element 4. It is applied to a substrate 8, for example banknote paper of the banknote 2, with an intermediate carrier also being used as the substrate 8 can, which is then applied to a banknote paper of the banknote 2, so that the security element 4 is then designed as a so-called transfer element.

Auf dem Substrat 8 befindet sich eine Polymerschicht 12, die von ihrer Oberseite 14 her mit dem in dem genannten Nature-Artikel geschilderten Prozess mit einer Mikrofibrillenstruktur 13 versehen wurde. Diese ist schematisch in Fig. 3 dargestellt und gemäß stehender Wellen organisiert, die aus einer Interferenz eines Objekt- mit einem Referenzstrahl entstanden. Zur Bereitstellung dieser Strahlen gibt es zwei Varianten: Eine Variante 1 arbeitet mit einer Reflektorschicht unter der Polymerschicht. Dann ist ein einfallender Strahl der Referenzstrahl, der an der Reflektorschicht reflektierte Strahl ist der Objektstrahl. Bei einer alternativen Variante 2 werden Objekt- und Referenzstrahl eigenständig eingestrahlt.On the substrate 8 there is a polymer layer 12 which has been provided with a microfibril structure 13 from its upper side 14 using the process described in the cited Nature article. This is shown schematically in 3 are shown and organized according to standing waves resulting from interference of an object beam with a reference beam. There are two variants for providing these beams: Variant 1 works with a reflector layer under the polymer layer. Then an incident ray is the reference ray, the ray reflected at the reflector layer is the object ray. In an alternative variant 2, the object and reference beams are irradiated independently.

Die Mikrofibrillenstruktur 13 umfasst Mikrofibrillen 13a sowie Hohlräume 13b (vgl. Fig. 3). Sie wird in Variante 1 dadurch erzeugt, indem ein handelsübliches, flächiges Polymer, wie beispielsweise eine Polystyrol- oder Polycarbonatfolie oder ein entsprechender Film, (bevorzugt parallel zu ihrer Flächennormale) mit Strahlung bestrahlt wird, deren Kohärenzlänge größer als die Dicke der Polymerschicht 12 ist. Bevorzugt wird UV-Strahlung verwendet. Während dieser Bestrahlung befindet sich unter der Polymerschicht 12 eine Reflektorschicht (vgl. Fig. 3-8), so dass in Rückreflexion der Objektstrahl entsteht. In Variante 2 (Fig. 9) werden Objekt- und Referenzstrahl eigenständig eingestrahlt. In beiden Fällen ist die Dicke der Polymerschicht 12 geringer als die Kohärenzlänge der verwendeten Strahlung(en), wodurch sich stehende Wellen innerhalb der Polymerschicht 12 ausbilden. An Wellenbäuchen, an denen die Intensität der stehenden Wellen maximal ist, wird das Polymer vernetzt, und es bildet sich ein periodisch-mechanisches Spannungsfeld zwischen vernetzten und nicht-vernetzten Bereichen, wobei letztere an Knotenpunkten der stehenden Wellen liegen. Bevorzugt ist das Polymer mit einem zusätzlichen Fotoinitiator versetzt.The microfibril structure 13 includes microfibrils 13a and cavities 13b (cf. 3 ). In variant 1, it is produced by irradiating a commercially available, flat polymer, such as a polystyrene or polycarbonate sheet or a corresponding film (preferably parallel to its surface normal) with radiation whose coherence length is greater than the thickness of the polymer layer 12. UV radiation is preferably used. During this irradiation, there is a reflector layer under the polymer layer 12 (cf. Figures 3-8 ), so that the object beam is created in back reflection. In variant 2 ( 9 ) the object and reference beam are irradiated independently. In both cases, the thickness of the polymer layer 12 is less than the coherence length of the radiation(s) used, as a result of which standing waves form within the polymer layer 12. At the antinodes, where the intensity of the standing waves is at its maximum, the polymer becomes cross-linked, and a periodic mechanical stress field is formed between cross-linked and non-cross-linked areas, with the latter lying at the nodal points of the standing waves. An additional photoinitiator is preferably added to the polymer.

Durch Einsatz eines passenden Lösungsmittels wird die derart belichtete Mikrofibrillenstruktur 13 dann gemäß Fig. 3 ausgebildet, wobei einzelne Ebenen der Mikrobrillen 13a und die Hohlräume 13b sich automatisch periodisch gemäß der stehenden Wellenstruktur anordnen. Hinsichtlich der Details der Herstellung wird auf den Nature-Artikel samt zugehörigem, in Nature publiziertem Ergänzungsmaterial verwiesen. Diese Veröffentlichungen sind hiermit inhaltlich hier vollumfänglich eingebunden.By using a suitable solvent, the microfibril structure 13 exposed in this way is then exposed according to FIG 3 formed, wherein individual levels of the micro-glasses 13a and the cavities 13b automatically arrange themselves periodically according to the standing wave structure. With regard to the details of the preparation, reference is made to the Nature article together with the associated supplementary material published in Nature. The content of these publications is hereby fully integrated.

Die Polymerschicht 12 erzeugt, wenn sie derart belichtet und entwickelt wurde, einen lateral modulierten Farbeffekt, der in Variante 1 durch eine laterale Strukturierung der bei der Belichtung darunterliegenden Reflektorschicht 10 beeinflusst wird - dies auch dann, wenn die Polymerschicht 12 im Sicherheitselement ohne darunterliegende Reflektorschicht 10 eingesetzt wird.When it has been exposed and developed in this way, the polymer layer 12 produces a laterally modulated color effect which, in variant 1, is influenced by a lateral structuring of the reflector layer 10 lying underneath during the exposure - even if the polymer layer 12 is used in the security element without a reflector layer 10 lying underneath.

Bei der Belichtung kann eine Strukturierung erfolgen, d. h. die Mikrofibrillenstruktur 13 bestehend aus Mikrofibrillen 13a und Hohlräumen 13b kann lateral, also quer zur Oberfläche 14, strukturiert sein. Fig. 3A zeigt eine Ausführungsform, bei der eine Weitfeldbelichtung 16 die gesamte Polymerschicht 12 gleichmäßig belichtet. Durch eine zusätzlich lateral strukturierte Reflektorschicht 10 entsteht eine lateral strukturierte Mikrofibrillenstruktur 13 und damit das bunte Motiv.Structuring can take place during exposure, ie the microfibril structure 13 consisting of microfibrils 13a and cavities 13b can be structured laterally, ie transversely to the surface 14. Figure 3A 12 shows an embodiment in which a wide field exposure 16 exposes the entire polymer layer 12 uniformly. An additionally laterally structured reflector layer 10 creates a laterally structured microfibril structure 13 and thus the colorful motif.

Das Substrat 8, auf dem sich die Polymerschicht 12 befindet, ist hier und im Folgenden nicht dargestellt. Es kann zwischen der Polymerschicht 12 und der Reflektorschicht 10 oder auf der Oberseite bzw. der der Belichtung 16 zugewandten Seite der Polymerschicht 12 angeordnet sein. In beiden Fällen muss das Substrat 10 transparent für die zur Strukturierung der Polymerschicht 12 erforderlichen Wellenlängen der Beleuchtung sein.The substrate 8 on which the polymer layer 12 is located is not shown here or in the following. It can be arranged between the polymer layer 12 and the reflector layer 10 or on the upper side or the side of the polymer layer 12 facing the exposure 16 . In both cases, the substrate 10 must be transparent to the illumination wavelengths required to structure the polymer layer 12 .

Fig. 3B zeigt, dass durch Einsatz einer Maske 18 zusätzlich eine strukturierte Belichtung erfolgen kann. Die Maske 18 blockiert die Weitfeldbelichtung 16 an einzelnen Stellen, so dass bloß an den Lücken der Maske 18 Licht auf die Polymerschicht 12 einfallen kann. Entsprechend kann auch nur in diesen Bereichen Licht an der Reflektorschicht gespiegelt werden und mit dem einfallenden Licht interferieren, sofern in diesen beleuchteten Bereichen eine Reflexionswirkung vorhanden ist. Nur an den Stellen, an denen Licht durch die Maske fällt und gleichzeitig auch an der Reflektorschicht reflektiert wird, entsteht dann auch der Farbeffekt. Auf diese Weise ist es insbesondere möglich, zusätzlich oder alternativ zur Strukturierung, die durch die Reflektorschicht 10 bewirkt wird, eine Strukturierung, z. B. Pixelierung in der Polymerschicht 12 auszubilden, wobei diese Pixelierung sich auf die Farbe auswirkt. Die Belichtung kann auch mit verschiedenen Wellenlängen erfolgen, so dass der durch die Polymerschicht 12 erzeugte Farbton lateral unterschiedlich, z. B. mit dreifarbigen Pixeln, die aus Subpixeln in Grundfarben (z. B. Rot, Grün, Blau) ausgebildet sind, sein kann. Dazu werden zeitlich hintereinander mehrere Weitfeldbelichtungen 16a, 16b bei unterschiedlichen Wellenlängen oder in unterschiedlichen Wellenlängenbereichen eingesetzt. Die zusätzliche laterale Strukturierung erfolgt dabei durch verschiedene Masken 18a, 18b, die jeweils auf die entsprechende Weitfeldbelichtung 16a, 16b wirken. Fig. 3C veranschaulicht diese sequentiell nacheinander erfolgenden Belichtungen in einer gemeinsamen Darstellung. Die Mehrfarbigkeit ist natürlich nicht auf zwei Farben eingeschränkt; gleichermaßen können auch drei, vier oder mehr verschiedene Belichtungsschritte erfolgen, wobei jeder Belichtungsschritt einen anderen Teilflächenbereich der Polymerschicht 12 belichtet und mit einem Farbeffekt versieht. Derart mehrfach belichtet wird die Polymerschicht 12 durch Anwendung des Lösungsmittels entwickelt, um die dann lateral strukturierte Mikrofibrillenstruktur 13 auszubilden. Figure 3B shows that by using a mask 18, a structured exposure can also take place. The mask 18 blocks the wide-field exposure 16 at individual points, so that light can only strike the polymer layer 12 at the gaps in the mask 18 . Correspondingly, light can also only be reflected on the reflector layer in these areas and interfere with the incident light if there is a reflection effect in these illuminated areas. The color effect only occurs at the points where light falls through the mask and is also reflected at the reflector layer. In this way, it is particularly possible, in addition to or as an alternative to the structuring caused by the reflector layer 10, a structuring, z. B. pixelation in the polymer layer 12, this pixelation affects the color. The exposure can also take place with different wavelengths, so that the color tone generated by the polymer layer 12 differs laterally, e.g. with tri-color pixels formed from sub-pixels in primary colors (e.g. red, green, blue). For this purpose, several wide-field exposures 16a, 16b are used one after the other at different wavelengths or in different wavelength ranges. The additional lateral structuring is carried out by different masks 18a, 18b, which each act on the corresponding wide-field exposure 16a, 16b. Figure 3C illustrates these sequential exposures in a common representation. The multicolor is not limited to two colors, of course; Equally, three, four or more different exposure steps can also take place, with each exposure step exposing a different partial area of the polymer layer 12 and providing it with a color effect. After being exposed multiple times in this way, the polymer layer 12 is developed by using the solvent in order to form the then laterally structured microfibril structure 13 .

Gemäß einer bevorzugten Ausführungsform verbleibt die Maske auf dem Sicherheitsmerkmal, beispielsweise um in bestimmten Bereichen Hologramme oder andere optisch variable Merkmale zu bilden. Bevorzugt wird dafür eine bereichsweise bestehende Metallschicht als Maske verwendet. Die Maske wird bevorzugt nach dem Belichten bereichsweise von der Polymerschicht entfernt.According to a preferred embodiment, the mask remains on the security feature, for example in order to form holograms or other optically variable features in certain areas. A metal layer that exists in certain areas is preferably used as a mask for this purpose. Areas of the mask are preferably removed from the polymer layer after exposure.

Die auf dem Substrat verbleibende Maske ist besonders bevorzugt im sichtbaren Spektralbereich transparent (also im Endprodukt nicht sichtbar oder zumindest unauffällig) und im UV-Bereich opak oder zumindest semitransparent. Hierbei besteht die Maske beispielsweise aus einer 50 nm dicken Schicht aus TiO2. Diese ist im sichtbaren Bereich weitgehend transparent, zeigt im UV-Bereich bei Wellenlängen um bzw. unter 300 nm aber nur eine sehr geringe Transmission.The mask remaining on the substrate is particularly preferably transparent in the visible spectral range (ie not visible in the end product or at least inconspicuous) and opaque or at least semitransparent in the UV range. In this case, the mask consists, for example, of a 50 nm thick layer of TiO 2 . This is largely transparent in the visible range, but shows only very low transmission in the UV range at wavelengths around or below 300 nm.

Alternativ kann die Maske von der Folienbahn getrennt sein.Alternatively, the mask can be separate from the film web.

Es ist zu beachten, dass beim fertigen Sicherheitselement 4, 6 die kippwinkelabhängige Farbwirkung bei Beleuchtung ebenfalls durch Interferenz entsteht - ggf. auch ohne Reflektorschicht 10. Bei der Entwicklung der Polymerschicht entstehen die Mikrofibrillen, wobei deren Abstand voneinander durch den Entwicklungsprozess vom ursprünglichen Abstand der Wellenbäuche bei der Einbelichtung abweichen kann. Auf diese Weise ist es möglich, dass bei Belichtungswellenlängen im UV-Bereich nach der Entwicklung der Polymerschicht die Braggmaxima bei der Beobachtung im sichtbaren Bereich des Spektrums liegen.It should be noted that in the finished security element 4, 6 the tilt angle-dependent color effect is also caused by interference when illuminated - possibly even without a reflector layer 10. During the development of the polymer layer, the microfibrils are formed, with their distance from one another may deviate from the original distance of the antinodes during exposure due to the development process. In this way it is possible that with exposure wavelengths in the UV range after development of the polymer layer the Bragg maxima are in the visible range of the spectrum when observed.

Eine Alternative zu einer Weitfeldbelichtung ist die Belichtung mit einem gerasterten Lichtstrahl 20 (z. B. aus einem Laser oder einer LED), der die erforderliche Kohärenzlänge hat und gemäß einem Scanmuster 22 über die Polymerschicht 12 abgelenkt wird. Dies zeigt Fig. 3D. Dabei kann die Wellenlänge der Laserstrahlung an den einzelnen Orten unterschiedlich gestaltet werden, um eine laterale Strukturierung der Polymerschicht 12 hinsichtlich des Farbeffektes zu erzeugen.An alternative to wide-field exposure is exposure with a rasterized light beam 20 (e.g., from a laser or LED) having the required coherence length and swept across the polymer layer 12 according to a scan pattern 22 . this shows 3D . The wavelength of the laser radiation can be designed differently at the individual locations in order to produce a lateral structuring of the polymer layer 12 with regard to the color effect.

Diese zusätzlichen Strukturierungsoptionen erlauben es z. B., die Reflektorschicht 10 mit einer Pixelstruktur für das Motiv bereitzustellen, die sich auf die Helligkeit bezieht, und durch die zusätzliche Strukturierung (Masken oder -raster) jedes Pixel mit dessen Farbe einstellenden Subpixeln zu versehen.These additional structuring options allow e.g. B. to provide the reflector layer 10 with a pixel structure for the motif, which is related to the brightness, and by the additional structuring (masks or grid) to provide each pixel with its color-adjusting sub-pixels.

Die lateral strukturierte Reflektorschicht 10 unterhalb der Polymerschicht 12 kann sowohl vollflächig vorliegen, wie dies in den Fig. 2 und 3 gezeigt ist, als auch teilflächig. Fig. 4 zeigt eine Pixelierung der Reflektorschicht 10 bestehend aus Reflektorpixeln 24 mit hoher Reflexion und Reflektorpixeln 26 mit niederer Reflexion oder ohne Reflexion. Die stehende Welle bildet sich dann nur an den Pixeln aus, an denen die Reflektorschicht 10 eine ausreichende Reflexion hat, oder die Intensität hängt von Pixelreflexionsgrad und/oder - flächenbedeckung ab. Auf diese Weise kann ein farbiges, gerastertes Pixelbild erzeugt werden.The laterally structured reflector layer 10 below the polymer layer 12 can be present both over the entire surface, as in the Figures 2 and 3 is shown, as well as partially. 4 shows a pixelation of the reflector layer 10 consisting of reflector pixels 24 with high reflection and reflector pixels 26 with low reflection or without reflection. The standing wave then only forms at the pixels at which the reflector layer 10 has sufficient reflection, or the intensity depends on the pixel reflectance and/or area coverage. In this way, a colored, rasterized pixel image can be generated.

Wie bereits mit Bezug auf die Fig. 3B, 3C und 3D erläutert, kann sich auch durch die Belichtung eine zusätzliche Rasterung der Polymerschicht 12 ergeben, so dass diese Polymerschichtpixel 28 und 30 aufweist, wie Fig. 5 zeigt, in denen sich nach dem Entwickeln mit dem Lösungsmittel der Farbeindruck unterscheidet. Dadurch wird ein buntes Pixelbild möglich. Natürlich sind auch mehr als zwei verschiedene Pixelarten möglich.As already mentioned with reference to the Figures 3B, 3C and 3D explained, an additional screening of the polymer layer 12 can also result from the exposure, so that this polymer layer has pixels 28 and 30, such as figure 5 shows in which the color impression differs after developing with the solvent. This makes a colorful pixel image possible. Of course, more than two different pixel types are also possible.

Das Prinzip der Fig. 4 und 5 kann natürlich auch kombiniert werden, wie Fig. 6 zeigt. Dabei muss das Pixelraster von Reflektorpixeln und Polymerschichtpixeln nicht zwingend identisch sein, auch wenn dies von Vorteil sein kann. Insbesondere kann durch eine sehr hohe Pixeldichte in der Reflektorschicht die Helligkeit einer einzelnen Farbe innerhalb eines Farbpixels, das durch ein Polymerschichtpixel gebildet ist, ortsabhängig eingestellt werden. Somit kann letztlich die Helligkeit für jeden Farbpunkt zum Erzeugen eines Motivs frei gewählt werden.The principle of Figures 4 and 5 can of course also be combined, like 6 shows. In this case, the pixel grid of reflector pixels and polymer layer pixels does not necessarily have to be identical, even if this can be advantageous. In particular, a very high pixel density in the reflector layer allows the brightness of an individual color within a color pixel, which is formed by a polymer layer pixel, to be adjusted in a location-dependent manner. Ultimately, the brightness for each color point can be freely selected to create a motif.

Es ist deshalb in besonderen Ausführungsformen vorgesehen, dass sowohl die Polymerschicht 12 als auch die Reflektorschicht 10 eine Pixelstruktur haben, wobei die Pixeldichte in der Reflektorschicht 10 mindestens das Doppelte der Pixeldichte der Polymerschicht 12 beträgt. Damit kann die Tatsache, dass die Reflektorschicht 10 für die Intensität an einer Stelle und die Polymerschicht 12 für die Farbe verantwortlich ist, besonders günstig ausgenützt werden.It is therefore provided in particular embodiments that both the polymer layer 12 and the reflector layer 10 have a pixel structure, with the pixel density in the reflector layer 10 being at least twice the pixel density of the polymer layer 12 . In this way, the fact that the reflector layer 10 is responsible for the intensity at one point and the polymer layer 12 for the color can be used particularly favorably.

Die genannten Effekte sind in der Mikrofibrillenstruktur verkörpert und bleiben nach Entwicklung auch ohne die Reflektorschicht 10 erhalten.The mentioned effects are embodied in the microfibril structure and are retained after development even without the reflector layer 10 .

Fig. 7 zeigt eine Ausführungsform, bei der die Reflektorschicht 10 auf unterschiedlicher Höhe liegende Plateaus 32, 34, 36 hat. Dies nutzt die Tatsache aus, dass die Weglänge der reflektierten Strahlung für die Platzierung der Knoten und Wellenbäuche der stehenden Wellen innerhalb der Polymerschicht relevant ist. Durch die unterschiedlichen Höhenniveaus, also Abstände der Plateaus 32, 34, 36 zur Polymerschicht 12, erzeugt jedes Plateau 32, 34, 36 eine andere Farbintensität bei ansonsten unveränderter Polymerschicht 12. Dieser Ansatz kommt insbesondere bei einer nicht strukturierten Polymerschicht 12, wie sie beispielsweise mit der Weitfeldbelichtung 16 gemäß Fig. 3A erhalten wird, in Frage, um unterschiedliche Farbintensitäten lateral strukturiert zu verteilen. 7 shows an embodiment in which the reflector layer 10 has plateaus 32, 34, 36 at different heights. This exploits the fact that the path length of the reflected radiation is relevant to the placement of the nodes and antinodes of the standing waves within the polymer layer. Due to the different height levels, i.e. the distances between the plateaus 32, 34, 36 and the polymer layer 12, each plateau 32, 34, 36 produces a different color intensity with an otherwise unchanged polymer layer 12. This approach is used in particular with a non-structured polymer layer 12, as is the case, for example, with the wide-field exposure 16 according to Figure 3A is obtained, in order to distribute different color intensities laterally structured.

Fig. 8 zeigt eine Ausführungsform, bei der die Reflektorschicht 10 an ihrer der Polymerschicht 12 zugewandten Seite eine Reliefstruktur hat. Auf diese Weise kann, wie im allgemeinen Teil der Beschreibung bereits erläutert, besonders einfach ein einem Volumenhologramm ähnliches Sicherheitselement erzeugt werden, indem die Reliefstruktur so ausgebildet ist, dass sie beispielsweise einen dreidimensionalen optischen Eindruck widerspiegelt. Aufgrund der Belichtung mit dieser Reflektorschicht 10 entsteht dann ein entsprechender Objektstrahl und insgesamt ein Mikrofibrillen enthaltendes Polymer, wobei die Mikrofibrillen ähnlich den Braggebenen in einem Volumenhologramm fungieren, das eine dreidimensionale Darstellung auch aus verschiedensten Blickwinkeln bietet. 8 shows an embodiment in which the reflector layer 10 has a relief structure on its side facing the polymer layer 12 . In this way, as already explained in the general part of the description, a security element similar to a volume hologram can be produced in a particularly simple manner, in that the relief structure is designed in such a way that it reflects a three-dimensional optical impression, for example. Due to the exposure to this reflector layer 10, a corresponding object beam and overall a polymer containing microfibrils then arises, with the microfibrils functioning similarly to the Bragg planes in a volume hologram which also offers a three-dimensional representation from a wide variety of viewing angles.

Beim Herstellverfahren in der Variante 2 werden gemäß Fig. 9 Objekt-und Referenzstrahl als getrennte, zur Interferenz fähigen Strahlen 42, 44 eingestrahlt. Der Objektstrahl 44 stammt nicht aus der Rückreflexion des Referenzstrahls, wie es bei Variante 1 der Fall war. Es ist deshalb keine Reflektorschicht vorgesehen. Vielmehr ist der Objektstrahl 44 wie bei einer holografischen Aufnahme von einem Objekt 46 moduliert. Alternativ wird die Modulation mittels optischer Strahlformungselemente (z.B. DMD o.ä.) erzeugt. Die zwei (oder mehr) Strahlen können von derselben oder von gegenüberliegenden Seiten der Polymerschicht 12 eingestrahlt werden.In the manufacturing process in variant 2 according to 9 Object beam and reference beam are irradiated as separate beams 42, 44 capable of interference. The object beam 44 does not come from the back reflection of the reference beam, as was the case with variant 1. It is therefore not a reflector layer intended. Rather, the object beam 44 is modulated by an object 46 as in the case of a holographic recording. Alternatively, the modulation is generated by means of optical beam shaping elements (eg DMD or the like). The two (or more) beams can be irradiated from the same or from opposite sides of the polymer layer 12 .

Insbesondere sind folgende Ausführungen und Ausgestaltungen möglich:

  1. 1. Lichtquellen
    1. a. Voll-/ teilflächige Belichtung:
      Die Lichtquelle kann die als Polymerfilm ausgebildete Polymerschicht voll- und teilflächig belichten. Für eine vollflächige Belichtung sind z. B. LEDs ausreichend (Fig. 3A), deren Kohärenzlänge genügt. Wenn der Film pixelbeziehungsweise bereichsweise belichtet werden soll, kann ein ablenkbarer, stark fokussierter Lichtstrahl (z. B. Laser) benutzt werden (Fig. 3D), oder aber direkt modulierbare Lichtquellen (Micro-LED) bzw. optische Elemente, wie SLM (spatial light modulator), DMD (digital micromirror device) oder DOE (diffractive optical element). Eine weitere Möglichkeit, eine teilflächige Belichtung zu erzeugen, ist die Benutzung einer Maske (Fig. 3B, 3C).
In particular, the following versions and configurations are possible:
  1. 1. Light sources
    1. a. Full/partial exposure:
      The light source can expose the polymer layer, which is designed as a polymer film, over the whole or part of the surface. For a full-surface exposure z. B. LEDs sufficient ( Figure 3A ) whose coherence length suffices. If the film is to be exposed pixel or area by area, a deflectable, strongly focused light beam (e.g. laser) can be used ( 3D ), or directly modulated light sources (micro-LED) or optical elements such as SLM (spatial light modulator), DMD (digital micromirror device) or DOE (diffractive optical element). Another way to create a partial exposure is to use a mask ( Figures 3B, 3C ).

Eine voll- oder zumindest teilflächige Beleuchtung kann auch durch ein selbstleuchtendes Display bzw. einen selbstleuchtenden Bildschirm erfolgen. Das Display bzw. der Bildschirm beleuchtet hierbei die gesamte Fläche oder musterförmig den Polymer.Full or at least partial illumination can also be provided by a self-illuminating display or a self-illuminating screen. The display or screen illuminates the entire surface or the polymer in a pattern.

Bei einem industriellen Herstellungsverfahren nach dem Prinzip Rolle-zu-Rolle (R2R) kann die Belichtung alternativ auch durch zeilenartig angeordnete LEDs erfolgen, wobei die Zeile parallel zur Drehachse einer Rolle ausgerichtet ist. Die Beleuchtung des Polymers erfolgt hierbei direkt durch die LEDs oder durch eine abbildende Optik zwischen LEDs und Polymer.In an industrial manufacturing process based on the roll-to-roll (R2R) principle, the exposure can alternatively also be carried out by lines arranged in a row LEDs are done with the line aligned parallel to the axis of rotation of a roller. The polymer is illuminated directly by the LEDs or by imaging optics between the LEDs and the polymer.

In allen Fällen ist eine kohärente Überlagerung eines Objektstrahls und eines Referenzstrahls im Polymer erforderlich.In all cases, a coherent superimposition of an object beam and a reference beam in the polymer is required.

Das Mikrofibrillationsverfahren hat den Vorteil, dass durch die Verwendung von DOE/SLM/DMD in Kombination mit LEDs oder Lasern als Lichtquelle Licht auf Mikrometer-Längenskalen moduliert werden kann. Somit können mit dem Mikrofibrillationsverfahren Auflösungen von bis zu 25000 DPI erreicht werden. Gleichzeitig ist durch die Flexibilität der optischen Elemente ein hoher Grad an Individualisierbarkeit möglich. Da die Mikrofibrillen, die die Braggebenen darstellen, im Polymerfilm eingebettet sind, können keine Abdrücke oder Abformungen für Fälschungszwecke erstellt werden, was zu einer hohen Fälschungssicherheit führt.The microfibrillation method has the advantage that light can be modulated on micrometer length scales by using DOE/SLM/DMD in combination with LEDs or lasers as the light source. Thus, resolutions of up to 25,000 DPI can be achieved with the microfibrillation process. At the same time, the flexibility of the optical elements allows a high degree of customization. Since the microfibrils that represent the Bragg planes are embedded in the polymer film, no imprints or molds can be made for counterfeiting purposes, which leads to a high level of protection against counterfeiting.

b. Variation der Wellenlänge:b. Wavelength variation:

Bestrahlung mit Licht unterschiedlicher Wellenlängen erzeugt verschiedene Strukturfarben. Somit ist es durch additive Farbmischung von RGB-Pixeln möglich, einen großen Farbraum abzudecken. Die Belichtungen könnten nacheinander oder gleichzeitig durch eine unterschiedlich farbige Anzeige des Displays, monochromatische Laser oder LEDs mit unterschiedlichen Emissionswellenlängen erzeugt werden. Hierfür könnte der Polymerfilm z.B. nacheinander mit unterschiedlichen Masken 18 bedeckt werden und durch diese hindurch mit monochromatischer Strahlung belichtet werden (Fig. 3D).Irradiation with light of different wavelengths produces different structural colors. It is thus possible to cover a large color space through additive color mixing of RGB pixels. The exposures could be generated sequentially or simultaneously by a different colored display of the display, monochromatic lasers or LEDs with different emission wavelengths. For this purpose, the polymer film could, for example, be successively covered with different masks 18 and exposed through them with monochromatic radiation ( 3D ).

2. Flächendeckung der reflektierenden Schicht2. Area coverage of the reflective layer

Die reflektierende Schicht unterhalb des Polymers kann sowohl vollflächig als auch teilflächig vorliegen. Falls die Reflexionsschicht vollflächig ist, könnte eine pixelweise Rasterung der Farbe lediglich über die Modulation der Lichtquelle erfolgen. Falls die Reflexionsschicht gerastert ist, bilden sich stehende Welle nur in den Pixeln aus, unter denen eine Reflexionsschicht vorliegt. Somit ist es möglich, eine Rasterung zu erzeugen.The reflective layer below the polymer can be present both over the entire surface and over part of the surface. If the reflective layer covers the entire surface, the color could be screened pixel by pixel simply by modulating the light source. If the reflective layer is gridded, standing waves only form in the pixels below which there is a reflective layer. It is thus possible to create a grid.

3. Reliefstruktur der reflektierenden Schicht3. Relief structure of the reflective layer

Es ist möglich, eine geprägte, reflektierende Reliefstruktur unter dem Polymerfilm zu platzieren. Die Prägestruktur kann aus allen möglichen Reliefstrukturen wie Mikrospiegeln, Fresnel-artigen Mikrospiegeln, Blazed Gratings, Mottenaugenstrukturen, Subwellenlängengitter, Sinusgittern, Manhattangittern oder Aztekenstrukturen bestehen. Auch eine Strukturierung durch Auftragen einer beispielsweise dunklen Farbe ist möglich, wobei die Farbe auf die Seite der Reliefstruktur aufgebracht wird, die der Beleuchtung zugewendet ist. Diese und weitere Strukturen können auch nebeneinander angeordnet sei oder sich überlagern. So ist es beispielsweise möglich, durch bereichsweise angeordnete Mottenaugenstrukturen oder andere lichtabsorbierende Strukturen die Reflexion bereichsweise zu unterdrücken und in diesen Bereichen keine Mikrofibrillen in der Polymerschicht zu erzeugen.It is possible to place an embossed, reflective relief structure under the polymer film. The embossed structure can consist of all possible relief structures such as micromirrors, Fresnel-like micromirrors, blazed gratings, moth-eye structures, sub-wavelength gratings, sinusoidal gratings, Manhattan gratings or Aztec structures. Structuring by applying a dark color, for example, is also possible, with the color being applied to the side of the relief structure that faces the illumination. These and other structures can also be arranged next to one another or superimposed. It is thus possible, for example, to suppress the reflection in certain areas by means of moth-eye structures arranged in certain areas or other light-absorbing structures and not to produce any microfibrils in the polymer layer in these areas.

Der Reliefmaster kann sich entwederThe Reliefmaster can either

  1. a) direkt auf der Folie befinden und dort verbleiben,a) are located directly on the film and remain there,
  2. b) direkt auf der Folie befinden und nach der Belichtung in einem Transferschritt abgezogen werden oder zumindest teilweise entfernt werden (zum Beispiel durch vollständiges oder teilweises Wegätzen der metallischen Beschichtung, während die Reliefstruktur zurückbleibt),b) are located directly on the film and are peeled off in a transfer step after exposure or are at least partially removed (e.g. by completely or partially etching away the metallic coating while the relief structure remains),
  3. c) unterhalb der Folie im Register mitlaufen,c) run below the foil in the register,
  4. d) sich stationär unter der Folie befinden (nicht mitlaufen), die Belichtung erfolgt im Register z. B. durch eine synchronisierte Blitzlichtquelle.d) are stationary under the foil (do not move), the exposure takes place in register, e.g. B. by a synchronized flash light source.

Folgende Ausführungsformen sind bevorzugt:

  1. I. Einfarbiges Pixelbild mit Strukturfarben:
    Unter Verwendung einer der in 1a. und 2. beschriebenen Techniken kann ein einfarbiges, irisierendes Pixelbild hergestellt werden. Durch Variation der Flächendeckung von farbigen Bereichen können zudem verschiedene Sättigungen des Farbtons hergestellt werden. Die hergestellten Motive weisen eine Auflösung von bis zu 25.000 DPI auf.
The following embodiments are preferred:
  1. I. Monochrome pixel image with structural colors:
    Using one of the in 1a. and 2. described techniques, a monochromatic, iridescent pixel image can be produced. By varying the area coverage of colored areas, different hue saturations can also be produced. The motifs produced have a resolution of up to 25,000 DPI.

Wegen der hohen Auflösung ist die Verwendung des Pixelbildes zudem für Sicherheitsmerkmale mit Mikroabbildungselementen wie Mikrolinsen vorteilhaft, wobei das Pixelbild als Mikrostrukturbild in der Fokusebene der Mikroabbildungselemente fungieren kann.Because of the high resolution, the use of the pixel image is also advantageous for security features with micro-imaging elements such as micro-lenses, where the pixel image can function as a microstructure image in the focal plane of the micro-imaging elements.

II. Mehrfarbiges Pixelbild mit StrukturfarbenII. Multicolor pixel image with structural colors

Unter Verwendung einer Kombination von der in 1a. und 2. beschriebenen Techniken sowie der in 1b. beschriebenen Benutzung von Lichtquellen mit unterschiedlichen Wellenlängen kann ein mehrfarbiges, irisierendes Pixelbild hergestellt werden. Durch Variation der Flächendeckung von farbigen Bereichen können zudem verschiedene Sättigungen des Farbtons hergestellt werden. Die hergestellten Motive weisen eine Auflösung von bis zu 25000 DPI auf.Using a combination of the in 1a. and 2. and the techniques described in 1b. By using light sources with different wavelengths as described, a multicolored, iridescent pixel image can be produced. By varying the area coverage of colored areas, different hue saturations can also be produced. The motifs produced have a resolution of up to 25000 DPI.

Wegen der hohen Auflösung ist die Verwendung des Pixelbildes zudem für Sicherheitsmerkmale mit Mikroabbildungselementen wie Mikrolinsen sinnvoll. Dies würde eine Aufwertung im Banknotenmarkt bereits existierender Mikrolinsenmerkmale ermöglichen, da diese bis dato nur einfarbig sind.Because of the high resolution, the use of the pixel image also makes sense for security features with micro-imaging elements such as micro-lenses. This would enable an upgrading of microlens features that already exist in the banknote market, since these have only been monochromatic to date.

III. Herstellung von MikrofibrillationshologrammenIII. Production of microfibrillation holograms

Als Mikrofibrillationshologramme werden Volumenhologramme bezeichnet, die unter Benutzung des Mikrofibrillationsverfahren hergestellt werden. Mit dem Mikrofibrillationsverfahren kann ein Fotoresist durch den Polymerfilm, z.B. handelsübliche, mit geringen Mengen an Fotoinitiatoren versetzte Polymere ersetzt werden. Der Herstellungsprozess ist ansonsten identisch mit der üblichen Herstellung von Volumenhologrammen durch Belichtung mit interferierenden Strahlen. Somit kann das Hologramm in allen bereits beschriebenen Ausprägungen aufgezeichnet werden, wie z. B. als Reflexions, Transmissions- oder Denisjuk-Hologramm.Volume holograms that are produced using the microfibrillation process are referred to as microfibrillation holograms. With the microfibrillation process, a photoresist can be replaced by the polymer film, e.g. commercially available polymers to which small amounts of photoinitiators have been added. The production process is otherwise identical to the usual production of volume holograms by exposure to interfering rays. Thus, the hologram can be recorded in all the forms already described, such as B. as a reflection, transmission or Denisjuk hologram.

Alternativ kann das Hologramm auch ohne Verwendung eines materiell vorhandenen Objekts hergestellt werden. So kann der Objektstrahl durch Verwendung eines SLM oder DMD (nur Reflexionshologramm) erzeugt werden.Alternatively, the hologram can also be produced without using a physical object. So the object beam can be generated by using an SLM or DMD (reflection hologram only).

BezugszeichenlisteReference List

22
Banknotebank note
44
Sicherheitselementsecurity element
66
Sicherheitsfadensecurity thread
88th
Substratsubstrate
1010
Reflektorschichtreflector layer
1212
Polymerschichtpolymer layer
1313
Mikrofibrillenstrukturmicrofibril structure
13a13a
Mikrofibrillemicrofibril
13b13b
Hohlraumcavity
1414
Oberseitetop
16, 16a, 16b16, 16a, 16b
Weitfeldbelichtungwide field exposure
18, 18a, 18b18, 18a, 18b
Maskemask
2020
LaserLaser
2222
Scanmusterscan pattern
24, 2624, 26
Reflektorpixelreflector pixels
28,3028.30
Polymerschichtpixelpolymer layer pixels
32, 34, 3632, 34, 36
Plateauplateau
3838
Einbettmediumembedding medium
4040
Reliefschichtrelief layer
4242
Referenzstrahlungreference radiation
4444
Objektstrahlungobject radiation
4646
Objektobject

Claims (13)

  1. Production method for a security element (4) for producing documents of value, such as banknotes (2), cheques or the like, the production method having steps as follows:
    - providing a polymer film (12) and
    - forming a laterally structured microfibril structure (13) in the polymer film (12) by exposure to standing light waves (16, 16, 16b) by interference of a reference radiation with a modulated object radiation for location-dependent crosslinking in the polymer film (12) and development with a solvent, so that the polymer film (12) generates a chromatic, optically variable motif in plan view onto the security element (4).
  2. Production method according to Claim 1, further comprising the steps of:
    - generating a reflector layer (10) which lies below the polymer film (12) and which has a lateral structuring in terms of reflectivity and/or profiling, and,
    - irradiating the polymer film with radiation having a coherence length greater than one polymer film thickness, to form the laterally structured microfibril structure (13), the reference radiation being formed by the incident radiation, and the object radiation by the radiation reflected at the reflector layer.
  3. Production method according to Claim 2, the lateral structuring of the reflector layer (10) being configured as a pixel structure which brings about the pixel image.
  4. Production method according to Claim 2 or 3, the reflector layer (10) being provided with lateral modulation such that it has portions differing in reflectivity.
  5. Production method according to Claim 2 or 3, the microfibril structure (13) being structured laterally in terms of a colour generated by said structure, more particularly in the form of a pixel structure.
  6. Production method according to any of Claims 2 to 5, the reflector layer (10) being configured with a relief structure for the lateral structuring in terms of profiling.
  7. Production method according to Claim 6, the relief structure having at least one of the following structures:
    - plateaus (32, 34, 36) at different height levels,
    - micro mirrors,
    - blazed grating structure,
    - Fresnel structure
    - sinusoidal grating structure,
    - columns differing in height,
    - echelon gratings with straight or slanted flanks,
    - moth-eye structures and
    - sub-wavelength structures with sharp or rounded edges.
  8. Production method according to any of Claims 1 to 7, the polymer film (12) being irradiated such that laterally structured microfibril structure (13) provides a multi-colour image, preferably a pixel image.
  9. Production method according to any of Claims 1 to 8, the reflector layer (10) being removed after the formation of the laterally structured microfibril structure (13).
  10. Production method according to any of Claims 1 to 9, the polymer film (12), for the formation of the laterally structured microfibril structure (13) being irradiated with two beams capable of mutual interference, of which one forms the reference beam and the other is modulated and forms the object beam, so that the laterally structured microfibril structure (13) provides a volume hologram.
  11. Production method according to any of Claims 1 to 10, the microfibril structure (13) in the polymer film (10) being structured perpendicularly to the surface of the polymer film (10) in terms of layer thicknesses of individual layers of the microfibril structure (13).
  12. Security element for securing documents of value, such as bank notes (2), cheques or the like, having a structured microfibril structure (13) generated by a method according to any of the above claims.
  13. Security element according to Claim 12, the laterally structured microfibril structure (13) providing a volume hologram.
EP20775818.6A 2019-09-20 2020-09-16 Method for producing a security element, and security element Active EP4031380B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019006653.7A DE102019006653A1 (en) 2019-09-20 2019-09-20 Manufacturing process for a security element and security element
DE102019008021.1A DE102019008021A1 (en) 2019-11-19 2019-11-19 Manufacturing process for a security element and security element
PCT/EP2020/025418 WO2021052630A1 (en) 2019-09-20 2020-09-16 Method for producing a security element, and security element

Publications (2)

Publication Number Publication Date
EP4031380A1 EP4031380A1 (en) 2022-07-27
EP4031380B1 true EP4031380B1 (en) 2023-07-26

Family

ID=72613891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20775818.6A Active EP4031380B1 (en) 2019-09-20 2020-09-16 Method for producing a security element, and security element

Country Status (3)

Country Link
EP (1) EP4031380B1 (en)
CN (1) CN114423619B (en)
WO (1) WO2021052630A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020004231A1 (en) * 2020-07-14 2022-01-20 Giesecke+Devrient Currency Technology Gmbh Pigment for producing an ink and manufacturing process for the pigment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2452066B (en) * 2007-08-23 2012-05-30 Ver Tec Security Systems Ltd Security holograms
DE102009008853A1 (en) * 2009-02-13 2010-08-19 Giesecke & Devrient Gmbh Through security element
DE102010049600A1 (en) * 2010-10-26 2012-01-19 Giesecke & Devrient Gmbh Security element with optically variable surface pattern
DE102012004195A1 (en) * 2012-03-01 2013-09-05 Giesecke & Devrient Gmbh Method for producing a value document and value document available therefrom
DE102012008932A1 (en) * 2012-05-04 2013-11-07 Giesecke & Devrient Gmbh Value documents with protective coating and process for their production
DE102014004941A1 (en) * 2014-04-04 2015-10-08 Giesecke & Devrient Gmbh Security element for security papers, documents of value or the like
CN104988798B (en) * 2015-07-24 2017-06-06 中国人民银行印制科学技术研究所 A kind of anti-false fiber and preparation method thereof
AU2016100402B4 (en) * 2016-04-13 2017-08-17 Ccl Secure Pty Ltd Micro-optic device with integrated focusing element and image element structure
DE102016010078A1 (en) * 2016-08-18 2018-02-22 Giesecke+Devrient Currency Technology Gmbh Optically variable security element with thin-film element
DE102016012625A1 (en) * 2016-10-21 2018-04-26 Giesecke+Devrient Currency Technology Gmbh Security element and method for producing a security element
CN107379814B (en) * 2017-08-31 2018-04-13 霍辰尧 Security document and its manufacture method and security document

Also Published As

Publication number Publication date
WO2021052630A1 (en) 2021-03-25
CN114423619B (en) 2023-07-25
EP4031380A1 (en) 2022-07-27
CN114423619A (en) 2022-04-29

Similar Documents

Publication Publication Date Title
EP2795376B1 (en) Security element for security papers, documents of value, or similar
DE102011119598A1 (en) Optically variable element
DE102006016139A1 (en) Multi-layer body with volume hologram
EP2453269B1 (en) Thin film element with multi-layer structure
EP3606765B1 (en) Security element with relief structure and method for the production thereof
WO2016113226A1 (en) Method and master for producing a volume hologram
EP3423288B1 (en) Embossing plate, production method, and embossed security element
CH707981B1 (en) Diffractive device, and method and apparatus for viewing the same.
DE102014004941A1 (en) Security element for security papers, documents of value or the like
EP1599344B1 (en) Safety element
DE102016109633A1 (en) Method for producing a volume hologram film with security elements designed as transfer sections
EP3034315B1 (en) Security element, method for its production and data carrier equipped wth the security element
EP4031380B1 (en) Method for producing a security element, and security element
EP2593310B1 (en) Security element with hologram structures
EP3856534A1 (en) Optically variable element, security document, method for producing an optically variable element, method for producing a security document
DE102018123482A1 (en) Optically variable element, security document, method for producing an optically variable element, method for producing a security document
EP2126638B1 (en) Method for writing holographic pixels
DE102019008021A1 (en) Manufacturing process for a security element and security element
EP3609718B1 (en) Security element and method for producing same
DE102019006653A1 (en) Manufacturing process for a security element and security element

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220420

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230315

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020004416

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231127

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020004416

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230916

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230916

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240429

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230916

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240930

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240924

Year of fee payment: 5