EP4017952B1 - Feste waschmittelzusammensetzung - Google Patents

Feste waschmittelzusammensetzung Download PDF

Info

Publication number
EP4017952B1
EP4017952B1 EP20756881.7A EP20756881A EP4017952B1 EP 4017952 B1 EP4017952 B1 EP 4017952B1 EP 20756881 A EP20756881 A EP 20756881A EP 4017952 B1 EP4017952 B1 EP 4017952B1
Authority
EP
European Patent Office
Prior art keywords
acid
solid
detergent
embossed
microns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20756881.7A
Other languages
English (en)
French (fr)
Other versions
EP4017952A1 (de
Inventor
Liam Edward DAVIES
Alexandre François BOUX DE CASSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever Global IP Ltd
Unilever IP Holdings BV
Original Assignee
Unilever Global IP Ltd
Unilever IP Holdings BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Global IP Ltd, Unilever IP Holdings BV filed Critical Unilever Global IP Ltd
Publication of EP4017952A1 publication Critical patent/EP4017952A1/de
Application granted granted Critical
Publication of EP4017952B1 publication Critical patent/EP4017952B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/265Carboxylic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3245Aminoacids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0091Dishwashing tablets

Definitions

  • the present invention relates to an embossed detergent solid comprising aminopolycarboxylate, organic acid and water.
  • the invention further relates to a process for the manufacture of the embossed detergent solid.
  • Detergent products typically contain several different active components, including builders, surfactants, enzymes and bleaching agents.
  • Surfactants are employed to remove stains and soil and to disperse the released components into the cleaning liquid.
  • Enzymes help to remove stubborn stains of proteins, starch and lipids by hydrolyzing these components.
  • Bleach is used to remove stains by oxidizing the components that make up these stains.
  • 'builders' complexing agents
  • Phosphorus- containing builder components are generally considered "high-performance" builders.
  • the use of phosphorous based builders in detergent products has however led to environmental problems such as eutrophication.
  • environmental problems such as eutrophication.
  • WO 2014/086662 discloses a solid glutamic acid N,N-diacetic acid (GLDA) comprising a combination of GLDA, sulphuric acid and sodium sulfate crystals.
  • Compressed granule detergent parts are known. These by their very nature have a granular substructure which are difficult to intricately surface-shape without complex and high energy-consuming processing. Even so the fine details can be brittle and sensitive to abrasion during manufacturing and transport.
  • an embossed detergent solid comprising:
  • the embossed detergent solid can form the whole of a unit dose detergent product or a part thereof.
  • the solid of the invention comprises non-crystalline chiral polycarboxylate and organic acid, as may be measured by WAXS using the method set-out in the Examples. Having preferably little or no crystals, the solid according to the invention can be highly light transmitting. Of course, as desired further ingredients can be mixed into the solid to provide a desired level of light transmittance (e.g. provide semi-translucency/semitransparency). As such the solid of the invention has a tunable light transmittance and/or a tunable light scattering, which is highly desirable in the making of detergent products. Surprisingly such a solid can be made using only detergent actives. The solid may also have low hygroscopicity, which improves (storage) stability.
  • the solid of the invention can be intricately surface shaped and stably hold surface embossment. Furthermore, it was surprisingly found that the (local) light-scattering of the solid of the invention can be precisely tuned by providing embossment on some areas, but not in others. Furthermore, the embossment allows for the surface of the solid of the invention to provide tunable tactile cues when the detergent products are handled.
  • the organic acid is homogenously mixed with the chiral aminopolycarboxylate and molecularly interacts with it (although not being covalently bound to it). This is believed to prevent either of these components from (substantially) crystallizing and to form a stable glass-like matrix which is highly light transmitting and made suitable for embossing.
  • the composition can be free of further added crystal formation inhibitors.
  • the solid according to the invention can be made with the following process, which relates to the second aspect of the invention:
  • a process for the manufacture of the solid according to the invention comprising the consecutive steps of:
  • the desiccated liquid that is formed by reducing the water content of the solution to 25 wt. % or less is in a viscous (or rubbery) state.
  • the viscosity increases to a level where the material becomes solid.
  • Lower water content and/or cooling to lower temperatures provide increasingly harder solids.
  • the process offers the advantage that it allows for the production of embossed solids and preferably embossed and shaped solids. It was found that the solid of the present invention has thermoplastic properties which can suitably be used in forming embossment. It also makes the solid suitable for extrusion.
  • the desiccated viscous liquid obtained at Step II can be provided with surface embossing for example by stamping and/or by solidifying in a mould having an embossment on one or more of the mould inner surfaces.
  • the process of the invention has the further benefit in being simple and energy efficient, which makes it more amendable for factory-scale production with a lower degree of waste by reducing the number of faulty units.
  • the solid can be used to make a detergent product having added visual and tactile appeal.
  • it can form a detergent product by itself or be used as part of a heterogenous detergent product comprising further parts.
  • the solid according to the invention can be made using detergent actives and does not require the addition of further non-detergent actives to provide the added visual appeal.
  • the latter is of particular benefit as consumers nowadays desire ingredients listings wherein each ingredient is present for a detergency benefit.
  • a further aspect of the invention is the use of the solid according to the invention to provide an embossed detergent product, preferably which is at least in part translucent and more preferably which has a surface with non-uniform light scattering.
  • the latter provide low-light scattering, the former provide higher light scattering due to the absence/presence of the regularly spaced dots.
  • Weight percentage is based on the total weight of the solid composition or the detergent product as indicated, unless otherwise stated. It will be appreciated that the total weight amount of ingredients will not exceed 100 wt. %. Amounts expressed in wt. % parts can exceed a total of 100%. Whenever an amount or concentration of a component is quantified herein, unless indicated otherwise, the quantified amount or quantified concentration relates to said component per se, even though it may be common practice to add such a component in the form of a solution or of a blend with one or more other ingredients. It is furthermore to be understood that the verb "to comprise” and its conjugations is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded.
  • indefinite article “a” or “an” does not exclude the possibility that more than one of the elements is present, unless the context clearly requires that there be one and only one of the elements.
  • the indefinite article “a” or “an” thus usually means “at least one”. Whenever a parameter, such as a concentration or a ratio, is said to be less than a certain upper limit it should be understood that in the absence of a specified lower limit the lower limit for said parameter is 0.
  • solid' according to the invention is according to its commonplace usage.
  • a wineglass is considered a solid in common place usage although in a strict physical sense it is an extremely viscous liquid.
  • embossed it will not be a powder composition or a granular composition of such small size that any embossment cannot be appreciated.
  • aminopolycarboxylate includes its partial or full acids unless otherwise specified.
  • the salts, rather than the acids, of the aminopolycarboxylates are more preferred, and particularly preferred are the alkali salts thereof.
  • the term 'organic acid' includes partial or full alkali salts thereof unless otherwise specified.
  • ⁇ free acid equivalent refers to the concentration of an aminopolycarboxylate or an acid assuming that the aminopolycarboxylate of acid is exclusively present in fully protonated from.
  • the following table shows how the free acid equivalent concentrations can be calculated for some (anhydrous) aminopolycarboxylates and (anhydrous) acid salts.
  • Wt. % salt Conversion factor Wt. % free acid equivalent GLDA (tetrasodium salt) 50 263.1/351.1 37.5 MGDA (trisodium salt) 50 205.1/271.1 37.8 Citric acid (monosodium salt) 50 192.1/214.1 44.9 Sodium acetate 50 60.0/82.0 36.6
  • the term 'translucency' is used as meaning the ability of light in the visible spectrum to pass through the solid at least in part. To quantify, preferably it is evaluated based on a path-length of 0.5 cm through the solid, measuring the amount of light passing through.
  • the solid is deemed to be translucent if under the aforementioned measurement conditions within the wavelength range of 400 to 700 nm it has a maximum Transmittance of at least 5%.
  • the solid is deemed to be transparent if within the aforementioned wavelength range it has a maximum Transmittance of at least 20%.
  • the Transmittance is defined as the ratio between the light intensity measured after the light has passed through the sample of solid and the light intensity measured when the sample has been removed.
  • the solid composition is capable of parallel Light transmittance, meaning the transmitting of Light without appreciable Light scattering.
  • the degree of Light scattering is less than 40%, 30%, 20%, 10%, 5%, 3%, 1%.
  • “Scattering” as used herein preferably refers to both wide angle scattering and small angle scattering. Wide angle scattering causes what is referred to as haze or loss of contrast, whereas small angle scattering reduces the see-through quality or clarity. Hence it is preferable that haze is minimized and clarity maximized by minimal narrow and wide angle scattering.
  • the total Light transmittance, wide angle scattering and small angle scattering can be measured using a Haze-Gard I - Transparency Meter (SHBG4775), and according to Supplier instructions.
  • the solid comprises at least one are of embossment.
  • embossment we mean an area comprising raised portions that rise above the local surface plane and/or comprising depressed portions that fall below the local surface plane.
  • the embossment may be present over the entire surface area of the detergent solid, but preferably is present on a part of the surface area to allow for local tunable surface-based light scattering.
  • the embossed area covers from 1 to 90 % of the total surface area, more preferably from 5 to 70 % and even more preferably from 10 to 60 %.
  • embossment comprises protrusions and/or depressions.
  • embossment comprises
  • Preferred embossments provide at least one letter, number, symbol, picture or pattern onto the surface of the solid of the invention.
  • symbol is meant the indication of an idea or relationship, generally in an abstract manner, which does not entail use of at least one letter or number.
  • An example of the latter is a hazardous material symbol (e.g. to communicate to parents to keep the solid out of reach from small children and/or pets).
  • picture as used here is meant any decorative embossment which does not entail used of at least one letter, number or symbol. Examples of the latter are flowers.
  • the pictures represent actual objects.
  • pattern is meant a repeating surface embossment of embossing units.
  • the embossing units preferably being dots, squares or bars of which dots are preferred.
  • the pattern is a regular spacing and/or provides a geometric pattern.
  • the patterned area provides a recognizable shape by the presence of the patterned area (or by the absence of the pattern area in other areas).
  • the dotted regions providing two star-shaped areas by virtue of the dot-pattern being present and one star-shaped area which is visible by virtue of being free of the dot-pattern which surrounds it.
  • the presence or absence of pattern on the surface can advantageously be used to control light scattering and can provide areas with low light-scattering and areas with high(er) light scattering.
  • the embossment provides a word (e.g. a brand name), detergent purpose information (e.g. a wine-glass picture for an intended use to clean glassware), sustainability information (e.g. a leaf picture), emoticon, warning sign, a geometric pattern or a combination thereof.
  • a word e.g. a brand name
  • detergent purpose information e.g. a wine-glass picture for an intended use to clean glassware
  • sustainability information e.g. a leaf picture
  • emoticon e.g. a text
  • warning sign e.g. a geometric pattern or a combination thereof.
  • Aminopolycarboxylates (chiral or non-chiral) are well-known in the detergent industry and sometimes referred to as aminocarboxylate chelants. They are generally appreciated as being strong builders. Chirality is a geometric property of molecules induced by the molecules having at least one chiral centre. A chiral molecule is non-superimposable on its mirror image.
  • the chiral aminopolycarboxylate as used in the invention can comprise all its molecular mirror images.
  • Chiral and preferred aminopolycarboxylates are glutamic acid N,N-diacetic acid (GLDA), methylglycinediacetic acid (MGDA), ethylenediaminedisuccinic acid (EDDS), iminodisuccinic acid (IDS), iminodimalic acid (IDM) or a mixture thereof, more preferred are GLDA, MGDA, EDDS or a mixture thereof and even more preferred are GLDA and MGDA or a mixture thereof.
  • GLDA preferably is it predominantly (i.e. for more than 80 molar %) present in one of its chiral forms.
  • non-chiral aminopolycarboxylates are ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), diethylenetriaminepentaacetic acid (DTPA), hydroxyethyliminodiacetic acid (HEIDA) aspartic acid diethoxysuccinic acid (AES) aspartic acid-N,N-diacetic acid (ASDA) , hydroxyethylene-diaminetetraacetic acid (HEDTA), hydroxyethylethylene-diaminetriacetic acid (HEEDTA) , iminodifumaric (IDF), iminoditartaric acid (IDT), iminodimaleic acid (IDMAL), ethylenediaminedifumaric acid (EDDF), ethylenediaminedimalic acid (EDDM), ethylenediamineditartaric acid (EDDT), ethylenediaminedimaleic acid and (EDDMAL
  • the solid of the invention comprises from 25 to 88 wt. % free acid equivalent of chiral aminopolycarboxylates.
  • a particularly preferred amount of chiral aminopolycarboxylate is from 30 to 70 wt. % and more preferably from 35 to 60 wt. %.
  • the weight of the chiral aminopolycarboxylates is measured as based on the free acid equivalent.
  • the solid of the invention contains at least 50 wt. %, more preferably at least 75 wt. % free acid equivalent of GLDA, MGDA, EDDS, IDS, IDM or a mixture thereof, based on the total weight of free acid equivalent of chiral aminopolycarboxylate. More preferably, the solid contains at least 50 wt. %, more preferably at least 75 wt. % free acid equivalent of GLDA, MGDA, EDDS or mixtures thereof, based on the total weight of free acid equivalent of chiral aminopolycarboxylate.
  • the free acid equivalent of aminopolycarboxylate essentially consists of free acid equivalent of GLDA, MGDA, EDDS or a mixture thereof.
  • GLDA in general is most appreciated as it can be made from bio-based materials (e.g. monosodium glutamate, which itself can be made as by-product from corn fermentation). Also GLDA is highly biodegradable.
  • the solid according to the invention comprises organic acid, said acid not being an aminopolycarboxylate.
  • the organic acid used in the solid according to the invention can otherwise be any organic acid. Particularly good results were achieved with organic acids being polyacids (i.e. acids having more than one carboxylic acid group), and more particularly with di- or tricarboxylic organic acids.
  • the organic acids used in the invention have an average molecular mass of at most 500 Dalton, preferably of at most 400 Dalton and more preferably of at most 300 Dalton, the molecular mass being based on the free acid equivalent.
  • the organic acid employed in accordance with the invention preferably comprises 3 to 25 carbon atoms, more preferably 4 to 15 carbon atoms.
  • the organic acids preferably are those which are also found naturally occurring, such as in plants.
  • organic acids of note are acetic acid, citric acid, aspartic acid, lactic acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, saccharic acids, their salts, or mixtures thereof.
  • Citric acid, lactic acid, acetic acid and aspartic acid are even more preferred.
  • Citric acid and/or its salt are especially beneficial as, besides acting as builder are also highly biodegradable.
  • the solid contains at least 10, more preferably at least 15, even more preferably at least 20, most preferably at least 25 wt. % free acid equivalent of citric acid.
  • the solid of the invention comprises from 10 to 60 wt. % of the organic acid, the weight being based on the equivalent free acid. Preferred is a total amount of organic acid of from 15 to 55 wt. %, more preferably of from 25 to 50 wt. %, based on the weight of the free acid equivalents.
  • the weight ratio of a):b) is from 1:2 to 1:0.15, preferably from 1:1.5 to 1:0.4, more preferably from 1:1.4 to 1: 0.5 and even more preferably from 1:1.2 to 1:0.8, based on the weight of the free acid equivalents.
  • the embossed solid according to the invention comprises from 0.7 to 25 wt. % of water. It was surprisingly found that use of such a water content provided a solid with a good balance of hardness and plasticity and embossing structure stability. Depending on the water level the solid can be a harder solid with water levels in the lower range of from 0.7 to 25 wt. % of water.
  • the general plasticity and thermoplastic properties offer the significant practical advantage that the solid can be (machine) worked with a low chance of breakage or of forming cracks and having improved stability of the embossed structure. Also, not unimportantly, it can provide an improved sensory experience when handled by the consumer.
  • the latter ranges provide a further optimum between suitable hardness, reduced brittleness especially when including sulfonated polymer and/or polycarboxylate polymer (as described below).
  • the water-activity a w of the solid according to the invention can be 0.7 or lower. Preferred is a water-activity a w of at most 0.6, and further preferred of at most 0.5. The preferred lower limit of water activity a w may be 0.15.
  • the total amount of non-crystalline chiral aminopolycarboxylate, non-crystalline organic acid and water is from 60 to 100 wt. % based on the total weight of the solid according to the invention, preferably from 70 to 100 wt. %, more preferably from 80 to 100 wt. %, even more preferably from 90 to 100 wt. % and still even more preferably from 95 to 100 wt. % of the total weight of the solid according to the invention.
  • embossed detergent solid according to the invention comprises:
  • embossed detergent solid according to the invention comprises:
  • embossed detergent solid according to the invention comprises:
  • the solid of the invention preferably has the following pH profile: the pH of a solution of the solid made by dissolving the solid in water in a 1:1 weight ratio is at most 10.0, as measured at 25 degrees Celsius.
  • a pH profile improves stability of the solid. Particularly good results were achieved for said pH profile being at most 9.0, more preferably at most 8.0.
  • Many detergents products are overall alkaline.
  • the pH of a solution made by dissolving 1 wt. % of the solid in water is at least 5.0 and more preferably at least 6.0 and more preferably at least 6.5 as measured at 25 degrees Celsius.
  • the solid of the invention may comprise further ingredients, such as further detergent active components.
  • the solid of the invention preferably comprises sulfonated polymer, polycarboxylate polymer or a combination thereof in a total amount of from 0.3 to 50 wt. %, more preferably from 5 to 40 wt. %, even more preferably from 10 to 35 wt. % and still even more preferably from 15 to 25 wt. %, as based on the free acid equivalent of the polymer.
  • the improved plasticity is beneficial as it makes the solids easier to (mechanically) work (i.e. at raised temperatures) and makes it easier to manufacture detergent product comprising the solid.
  • a higher glass transition temperature is beneficial as it aids stability of the solid during storage and handling, in particular in view of temperature stresses. That being said a glass transition temperature which is not too high will aid quick dissolution of the product in warm water as it helps to liquefy the solid during use by increasing surface area.
  • the glass transition temperature (T g ) of the solid is less than 80 degrees Celsius, more preferably from 10 to 60 degrees Celsius, even more preferably from 15 to 50 degrees Celsius and most preferably from 20 to 40 degrees Celsius.
  • the reduction in hygroscopicity was more pronounced if the polymer (in particular the carboxylate polymer) used has a lower average molecular weight maximum.
  • the sulfonated polymer that is employed in accordance with the present invention can be a copolymer or a homopolymer.
  • the sulfonated polymer is a copolymer.
  • Suitable sulfonated polymers preferably have a mass averaged molecular mass of 3,000 to 50,000, more preferably from 4,500 to 35,000.
  • the solid composition comprises sulfonated polymer comprising polymerized units of one or more unsaturated sulfonate monomers selected from 2-acrylamido methyl-1-propanesulfonic acid, 2-methacrylicamido-2-methyl-1-propanesulphonic acid, 3-methacrylamido-2-hydroxy-propanesulphonic acid, allylsulphonic acid, methallylsulphonic acid, allyloxybenzenesulphonic acid.
  • methallyloxybenzenesulphonic acid 2-hydroxy-3-(2-propenyloxy)propanesulphonic acid, 2-methyl-2-propene-1-sulphonic acid, styrene sulphonic acid, vinylsulphonic acid, 3-sulphopropyl acrylate, 3-sulphopropyl methacrylate, sulphomethylacrylamide, sulphomethylmethacrylamide.
  • the sulfonated polymer is a copolymer comprising polymerized units of monoethylenically unsaturated C 3 -C 6 monocarboxylic acid. More preferably, the sulfonated copolymer comprises the following monomers in polymerised form:
  • the monoethylenically unsaturated C 3 -C 6 monocarboxylic acid in the sulfonated copolymer are selected from acrylic acid, meth(acrylic) acid and combinations thereof.
  • polycarboxylate polymer here is used to also cover the acid form and is different from the acid that is present in the solid.
  • Suitable polycarboxylate polymers have an average molar mass Mw of from 500 to 500.000. They may be modified or unmodified, but preferably are unmodified. Also they can be co-polymers or homopolymers, although homopolymers are considered more beneficial.
  • Polycarboxylate polymers having an average molar mass (Mw) of from 900 to 100.000, more preferably 1100 to 10.000 gave better results in terms of further improving the benefits described of adding polymer.
  • the solid comprises polycarboxylate polymer selected from polyacrylate, copolymers of polyacrylate, polymaleate, copolymers of polymaleate, polymethacrylate, copolymers of polymethacrylate, polymethyl-methacrylate, copolymers of polymethyl-methacrylate, polyaspartate, copolymers of polyaspartate, polylactate, copolymers of polylactate, polyitaconates, copolymers of polyitaconates and combinations thereof.
  • polycarboxylate polymer selected from polyacrylate, copolymers of polyacrylate, polymaleate, copolymers of polymaleate, polymethacrylate, copolymers of polymethacrylate, polymethyl-methacrylate, copolymers of polymethyl-methacrylate, polyaspartate, copolymers of polyaspartate, polylactate, copolymers of polylactate, polyitaconates, copolymers of polyitaconates and combinations thereof.
  • Highly preferred polycarboxylate polymers are polyacrylates.
  • Suitable polyacrylates are commercially available, such as from BASF under the tradename Sokalan PA 13 PN, Solakan PA 15, Sokalan PA 20 PN, Sokalan PA 20, Sokalan PA 25 PN, Sokalan PA 30, Sokalan 30 CL, Sokalan PA 40, Sokalan PA 50, Sokalan PA 70 PN, Sokalan PA 80 S and Sokalan PA 110 S.
  • polyacrylates having the following combined properties:
  • polycarboxylate polymers and the sulfonated polymers the polycarboxylate polymers are the more preferred.
  • the solid of the invention may, depending on the aminopolycarboxylate and acid used, be colored and for example have a yellowish tinge.
  • the translucency of such solid can be further improved by adding an opposing colorant of the color wheel, which is preferably a dye.
  • an opposing colorant of the color wheel which is preferably a dye.
  • yellow opposes blue on the color wheel, and violet opposes green This will render the solid in essence to be more colorless, which can be preferred.
  • typical dyes need be added in relatively small amounts to be effective. Hence their level is suggested not to be above 0.5 wt. % and preferably is at most 0.2 wt. %.
  • the embossed detergent solid preferably contains no more than 30 wt. % of ingredients other than aminopolycarboxylate, acid, polyacrylate and/or sulfonated polymer, colorants and water, more preferably no more than 20 wt. %, still even more preferably no more than 10 wt. %, still even more preferably no more than 5 wt. %, still even more preferably no more than 2 wt. % and still even more preferably essentially no further ingredients are present. If further ingredients are present in the solid composition these are preferably water-soluble non-crystalline ingredients.
  • the solid of the invention can have any suitable shape and size.
  • a detergent product When used, as part of a detergent product or otherwise, it is preferably present in at least one continuous volume of from 0.2 to 15 cm 3 , even more preferably from 0.4 to 10 cm 3 , most preferably from 0.5 to 5 cm 3 . Said preferred volumes allows the solid of the invention to be easily visible to the naked eye, allowing it to be better appreciated for its visual appeal.
  • the solid may be present in any suitable shape.
  • a detergent product When used, as part of a detergent product or otherwise, it is preferably has at least one continuous, preferably overall flat, surface area of 0.5 to 25 cm 2 , even more preferably from 1.0 to 10 cm 2 , most preferably from 2.0 to 5 cm 2 . Said preferred sizes allows the embossment to be easily visible to the naked eye, allowing it to be better appreciated for its visual appeal by the untrained human eye.
  • the solid preferably has a maximum Transmittance within the wavelength range of 400 to 700 nm of at least 5%, more preferably of at least 10%, even more preferably of at least 20%, yet more preferably of at least 25% and most preferably of least 30%.
  • the solid has an average Transmittance in the wavelength range of 400 to 700 nm of at least 5%, more preferably of at least 10%, even more preferably of at least 20% and most preferably of at least 25%.
  • the embossed detergent solid may form a (unit dose) detergent product by itself or form part of a (unit dose) detergent product. If part of a unit dose detergent product, the detergent product comprises the solid according to the first aspect of the invention in an amount of from 1 to 90 wt. %, preferably in an amount of from 5 to 85 wt. %, more preferably in an amount of from 10 to 70 wt. % and even more preferably in an amount of from 20 to 50 wt. %.
  • the particularly preferred amount of the solid of the invention is from 5 to 60 wt. %, more preferably 10 to 50 wt. % and even more preferably 15 to 40 wt. %.
  • the particularly preferred amount of the solid of the invention is from 10 to 85 wt. %, more preferably 20 to 80 wt. % and even more preferably 40 to 70 wt. %.
  • the particularly preferred amount of the solid of the invention is from 1 to 60, more preferably 2 to 50 wt. %, and even more preferably, 5 to 35 wt. %.
  • At least part of the solid according to the invention is visually distinct from the remainder of the detergent product part(s).
  • the visual distinctiveness of the solid is preferably based on the solid having (a higher) translucency compared to the other detergent product solid part(s) and/or the present of embossment.
  • the distinctiveness of the solid can be further enhanced by a suitable distinctive colouring. This can be by making it of more intense or of less intense colour (e.g. colourless).
  • colourants such as dyes and/or pigments are effective in low amounts and as such this is typically not problematic.
  • the solid of the invention is used to provide a detergent product with enhanced visual appeal.
  • the solid can be present in any suitable shape or shapes, such as in one or more layers, linear structures (e.g. rods, beams), spherical or cuboid shapes or combinations thereof.
  • Preferred shapes are the following: cuboid, cylinder, sphere, bar, X-bar, pyramid, prism, cone, dome and (circular) tube. Of these more preferred shapes are bar, X-bar, cylinder, cuboid, (circular) tube and sphere.
  • the solid of the invention forms part of the surface of the detergent product. More preferably, at least 10%, 20%, 30%, 40% more preferably at least 50% of the surface area of the detergent product is formed by the solid. Preferably at most 95%, 90% and more preferably at most 85% of the surface area of the detergent product is formed by the solid.
  • the solid of the invention in the detergent product may act itself as a matrix and hold part, or the whole, of the further ingredients in the detergent product.
  • the solid of the invention may be used to form a (partial) embossed skin.
  • the solid acts as a translucent matrix holding one or more distinct bodies, which can be visible in the matrix.
  • the bodies being preferably in the shape of spheres or cubes.
  • the bodies being preferably coloured.
  • the skilled person is endowed with the capability to use the embossed solid of the invention to his advantage when making more appealing detergent products.
  • ways of using the solid in a detergent product in which the solid remains distinctly visible can be appreciated for it translucent and/or glossy nature and of course for its embossment are highly preferred.
  • the detergent product according to the invention comprises the embossed solid according to the invention.
  • the detergent product (as a whole) will comprise chiral aminopolycarboxylate, organic acid and water by virtue of this.
  • the detergent product in addition preferably comprises, but preferably in the other part(s) than that of the solid of the invention, at least one further detergent active, and preferably one or more of enzymes, enzyme stabilizers, bleaching agents, bleach activator, bleach catalyst, bleach scavengers, drying aids, silicates, metal care agents, colorants, perfumes, lime soap dispersants, anti-foam, anti-tarnish, anti-corrosion agents, surfactants and further builders.
  • Further builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetraacetic acid.
  • Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate.
  • the detergent product comprises sodium carbonate in the range from 5 to 50 wt%, most preferably 10 to 35 wt%.
  • Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g.
  • zeolite A zeolite A
  • zeolite B also known as zeolite P
  • zeolite C zeolite C
  • zeolite X zeolite Y
  • zeolite P-type as described in EP-A-0,384,070 .
  • the detergent product may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions. Zeolite and carbonate (carbonate (including bicarbonate and sesquicarbonate) are preferred further builders.
  • the builder may be crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15wt. %.
  • Aluminosilicates are materials having the general formula: 0.8-1.5 M 2 O. Al 2 O 3 . 0.8-6 SiO 2 , where M is a monovalent cation, preferably sodium.
  • the preferred sodium aluminosilicates contain 1.5-3.5 SiO 2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature.
  • the ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
  • phosphate builders may be used.
  • the term 'phosphate' embraces diphosphate, triphosphate, and phosphonate species.
  • Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
  • the detergent product is a non-phosphate built detergent product, i.e., contains less than 1 wt% of phosphate and preferably essentially no phosphate.
  • the detergent product according to the invention comprises at most 5 wt. %, more preferably at most 1 wt. % and particularly essentially no phosphorous based builders.
  • phosphorous based builders are 1-hydroxyethane-1,1-diphosphonic acid (HEDP), diethylenetriamine-penta (methylenephosphonic acid) (DTPMP), ethylenediaminetetra-methylenephosphonate (EDTMP), tripolyphosphate, pyrophosphate.
  • Alkali carbonate is appreciated in view of its double-function as builder and buffer and is preferably present in the detergent product. If present the preferred amount of alkali carbonate in the detergent product is from 2 to 75 wt.%, more preferably from 3 to 50 wt.% and even more preferably from 5 to 20 wt.%. Such level of alkali carbonate provides good Ca 2+ and Mg 2+ ion scavenging for most types of water hardness levels, as well as other builder effects, such as providing good buffering capacity.
  • the preferred alkali carbonates are sodium- and/or potassium carbonate of which sodium carbonate is particularly preferred.
  • the alkali carbonate present in the detergent product of the invention can be present as such or as part of a more complex ingredient (e.g. sodium carbonate in sodium percarbonate).
  • the detergent product of the invention comprises 0.5 to 70 wt. % of surfactant, more preferably 2 to 50 wt. %.
  • the surfactant can be non-ionic or anionic.
  • the particularly preferred amount of surfactant is from 0.5 to 25 wt.%, preferably 2 to 15 wt. %. In case of toilet bowl rim detergent products, the particularly preferred amount of surfactant is from 0.5 to 55, preferably 10 to 40 wt. %. In case of laundry detergent products, the particular preferred amount of surfactant is from 2 to 70, preferably 10 to 35 wt. %.
  • nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described " Surface Active Agents” Vol. 1, by Schwartz & Perry, Interscience 1949 , Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon's Emulsifiers and Detergents” published by Manufacturing Confectioners Company or in "Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981.
  • the surfactants used are saturated.
  • Suitable non-ionic surfactants which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
  • Preferably low-foaming nonionic surfactants are used particularly from the group of alkoxylated alcohols.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues prepared from alcohols of natural origin with 12 to 18 C atoms for example from coconut, palm, tallow fat or oleyl alcohol, and on average 2 to 8 mol of EO per mol of alcohol are preferred.
  • the preferred ethoxylated alcohols include for example C 12-14 alcohols with 3 EO to 4 EO, C 9-12 alcohol with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12-14 alcohol with 3 EO and C 12-19 alcohol with 5 EO.
  • Preferred tallow fatty alcohols with more than 12 EO have from 60 to 100 EO, and more preferably from 70 to 90 EO.
  • Particularly preferred tallow fatty alcohols with more than 12 EO are tallow fatty alcohols with 80 EO.
  • Nonionic surfactants from the group of alkoxylated alcohols are likewise particularly preferentially used.
  • Preferably used nonionic surfactants originate from the groups comprising alkoxylated nonionic surfactants, in particular ethoxylated primary alcohols and mixtures of these surfactants with structurally complex surfactants such as polyoxypropylene/ polyoxyethylene/ polyoxypropylene (PO/EO/PO).
  • Such (PO/EO/PO) nonionic surfactants are furthermore distinguished by good foam control.
  • nonionic surfactants are according to the formula: wherein n is from 0 to 5 and m from 10 to 50, more preferably wherein n is from 0 to 3 and m is from 15 to 40, and even more preferably wherein n is 0 and m is from 18 to 25.
  • Surfactants according to this formula were particularly useful in reducing spotting of dishware treated in a machine dish washer.
  • Preferably at least 50 wt. % of the nonionic surfactant comprised by the detergent product of the invention is nonionic surfactant according to this formula.
  • Such nonionic surfactants are commercially available, e.g. under the tradename Dehypon WET (Supplier: BASF) and Genapol EC50 (Supplier Clariant).
  • the detergent product preferably comprises from 0.5 to 15 wt. % of nonionic surfactant.
  • the more preferred total amount of nonionic surfactants is from 2.0 to 8 wt. % and even more preferred is an amount of from 2.5 to 5.0 wt.%.
  • the nonionic surfactant used in the detergent product can be a single nonionic surfactant or a mixture of two or more non-ionic surfactants.
  • the nonionic surfactant is preferably present in amounts of 25 to 90 wt. % based on the total weight of the surfactant system.
  • Anionic surfactants can be present for example in amounts in the range from 5 to 40 wt. % of the surfactant system.
  • Suitable anionic surfactants which may be used are preferably water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals.
  • suitable synthetic anionic surfactants are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C8 to C18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C9 to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the preferred anionic surfactants are sodium C11 to C15 alkyl benzene sulphonates and sodium C12 to C18 alkyl sulphates.
  • surfactants such as those described in EP-A-328 177 (Unilever), which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074 , and alkyl monoglycosides.
  • the detergent product according to the invention comprises at least 5 wt. %, more preferably at least 8 wt. % and even more preferably at least 10 wt. % of bleaching agent by total weight of the product.
  • the bleaching agent preferably comprises a chlorine-, or bromine-releasing agent or a peroxygen compound.
  • the bleaching agent is selected from peroxides (including peroxide salts such as sodium percarbonate), organic peracids, salts of organic peracids and combinations thereof. More preferably, the bleaching agent is a peroxide. Most preferably, the bleaching agent is a percarbonate.
  • the detergent product of the invention may contain one or more bleach activators such as peroxyacid bleach precursors.
  • Peroxyacid bleach precursors are well known in the art. As non-limiting examples can be named N,N,N',N'-tetraacetyl ethylene diamine (TAED), sodium nonanoyloxybenzene sulphonate (SNOBS), sodium benzoyloxybenzene sulphonate (SBOBS) and the cationic peroxyacid precursor (SPCC) as described in US-A-4,751,015 .
  • the detergent product comprises a bleach catalyst.
  • a bleach catalyst which is a manganese complex, such as Mn-Me TACN, as described in EP-A-0458397 , and/or the sulphonimines of US-A- 5,041,232 and US-A-5,047,163 . It is advantageous that the bleach catalyst is physically separated in the detergent product from the bleach (to avoid premature bleach activation). Cobalt or iron catalysts can also be used.
  • the detergent product of the invention preferably comprises one or more enzymes chosen from proteases, alpha-amylases, cellulases, lipases, peroxidases/ oxidases, pectate lyases, and mannanases. Particularly preferred is protease, amylase or a combination thereof. If present the level of each enzyme is from 0.0001 to 1.0 wt.%, more preferably 0.001 to 0.8 wt. %.
  • Silicates are known detergent ingredients, and often included to provide dish wash care benefits, and reduce corrosion of dishware. Particularly preferred silicates are sodium disilicate, sodium metasilicate and crystalline phyllosilicates or mixtures thereof. If present the total amount of silicates preferably is from 1 to 15 wt. %, more preferably form 2 to 10 wt. % and even more preferably from 2.5 to 5.0 wt. % by weight of the detergent product.
  • the detergent product of the invention comprises one or more colorants, perfumes or a mixture thereof in an amount of from 0.0001 to 8 wt. %, more preferably from 0.001 to 4 wt. % and even more preferably from 0.001 to 1.5 wt. %.
  • Perfume is preferably present in the range from 0.1 to 1 wt. %.
  • Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co .
  • CTFA Cosmetic, Toiletry and Fragrance Association
  • Chemicals Buyers Directory 80th Annual Edition published by Schnell Publishing Co .
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]).
  • Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • shading dyes are for example added to laundry detergent formulations to enhance the whiteness of fabrics. Shading dyes are preferably blue or violet dyes which are substantive to fabric. A mixture of shading dyes may be used and indeed are preferred for treating mixed fiber textiles.
  • the preferred amount of shading dyes is from 0.00001 to 1.0 wt. %, preferably 0.0001 to 0.1 wt. % and particularly an amount of 0.001 to 0.01 wt. % is preferred.
  • Shading dyes are discussed in WO2005/003274 , WO2006/032327 , WO2006/032397 , WO2006/045275 , WO2006/027086 , WOO2008/017570 , WO 2008/141880 , WO2009/132870 , WO2009/141173 , WO 2010/099997 , WO 2010/102861 , WO2010/148624 , WO2008/087497 and WO2011/011799 .
  • the detergent product of the invention may be in any suitable form. Due to the presence of the solid of the invention it at least contains a solid part.
  • the remainder of the detergent product can also be non-solid, such as in the form of a liquid, but preferably contains at least one further non-powder non-liquid solid part, such as and preferably is a compacted powder (which is no longer considered a powder as such).
  • the detergent product is preferably provided as a water-soluble or water-dispersible unit dose.
  • Particularly preferred unit doses are in the form of pouches, which comprise at least one further non-shape stable ingredient, such as a liquid and/or powder; or in the form of tablets.
  • the unit dose is sized and shaped as to fit in the detergent cup of a conventional house-hold machine dishwasher, laundry machine or toilet-rim holder, as is known in the art.
  • the unit-dose detergent product has a unit weight of 5 to 50 grams, more preferably a unit weight of 10 to 30 grams, even more preferably a unit weight of 12 to 25 grams.
  • Advantageous unit dose pouches preferably have more than one compartment.
  • Advantageous unit dose tablets are those which have more than one visually distinct tablet region. Such regions can be formed by e.g. two distinct (colored) layers or a tablet having a main body and a distinct insert, such as forming a nested-egg.
  • multi-compartmental pouches/ multi-region tablets is that it can be used to reduce/prevent undesired chemical reactions between two or more ingredients during storage by physical segregation.
  • the more preferred unit dose is a tablet.
  • the unit dose detergent product is wrapped to improve hygiene and consumer safety.
  • the wrapper advantageously is based on water-soluble film which preferably a polyvinylalcohol (PVA) based film.
  • PVA polyvinylalcohol
  • Such wrapping prevents direct contact of the detergent product with the skin of the consumer when placing the unit dose in the detergent cup/holder of a e.g. machine dishwasher.
  • a further benefit of course is that the consumer also does not need to remove a water-soluble wrapping before use. Wrapping of the detergent product further improves the detergent product stability.
  • the detergent products according to the invention can be made using known methods and equipment in the field of detergent product manufacturing.
  • the detergent product according to the invention can be made by combining the solid of the invention together with the remainder of the detergent ingredients.
  • a particularly preferred way of combining is by pressing the solid onto (or into) the remainder of the tablet ingredients and/or by adding the solid in heated (liquid) form onto the remainder of the, preferably pre-shaped, ingredients.
  • a highly preferred general detergent product formulation is as follows: Ingredient Amount (wt. %) Solid according to the invention 1 to 80 Surfactant 0.5 to 70 Phosphate at most 1.0 Preferably perfume and colorants in a combined amount of 0.0001 to 8.0
  • the product is preferably a unit-dose tablet with the following composition: Ingredient Amount (wt. %) Solid according to the invention 15 to 40 Further builder, preferably alkali carbonate 5 to 20 Non-ionic surfactant 0.5 to 15 Enzyme 0.001 to 0.8 Silicates 1 to 10 Bleaching agent + bleach activator + bleach catalyst 2 to 20 Phosphate at most 1.0 Preferably perfume and colorants in a combined amount of 0.001 to 1.5
  • the product is preferably is a solid block composition, e.g. without comprising liquid parts and/or powder/granular parts and even more preferably having the following composition:
  • Ingredient Amount (wt. %) Solid according to the invention 40 to 70
  • Anionic surfactant 10 to 40 Non-ionic surfactant 0.5 to 15 Bleaching agent + bleach activator 2 to 20
  • perfume and colorants in a combined amount of 0.001 to 8
  • the process to manufacture the embossed detergent solid according of the invention has the benefit of being both simple, economical and omits the need for adding further crystal formation inhibitors.
  • the simplicity and ease of the process also makes it a process which can provide the embossed solid with a reduced amount of energy, and makes it more amendable to factory-scale production with a reduced amount of waste (e.g. less complexity reduces the amount of product which need be discarded due to product flaws).
  • Step I. of the process according to the invention is to provide an aqueous solution comprising
  • the combining of the ingredients at Step I. can be done in any order.
  • the amount of water to be used in providing the aqueous solution beneficially is sufficient to fully dissolve the ingredients a) and b) at boiling temperature to simplify processing.
  • Both the chiral aminopolycarboxylate and the organic acid may be added as a separate pre-made aqueous solutions, which is preferred to further simplify processing.
  • Heat may be applied to (more quickly) dissolve the ingredients a) and b). Applying heat at Step I. is preferred as it not only reduces the time to dissolve (if necessary) the ingredients a) and b), but it may also reduce the amount of water needed to provide the solution, saving costs. Also having less water in the solution provided at Step I. can save time for completing Step II. of the process.
  • an aqueous solution is provided having a temperature of at least 50, more preferably of at least 70, even more preferably of at least 90, and still even more preferably of at least 100 degrees Celsius.
  • the aqueous solution at Step I. should be homogenous at least in respects of the chiral aminopolycarboxylate, the organic acid and the water. As such it is particularly preferred that the aqueous solution of Step I. is subjected to physical mixing.
  • the aqueous solution provided at Step I. may be viscous.
  • the aqueous solution provided at Step I comprises from 40 to 95 wt. % of water, preferably from 45 to 85 wt. %.
  • the final solid is preferably characterised by a highly preferred pH profile of at most 10.0, based on a solution of the solid in water in a 1:1 weight ratio, as measured at 25 degrees Celsius.
  • This can be easily achieved by suitably adjusting the pH of the aqueous solution accordingly, such as and preferably at Step I, using conventional means.
  • a balanced use of acid or (partially) neutralized salts forms of the ingredients a) and b) can be applied.
  • Step II. of the process water is removed from the aqueous solution provided at Step I. by evaporation at a temperature of at least 50 degrees Celsius, to provide a water content of from 0.7 to 25 wt. %.
  • water is removed from the aqueous solution by evaporation at a temperature of at least 70 degrees Celsius, more preferably at least 90 degrees Celsius and most preferably at least 100 degrees Celsius.
  • the preferred way of removing water at Step II. is by applying sufficient heat to bring the aqueous solution provided at Step I. to a boil. This allows fast water removal which is advantageous to obtain the benefits of the solid according to the invention.
  • the water removal may be done by any suitable means but preferably is such that the water removal is on-par with boiling at otherwise standard ambient conditions, or faster.
  • Step II. preferably does not involve spray-drying.
  • spray-drying can promote crystal formation and thus to reduce the translucency of the resulting solid.
  • the powder requires further recombination into a substantial non-powder solid of appreciable size in order to be embossed. This could be done e.g. by re-heating the powder, melting and cooling to form a solid of substantial size, but this requires substantially re-working the product which is time and energy intensive.
  • Step III. the temperature is of the desiccated mixture is preferably reduced to less than 45°C to obtain a solid. More preferably the temperature is reduced to less than 40, 35, 30 degrees Celsius even more preferably to from 15 to 25 degrees Celsius and still even more preferably to from 20 to 25 degrees Celsius to obtain a solid.
  • Step III. can be performed use passive or active cooling. Active cooling may be done using any conventional means such as by refrigeration.
  • Step Ill. the cooling of the desiccated mixture is achieved by heat exchange with the remainder of the (cooler) detergent product parts.
  • the 'solid' is applied in liquid/viscous form having an elevated temperature, onto the remainder of the detergent product and allowed to solidify in situ.
  • Embossing the solid can take place at any suitable point after Step II, meaning at a point where the material is sufficiently viscous/solid to be stably embossed.
  • One preferred way of providing embossment is by stamping the solid by a stamp or roller.
  • embossment Another way of providing embossment is by casting the sufficiently liquid/viscous desiccated mixture in a suitable mould, which carries a suitable embossment template on the inside of the mould.
  • a suitable mould which carries a suitable embossment template on the inside of the mould.
  • the solid according to the invention is obtainable by the process according to the invention.
  • Solids made according to the process of the invention were shown to be highly beneficial in view of the previously indicated attributes.
  • XRD is used to detect presence of crystalline material in the solid using to the Wide-Angle X-ray Scattering technique (WAXS).
  • WAXS Wide-Angle X-ray Scattering technique
  • XRD is carried out using a D8 Discover X-Ray Diffractometer from Bruker AXS (activa number: 114175).
  • the XRD measurements is performed using the following settings: 2 ⁇ (7 - 55°) Theta 1 7.0 Theta 2 10.0/25.0/40.0 X-ray generator (kV/ ⁇ A) 50/1000 Time (sec) 300 Collimator (mm) 1 Detector distance (cm) 32.5 Tube Anode Cu
  • DSC Differential Scanning Calorimetry
  • Tg glass transition temperature of the solid.
  • the equipment used of the DSC analysis was a Perkin Elmer power compensated DSC8000 equipped with an Intracooler III as cooling means.
  • the stainless-steel sample pan is used which is provided with the equipment by the Supplier and filled according to Supplier instructions with material to be analyzed.
  • the amount of material added to the sample pan is from 10 to 40 mg.
  • DSC temperature regime Hold for 1.0 min at 20.00°C; Cool from 20.00°C to -20.00°C at 10.00 °C/min; Hold for 2.0 min at -20.00°C; Heat from -20.00°C to 90.00°C at 5.00 °C/min; Hold for 2.0 min at 90.00°C; Cool from 90.00°C to -20.00°C at 10.00 °C/min; Hold for 2.0 min at -20.00°C; Heat from -20.00°C to 90.00°C at 5.00 °C/min; Atmosphere Nitrogen 20 ml/min
  • the Tg of the samples is measured with the second heating (i.e. the last heating step in the DSC temperature regime).
  • compositions according to the invention were made starting from an aqueous solution having a composition as set out in the following Table A.
  • Table A Composition of aqueous solutions, amounts are given in wt. % parts.
  • Ex 1 and 2 1 GLDA 46 2 Citric acid 46 3
  • Polyacrylate 8 Water 128 1 GLDA: Dissolvine GL-47-S (Supplier: Akzo Nobel) is a 47 % solution of GLDA containing 50 % water.
  • the amount given in Table A is the amount of GLDA.
  • 2 Citric Acid used as a 50 % solution.
  • the amount given in Table A is the amount citric acid.
  • Polyacrylate Sokalan PA 25 CL (Supplier BASF), supplied as granules comprising 80% polyacrylate. Average molar mass Mw is 4000.
  • the amount in Table A is the amount of polyacrylate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Claims (15)

  1. Geprägtes festes Waschmittel, umfassend:
    a) 25 bis 88 Gew.-% Äquivalent freier Säure von nicht-kristallinem chiralem Aminopolycarboxylat; und
    b) 10 bis 60 Gew.-% Äquivalent freier Säure von nicht-kristalliner organischer Säure, die sich vom Aminopolycarboxylat unterscheidet; und
    c) 0,7 bis 25 Gew.-% Wasser;
    wobei die organische Säure eine durchschnittliche molekulare Masse von höchstens 500 Dalton aufweist, wobei die molekulare Masse auf dem Äquivalent freier Säure basiert.
  2. Festkörper nach Anspruch 1, wobei der geprägte Bereich 1 bis 90% des gesamten Oberflächenbereichs, vorzugsweise 5 bis 70% und bevorzugter 10 bis 60%, bedeckt.
  3. Festkörper nach Anspruch 1 oder Anspruch 2, wobei die Prägung umfasst
    • Vorsprünge einer Höhe von der lokalen Oberflächenebene von mindestens 2 Mikrometer, vorzugsweise von 10 bis 500 Mikrometer, bevorzugter von 15 bis 250 Mikrometer und noch bevorzugter von 20 bis 100 Mikrometer;
    • Vertiefungen einer Tiefe von der lokalen Oberflächenebene von mindestens 2 Mikrometer, vorzugsweise von 10 bis 500 Mikrometer, bevorzugter von 15 bis 250 Mikrometer und noch bevorzugter von 20 bis 100 Mikrometer;
    • oder eine Kombination davon.
  4. Festkörper nach irgendeinem vorhergehenden Anspruch, wobei die Prägung mindestens einen Buchstaben, eine Zahl, ein Symbol, ein Bild oder ein Muster bereitstellt, bevorzugter mindestens ein Wort, ein Weinglasbild, ein Blattbild, ein Emoticon, ein Warnzeichen oder ein Punktmuster.
  5. Festkörper nach irgendeinem vorhergehenden Anspruch, wobei die Menge des chiralen Aminopolycarboxylats 30 bis 70 Gew.-% und bevorzugter 35 bis 60 Gew.-%, bezogen auf das Äquivalent freier Säure, beträgt.
  6. Festkörper nach irgendeinem vorhergehenden Anspruch, wobei die Menge der organischen Säure 15 bis 55 Gew.-%, vorzugsweise 25 bis 50 Gew.-%, beträgt, wobei das Gewicht auf die Äquivalente freier Säure bezogen ist.
  7. Festkörper nach irgendeinem vorhergehenden Anspruch, wobei das chirale Aminopolycarboxylat Glutaminsäure-N,N-diessigsäure (GLDA), Methylglycindiessigsäure (MGDA), Ethylendiamindibernsteinsäure (EDDS) oder eine Mischung davon umfasst und wobei das chirale Aminopolycarboxylat bevorzugt Glutaminsäure-N,N-diessigsäure (GLDA), Methylglycindiessigsäure (MGDA) oder eine Mischung davon ist.
  8. Festkörper nach irgendeinem vorhergehenden Anspruch, wobei die organische Säure Essigsäure, Zitronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäure, deren Salz oder eine Mischung davon umfasst, wobei die organische Säure vorzugsweise Zitronensäure, Milchsäure, Essigsäure oder Mischungen davon umfasst und wobei die organische Säure bevorzugter Zitronensäure umfasst.
  9. Festkörper nach irgendeinem vorhergehenden Anspruch, wobei die Wassermenge 1,0 bis 20 Gew.-%, vorzugsweise 1,4 bis 15 Gew.-% und bevorzugter 1,5 bis 8 Gew.-% beträgt.
  10. Festkörper nach irgendeinem vorhergehenden Anspruch, wobei a), b) und c) 60 bis 100 Gew.-%, vorzugsweise 70 bis 100 Gew.-%, bevorzugter 80 bis 100 Gew.-%, noch bevorzugter 90 bis 100 Gew.-% und sogar noch bevorzugter 95 bis 100 Gew.-% des Gesamtgewichts des geprägten festen Waschmittels darstellen.
  11. Festkörper nach irgendeinem vorhergehenden Anspruch, umfassend sulfoniertes Polymer, Polycarboxylatpolymer oder eine Kombination davon in einer Gesamtmenge von 0,3 bis 50 Gew.-%, vorzugsweise von 5 bis 40 Gew.-%, bevorzugter von 10 bis 35 Gew.-% und noch bevorzugter von 15 bis 25 Gew.-%, bezogen auf das Äquivalent freier Säure des Polymers.
  12. Festkörper nach irgendeinem vorhergehenden Anspruch, wobei der Festkörper eine maximale Lichtdurchlässigkeit im Wellenlängenbereich von 400 bis 700 nm von mindestens 5%, vorzugsweise von mindestens 10%, bevorzugter von mindestens 20%, noch bevorzugter von mindestens 25% und sogar noch bevorzugter von mindestens 30% aufweist, wobei die Lichtdurchlässigkeit basierend auf einer Weglänge von 0,5 cm durch die feste Zusammensetzung bewertet ist, wobei die Menge an durchtretendem Licht gemessen wird.
  13. Verfahren zur Herstellung des Festkörpers, umfassend mindestens eine geprägte Oberfläche nach irgendeinem vorhergehenden Anspruch, umfassend die aufeinanderfolgenden Schritte:
    I. Bereitstellen einer wässrigen Lösung, umfassend:
    a) Äquivalent freier Säure von nicht-kristallinem chiralem Aminopolycarboxylat; und
    b) Äquivalent freier Säure von nicht-kristalliner organischer Säure, die sich von a) unterscheidet,
    wobei das Gewichtsverhältnis von a):b) 1:2 bis 8,8:1 beträgt;
    II. Entfernen von Wasser aus der wässrigen Lösung durch Verdampfen bei einer Temperatur von mindestens 50°C, um eine flüssige entwässerte Mischung mit einem Wassergehalt von 0,7 bis 25 Gew.-% herzustellen; und
    III. Reduzieren der Temperatur der entwässerten Mischung, um einen Feststoff zu erhalten,
    wobei der Feststoff nach Schritt II. mit einer Oberflächenprägung versehen wird.
  14. Verfahren nach Anspruch 13, wobei mindestens ein Teil der Prägung durch Stanzen, Formen oder eine Kombination davon und vorzugsweise durch Stanzen erreicht wird.
  15. Verwendung des Festkörpers nach irgendeinem der Ansprüche 1 bis 12 zum Bereitstellen eines geprägten Waschmittelprodukts, das vorzugsweise zumindest teilweise durchscheinend ist und bevorzugter eine Oberfläche mit ungleichmäßiger Lichtstreuung aufweist, wobei die Lichtstreuung unter Verwendung eines Haze-Gard I Transparenzmessgerätes des Typs SHBG4774, das gemäß den Anweisungen des Lieferanten betrieben wird, gemessen werden kann.
EP20756881.7A 2019-08-21 2020-08-20 Feste waschmittelzusammensetzung Active EP4017952B1 (de)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
EP19192834 2019-08-21
EP19192831 2019-08-21
EP19192828 2019-08-21
EP19192836 2019-08-21
EP19192833 2019-08-21
EP19192827 2019-08-21
PCT/EP2020/073278 WO2021032815A1 (en) 2019-08-21 2020-08-20 An embossed detergent solid

Publications (2)

Publication Number Publication Date
EP4017952A1 EP4017952A1 (de) 2022-06-29
EP4017952B1 true EP4017952B1 (de) 2023-03-22

Family

ID=72086878

Family Applications (6)

Application Number Title Priority Date Filing Date
EP20758222.2A Active EP4017956B1 (de) 2019-08-21 2020-08-20 Feste waschmittelzusammensetzung
EP20756881.7A Active EP4017952B1 (de) 2019-08-21 2020-08-20 Feste waschmittelzusammensetzung
EP20756883.3A Active EP4017954B1 (de) 2019-08-21 2020-08-20 Feste waschmittelzusammensetzung
EP20756882.5A Active EP4017953B1 (de) 2019-08-21 2020-08-20 Feste waschmittelzusammensetzung
EP20758223.0A Active EP4017957B1 (de) 2019-08-21 2020-08-20 Feste waschmittelzusammensetzung
EP20757347.8A Active EP4017955B1 (de) 2019-08-21 2020-08-20 Feste waschmittelzusammensetzung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20758222.2A Active EP4017956B1 (de) 2019-08-21 2020-08-20 Feste waschmittelzusammensetzung

Family Applications After (4)

Application Number Title Priority Date Filing Date
EP20756883.3A Active EP4017954B1 (de) 2019-08-21 2020-08-20 Feste waschmittelzusammensetzung
EP20756882.5A Active EP4017953B1 (de) 2019-08-21 2020-08-20 Feste waschmittelzusammensetzung
EP20758223.0A Active EP4017957B1 (de) 2019-08-21 2020-08-20 Feste waschmittelzusammensetzung
EP20757347.8A Active EP4017955B1 (de) 2019-08-21 2020-08-20 Feste waschmittelzusammensetzung

Country Status (4)

Country Link
EP (6) EP4017956B1 (de)
CN (6) CN114286854A (de)
ES (6) ES2943127T3 (de)
WO (6) WO2021032833A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202109205D0 (en) * 2021-06-25 2021-08-11 Innospec Ltd Compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2794836B1 (de) * 2011-12-22 2016-06-01 Unilever N.V. Waschmittel enthaltend glutamin-n,n-diacetat, wasser und bleichmittel
US20170198241A1 (en) * 2014-05-30 2017-07-13 Reckitt Benckiser (Brands) Limited Improved Detergent Composition

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3278670D1 (en) 1981-07-13 1988-07-21 Procter & Gamble Foaming surfactant compositions
US4751015A (en) 1987-03-17 1988-06-14 Lever Brothers Company Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions
GB8803036D0 (en) 1988-02-10 1988-03-09 Unilever Plc Liquid detergents
CA2001927C (en) 1988-11-03 1999-12-21 Graham Thomas Brown Aluminosilicates and detergent compositions
US5041232A (en) 1990-03-16 1991-08-20 Lever Brothers Company, Division Of Conopco, Inc. Sulfonimines as bleach catalysts
US5047163A (en) 1990-03-16 1991-09-10 Lever Brothers Company, Division Of Conopco, Inc. Activation of bleach precursors with sulfonimines
DE69125309T2 (de) 1990-05-21 1997-07-03 Unilever Nv Bleichmittelaktivierung
EP0783034B1 (de) * 1995-12-22 2010-08-18 Mitsubishi Rayon Co., Ltd. Chelatbildendes Mittel und dieses enthaltendes Waschmittel
CN2418129Y (zh) * 1999-09-18 2001-02-07 张俊杰 具有永久标识的固体洗涤物
JP2002241800A (ja) * 2001-02-13 2002-08-28 Yuzo Ogawa 商品名等が再度出現する固形洗剤
JP4137494B2 (ja) * 2002-04-12 2008-08-20 川研ファインケミカル株式会社 弱酸性透明固形洗浄剤の製造方法
GB0314210D0 (en) 2003-06-18 2003-07-23 Unilever Plc Laundry treatment compositions
GB0420203D0 (en) 2004-09-11 2004-10-13 Unilever Plc Laundry treatment compositions
EP2009088B1 (de) 2004-09-23 2010-02-24 Unilever PLC Zusammensetzungen zur Wäschebehandlung
GB0421145D0 (en) 2004-09-23 2004-10-27 Unilever Plc Laundry treatment compositions
DE102004052007B4 (de) 2004-10-25 2007-12-06 Müller Weingarten AG Antriebssystem einer Umformpresse
ZA200804295B (en) 2006-08-10 2009-09-30 Unilever Plc Shading composition
CN100395323C (zh) * 2006-09-01 2008-06-18 王涛 一种速效洗涤剂及其制备方法
ES2355763T3 (es) 2007-01-19 2011-03-30 THE PROCTER & GAMBLE COMPANY Composición para el cuidado en el lavado de ropa que comprende un agente blanqueante para sustratos celulósicos.
CN101679919B (zh) 2007-05-18 2011-11-23 荷兰联合利华有限公司 三苯并二*嗪染料
ATE557079T1 (de) * 2008-01-24 2012-05-15 Unilever Nv Geschirrspülmittelzusammensetzungen für spülmaschinen
BRPI0910682B1 (pt) 2008-05-02 2020-09-24 Unilever N.V. Grânulo de corante tonalizante que produzem menos manchas, e, composição detergente granular para lavar roupas
ES2443822T3 (es) 2008-05-20 2014-02-20 Unilever N.V. Composición de matizado
WO2010099997A1 (en) 2009-03-05 2010-09-10 Unilever Plc Dye radical initiators
EP2406327B1 (de) 2009-03-12 2013-08-14 Unilever PLC Farbpolymerformulierungen
WO2010148624A1 (en) 2009-06-26 2010-12-29 Unilever Plc Dye polymers
WO2011011799A2 (en) 2010-11-12 2011-01-27 The Procter & Gamble Company Thiophene azo dyes and laundry care compositions containing the same
CN103301051B (zh) * 2012-03-07 2015-01-21 南京华狮化工有限公司 一种透明美容皂组合物
WO2014086662A1 (en) 2012-12-03 2014-06-12 Unilever N.V. Solid glda compositions
WO2014161786A1 (de) * 2013-04-02 2014-10-09 Basf Se Formulierungen, ihre verwendung als oder zur herstellung von geschirrspülmitteln und ihre herstellung
PL2997121T3 (pl) * 2013-05-17 2019-05-31 Unilever Nv Kompozycja detergentowa do automatycznego mycia naczyń
MX2015017866A (es) * 2013-06-25 2016-08-11 Unilever Nv Formulacion detergente higroscopica que comprende un quelatador de aminocarboxilato e ingredientes sensibles a la humedad.
EP2857486A1 (de) * 2013-10-07 2015-04-08 WeylChem Switzerland AG Beutel mit mehreren Fächern mit Reinigungszusammensetzungen, Waschverfahren und Verwendung zum Waschen und Reinigen von Textilien und Geschirr
PT3107987T (pt) * 2014-02-20 2019-01-17 Unilever Nv Composição de lavagem de louça à máquina
WO2018028933A1 (en) * 2016-08-08 2018-02-15 Henkel Ag & Co. Kgaa Stable liquid detergent comprising soil release polymer
EP3619288B1 (de) * 2017-05-04 2020-10-21 Unilever N.V. Reinigungsmittelzusammensetzung
DE102018201830A1 (de) * 2018-02-06 2019-08-08 Henkel Ag & Co. Kgaa Viskoelastische, festförmige Tensidzusammensetzung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2794836B1 (de) * 2011-12-22 2016-06-01 Unilever N.V. Waschmittel enthaltend glutamin-n,n-diacetat, wasser und bleichmittel
US20170198241A1 (en) * 2014-05-30 2017-07-13 Reckitt Benckiser (Brands) Limited Improved Detergent Composition

Also Published As

Publication number Publication date
CN114341325A (zh) 2022-04-12
CN114302947A (zh) 2022-04-08
WO2021032833A1 (en) 2021-02-25
CN114341330A (zh) 2022-04-12
CN114258427A (zh) 2022-03-29
WO2021032818A1 (en) 2021-02-25
EP4017954B1 (de) 2023-04-05
EP4017953B1 (de) 2023-04-12
CN114286854A (zh) 2022-04-05
EP4017956A1 (de) 2022-06-29
EP4017954A1 (de) 2022-06-29
ES2943558T3 (es) 2023-06-14
ES2944952T3 (es) 2023-06-27
EP4017957A1 (de) 2022-06-29
WO2021032815A1 (en) 2021-02-25
WO2021032817A1 (en) 2021-02-25
WO2021032816A1 (en) 2021-02-25
WO2021032834A1 (en) 2021-02-25
ES2944450T3 (es) 2023-06-21
EP4017955B1 (de) 2023-03-22
CN114269889A (zh) 2022-04-01
ES2943127T3 (es) 2023-06-09
EP4017956B1 (de) 2023-03-15
EP4017957B1 (de) 2023-03-29
ES2945459T3 (es) 2023-07-03
EP4017952A1 (de) 2022-06-29
ES2942916T3 (es) 2023-06-07
EP4017955A1 (de) 2022-06-29
EP4017953A1 (de) 2022-06-29

Similar Documents

Publication Publication Date Title
US20230167385A1 (en) Shaped detergent product comprising aminopolycarboxylate
EP4017952B1 (de) Feste waschmittelzusammensetzung
US20210040417A1 (en) Detergent solid composition comprising aminopolycarboxylate and organic acid

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20221028

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020009088

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1555302

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230415

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2942916

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230607

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1555302

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230821

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230724

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230817

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230828

Year of fee payment: 4

Ref country code: DE

Payment date: 20230821

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020009088

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231027

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

26N No opposition filed

Effective date: 20240102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230820

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A