EP4010645A1 - Semipermeable membran mit aus einer flüchtigen substanz resultierenden poren - Google Patents

Semipermeable membran mit aus einer flüchtigen substanz resultierenden poren

Info

Publication number
EP4010645A1
EP4010645A1 EP20742661.0A EP20742661A EP4010645A1 EP 4010645 A1 EP4010645 A1 EP 4010645A1 EP 20742661 A EP20742661 A EP 20742661A EP 4010645 A1 EP4010645 A1 EP 4010645A1
Authority
EP
European Patent Office
Prior art keywords
cooling
working fluid
fluid
heat exchanger
cooling heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20742661.0A
Other languages
English (en)
French (fr)
Inventor
Fabien Durand
Guillaume DELAUTRE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP4010645A1 publication Critical patent/EP4010645A1/de
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • F25B11/04Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0258Construction and layout of liquefaction equipments, e.g. valves, machines vertical layout of the equipments within in the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0259Modularity and arrangement of parts of the liquefaction unit and in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0261Details of cold box insulation, housing and internal structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the invention relates to a refrigeration device and installation.
  • the invention relates more particularly to a refrigeration device at low temperature, that is to say at a temperature between minus 100 degrees centigrade and minus 273 degrees centigrade, the refrigeration device being arranged in a frame and comprising a cooling circuit.
  • work forming a loop and containing a working fluid
  • the working circuit forming a cycle comprising in series: a mechanism for compressing the working fluid, a mechanism for cooling the working fluid, a mechanism for expanding the working fluid and a mechanism for heating the working fluid, the mechanisms for cooling and heating the working fluid comprising a common heat exchanger in which the working fluid passes against the current in two separate transit portions of the working circuit depending on whether it is cooled or reheated
  • the device comprising a refrigeration heat exchanger intended to extract heat from at least a member by heat exchange with the working fluid circulating in the working circuit
  • the compression mechanism comprising two separate compressors
  • the working fluid cooling mechanism comprising two cooling heat exchangers arranged respectively at the outlet of the two compressors and providing heat exchange between the working fluid and
  • low-temperature refrigeration device a refrigeration device which reaches a temperature between minus 100 degrees centigrade and minus 273 degrees centigrade, especially between minus 100 degrees centigrade and minus 253 degrees centigrade (20K).
  • the invention relates in particular to cryogenic refrigerators and / or liquefiers, for example of the “Turbo Brayton” cycle type or “Turbo Brayton coolers” in which a working gas, also called cycle gas (helium, nitrogen, hydrogen or other pure gas or mixture), undergoes a thermodynamic cycle producing cold which can be transferred to an organ or a gas to be cooled.
  • a working gas also called cycle gas (helium, nitrogen, hydrogen or other pure gas or mixture)
  • cycle gas helium, nitrogen, hydrogen or other pure gas or mixture
  • These devices are used in a wide variety of applications and in particular for cooling natural gas from a reservoir (for example in boats).
  • the liquefied natural gas is for example sub-cooled to prevent its vaporization or the gaseous part is cooled with a view to its reliquefaction.
  • a natural gas stream can be circulated through a heat exchanger cooled by the refrigerator / liquefier cycle gas.
  • These devices can include several heat exchangers interposed at the outlet of the compression stages. These devices are integrated into a frame or frame whose volume is limited. The integration of these various exchangers and the associated piping are thus made difficult. Cooling the working gas can in some cases be problematic.
  • An object of the present invention is to overcome all or part of the drawbacks of the prior art noted above according to claim 1 preferably.
  • the device according to the invention is essentially characterized in that the exchangers cooling heat exchangers are located in the frame around the common heat exchanger, that is to say that preferably the cooling heat exchangers are not located below the common heat exchanger between the exchanger heat joint and the lower base of the frame.
  • embodiments of the invention may include one or more of the following characteristics: the cooling heat exchangers are located in the frame next to the common heat exchanger in a direction transverse to the axis longitudinal, the cooling heat exchangers are located adjacent, that is to say spaced from one another by a distance of between 0 and 500mm, in particular between 100 and 300mm, the two cooling heat exchangers are arranged one above the other in a direction perpendicular to the base, the cooling heat exchangers each have an oblong shape extending in respective longitudinal directions, each cooling heat exchanger comprises an inlet of working gas to be cooled and an outlet for cooled working gas disposed respectively at two longitudinal ends, each cooling heat exchanger comprising a cooling fluid inlet and a cooling fluid outlet, the two cooling heat exchangers being arranged inverted, i.e.
  • each cooling heat exchanger comprises an inlet for working gas to be cooled and an outlet for gas. cooled work respectively arranged at two longitudinal ends, each cooling heat exchanger comprising a cooling fluid inlet and a cooling fluid outlet, the two cooling heat exchangers being arranged inverted, that is say that the respective longitudinal directions of the two cooling heat exchangers are parallel or substantially parallel and the directions of circulation of the working fluid in said cooling heat exchanger are opposite, the cooling fluid outlet of one of the exchangers of cooling heat is connected to the coolant inlet of the other cooling heat exchanger so that coolant flow passing through one of the cooling heat exchangers has already circulated in the other cooling heat exchanger, the two compressors are arranged in series in the working circuit, the device comprises at least two motors for driving the compressors in rotation and each comprising a rotary drive shaft, the compressors being driven in rotation by the respective rotary shaft or shafts, the expansion
  • the refrigerant circuit firstly supplies the first cooling heat exchanger in series according to the direction of circulation of the working fluid, then the second cooling heat exchanger in series according to the direction of circulation with the working fluid being supplied with cooling fluid having passed through the first cooling heat exchanger, the refrigerant circuit first supplies the second cooling heat exchanger in series with cooling fluid according to the direction of circulation of the working fluid, the first cooling heat exchanger in series according to the direction of circulation of the working fluid being supplied with cooling fluid having passed through the second cooling heat exchanger.
  • the invention also relates to an installation for refrigeration and / or liquefaction of a flow of user fluid, in particular natural gas, comprising a refrigeration device according to any one of the characteristics above or below, the installation comprising at least one user fluid reservoir, a conduit for circulating said flow of user fluid in the cooling exchanger.
  • the invention may also relate to any alternative device or method comprising any combination of the characteristics above or below within the scope of the claims.
  • FIG. 1 represents a schematic and partial view from above illustrating the structure and operation of an example of a device and installation capable of implementing the invention
  • FIG. 2 shows a schematic and partial side view along arrow V of Figure 1 illustrating details of the structure and operation of the device
  • FIG. 3 is a schematic and partial view illustrating a detail of the structure and operation of the device and of the installation according to a possible embodiment of the agency of two cooling heat exchangers.
  • the cooling and / or liquefaction installation comprises a refrigeration device 1 supplying cold (cooling power) at the level of a refrigeration heat exchanger 8.
  • the device is housed in a frame 100, for example parallelepiped.
  • the frame 100 includes a lower base 101.
  • the upper end of the frame does not necessarily have a structure above the device but could only include peripheral uprights whose vertical ends are located vertically above the base 101 at the level or under the highest point of the device. That is to say that the frame 100 could form a lateral protection all around the device while being devoid of the upper part directly above the device.
  • the installation comprises a pipe 125 for circulating a flow of fluid to be cooled placed in heat exchange with this cooling exchanger 8.
  • the fluid is liquid natural gas pumped into a tank 16 (for example via a pump), then is cooled (preferably outside the tank 16) and then returned to the tank 16 (for example in rain in the gas phase of the tank. tank 16).
  • This makes it possible to cool or sub-cool the contents of the reservoir 16 and to limit the phenomena of vaporization.
  • the liquid in the tank 16 is sub-cooled below its saturation temperature (drop in its temperature by several degrees K, in particular 5 to 20K and in particular 14K) before being reinjected into the tank 16.
  • this refrigeration can be supplied to the vaporization gas of the reservoir with a view in particular to its reliquefaction. That is, the refrigeration device 1 produces a cold power at the refrigeration heat exchanger 8.
  • the refrigeration device 1 comprises a working circuit 10 (preferably closed) forming a circulation loop.
  • This working circuit 10 contains a working fluid (helium, nitrogen, neon, hydrogen or other gas or suitable mixture (for example helium and argon or helium and nitrogen or helium and neon or helium and nitrogen and neon).
  • the working circuit 10 forms a cycle comprising: a mechanism 2, 3 for compressing the working fluid, a mechanism 4, 5, 6 for cooling the working fluid, a mechanism 7 for expanding the working fluid and a mechanism 6 for heating of the working fluid.
  • the device 1 comprises a refrigeration heat exchanger 8 located downstream of the expansion mechanism 7 and intended to extract heat from at least one member 125 by heat exchange with the cold working fluid circulating in the working circuit 10.
  • the mechanisms for cooling and reheating the working fluid conventionally comprise a common heat exchanger 6 in which the working fluid passes countercurrently in two separate transit portions of the working circuit 10 depending on whether it is cooled or heated.
  • the common heat exchanger 6 can be fixed to the frame at at least one fixed point 106, for example at a central longitudinal upright of the frame 100.
  • the cooling heat exchanger 8 is located for example between the expansion mechanism 7 and the common heat exchanger 6.
  • the cooling heat exchanger 8 can be a heat exchanger integrated into the common heat exchanger 6 (that is to say that the two exchangers 6, 8 can be in one piece, that is to say - say can have separate fluid circuits which however share the same exchange structure).
  • this refrigeration heat heat exchanger 8 could consist of a separate heat exchanger and separate from the common heat exchanger 6.
  • the working fluid which exits relatively hot from the compression mechanism 2, 3 is cooled in the common heat exchanger 6 before entering the expansion mechanism 7.
  • the working fluid which exits relatively cold from the mechanism 7 of expansion and the cooling heat exchanger 8 is in turn heated in the common heat exchanger 6 before returning to the compression mechanism 2 3 in order to start a new cycle.
  • the compression mechanism 2, 3 comprises at least two compressors and at least one motor 14, 15 for driving the compressors 2, 3.
  • the refrigeration power of the device is variable and can be controlled by regulating the speed. rotation of the drive motor or motors 14, 15 (cycle speed).
  • the cold power produced by the device 1 can be adapted from 0 to 100% of a nominal or maximum power by changing the speed of rotation of the motor or motors 14, 15 between a zero speed of rotation and a maximum or nominal speed. .
  • Such an architecture makes it possible to maintain high efficiency over a wide operating range (for example 97% of nominal efficiency at 50% of nominal cold power).
  • the refrigeration device 1 comprises two compressors 2, 3 in series. These two compressors 2, 3 can be driven respectively by two separate motors 14, 15.
  • a turbine 7 can be coupled to the drive shaft of one of the two motors 14 or 15.
  • a first motor 14 drives a compressor 2 via a shaft and this shaft is coupled to a turbine 7 at its other end. (motor-turbocharger) while the other engine 15 drives only a compressor 3 (motor-compressor).
  • the device 1 comprises two motors 14, 15 at high speed (for example 10,000 revolutions per minute or several tens of thousands of revolutions per minute) for respective driving of the compression stages 2, 3.
  • the turbine 7 can be coupled. to the motor 14 or 15 of one of the compression stages 2, 3, that is to say that the device may have a turbine 7 constituting the expansion mechanism which is coupled to the drive motor 15 of one stage compression (the first or the second).
  • each motor 14, 15 can be connected or rigidly fixed to the frame 100 via at least one fixed point 104, 105, for example at the level of a longitudinal and / or vertical post of the frame 100.
  • the power of the turbine or turbines 7 can be advantageously recovered and used to reduce the consumption of the engine or engines.
  • the refrigeration power produced and therefore the electrical consumption of the liquefier (and vice versa) is increased.
  • the compressors 2, 3 and turbine (s) 7 are preferably coupled directly to an output shaft of the motor concerned (without a geared movement transmission mechanism).
  • the output shafts of the motors are preferably mounted on bearings of the magnetic type or of the dynamic gas type.
  • the bearings are used to support compressors and turbines.
  • the refrigeration device 1 comprises two compressors 2, 3 forming two compression stages and an expansion turbine 7. That is, the compression mechanism includes two compressors 2, 3 in series, preferably of the centrifugal type, and the expansion mechanism comprises a single turbine 7, preferably centripetal.
  • the compression mechanism includes two compressors 2, 3 in series, preferably of the centrifugal type, and the expansion mechanism comprises a single turbine 7, preferably centripetal.
  • any other number and arrangement of compressor (s), turbine (s) and motor (s) can be considered, for example: three compressors driven respectively by three separate motors and a turbine for example coupled to one end of the drive shaft of one of these engines or three compressors and two turbines.
  • the device can comprise two compressors and two turbines or three compressors and three turbines ...
  • the drive shaft of each motor drives at one end at least one compressor while the other end of the shaft is devoid of impeller (compressor or turbine) or includes one or more impellers (turbine or compressor).
  • a cooling heat exchanger 4, 5 is provided at the outlet of each of the two compressors 2, 3 (for example cooling by heat exchange with water at ambient temperature or any other fluid or cooling agent. of a refrigerant circuit 26 (see [Fig. 3]).
  • a reheating exchanger may or may not be provided at the outlet of all or part of the expansion turbines 7 in order to achieve isentropic or isothermal expansion.
  • the heating and cooling of the working fluid are preferably isobaric without this being limiting.
  • the frame 100 extending in a longitudinal direction A and comprising a lower base 101 intended to be fixed on a support (for example the ground or a boat floor or the top of a tank 16 of liquid to be cooled, for example).
  • This base can be formed of rigid uprights defining a rectangle provided with longitudinal and transverse uprights.
  • at least some of the elements of the device can be fixed to this base 101, in particular a box housing the common heat exchanger 6 and the refrigeration exchanger 8.
  • the cooling heat exchangers 4, 5 are not located below the common heat exchanger 6 between the common heat exchanger 6 and the lower base 101 of the frame (100) but these exchangers 4, 5 cooling heaters are located in the frame 100 around the common heat exchanger 6.
  • the inventors have observed that this arrangement ensures a distribution of the masses improving the resistance of the device to forces, in particular when the device is mounted on a mobile device and in particular a boat. Indeed, this arrangement allows a better distribution of the masses as close as possible to the base 101.
  • the pipe or portion 17 of the working circuit connecting an outlet of the common heat exchanger 6 to the inlet of the turbine 7 is connected to the latter in the upper part of the device 1.
  • the casing or cold box (by vacuum insulated example) housing the common heat exchanger 6 and the refrigeration exchanger 8 can be fixed as closely as possible to the base 101.
  • the two cooling heat exchangers 4, 5 can each have an oblong shape extending in respective longitudinal directions which are parallel to the longitudinal axis A.
  • the two cooling heat exchangers 4, 5 can advantageously be arranged one above the other in a perpendicular direction.
  • the two cooling heat exchangers 4, 5 can in particular be placed side by side and fixed to one another. This optimizes the size of the device.
  • Each cooling heat exchanger 4, 5 may include a cooling fluid inlet 24, 25 and a cooling fluid outlet 34, 35.
  • the cooling fluid outlet 34 of one of the two cooling heat exchangers 4, 5 can be connected to the cooling fluid inlet 25 of the other cooling heat exchanger 5 so that the flow of cooling fluid passing through one 5 of the cooling heat exchangers has already circulated in the other cooling heat exchanger 4 (cf. [Fig. 3]).
  • This arrangement also makes it possible to simplify the network of coolant and working gas pipes intended for the heat exchangers 4, 5 or coming from the heat exchangers 4, 5.
  • this arrangement makes it easier to '' arrange the fluid circulation circuits (cooling and working) in a reduced space by allowing counter-current circulation between the working fluid and the cooling fluid, this by reducing the number and / or the length of the pipes carrying these fluids.
  • the refrigerant circuit 26 supplies cooling fluid firstly to the second cooling heat exchanger 5 and then to the first cooling heat exchanger 5 (the qualifiers "first" and "second” referring to the first and second compression stage in the direction of circulation of the working fluid).
  • the directions of circulation of the two fluids preferably transit against the current or in opposite directions in each exchanger.
  • the fluidic connection between the two cooling heat exchangers 4, 5 for passing the cooling fluid can be simplified and reduced.
  • This transfer of cooling fluid from one cooling exchanger 4, 5 to the other can in particular be carried out by a short and welded portion of tube, or even a simple tube or fitting between the two heat exchangers 4, 5.
  • the two cooling heat exchangers 4, 5 could even be integrated in the same casing or housing comprising two separate passages for the circulation of the working fluid, said two passages being in heat exchange respectively with two portions in series of the same circulation channel for the cooling fluid circuit.
  • the cooling heat exchangers 4, 5 can each have an oblong shape extending in a respective longitudinal direction.
  • Each cooling heat exchanger 4, 5 comprises an inlet working gas to be cooled and an outlet for cooled working gas respectively arranged at two longitudinal ends.
  • the cooling heat exchangers 4, 5 can be tube, tube and shell or plate and fin type exchangers (stainless steel, aluminum or other).
  • the two cooling heat exchangers 4, 5 are arranged within the device preferably inverted, that is to say that the respective longitudinal directions of the two cooling heat exchangers 4, 5 are parallel or substantially parallel and the directions of circulation of the working fluid in said cooling heat exchanger 4, 5 are opposed.
  • This arrangement combined with the arrangement of the circulation of the cooling fluid makes it possible to minimize the complexity of the fluid circuits while giving very good performance to the device.
  • All or part of the device, in particular its cold members, can be housed in a sealed thermally insulated casing 11 (in particular a vacuum chamber containing the common counter-current heat exchanger and the refrigeration exchanger 8).
  • the invention can be applied to a process for cooling and / or liquefying another fluid or mixture, in particular hydrogen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ocean & Marine Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
EP20742661.0A 2019-08-05 2020-07-08 Semipermeable membran mit aus einer flüchtigen substanz resultierenden poren Pending EP4010645A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1908949A FR3099819B1 (fr) 2019-08-05 2019-08-05 Dispositif et installation de réfrigération
PCT/EP2020/069193 WO2021023459A1 (fr) 2019-08-05 2020-07-08 Dispositif et installation de réfrigération

Publications (1)

Publication Number Publication Date
EP4010645A1 true EP4010645A1 (de) 2022-06-15

Family

ID=68654727

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20742661.0A Pending EP4010645A1 (de) 2019-08-05 2020-07-08 Semipermeable membran mit aus einer flüchtigen substanz resultierenden poren

Country Status (9)

Country Link
US (1) US20220333859A1 (de)
EP (1) EP4010645A1 (de)
JP (1) JP2022543221A (de)
KR (1) KR20220042401A (de)
CN (1) CN114364931A (de)
AU (1) AU2020325610A1 (de)
CA (1) CA3146295A1 (de)
FR (1) FR3099819B1 (de)
WO (1) WO2021023459A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3099818B1 (fr) * 2019-08-05 2022-11-04 Air Liquide Dispositif de réfrigération et installation et procédé de refroidissement et/ou de liquéfaction
FR3137746A1 (fr) * 2022-07-08 2024-01-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif et procédé de liquéfaction d’un fluide.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207835A (ja) * 2002-10-24 2006-08-10 Showa Denko Kk 冷凍システム、圧縮放熱装置及び放熱器
JP2007040605A (ja) * 2005-08-03 2007-02-15 Sanden Corp 多段圧縮式冷凍サイクル装置用熱交換器
BE1018598A3 (nl) * 2010-01-25 2011-04-05 Atlas Copco Airpower Nv Werkwijze voor het recupereren van enrgie.
KR102016827B1 (ko) * 2015-05-01 2019-08-30 가부시끼가이샤 마에가와 세이사꾸쇼 냉동기 및 냉동기의 운전 방법
CN205090596U (zh) * 2015-07-10 2016-03-16 邵龙升 油田加热炉
FR3072160B1 (fr) * 2017-10-09 2019-10-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif et procede de refrigeration

Also Published As

Publication number Publication date
CA3146295A1 (en) 2021-02-11
KR20220042401A (ko) 2022-04-05
WO2021023459A1 (fr) 2021-02-11
FR3099819B1 (fr) 2021-09-10
AU2020325610A1 (en) 2022-02-24
CN114364931A (zh) 2022-04-15
FR3099819A1 (fr) 2021-02-12
JP2022543221A (ja) 2022-10-11
US20220333859A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
EP3414498B1 (de) Kryogene kühlvorrichtung
CA3145895A1 (fr) Refrigeration and/or liquefaction method, device and system
EP4010645A1 (de) Semipermeable membran mit aus einer flüchtigen substanz resultierenden poren
WO2021023456A1 (fr) Dispositif et installation de réfrigération
WO2021023458A1 (fr) Installation et procede de refroidissement et/ou de liquefaction
EP4010646A1 (de) Verfahren und system zur kühlung und / oder verflüssigung
WO2021023455A1 (fr) Dispositif et installation de réfrigération
WO2022171485A1 (fr) Dispositif et procédé de liquéfaction d'un fluide tel que l'hydrogène et/ou de l'hélium
WO2000061997A1 (fr) Turbo ventilateur mu par la detente d'un fluide frigorifique diphasique
EP4226107A1 (de) Anlage und verfahren zur kühlung und/oder verflüssigung eines fluids
EP3698048B1 (de) Kompressionsvorrichtung und -verfahren und kältemaschine
WO2022171392A1 (fr) Dispositif et procédé de liquéfaction d'un fluide tel que l'hydrogène et/ou de l'hélium
WO2024008434A1 (fr) Dispositif et procédé de liquéfaction d'un fluide
FR3133433A1 (fr) Dispositif de circulation de fluide, installation et procédé utilisant un tel dispositif.
WO2019115122A1 (fr) Ensemble de turbopompe electrifiee pour un circuit ferme, en particulier de type a cycle de rankine, comportant un refroidissement integre

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)