EP3414498B1 - Kryogene kühlvorrichtung - Google Patents

Kryogene kühlvorrichtung Download PDF

Info

Publication number
EP3414498B1
EP3414498B1 EP17706538.0A EP17706538A EP3414498B1 EP 3414498 B1 EP3414498 B1 EP 3414498B1 EP 17706538 A EP17706538 A EP 17706538A EP 3414498 B1 EP3414498 B1 EP 3414498B1
Authority
EP
European Patent Office
Prior art keywords
linear
piston
compressor
pressure
refrigeration device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17706538.0A
Other languages
English (en)
French (fr)
Other versions
EP3414498A1 (de
Inventor
Fabien Durand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3414498A1 publication Critical patent/EP3414498A1/de
Application granted granted Critical
Publication of EP3414498B1 publication Critical patent/EP3414498B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0017Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/002Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/02Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/073Linear compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream

Definitions

  • the invention relates to a cryogenic refrigeration device.
  • a concern for the constant improvement of existing cryogenic refrigerators or liquefiers aims to increase their lifespan, decrease the minimum operating temperature, increase their reliability. In particular, it is particularly advantageous to eliminate maintenance operations and to eliminate the use of oils.
  • a first known solution consists in using a regenerative thermodynamic cycle of the Stirling or Pulse-Tube type.
  • the disadvantages of these regenerative solutions are as follows: These devices have poor performance at temperatures below 30K. This is linked to the low thermal capacity of the materials constituting the regenerator at this temperature level. In addition, in these solutions, it is relatively difficult to thermally link the refrigerator to the system to be cooled as well as to the heat removal system.
  • Another solution consists in using a recuperative thermodynamic cycle of the inverted Brayton type based on a lubricated screw compressor, a counter-current plate exchanger and a centripetal expansion turbine.
  • this solution has the disadvantage of using oil to cool and lubricate the compressor. This requires an operation of oil removal of the cycle gas after compression.
  • the service life of this type of system is relatively short due to the compression technology employed as well as due to leaks at the compressor. This technology also has difficulties in relaxing a two-phase fluid and the energy efficiency is not optimal.
  • Yet another solution consists in using a recuperative thermodynamic cycle of the reverse Turbo-Brayton type based on dry centrifugal compressors, a counter-current plate exchanger and a centripetal expansion turbine (cf. FR2924205A1 ). This solution is however not very suitable for low thermal powers because of the difficulty of miniaturizing the turbomachines used.
  • a cryogenic refrigeration device comprising a working circuit intended to cool a working fluid circulating in said circuit, the working circuit comprising, arranged in series: a compression portion, a cooling portion, an expansion portion and a portion reheating, to subject the working fluid to a recuperative type working cycle comprising compression then cooling then expansion then reheating for a new cycle, in which the compression portion comprises at least one compressor linear piston driven by a linear motor, the expansion portion comprises at least one linear piston holder.
  • the compression ratio achievable by centrifugal compression stage is relatively low due to the low molar mass of the gases usable at cryogenic temperature.
  • the manufacturing cost of such turbomachines is also relatively high and the centripetal machines used are ill-suited to relax a two-phase fluid.
  • An object of the present invention is to overcome all or part of the drawbacks of the prior art noted above.
  • the device according to the invention is defined by claim 1.
  • the compression portion comprises at least one linear piston compressor driven by a linear motor
  • the expansion portion comprises at least one linear piston holder
  • the valve portion (s) comprises at least one linear type control valve actuated by a linear motor and controlled to supply or extract the working fluid from the at least one piston regulator.
  • the nonlimiting exemplary embodiment illustrated in figure 1 is a cryogenic refrigerator, for example having a cold temperature of 77k, capable of liquefying nitrogen at saturation.
  • the purpose of the refrigeration device 100 is preferably to transfer heat from a cold source 13 at low temperature (via a heat exchange with an organ or user 7 to be cooled) to a hot source 15 at higher temperature (for example via a heat exchange with a cooling member 5).
  • the device comprises a working circuit for a working fluid (for example helium).
  • the working circuit forms a loop in which the working fluid circulates in one direction while being subjected to a thermodynamic cycle of the recuperative type.
  • the device may include all or part of the components described below.
  • the device comprises one or more linear motors 1 preferably using flexible bearings 2 (or gas or low friction or magnetic).
  • the bearings shown as an example on the figure 1 are of the flexible bearing type.
  • compressors 3 with piston (s) use for example non-return valves 4 and 14 to communicate with lines 12 high pressure (to discharge compressed fluid) and low pressure 11 (to accommodate expanded fluid in order to return it compress).
  • non-return valves 4 and 14 to communicate with lines 12 high pressure (to discharge compressed fluid) and low pressure 11 (to accommodate expanded fluid in order to return it compress).
  • check valve technologies can be envisaged, for example reed valves.
  • any other type of member making it possible to prevent the return of the compressed fluid in the opposite direction in the circuit can be envisaged.
  • the working circuit comprises one or more exchangers 5 provided for removing heat from the compressed gas towards a hot source and arranged at the outlet of the compressor (s) 3.
  • This cooling exchanger puts the working fluid, for example, in heat exchange with a coolant 15.
  • At least one counter-current heat exchanger 6 is provided downstream in the direction of circulation of the working fluid in the circuit on the high pressure line 12.
  • This heat exchanger 6 can separate the relatively high temperature elements from the relatively low temperature elements 6 of the circuit.
  • the circuit then comprises at least one valve 9 operating at low temperature (that is to say between 4 and 200K).
  • This valve 9 is designed to supply and extract the gas from a piston regulator 10 located downstream.
  • This valve 9 can be actuated by a linear motor 8 of technology equivalent to the technology of motor 1 of the compressor.
  • This valve 9 is preferably actuated at the same frequency as the regulator 10, however, its movement is out of phase with respect to the regulator 10 so as to maximize the efficiency of the regulator 10.
  • the piston or regulators 10 operate at low temperature and may or may not be mechanically linked to the motor 1 of the compressor.
  • the gas expanded by the regulator 10 is returned to the compressor 3 via a low pressure line 11 (through the valve 9).
  • One or more heat exchangers 7 are provided to heat the working fluid and thus extract heat from the cold source 13.
  • the expanded fluid passes in particular through the exchanger 6 against the current before returning to the compressor 3 ( via the corresponding valve 4).
  • the operation of this refrigerator 100 can be as follows.
  • the working gas (helium in this example) in the gas phase (for example at 20 ° C.) is compressed through the piston compressor 3 from a low pressure (for example 10 bar) to a high pressure (for example 18 bar).
  • the non-return valves 4, 14 are used to make the compression chamber of the compressor communicate alternately with the low pressure line 11 and the high pressure line 12.
  • the helium is heated at the outlet of the compressor (for example to 110 ° C).
  • the helium is then cooled through a first exchanger 5 using a water flow 15 (or any other suitable cooling agent).
  • the temperature of the helium is reduced to 25 ° C.
  • the helium then passes through the countercurrent exchanger 6, its temperature is lowered, for example to 79K. Downstream, the regulation valve 9 is used to make the expansion valve 10 communicate alternately with the low pressure line 11 and the high pressure line 12.
  • This piston regulator 10 is notably configured to operate with a two-phase or liquid fluid.
  • the expansion work from the regulator 10 can be transferred via the common shaft of the linear motor 1 to the compressor 3.
  • the helium then passes through the reheating exchanger 7 where it cools the cold user member 13 (nitrogen in this example).
  • the cooled nitrogen gas 13 is for example liquefied to saturation by extracting heat from it.
  • the temperature of helium is for example brought to 76 K.
  • the helium then passes again through the countercurrent exchanger 6 where it is heated (for example to 20 ° C).
  • the helium then returns to the compressor 3 to carry out a new identical cycle via the valve 4.
  • the figure 2 illustrates another embodiment of the invention.
  • This example represents a gas liquefier, in particular hydrogen.
  • This liquefier uses the same main elements as those described above.
  • the working gas for example at 20 ° C (in the gas phase) is compressed in two piston compressors 20 and 21 arranged in series.
  • each compressor 20, 21, (via a high pressure line and a valve 14), the gas is cooled by a heat exchanger 22, 23. This hydrogen is then cooled through a first heat exchanger 24 against a current.
  • Part of the flow of cooled gas can be allowed to pass, via a bypass 15 comprising a first linear valve 9, through a first piston regulator 25 so as to extract heat with hydrogen.
  • this first piston 25 regulator can be linked to the first compressor 20 via a linear motor (not shown for the sake of simplification but may be of the same type as that described above). Similarly, the first regulator can be coupled to a separate engine (alternator).
  • the first control valve 9 upstream of the first regulator 25 is preferably actuated via a linear motor (not shown for the sake of simplification but may be of the same type as that described above).
  • the hydrogen (expanded or otherwise) can then be cooled through a second counter-current exchanger 26, and if necessary through a third counter-current exchanger 27.
  • This hydrogen expanded in the first regulator 25 can be returned directly to the first compressor 20 (via the counter-current heat exchanger (s) 24, 26. That is to say that the hydrogen expanded in the first regulator 25 can be returned to the compressors without undergoing a second expansion or cooling.
  • the remaining hydrogen is then expanded in a second linear regulator 28 (via a valve 9 for linear control).
  • the second expander 28 is preferably of the two-phase piston type for extracting heat with hydrogen in order to partially liquefy it.
  • This second expander 28 with piston can be mechanically linked (coupled) to the second compressor 21 (via a linear motor not shown for the sake of simplification as above) or to a separate alternator.
  • the second control valve 9 located upstream of the second regulator 28 can also be actuated by a linear motor (not shown for the sake of simplification).
  • control valves 9 controlling the circulation of the fluid between the regulators 25, 28 and the compressors 20 can if necessary be actuated by a single common actuator.
  • the two-phase mixture obtained after passage through the second regulator 28 can then be sent to a cryogenic separator 29.
  • the gaseous phase of hydrogen is returned to the first compressor 20 through exchangers 27, 26, 24 against the current.
  • the working fluid used can be any other fluid than helium or hydrogen, for example nitrogen, methane, neon, oxygen or argon.
  • the working circuit can thus be of the open or closed type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (15)

  1. Kryogene Kühlvorrichtung, die einen Arbeitskreislauf umfasst, der dazu bestimmt ist, ein Arbeitsfluid, das in dem Kreislauf zirkuliert, zu kühlen, wobei der Arbeitskreislauf das seriell innerhalb eines geschlossenen Kreislaufs angeordnet ist, Folgendes umfasst: einen Verdichtungsabschnitt (3), einen Kühlabschnitt (5, 6, 22, 23, 24, 26, 27), einen Abschnitt mit Ventil(en) (9), einen Expansionsabschnitt (10, 25, 28) und einen Erwärmungsabschnitt, um das Arbeitsfluid einem rekuperativen Arbeitszyklus zu unterziehen, der eine Verdichtung, dann eine Kühlung, dann eine Expansion, dann eine Erwärmung in Hinblick auf einen neuen Zyklus umfasst, wobei der Verdichtungsabschnitt mindestens einen Linearkolbenkompressor (3, 20, 21) umfasst, der von einem Linearmotor (1) angetrieben wird, der Expansionsabschnitt mindestens einen Linearkolbenexpander (10, 25, 28) umfasst, der Abschnitt mit Ventil(en) mindestens ein Linearregelventil (9) umfasst, das von einem Linearmotor betätigt und gesteuert wird, um das Arbeitsfluid dem mindestens einen Kolbenexpander zuzuführen oder es aus diesem zu entnehmen.
  2. Kühlvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass sie mindestens einen Linearkolbenexpander (10, 25, 28) umfasst, der mit dem Linearmotor (1) gekoppelt ist, der mindestens einen Linearkolbenkompressor (3, 20, 21) antreibt, das heißt, dass mindestens ein Linearmotor (1) sowohl einen Linearkolbenexpander (10, 25, 28) als auch einen Linearkolbenkompressor (3, 20, 21) koppelt.
  3. Kühlvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie mindestens ein Linearregelventil (9) umfasst, das mit dem Linearmotor (1) gekoppelt ist, der mindestens einen Linearkolbenkompressor (3, 20, 21) antreibt, das heißt, dass mindestens ein Linearmotor (1) sowohl einen Linearkolbenkompressor (3, 20, 21) als auch ein Linearregelventil (9) koppelt.
  4. Kühlvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie mindestens einen Linearkolbenexpander (10, 25, 28) umfasst, der mit einem Linearwechselstromgenerator gekoppelt ist, der sich vom Motor des mindestens einen Kompressors unterscheidet, das heißt, dass mindestens ein Linearwechselstromgenerator einen Linearkolbenexpander (10, 25, 28) des Wechselstromgenerators koppelt.
  5. Kühlvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Arbeitsfluid bis zu einer Temperatur zwischen 4 K und 200 K gekühlt wird.
  6. Kühlvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Verdichtungsabschnitt (3) des Arbeitskreislaufs mehrere Linearkolbenkompressoren (3, 20, 21) umfasst.
  7. Kühlvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Expansionsabschnitt (10, 25, 28) des Arbeitskreislaufs mehrere Linearkolbenexpander (10, 25, 28) umfasst, die jeweils einem jeweiligen Linearregelventil (9) zugeordnet sind.
  8. Kühlvorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Arbeitskreislauf eine Hochdruckleitung (12) umfasst, die einen Hochdruckausgang eines Kompressors (3) mit dem Eingang eines Expanders (10) verbindet, wobei die Hochdruckleitung (12) ein Rückschlagventilsystem (4), mindestens einen Wärmeaustauscher (5, 6) zum Kühlen des verdichteten Gases und ein Linearregelventil (9) umfasst.
  9. Kühlvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Arbeitskreislauf eine Niederdruckleitung (12) umfasst, die einen Ausgang eines Expanders (10) mit dem Eingang eines Kompressors (3) verbindet, wobei die Niederdruckleitung (11) ein Linearregelventil (9), mindestens einen Wärmeaustauscher (7, 6) zum Erwärmen des expandierten Gases und ein Rückschlagventilsystem (14) umfasst.
  10. Kühlvorrichtung nach den Ansprüchen 8 und 9 in Kombination, dadurch gekennzeichnet, dass der mindestens eine Wärmeaustauscher einen Gegenstromwärmeaustauscher (7) umfasst, der das in den Hoch- und Niederdruckleitungen (11, 12) zirkulierende Arbeitsfluid in Wärmeaustausch bringt.
  11. Kühlvorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass der mindestens eine Wärmeaustauscher (5, 7) das Arbeitsfluid mit mindestens einem Fluid in Wärmeaustausch bringt aus: Wasser, Luft, Stickstoff, Helium, Wasserstoff, Methan, Neon, Sauerstoff oder Argon.
  12. Kühlvorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das mindestens eine Linearregelventil (9) von seinem Linearmotor mit der gleichen Frequenz wie die Betriebsfrequenz des Linearkolbenexpanders (10) betätigt wird, für den das Ventil (9) die Zuführung oder Entnahme von Arbeitsfluid steuert, jedoch phasenverschoben in Bezug auf die Betätigung des Kolbenexpanders (10).
  13. Kühlvorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass sie zwei seriell angeordnete Linearkolbenkompressoren (20, 21) umfasst, wobei der Arbeitskreislauf eine erste Hochdruckleitung (111) umfasst, die einen Hochdruckausgang eines ersten Kompressors (20) über ein Rückschlagventilsystem (14) mit dem Eingang eines zweiten Kompressors (21) verbindet, und eine zweite Hochdruckleitung (12), die einen Hochdruckausgang des zweiten Kompressors (21) mit dem Eingang des ersten Kompressors (20) über mindestens einen Wärmeaustauscher (24, 26, 27) im Wärmeaustausch mit dem Arbeitsfluid verbindet, ein System mit Rückschlagventil(en) (14, 4), mindestens ein und bevorzugt zwei Linearregelventile (9) und mindestens einen und bevorzugt zwei Linearkolbenexpander (25, 28), wobei das mindestens eine Regelventil (9) gesteuert wird, um Fluid, das aus den Kompressoren (20, 21) stammt, und mit dem mindestens einen Wärmetausauscher (24, 26, 27) Wärme ausgetauscht hat, zu dem mindestens einen Expander (25, 28) zu übertragen, um dann das expandierte Fluid, das aus dem mindestens einen Expander (25, 28) stammt, in die Kompressoren (20, 21) mit einem Zwischenwärmeaustausch mit mindestens einem Wärmeaustauscher (24, 26, 27) zu übertragen.
  14. Kühlvorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass der Arbeitskreislauf einen Phasentrenner (29) umfasst, der stromabwärts von mindestens einem Regelventil (9) angeordnet ist, um mindestens einen Teil des Arbeitsfluids am Ausgang eines Expanders (25, 28) zu verflüssigen und die flüssige Phase von der gasförmigen Phase des Letzteren zu trennen.
  15. Kühlvorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass der Arbeitskreislauf eine Leitung (30) zur Entnahme von verflüssigtem Arbeitsfluid und eine Leitung (31) zur Zufuhr von Arbeitsfluid in den Kreislauf in gasförmiger Form umfasst.
EP17706538.0A 2016-02-08 2017-01-17 Kryogene kühlvorrichtung Active EP3414498B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1650962A FR3047551B1 (fr) 2016-02-08 2016-02-08 Dispositif de refrigeration cryogenique
PCT/FR2017/050098 WO2017137674A1 (fr) 2016-02-08 2017-01-17 Dispositif de réfrigération cryogénique

Publications (2)

Publication Number Publication Date
EP3414498A1 EP3414498A1 (de) 2018-12-19
EP3414498B1 true EP3414498B1 (de) 2020-01-08

Family

ID=55752535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17706538.0A Active EP3414498B1 (de) 2016-02-08 2017-01-17 Kryogene kühlvorrichtung

Country Status (8)

Country Link
US (1) US11156388B2 (de)
EP (1) EP3414498B1 (de)
JP (1) JP6847966B2 (de)
KR (1) KR102675446B1 (de)
CN (1) CN108603701B (de)
FR (1) FR3047551B1 (de)
RU (1) RU2018130607A (de)
WO (1) WO2017137674A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3099820B1 (fr) * 2019-08-05 2022-11-04 Air Liquide Dispositif et installation de réfrigération
FR3099817B1 (fr) * 2019-08-05 2022-11-04 Air Liquide Procédé et installation de refroidissement et/ou de liquéfaction.
FR3100319B1 (fr) * 2019-09-04 2021-08-20 Absolut System Machine cryogénique régénérative
CN110986408A (zh) * 2019-12-13 2020-04-10 中国科学院合肥物质科学研究院 一种集成式氖气制冷机及制冷方法
FR3107103B1 (fr) * 2020-02-12 2022-07-01 Air Liquide Dispositif de compression, installation, station de remplissage et procédé utilisant un tel dispositif
WO2022046468A1 (en) * 2020-08-28 2022-03-03 Sumitomo (Shi) Cryogenics Of America, Inc. Reversible pneumatic drive expander
CN112460825A (zh) * 2020-11-12 2021-03-09 新疆维吾尔自治区寒旱区水资源与生态水利工程研究中心(院士专家工作站) 单活塞压缩空气制冷循环装置
US11859885B2 (en) 2021-07-23 2024-01-02 Refrigerated Solutions Group Llc Refrigerant circuit with reduced environmental impact
CN115388615B (zh) * 2022-04-19 2023-11-24 北京师范大学 一种氩液化系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE341705B (de) * 1970-03-02 1972-01-10 P Knoeoes
US4267701A (en) * 1979-11-09 1981-05-19 Helix Technology Corporation Helium liquefaction plant
FR2510181A1 (fr) * 1981-07-21 1983-01-28 Bertin & Cie Convertisseur d'energie thermique en energie electrique a moteur stirling et generateur electrique integre
SU1305506A1 (ru) * 1985-12-09 1987-04-23 Московский Институт Химического Машиностроения Свободнопоршневой детандер-компрессор
FR2668583B1 (fr) * 1990-10-26 1997-06-20 Air Liquide Procede de liquefaction d'un gaz et installation de refrigeration.
JPH0849943A (ja) * 1994-08-08 1996-02-20 Yamaha Motor Co Ltd エンジン駆動式熱ポンプ装置
US6965444B1 (en) * 2000-09-19 2005-11-15 Kabushiki Kaisha Toshiba Image output method and system for distributing image output
JP4129126B2 (ja) * 2001-06-26 2008-08-06 松下電器産業株式会社 リニア圧縮機の駆動制御方法及び車両用リニア圧縮機の駆動制御方法
FR2924205B1 (fr) 2007-11-23 2013-08-16 Air Liquide Dispositif et procede de refrigeration cryogenique
CN100575703C (zh) * 2007-11-30 2009-12-30 西安交通大学 一种双作用自由活塞式膨胀—压缩机组
JP5607901B2 (ja) * 2009-08-06 2014-10-15 ダイハツ工業株式会社 排ガス浄化用触媒
CN102510985B (zh) * 2009-09-24 2014-08-06 三菱电机株式会社 冷冻循环装置
US20120117984A1 (en) * 2010-11-11 2012-05-17 Quantum Design, Inc. Valve assembly adapted for dynamic control of gas-flow about a cryogenic region
GB2498378A (en) * 2012-01-12 2013-07-17 Isis Innovation Linear Stirling machine with expansion and compression pistons coupled by gas spring
US9140478B2 (en) * 2012-05-21 2015-09-22 Whirlpool Corporation Synchronous temperature rate control for refrigeration with reduced energy consumption
WO2015153097A1 (en) * 2014-04-02 2015-10-08 Dresser-Rand Company System and method for the production of liquefied natural gas
KR102257508B1 (ko) * 2014-06-24 2021-05-31 엘지전자 주식회사 냉각 시스템 및 이를 포함하는 냉장고

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2018130607A (ru) 2020-02-25
CN108603701B (zh) 2020-11-27
FR3047551A1 (fr) 2017-08-11
FR3047551B1 (fr) 2018-01-26
KR102675446B1 (ko) 2024-06-13
EP3414498A1 (de) 2018-12-19
US11156388B2 (en) 2021-10-26
KR20180108666A (ko) 2018-10-04
WO2017137674A1 (fr) 2017-08-17
US20190063791A1 (en) 2019-02-28
JP2019510184A (ja) 2019-04-11
JP6847966B2 (ja) 2021-03-24
CN108603701A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
EP3414498B1 (de) Kryogene kühlvorrichtung
EP2225501B1 (de) Kryogenes kühlverfahren und entsprechende vorrichtung
WO2013144470A1 (fr) Dispositif et procédé de remplissage de réservoir
WO2021023458A1 (fr) Installation et procede de refroidissement et/ou de liquefaction
WO2021023459A1 (fr) Dispositif et installation de réfrigération
WO2021023456A1 (fr) Dispositif et installation de réfrigération
WO2022171485A1 (fr) Dispositif et procédé de liquéfaction d'un fluide tel que l'hydrogène et/ou de l'hélium
FR3098574A1 (fr) Dispositif de réfrigération et/ou de liquéfaction
FR2999693A1 (fr) Dispositif de refrigeration et/ou de liquefaction et procede correspondant
EP4226107A1 (de) Anlage und verfahren zur kühlung und/oder verflüssigung eines fluids
EP4010644A1 (de) Kühlvorrichtung und anlage
WO2022171390A1 (fr) Dispositif et procédé de liquéfaction d'un fluide tel que l'hydrogène et/ou de l'hélium
WO2024008434A1 (fr) Dispositif et procédé de liquéfaction d'un fluide
EP4003840B1 (de) Klimaanlagensystem mit kabinenluftrückgewinnung
FR3065254B1 (fr) Ensemble de turbopompe pour un circuit ferme, en particulier de type a cycle de rankine, associe a un moteur a combustion interne, notamment pour vehicule automobile
FR3133075A1 (fr) Système de refroidissement cryogénique
EP4343246A1 (de) Anlage und verfahren zur herstellung einer kryogenen flüssigkeit
FR3119668A1 (fr) Dispositif et procédé de réfrigération ou de liquéfaction d’un fluide.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190621

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20191029

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017010686

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1223194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200508

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200409

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017010686

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1223194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

26N No opposition filed

Effective date: 20201009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 8

Ref country code: GB

Payment date: 20240119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240122

Year of fee payment: 8