EP4008955B1 - Device and method for supplying combustion air and exhaust gas recirculation for a burner - Google Patents
Device and method for supplying combustion air and exhaust gas recirculation for a burner Download PDFInfo
- Publication number
- EP4008955B1 EP4008955B1 EP20211530.9A EP20211530A EP4008955B1 EP 4008955 B1 EP4008955 B1 EP 4008955B1 EP 20211530 A EP20211530 A EP 20211530A EP 4008955 B1 EP4008955 B1 EP 4008955B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion air
- exhaust gas
- mixing chamber
- burner
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 119
- 238000000034 method Methods 0.000 title claims description 8
- 239000007789 gas Substances 0.000 claims description 112
- 239000000446 fuel Substances 0.000 claims description 42
- 239000000203 mixture Substances 0.000 claims description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- 239000000523 sample Substances 0.000 claims description 8
- 230000003134 recirculating effect Effects 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 27
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 241001156002 Anthonomus pomorum Species 0.000 description 5
- 239000003345 natural gas Substances 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 3
- 239000003546 flue gas Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C9/00—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
- F23C9/006—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/20—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
- F23D14/22—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/008—Flow control devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2202/00—Fluegas recirculation
- F23C2202/30—Premixing fluegas with combustion air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2202/00—Fluegas recirculation
- F23C2202/50—Control of recirculation rate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/09002—Specific devices inducing or forcing flue gas recirculation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/9901—Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/11402—Airflow diaphragms at burner nozzle
Definitions
- the invention relates to a device and a method for combustion air supply and exhaust gas recirculation for a burner and to a burner with a device for combustion air supply and exhaust gas recirculation.
- Hydrogen particularly so-called green hydrogen, which is obtained by splitting water from renewable energies such as wind energy, solar energy or hydropower, or from biomass, is becoming increasingly important as an energy source, initially as an additive to natural gas and later as pure gas.
- hydrogen burns with almost no emissions, oxygen and nitrogen are components of the combustion air, so nitrogen oxides can also form when hydrogen is used.
- Thermal nitrogen oxide formation begins at high temperatures and then increases exponentially with temperature. Due to the high reaction rate of hydrogen, thermal nitrogen oxide formation increases sharply when using hydrogen compared to using pure natural gas. For example, burners without special measures produce around 50 ppm of nitrogen oxide in the exhaust gas with natural gas (CH4) and over 100 ppm with hydrogen.
- Flue gas recirculation or exhaust gas recirculation is known as an effective measure against the thermal formation of nitrogen oxide in the exhaust gas of combustion plants, whereby the oxygen content is reduced by recirculating the exhaust gas and thus the flame temperature is lowered.
- an exhaust gas recirculation ratio (EGR) is defined as the ratio of the mass flows of the recirculated or recirculated exhaust gas and the supplied combustion air (m A /m L ).
- the exhaust gases are also referred to as combustion exhaust gases or combustion gases.
- exhaust gas or combustion gas present in a combustion chamber is returned to the reaction zone with the impulse of the combustion air. If a temperature in the combustion chamber is above the ignition temperature of the fuel, the exhaust gas recirculation ratio can be increased as desired, since flame stability plays no role.
- the exhaust gas recirculation ratio must be limited to prevent the flame from extinguishing.
- DE 199 17 662 A1 describes a burner for liquid and/or gaseous fuels, which consists of at least one fuel nozzle and a feed for liquid fuel and/or at least one further feed for gaseous fuel as well as a flame tube surrounding the fuel nozzle.
- This flame tube is connected to means for the supply of air or oxygen and to means for the supply of exhaust gas, wherein the means for the supply of air or oxygen consist of at least two nozzles which are arranged in front of the burner nozzle in the outflow direction.
- DE 39 23 238 A1 describes a generic device for returning combustion products or exhaust gases in combustion plants for the combustion of flowable and gaseous fuel, with a burner nozzle arranged in a burner tube for the supply of fuel, with a device for the supply of combustion air into the combustion chamber and with a device for returning combustion products or exhaust gases into the combustion zone, wherein nozzles are located on the inside of the burner tube (for accelerating a part of the combustion air and for generating a low pressure behind these nozzles), and wherein openings are arranged in the wall of the burner tube in the area of the outlet openings of the nozzles for injecting combustion products into the low-pressure area and for further conveying them via an annular gap located between the burner tube and the outer edge of a baffle plate into the combustion zone.
- EP 0 386 732 A2 describes a combustion device with an air supply channel which is closed off by a nozzle plate with first and second nozzles, a fuel supply device which is guided through the supply channel, a flame tube which is arranged at a distance in front of the nozzle plate so that a flue gas recirculation opening is formed, the cross-section of which is adjustable, and a tube which is arranged at a distance in front of the nozzle plate and encloses the second nozzles of the inner nozzle ring and the mouth area of the fuel supply device. Due to this arrangement, separate partial flows formed from recirculated flue gas and combustion air flow into the flame tube.
- a device for supplying combustion air and recirculating exhaust gases for a burner with a combustion chamber comprising a plurality of drive nozzles arranged distributed around a central axis and fluidically connected to a combustion air supply, and a mixing chamber downstream of the drive nozzles, the drive nozzles and the mixing chamber forming a jet pump, combustion air emerging from the drive nozzles in the mixing chamber being mixable with exhaust gases flowing out of the combustion chamber and sucked back by means of the drive nozzles to form a combustion air/exhaust gas mixture, and the combustion air/exhaust gas mixture being feedable to a reaction zone downstream of the mixing chamber, a bypass channel being provided by means of which combustion air can be fed to the reaction zone while bypassing the drive nozzles, and an adjustable bypass valve being provided in the bypass channel.
- a mixing chamber is a space with a defined cross-section that is separated from the environment and is provided between the propellant nozzles and the reaction zone of the combustion chamber.
- the cross-section of the mixing chamber can be selected by the expert depending on the application.
- the cross-section is constant in the direction of flow, with one embodiment providing a converging or diverging cross-section in an inlet and/or outlet area for improved inflow or outflow.
- the distributed drive nozzles and the mixing chamber form a jet pump, whereby the exhaust gas recirculation ratio of the combustion air/exhaust gas mixture conveyed by the jet pump depends on a cross-sectional ratio of the mixing chamber and the drive nozzles as well as on operating parameters such as a temperature of the recirculated exhaust gas.
- the exhaust gas recirculation ratio can thus be set in advance by a specialist through a suitable design of the mixing chamber and the drive nozzles, for example up to a limit of flame stability, for certain operating parameters.
- the cross-section of the mixing chamber is matched to an outlet cross-section of the drive nozzles and a number of drive nozzles.
- an end of the mixing chamber facing the drive nozzles is at least partially spaced apart in the direction of flow from a wall on which the drive nozzles are arranged, so that a circumferential or interrupted gap is created which acts as an intake opening of the jet pump, through which exhaust gas can be sucked back and conveyed into the mixing chamber.
- an intake chamber with an opening for sucking in exhaust gas is provided upstream of the mixing chamber.
- An end of the mixing chamber facing the combustion chamber is arranged in use upstream of an outlet opening of a fuel supply, with a distance being suitable and selectable by the person skilled in the art depending on the application.
- the combustion air and the exhaust gas are mixed with each other before being mixed with the fuel in a defined exhaust gas recirculation ratio that may depend on operating parameters, without the need to increase the amount of exhaust gas in an exhaust tract as is the case with an external exhaust gas recirculation.
- the exhaust gas recirculation reduces the flame temperature.
- the rate of nitrogen oxide formation is around 10 4 ppm/s at flame temperatures of conventional fuels of around 2000°C and drops to around 10 ppm/s at 1500°C.
- the arrangement of the drive nozzles distributed around a central axis is also referred to as a ring-shaped arrangement in connection with the application.
- the drive nozzles are arranged in parallel.
- the axes of the drive nozzles are inclined relative to the central axis.
- the device with a jet pump formed by the mixing chamber and the drive nozzles is suitable for burners in a power range of a few kW as well as for burners with a MW power range.
- an exhaust gas recirculation ratio (EGR) that is optimal for pollutant prevention also depends on operating parameters. For example, depending on the temperature of the recirculated exhaust gas, an exhaust gas recirculation ratio (EGR) of 1 to 1.5 with an oxygen content of the combustion air/exhaust gas mixture of between approx. 10% and approx. 12% is required to reduce the flame temperature to 1500°C.
- the device therefore has a bypass channel, by means of which combustion air can be fed to the reaction zone, bypassing the drive nozzles.
- This makes it possible, for example, to reduce the EGR for flame stability by guiding part of the combustion air past the drive nozzles via the bypass channel.
- the bypass channel is designed in one embodiment as an annular gap channel, which is arranged around a fuel lance during use and runs in sections between the mixing chamber and the fuel lance.
- a mixing chamber with an annular cross-section is provided.
- An inner diameter of the mixing chamber is selected such that the mixing chamber can be arranged around a fuel lance provided coaxially to the central axis during use.
- the number of drive nozzles can be determined by the specialist depending on the application and the size of the burner. In one embodiment, eight or more drive nozzles are provided, evenly distributed around the central axis. This creates a good suction effect, particularly for a mixing chamber with a supply opening in the form of an annular gap.
- a cross-sectional ratio of the mixing chamber and the jet pump's motive nozzles is designed to achieve a specific exhaust gas recirculation ratio EGR, whereby the cross-sectional area of the motive nozzles is referred to as a resulting cross-sectional area of all motive nozzles.
- EGR exhaust gas recirculation ratio
- the cross-sectional ratio of the mixing chamber and the drive nozzles is less than or equal to 20.
- nozzle openings are provided at an outlet end of the bypass channel in order to achieve rapid and complete mixing of the combustion air supplied via the bypass channel with the combustion air/exhaust gas mixture of the jet pump.
- the bypass valve can only be adjusted between an open and a closed position.
- a continuously or continuously adjustable bypass valve is provided.
- the bypass valve is adjusted by means of a controllable or adjustable actuating device, whereby, depending on the embodiment, the bypass valve is opened or closed or a passage is varied by means of regulating or control interventions.
- the oxygen content of the combustion air/exhaust gas mixture for combustion can be changed and, in particular, kept within a defined range for flame stability by means of a variable supply of additional combustion air.
- an adjustable valve is provided in an intake opening for the re-sucked exhaust gas, wherein the valve is preferably continuously or continuously adjustable.
- a probe is provided for oxygen measurement.
- the probe is preferably provided upstream of outlet openings of a fuel supply and thus upstream of a flame.
- the oxygen content of the mixture of the combustion air/exhaust gas mixture supplied by means of the jet pump and possibly the combustion air supplied via the bypass channel, determined using the probe, can be determined and varied by regulating or control interventions on the bypass valve and/or on the valve in the intake opening for the exhaust gas sucked back in.
- a sensor is provided for measuring the temperature of the recirculated exhaust gas.
- an exhaust gas recirculation ratio optimized for an exhaust gas temperature can be determined and adjusted by means of control interventions on the Bypass valve and/or the valve in the intake opening, preferably by measuring the oxygen content.
- a burner comprising a device for supplying combustion air and recirculating exhaust gases with a jet pump, the jet pump having a preferably annular gap-shaped mixing chamber and a plurality of drive nozzles arranged in a ring around a central axis, and a fuel lance arranged coaxially to the central axis with outlet openings.
- the outlet openings are arranged downstream of an outlet opening of the mixing chamber, a distance being suitably selected by the person skilled in the art.
- a baffle plate is provided upstream of the outlet openings of the fuel lance.
- a flame tube which delimits a reaction zone transversely to the flow direction.
- the exhaust gas can flow in an annular gap between a wall of the chamber and the flame tube to the jet pump and/or to an exhaust gas outlet.
- the flame tube is arranged immediately adjacent to the mixing chamber.
- the length of the flame tube can be selected by the person skilled in the art depending on the fuel.
- an extended flame tube is selected for an extended residence time in order to ensure burnout.
- a residence time also influences the formation of nitrogen oxide, a short flame tube is provided in other embodiments.
- the fuel lance comprises an ignition device or a pilot burner.
- An outlet opening of the ignition device or the pilot burner is preferably offset with respect to the outlet openings of the fuel lance for normal operation.
- a method for supplying combustion air and recirculating exhaust gases for a burner with a combustion chamber wherein combustion air is supplied to a mixing chamber downstream of the drive nozzles by means of a plurality of drive nozzles arranged distributed around a central axis, while exhaust gases are sucked in from the combustion chamber, in the mixing chamber the combustion air emerging from the drive nozzles is mixed with exhaust gases flowing out of the combustion chamber and sucked back in by means of the drive nozzles to form a combustion air/exhaust gas mixture, and the combustion air/exhaust gas mixture is supplied to a reaction zone downstream of the mixing chamber, wherein optionally Combustion air is supplied to the reaction zone via a bypass channel, bypassing the drive nozzles, and wherein an oxygen content of a mixture of the combustion air selectively supplied via the bypass channel and the combustion air/exhaust gas mixture is monitored and an amount of the combustion air supplied via the bypass channel is adjusted to maintain a defined oxygen content and/or a temperature of the recirc
- the drive nozzles and the mixing chamber form a jet pump, by means of which, depending on certain operating parameters, a combustion air/exhaust gas mixture with a defined EGR can be fed to the reaction zone.
- a portion of the combustion air supplied via the bypass channel is variable in order to make an adjustment depending on certain operating parameters.
- an oxygen content of a mixture of the combustion air supplied via the bypass channel and the combustion air/exhaust gas mixture is monitored and an amount of the combustion air supplied via the bypass channel is adjusted to maintain a defined oxygen content.
- another embodiment provides that a temperature of the recirculated exhaust gas is detected and an amount of combustion air supplied via the bypass channel is adjusted depending on the detected temperature.
- Fig. 1 and 2 show a burner 1 with a combustion chamber 10 and with a device 2 for combustion air supply and exhaust gas recirculation in a sectional side view or in a sectional top view according to a marking II-II in Fig.1 .
- the illustrated burner 1 has a fuel supply 3 with a supply nozzle 30, a fuel lance 31 running coaxially to a central axis A and outlet nozzles 32. Upstream of the outlet nozzles 31, a flame holder 4 is provided in the illustrated embodiment for stabilizing a flame front.
- the illustrated fuel supply 3 further comprises an internal pilot burner or ignition device 34.
- the ignition device 34 is arranged in a tube 35 which delimits a channel for the fuel supply in the fuel lance 31 of the fuel supply.
- the combustion chamber 10 is delimited transversely to the flow direction by a flame tube 12.
- the device 2 comprises a combustion air supply with a supply nozzle 20, a plurality of, in the embodiment shown sixteen, drive nozzles 21 fluidically connected to the combustion air supply, arranged distributed around the central axis A and around the fuel lance 31, and a mixing chamber 22 downstream of the drive nozzles 21.
- the drive nozzles 21 and the mixing chamber 22 form a jet pump.
- the combustion air supplied by means of the drive nozzles 21 serves as a drive medium, which generates a pumping effect, so that exhaust gas flowing out of the combustion chamber 10 is sucked in via an intake opening 25 provided between the drive nozzles 21 and the mixing chamber 22.
- the combustion air exiting from the drive nozzles 21 is mixed with the exhaust gases flowing out of the combustion chamber 10 and sucked back by means of the drive nozzles 21 to form a combustion air/exhaust gas mixture, and the combustion air/exhaust gas mixture is fed downstream of the mixing chamber 22 to a reaction zone in the combustion chamber 10.
- the mixing chamber 22 of the device 2 shown has an annular cross-section and surrounds the fuel lance 31.
- the flame tube 12 is connected to the mixing chamber 22.
- the flame tube 12 and the mixing chamber 22 are realized by a common component. In other embodiments, separate components are provided.
- the device 2 shown further has a bypass channel 23, by means of which combustion air can be fed to the reaction zone, bypassing the drive nozzles 21.
- the bypass channel 23 is designed as an annular channel running coaxially to the central axis A between the fuel lance 31 and the mixing chamber 22.
- the bypass channel 23 ends downstream of the mixing chamber 22 and upstream of the flame holder 4.
- nozzle openings 230 are provided at an outlet end of the bypass channel 23 in the exemplary embodiment shown.
- a continuously or continuously adjustable bypass valve 232 is provided in the bypass channel 23.
- a probe 5 for oxygen measurement is provided downstream of the mixing chamber 22 and, in the illustrated embodiment, downstream of the outlet end of the bypass channel 23 and upstream of the flame holder 4 and the outlet nozzles 32 of the fuel supply 3, a probe 5 for oxygen measurement is provided downstream of the mixing chamber 22 and, in the illustrated embodiment, downstream of the outlet end of the bypass channel 23 and upstream of the flame holder 4 and the outlet nozzles 32 of the fuel supply 3, a probe 5 for oxygen measurement is provided downstream of the mixing chamber 22 and, in the illustrated embodiment, downstream of the outlet end of the bypass channel 23 and upstream of the flame holder 4 and the outlet nozzles 32 of the fuel supply 3, a probe 5 for oxygen measurement is provided downstream of the mixing chamber 22 and, in the illustrated embodiment, downstream of the outlet end of the bypass channel 23 and upstream of the flame holder 4 and the outlet nozzles 32 of the fuel supply 3, a probe 5 for oxygen measurement is provided downstream of the mixing chamber 22 and, in the illustrated embodiment, downstream of the outlet end of the bypass channel 23 and upstream of the flame holder 4 and
- a measuring sensor 6 is provided for measuring the temperature of the recirculated exhaust gas.
- the measuring sensor 6 is arranged in the region of the intake opening 25 of the jet pump formed by the mixing chamber 22 and the drive nozzles 21.
- An exhaust gas recirculation ratio of the combustion air/exhaust gas mixture conveyed by the jet pump depends on a cross-sectional ratio of the mixing chamber 22 and the drive nozzles 21 as well as on operating parameters such as a temperature of the recirculated exhaust gas.
- an exhaust gas recirculation ratio of 1 to 1.5 is required, depending on the temperature of the recirculated exhaust gas.
- a cross-sectional ratio of the mixing chamber 22 and the drive nozzles 21 is accordingly determined by the Experts will design it to be suitable for a temperature range of the recirculated exhaust gas. In the exemplary embodiment shown, the cross-sectional ratio is selected to be less than 20.
- the mixing chamber 22 shown has funnel-shaped inlet and outlet areas. A cross-section of the mixing chamber 22 is determined in an intermediate section with a constant cross-section.
- a portion of the combustion air can be supplied via the bypass channel 23 in the embodiment shown.
- An oxygen content can be detected by means of the probe 5 and regulated to a specific value using the bypass valve 232.
- Fig. 3 and 4 show a burner 1 with a combustion chamber 10 and with a device 2 for combustion air supply and exhaust gas recirculation in a sectional side view or in a sectional top view according to a marking II-II in Fig.1 .
- Burner 1 according to the Fig. 3 and 4 is similar to burner 1 according to the Fig. 1 and 2 and uniform reference symbols are used for identical components. A detailed description of components that have already been described is omitted.
- the device 2 according to the Fig. 3 and 4 no bypass channel 23. Instead, a continuously or continuously adjustable valve 27 is provided in the intake opening 25 for the exhaust gas that is sucked back in. If it is necessary to reduce an exhaust gas recirculation ratio during operation in order to maintain flame stability, in the embodiment according to the Fig. 3 and 4 a recirculation of exhaust gas by means of the valve 27.
- an oxygen content of the combustion air/exhaust gas mixture upstream of the outlet nozzles 32 of the fuel supply can be detected and - in contrast to the embodiment according to the Fig.
- an annular cavity remains between the fuel lance 31 of the fuel supply 3 and the mixing chamber 22, which can be used, for example, for a cable guide for the probe 5.
- an inner diameter of the annular mixing chamber 22 is equal to an outer diameter of the channel 31, so that no cavity remains.
- Fig.5 shows burner 1 according to Fig.1 and a heating chamber 7 delimited by a housing 70.
- a double-walled housing 70 is provided.
- a coiled tube 71 is arranged in the double-walled housing 70, through which a medium to be heated is guided.
- the exhaust gas or combustion gas is guided through the double-walled housing 70 to an outlet 72 and in the process heats the medium guided in the coiled tube.
- part of the exhaust gas is sucked in by the jet pump formed by the drive nozzles 21 and the mixing chamber 22 and mixed with the combustion air.
- an extended flame tube 112 is provided for an extended residence time to ensure burnout.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Pre-Mixing And Non-Premixing Gas Burner (AREA)
- Gas Burners (AREA)
Description
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Verbrennungsluftzufuhr und Abgasrezirkulation für einen Brenner sowie einen Brenner mit einer Vorrichtung zur Verbrennungsluftzufuhr und Abgasrezirkulation.The invention relates to a device and a method for combustion air supply and exhaust gas recirculation for a burner and to a burner with a device for combustion air supply and exhaust gas recirculation.
Wasserstoff, insbesondere sogenannter grüner Wasserstoff, welcher durch Wasserspaltung aus erneuerbaren Energien, wie Windenergie, Sonnenenergie oder Wasserkraft, oder aus Biomasse gewonnen wird, gewinnt als Energieträger zunehmend an Bedeutung, zunächst als Beimischung zum Erdgas und später als reines Gas. Obwohl Wasserstoff nahezu emissionsfrei verbrennt, sind Sauerstoff und Stickstoff Bestandteile der Verbrennungsluft, sodass sich Stickoxide auch beim Einsatz von Wasserstoff bilden können. Eine thermische Stickoxid-Bildung setzt bei hohen Temperaturen ein und steigt dann mit der Temperatur exponentiell an. Aufgrund einer hohen Reaktionsgeschwindigkeit des Wasserstoffs steigt die thermische Stickoxid-Bildung durch den Einsatz von Wasserstoff im Vergleich zum Einsatz von reinem Erdgas stark an. Beispielsweise entsteht bei Brennern ohne besondere Maßnahmen mit Erdgas (CH4) etwa 50 ppm und mit Wasserstoff über 100 ppm Stickoxid im Abgas.Hydrogen, particularly so-called green hydrogen, which is obtained by splitting water from renewable energies such as wind energy, solar energy or hydropower, or from biomass, is becoming increasingly important as an energy source, initially as an additive to natural gas and later as pure gas. Although hydrogen burns with almost no emissions, oxygen and nitrogen are components of the combustion air, so nitrogen oxides can also form when hydrogen is used. Thermal nitrogen oxide formation begins at high temperatures and then increases exponentially with temperature. Due to the high reaction rate of hydrogen, thermal nitrogen oxide formation increases sharply when using hydrogen compared to using pure natural gas. For example, burners without special measures produce around 50 ppm of nitrogen oxide in the exhaust gas with natural gas (CH4) and over 100 ppm with hydrogen.
Als wirksame Maßnahme gegen die thermische Stickoxid-Bildung im Abgas von Feuerungsanlagen ist eine Abgasrezirkulation oder Abgasrückführung bekannt, wobei durch Rückführung des Abgases ein Sauerstoffanteil reduziert und so eine Flammentemperatur gesenkt wird. Im Zusammenhang mit der Anmeldung wird ein Abgasrückführverhältnis (AGR) als das Verhältnis der Massenströme des rezirkulierten oder rückgeführten Abgases und der zugeführten Verbrennungsluft (mA/mL) definiert. Die Abgase werden auch als Verbrennungsabgase oder Verbrennungsgase bezeichnet.Flue gas recirculation or exhaust gas recirculation is known as an effective measure against the thermal formation of nitrogen oxide in the exhaust gas of combustion plants, whereby the oxygen content is reduced by recirculating the exhaust gas and thus the flame temperature is lowered. In connection with the application, an exhaust gas recirculation ratio (EGR) is defined as the ratio of the mass flows of the recirculated or recirculated exhaust gas and the supplied combustion air (m A /m L ). The exhaust gases are also referred to as combustion exhaust gases or combustion gases.
Üblicherweise wird zwischen externer und interner Abgasrezirkulation unterschieden. Bei der externen Abgasrezirkulation wird Abgas aus dem Brennraum geführt und ein Abgasteilstrom im Abgastrakt beispielsweise in einem Kamin entnommen und der Verbrennungsluft oder dem Brennstoff vor oder beim Einströmen in einen Brennraum beigemischt. Dabei lässt sich ein AGR mittels geeigneter Steuerungen auf ein gewünschtes Verhältnis regeln. Ein wesentlicher Nachteil der externen Abgasrezirkulation ist eine Erhöhung der Abgasmenge, weshalb Flächen für eine Auskopplung der Wärme entsprechend vergrößert werden müssen.A distinction is usually made between external and internal exhaust gas recirculation. With external exhaust gas recirculation, exhaust gas is led out of the combustion chamber and a partial exhaust gas flow is taken from the exhaust tract, for example in a chimney, and mixed with the combustion air or fuel before or as it flows into a combustion chamber. An EGR can be regulated to a desired ratio using suitable controls. A major disadvantage of external exhaust gas recirculation is an increase in the amount of exhaust gas, which is why areas for extracting the heat must be enlarged accordingly.
Bei der internen Abgasrezirkulation wird mit dem Impuls der Verbrennungsluft in einem Brennraum vorhandenes Abgas oder Verbrennungsgas in die Reaktionszone zurückgeführt. Wenn eine Temperatur in dem Brennraum über einer Zündtemperatur des Brennstoffs liegt, kann das Abgasrückführverhältnis dabei beliebig gesteigert werden, da eine Flammenstabilität keine Rolle spielt.In internal exhaust gas recirculation, exhaust gas or combustion gas present in a combustion chamber is returned to the reaction zone with the impulse of the combustion air. If a temperature in the combustion chamber is above the ignition temperature of the fuel, the exhaust gas recirculation ratio can be increased as desired, since flame stability plays no role.
Beispielsweise ist aus
Wenn dagegen die Temperatur in dem Brennraum unter der Zündtemperatur liegt, muss das Abgasrückführverhältnis begrenzt werden, um ein Verlöschen der Flamme zu vermeiden.If, however, the temperature in the combustion chamber is below the ignition temperature, the exhaust gas recirculation ratio must be limited to prevent the flame from extinguishing.
Es ist eine Aufgabe der Erfindung eine Vorrichtung und ein Verfahren zur Verbrennungsluftzufuhr und internen Abgasrezirkulation für einen Brenner, insbesondere für Niedertemperaturprozesse, mit einem definierten Abgasrückführverhältnis zu schaffen.It is an object of the invention to provide a device and a method for combustion air supply and internal exhaust gas recirculation for a burner, in particular for low-temperature processes, with a defined exhaust gas recirculation ratio.
Gemäß einem ersten Aspekt wird eine Vorrichtung zur Verbrennungsluftzufuhr und Abgasrezirkulation für einen Brenner mit einem Brennraum geschaffen, wobei die Vorrichtung mehrere um eine zentrale Achse verteilt angeordnete, mit einer Verbrennungsluftzufuhr fluidisch verbundene Treibdüsen und eine den Treibdüsen nachgeschaltete Mischkammer umfasst, wobei die Treibdüsen und die Mischkammer eine Strahlpumpe bilden, wobei in der Mischkammer aus den Treibdüsen austretende Verbrennungsluft mit aus dem Brennraum abströmenden und mittels der Treibdüsen rückgesaugten Abgasen zu einem Verbrennungsluft-/Abgasgemisches mischbar und das Verbrennungsluft-/Abgasgemisch stromabwärts der Mischkammer einer Reaktionszone zuführbar ist, wobei ein Bypasskanal vorgesehen ist, mittels welchem Verbrennungsluft unter Umgehung der Treibdüsen der Reaktionszone zuführbar ist, und wobei in dem Bypasskanal ein verstellbares Bypassventil vorgesehen ist.According to a first aspect, a device for supplying combustion air and recirculating exhaust gases for a burner with a combustion chamber is provided, the device comprising a plurality of drive nozzles arranged distributed around a central axis and fluidically connected to a combustion air supply, and a mixing chamber downstream of the drive nozzles, the drive nozzles and the mixing chamber forming a jet pump, combustion air emerging from the drive nozzles in the mixing chamber being mixable with exhaust gases flowing out of the combustion chamber and sucked back by means of the drive nozzles to form a combustion air/exhaust gas mixture, and the combustion air/exhaust gas mixture being feedable to a reaction zone downstream of the mixing chamber, a bypass channel being provided by means of which combustion air can be fed to the reaction zone while bypassing the drive nozzles, and an adjustable bypass valve being provided in the bypass channel.
Als Mischkammer wird ein gegenüber der Umgebung abgegrenzter Raum mit einem definierten Querschnitt bezeichnet, welcher zwischen den Treibdüsen und der Reaktionszone des Brennraums vorgesehen ist. Der Querschnitt der Mischkammer ist je nach Anwendungsfall durch den Fachmann geeignet wählbar. In vorteilhaften Ausgestaltungen ist der Querschnitt in Strömungsrichtung konstant, wobei in einer Ausgestaltung in einem Einlass- und/oder einem Auslassbereich ein konvergierender bzw. divergierender Querschnitt für ein verbessertes Ein- bzw. Ausströmen vorgesehen ist.A mixing chamber is a space with a defined cross-section that is separated from the environment and is provided between the propellant nozzles and the reaction zone of the combustion chamber. The cross-section of the mixing chamber can be selected by the expert depending on the application. In advantageous embodiments, the cross-section is constant in the direction of flow, with one embodiment providing a converging or diverging cross-section in an inlet and/or outlet area for improved inflow or outflow.
Die verteilt angeordneten Treibdüsen und die Mischkammer bilden eine Strahlpumpe, wobei das Abgasrückführverhältnis des durch die Strahlpumpe geförderten Verbrennungsluft-/Abgasgemisches von einem Querschnittsverhältnis der Mischkammer und der Treibdüsen sowie von Betriebsparametern, wie einer Temperatur des rezirkulierten Abgases, abhängt. Das Abgasrückführverhältnis kann so durch geeignete Auslegung der Mischkammer und der Treibdüsen von einem Fachmann im Vorfeld geeignet, beispielsweise bis an eine Grenze der Flammenstabilität, für bestimmte Betriebsparameter festgelegt werden. In anderen Worten ist der Querschnitt der Mischkammer auf einen Austrittsquerschnitt der Treibdüsen und eine Anzahl der Treibdüsen abgestimmt.The distributed drive nozzles and the mixing chamber form a jet pump, whereby the exhaust gas recirculation ratio of the combustion air/exhaust gas mixture conveyed by the jet pump depends on a cross-sectional ratio of the mixing chamber and the drive nozzles as well as on operating parameters such as a temperature of the recirculated exhaust gas. The exhaust gas recirculation ratio can thus be set in advance by a specialist through a suitable design of the mixing chamber and the drive nozzles, for example up to a limit of flame stability, for certain operating parameters. In other words, the cross-section of the mixing chamber is matched to an outlet cross-section of the drive nozzles and a number of drive nozzles.
Ein den Treibdüsen zugewandtes Ende der Mischkammer ist in einer Ausgestaltung in Strömungsrichtung zumindest abschnittsweise beabstandet zu einer Wandung, an welcher die Treibdüsen angeordnet sind, sodass ein umlaufender oder unterbrochener Spalt geschaffen wird, welcher als Ansaugöffnung der Strahlpumpe wirkt, über welche ein Abgas rückgesaugt und in die Mischkammer gefördert werden kann. In einer anderen Ausgestaltung ist stromaufwärts der Mischkammer eine Ansaugkammer mit einer Öffnung zum Ansaugen von Abgas vorgesehen. Ein dem Brennraum zugewandtes Ende der Mischkammer ist im Gebrauch stromaufwärts einer Auslassöffnung einer Brennstoffzufuhr angeordnet, wobei ein Abstand je nach Anwendungsfall durch den Fachmann geeignet wählbar ist.In one embodiment, an end of the mixing chamber facing the drive nozzles is at least partially spaced apart in the direction of flow from a wall on which the drive nozzles are arranged, so that a circumferential or interrupted gap is created which acts as an intake opening of the jet pump, through which exhaust gas can be sucked back and conveyed into the mixing chamber. In another embodiment, an intake chamber with an opening for sucking in exhaust gas is provided upstream of the mixing chamber. An end of the mixing chamber facing the combustion chamber is arranged in use upstream of an outlet opening of a fuel supply, with a distance being suitable and selectable by the person skilled in the art depending on the application.
Die Verbrennungsluft und das Abgas werden ähnlich einer externen Abgasrezirkulation vor einer Vermischung mit dem Brennstoff miteinander in einem ggf. von Betriebsparametern abhängigen, definierten Abgasrückführverhältnis vermischt, ohne dass hierfür wie bei einer externen Abgasrezirkulation eine Abgasmenge in einem Abgastrakt erhöht werden muss.Similar to an external exhaust gas recirculation, the combustion air and the exhaust gas are mixed with each other before being mixed with the fuel in a defined exhaust gas recirculation ratio that may depend on operating parameters, without the need to increase the amount of exhaust gas in an exhaust tract as is the case with an external exhaust gas recirculation.
Durch die Abgasrezirkulation wird die Flammentemperatur abgesenkt. Die Bildungsrate für Stickoxid liegt bei Flammentemperaturen üblicher Brennstoffe von ca. 2000 °C bei etwa 104 ppm/s und sinkt bei 1500° C auf ungefähr 10 ppm/s ab. Bei niedrigen Flammentemperaturen und Verweilzeiten im Bereich von Zehntelsekunden sind so einstellige Stickoxidwerte im Abgas erzielbar.The exhaust gas recirculation reduces the flame temperature. The rate of nitrogen oxide formation is around 10 4 ppm/s at flame temperatures of conventional fuels of around 2000°C and drops to around 10 ppm/s at 1500°C. At low flame temperatures and residence times in the range of tenths of a second, single-digit nitrogen oxide values can be achieved in the exhaust gas.
Die um eine zentrale Achse verteilte Anordnung der Treibdüsen wird im Zusammenhang mit der Anmeldung auch als kranzförmige Anordnung bezeichnet. Die Treibdüsen sind in einer Ausgestaltung parallel angeordnet. In anderen Ausgestaltungen sind Achsen der Treibdüsen gegenüber der zentralen Achse geneigt. Durch die Gestaltung der Strahlpumpe mit mehreren, um eine zentrale Achse verteilt angeordneten Treibdüsen und einer diesen Treibdüsen nachgeschalteten Mischkammer wird eine kleinbauende Strahlpumpe geschaffen, die in bestehende Brenner mit üblichen Abmessungen integriert werden kann. Die Vorrichtung ist daher auch zur Nachrüstung bestehender Anlagen geeignet.The arrangement of the drive nozzles distributed around a central axis is also referred to as a ring-shaped arrangement in connection with the application. In one embodiment, the drive nozzles are arranged in parallel. In other embodiments, the axes of the drive nozzles are inclined relative to the central axis. By designing the jet pump with several drive nozzles distributed around a central axis and a drive nozzle A downstream mixing chamber creates a small jet pump that can be integrated into existing burners with standard dimensions. The device is therefore also suitable for retrofitting existing systems.
Die Vorrichtung mit einer durch die Mischkammer und die Treibdüsen gebildeten Strahlpumpe eignet sich sowohl für Brenner in einem Leistungsbereich mit einigen kW als auch für Brenner mit einem MW-Leistungsbereich.The device with a jet pump formed by the mixing chamber and the drive nozzles is suitable for burners in a power range of a few kW as well as for burners with a MW power range.
Wie oben erwähnt, ist ein für die Schadstoffvermeidung optimales Abgasrückführverhältnis AGR auch von Betriebsparametern abhängig. Beispielsweise ist je nach der Temperatur des rezirkulierten Abgases ein Abgasrückführverhältnis AGR von 1 bis 1,5 mit einem Sauerstoffgehalt des Verbrennungsluft-/Abgasgemischs zwischen ca. 10 % und ca. 12 % erforderlich, um die Flammentemperatur auf 1500°C abzusenken.As mentioned above, an exhaust gas recirculation ratio (EGR) that is optimal for pollutant prevention also depends on operating parameters. For example, depending on the temperature of the recirculated exhaust gas, an exhaust gas recirculation ratio (EGR) of 1 to 1.5 with an oxygen content of the combustion air/exhaust gas mixture of between approx. 10% and approx. 12% is required to reduce the flame temperature to 1500°C.
Bei der Vorrichtung ist daher ein Bypasskanal vorgesehen, mittels welchem Verbrennungsluft unter Umgehung der Treibdüsen der Reaktionszone zuführbar ist. Dadurch ist es beispielsweise möglich, das AGR für eine Flammenstabilität zu reduzieren, indem ein Teil der Verbrennungsluft über den Bypasskanal an den Treibdüsen vorbeigeführt wird. Der Bypasskanal ist in einer Ausgestaltung als Ringspaltkanal gestaltet, welcher im Gebrauch um eine Brennstofflanze angeordnet ist und abschnittsweise zwischen der Mischkammer und der Brennstofflanze verläuft.The device therefore has a bypass channel, by means of which combustion air can be fed to the reaction zone, bypassing the drive nozzles. This makes it possible, for example, to reduce the EGR for flame stability by guiding part of the combustion air past the drive nozzles via the bypass channel. The bypass channel is designed in one embodiment as an annular gap channel, which is arranged around a fuel lance during use and runs in sections between the mixing chamber and the fuel lance.
In einer Ausgestaltung ist eine Mischkammer mit einem ringförmigen Querschnitt vorgesehen. Ein Innendurchmesser der Mischkammer ist dabei derart gewählt, dass die Mischkammer im Gebrauch um eine koaxial zu der zentralen Achse vorgesehenen Brennstofflanze angeordnet werden kann.In one embodiment, a mixing chamber with an annular cross-section is provided. An inner diameter of the mixing chamber is selected such that the mixing chamber can be arranged around a fuel lance provided coaxially to the central axis during use.
Die Anzahl der Treibdüsen ist je nach Anwendungsfall und Größe des Brenners durch den Fachmann geeignet festlegbar. In einer Ausgestaltung sind acht oder mehr um die zentrale Achse gleichmäßig verteilt angeordnete Treibdüsen vorgesehen. Dadurch wird eine gute Saugwirkung insbesondere für eine Mischkammer mit einer Zufuhröffnung in Form eines Ringspalts geschaffen.The number of drive nozzles can be determined by the specialist depending on the application and the size of the burner. In one embodiment, eight or more drive nozzles are provided, evenly distributed around the central axis. This creates a good suction effect, particularly for a mixing chamber with a supply opening in the form of an annular gap.
Ein Querschnittsverhältnis der Mischkammer und der Treibdüsen der Strahlpumpe wird ausgelegt, um ein bestimmtes Abgasrückführverhältnis AGR zu erzielen, wobei als Querschnitt der Treibdüsen ein resultierender Querschnitt sämtlicher Treibdüsen bezeichnet wird. In einer Ausgestaltung ist das Querschnittsverhältnis der Mischkammer und der Treibdüsen kleiner oder gleich 20.A cross-sectional ratio of the mixing chamber and the jet pump's motive nozzles is designed to achieve a specific exhaust gas recirculation ratio EGR, whereby the cross-sectional area of the motive nozzles is referred to as a resulting cross-sectional area of all motive nozzles. In a The cross-sectional ratio of the mixing chamber and the drive nozzles is less than or equal to 20.
An einem Auslassende des Bypasskanals sind in einer Ausgestaltung Düsenöffnungen vorgesehen, um eine schnelle und vollständige Vermischung der über den Bypasskanal zugeführten Verbrennungsluft mit dem Verbrennungsluft-/Abgasgemisch der Strahlpumpe zu erreichen.In one embodiment, nozzle openings are provided at an outlet end of the bypass channel in order to achieve rapid and complete mixing of the combustion air supplied via the bypass channel with the combustion air/exhaust gas mixture of the jet pump.
Das Bypassventil ist in einer Ausgestaltung lediglich zwischen einer Offen- und einer Schließstellung verstellbar. In anderen Ausgestaltungen ist ein kontinuierlich oder stufenlos verstellbares Bypassventil vorgesehen. Ein Verstellen des Bypassventils erfolgt in Ausgestaltungen mittels einer steuer- oder regelbaren Stelleinrichtung, wobei je nach Ausgestaltung mittels Regel- oder Steuereingriffen das Bypassventil geöffnet oder geschlossen oder ein Durchlass variiert wird. Mittels des Bypassventils kann für einen Flammenstabilität durch eine variable Zufuhr zusätzlicher Verbrennungsluft ein Sauerstoffgehalt des Verbrennungsluft-/Abgasgemischs für die Verbrennung verändert und, insbesondere innerhalb eines definierten Bereichs gehalten werden.In one embodiment, the bypass valve can only be adjusted between an open and a closed position. In other embodiments, a continuously or continuously adjustable bypass valve is provided. In embodiments, the bypass valve is adjusted by means of a controllable or adjustable actuating device, whereby, depending on the embodiment, the bypass valve is opened or closed or a passage is varied by means of regulating or control interventions. By means of the bypass valve, the oxygen content of the combustion air/exhaust gas mixture for combustion can be changed and, in particular, kept within a defined range for flame stability by means of a variable supply of additional combustion air.
Zusätzlich zu einem Bypasskanal ist in einer Ausgestaltung in einer Ansaugöffnung für das rückgesaugte Abgas ein verstellbares Ventil vorgesehen, wobei vorzugsweise das Ventil kontinuierlich oder stufenlos verstellbar ist. Mittels des Ventils in der Ansaugöffnung für das rückgesaugte Abgas kann für einen Flammenstabilität durch eine variable Zufuhr an Abgas ein Sauerstoffgehalt des Verbrennungsluft-/Abgasgemischs für die Verbrennung verändert und, insbesondere innerhalb eines definierten Bereichs gehalten werden.In addition to a bypass channel, in one embodiment an adjustable valve is provided in an intake opening for the re-sucked exhaust gas, wherein the valve is preferably continuously or continuously adjustable. By means of the valve in the intake opening for the re-sucked exhaust gas, an oxygen content of the combustion air/exhaust gas mixture for combustion can be changed and, in particular, kept within a defined range for flame stability by a variable supply of exhaust gas.
In einer Ausgestaltung ist eine Sonde für eine Sauerstoffmessung vorgesehen. Die Sonde ist vorzugsweise stromaufwärts von Auslassöffnungen einer Brennstoffzufuhr und damit stromaufwärts einer Flamme vorgesehen. Dabei kann der mit der Sonde bestimmte Sauerstoffgehalt der Mischung aus dem mittels der Strahlpumpe zugeführten Verbrennungsluft-/Abgasgemisch und ggf. der über den Bypasskanal zugeführten Verbrennungsluft bestimmt und durch Regel- oder Steuereingriffe an dem Bypassventil und/oder an dem Ventil in der Ansaugöffnung für das rückgesaugte Abgas variiert werden.In one embodiment, a probe is provided for oxygen measurement. The probe is preferably provided upstream of outlet openings of a fuel supply and thus upstream of a flame. The oxygen content of the mixture of the combustion air/exhaust gas mixture supplied by means of the jet pump and possibly the combustion air supplied via the bypass channel, determined using the probe, can be determined and varied by regulating or control interventions on the bypass valve and/or on the valve in the intake opening for the exhaust gas sucked back in.
Alternativ oder zusätzlich ist in einer Ausgestaltung ein Messfühler für eine Temperaturmessung des rezirkulierten Abgases vorgesehen. Dabei kann ein für eine Temperatur des Abgases optimiertes Abgasrückführverhältnis ermittelt und durch Regel- oder Steuereingriffe an dem Bypassventil und/oder an dem Ventil in der Ansaugöffnung, vorzugsweise unter Messung des Sauerstoffgehalts, eingestellt werden.Alternatively or additionally, in one embodiment, a sensor is provided for measuring the temperature of the recirculated exhaust gas. In this case, an exhaust gas recirculation ratio optimized for an exhaust gas temperature can be determined and adjusted by means of control interventions on the Bypass valve and/or the valve in the intake opening, preferably by measuring the oxygen content.
Gemäß einem zweiten Aspekt wird ein Brenner geschaffen, umfassend eine Vorrichtung zur Verbrennungsluftzufuhr und Abgasrezirkulation mit einer Strahlpumpe, wobei die Strahlpumpe eine vorzugsweise ringspaltförmige Mischkammer und mehrere, kranzförmig um eine zentrale Achse angeordnete Treibdüsen aufweist, und eine koaxial zu der zentralen Achse angeordnete Brennstofflanze mit Austrittsöffnungen. Die Austrittsöffnungen sind stromabwärts einer Auslassöffnung der Mischkammer angeordnet, wobei ein Abstand durch den Fachmann geeignet wählbar ist. Zur Verbesserung einer Flammenstabilität ist in einer Ausgestaltung eine Stauscheibe stromaufwärts der Austrittsöffnungen der Brennstofflanze vorgesehen. Der so geschaffene Brenner kann in eine herkömmliche Kammer eingebaut werden.According to a second aspect, a burner is created, comprising a device for supplying combustion air and recirculating exhaust gases with a jet pump, the jet pump having a preferably annular gap-shaped mixing chamber and a plurality of drive nozzles arranged in a ring around a central axis, and a fuel lance arranged coaxially to the central axis with outlet openings. The outlet openings are arranged downstream of an outlet opening of the mixing chamber, a distance being suitably selected by the person skilled in the art. To improve flame stability, in one embodiment a baffle plate is provided upstream of the outlet openings of the fuel lance. The burner created in this way can be installed in a conventional chamber.
In einer Ausgestaltung ist ein Flammenrohr vorgesehen, welches eine Reaktionszone quer zur Strömungsrichtung begrenzt. Das Abgas kann dabei in einem Ringspalt zwischen einer Wandung der Kammer und dem Flammenrohr zu der Strahlpumpe und/oder zu einem Abgasauslass strömen. Das Flammenrohr ist in einer Ausgestaltung unmittelbar angrenzend an die Mischkammer angeordnet. Eine Länge des Flammenrohrs kann durch den Fachmann je nach Brennstoff geeignet gewählt werden. In einer Ausgestaltung ist für einen Betrieb mit Brennstoffen mit einer niedrigen Reaktionsgeschwindigkeit, wie beispielsweise Erdgas, ein verlängertes Flammenrohr für eine verlängerte Verweilzeit gewählt, um einen Ausbrand sicherzustellen. Da eine Verweilzeit jedoch auch Einfluss auf eine Stickoxid-Bildung hat, wird in anderen Ausgestaltungen ein kurzes Flammenrohr vorgesehen.In one embodiment, a flame tube is provided which delimits a reaction zone transversely to the flow direction. The exhaust gas can flow in an annular gap between a wall of the chamber and the flame tube to the jet pump and/or to an exhaust gas outlet. In one embodiment, the flame tube is arranged immediately adjacent to the mixing chamber. The length of the flame tube can be selected by the person skilled in the art depending on the fuel. In one embodiment, for operation with fuels with a low reaction rate, such as natural gas, an extended flame tube is selected for an extended residence time in order to ensure burnout. However, since a residence time also influences the formation of nitrogen oxide, a short flame tube is provided in other embodiments.
In einer Ausgestaltung umfasst die Brennstofflanze eine Zündeinrichtung oder einen Pilotbrenner. Eine Austrittsöffnung der Zündeinrichtung oder des Pilotbrenners ist vorzugsweise bezüglich der Austrittsöffnungen der Brennstofflanze für einen Normalbetrieb versetzt.In one embodiment, the fuel lance comprises an ignition device or a pilot burner. An outlet opening of the ignition device or the pilot burner is preferably offset with respect to the outlet openings of the fuel lance for normal operation.
Gemäß einem dritten Aspekt wird ein Verfahren zur Verbrennungsluftzufuhr und Abgasrezirkulation für einen Brenner mit einem Brennraum geschaffen, wobei Verbrennungsluft mittels mehrerer um eine zentrale Achse verteilt angeordneter Treibdüsen unter Ansaugen von Abgasen aus dem Brennraum einer den Treibdüsen nachgeschalteten Mischkammer zugeführt wird, in der Mischkammer die aus den Treibdüsen austretende Verbrennungsluft mit aus dem Brennraum abströmenden und mittels der Treibdüsen rückgesaugten Abgasen zu einem Verbrennungsluft-/Abgasgemisches vermischt wird und das Verbrennungsluft-/Abgasgemisch stromabwärts der Mischkammer einer Reaktionszone zugeführt wird, wobei wahlweise Verbrennungsluft über einem Bypasskanal unter Umgehung der Treibdüsen der Reaktionszone zugeführt wird und wobei ein Sauerstoffgehalt einer Mischung aus der selektiv über den Bypasskanal zugeführten Verbrennungsluft und dem Verbrennungsluft-/Abgasgemisch überwacht und eine Menge der über den Bypasskanal zugeführten Verbrennungsluft zur Einhaltung eines definierten Sauerstoffgehalts angepasst wird und/oder eine Temperatur des rezirkulierten Abgases erfasst und eine Menge der über den Bypasskanal zugeführten Verbrennungsluft in Abhängigkeit der erfassten Temperatur angepasst wird.According to a third aspect, a method for supplying combustion air and recirculating exhaust gases for a burner with a combustion chamber is created, wherein combustion air is supplied to a mixing chamber downstream of the drive nozzles by means of a plurality of drive nozzles arranged distributed around a central axis, while exhaust gases are sucked in from the combustion chamber, in the mixing chamber the combustion air emerging from the drive nozzles is mixed with exhaust gases flowing out of the combustion chamber and sucked back in by means of the drive nozzles to form a combustion air/exhaust gas mixture, and the combustion air/exhaust gas mixture is supplied to a reaction zone downstream of the mixing chamber, wherein optionally Combustion air is supplied to the reaction zone via a bypass channel, bypassing the drive nozzles, and wherein an oxygen content of a mixture of the combustion air selectively supplied via the bypass channel and the combustion air/exhaust gas mixture is monitored and an amount of the combustion air supplied via the bypass channel is adjusted to maintain a defined oxygen content and/or a temperature of the recirculated exhaust gas is detected and an amount of the combustion air supplied via the bypass channel is adjusted depending on the detected temperature.
Die Treibdüsen und die Mischkammer bilden eine Strahlpumpe, mittels welcher in Abhängigkeit bestimmter Betriebsparameter ein Verbrennungsluft-/Abgasgemisch mit einem definierten AGR der Reaktionszone zuführbar ist.The drive nozzles and the mixing chamber form a jet pump, by means of which, depending on certain operating parameters, a combustion air/exhaust gas mixture with a defined EGR can be fed to the reaction zone.
Ein Anteil der über den Bypasskanal zugeführten Verbrennungsluft ist dabei variabel, um in Abhängigkeit bestimmter Betriebsparameter eine Anpassung vorzunehmen.A portion of the combustion air supplied via the bypass channel is variable in order to make an adjustment depending on certain operating parameters.
Zu diesem Zweck wird in einer Ausgestaltung ein Sauerstoffgehalt einer Mischung aus der über den Bypasskanal zugeführten Verbrennungsluft und dem Verbrennungsluft-/Abgasgemisch überwacht und eine Menge der über den Bypasskanal zugeführten Verbrennungsluft zur Einhaltung eines definierten Sauerstoffgehalts angepasst.For this purpose, in one embodiment, an oxygen content of a mixture of the combustion air supplied via the bypass channel and the combustion air/exhaust gas mixture is monitored and an amount of the combustion air supplied via the bypass channel is adjusted to maintain a defined oxygen content.
Alternativ oder zusätzlich ist in einer anderen Ausgestaltung vorgesehen, dass eine Temperatur des rezirkulierten Abgases erfasst und eine Menge der über den Bypasskanal zugeführten Verbrennungsluft in Abhängigkeit der erfassten Temperatur angepasst wird.Alternatively or additionally, another embodiment provides that a temperature of the recirculated exhaust gas is detected and an amount of combustion air supplied via the bypass channel is adjusted depending on the detected temperature.
Weitere Vorteile und Aspekte der Erfindung ergeben sich aus den Ansprüchen und aus der Beschreibung von Ausführungsbeispielen der Erfindung, die nachfolgenden anhand der Figuren erläutert sind. Dabei zeigen:
- Fig. 1:
- eine geschnittene Seitenansicht eines Brenners mit einer Vorrichtung zur Verbrennungsluftzufuhr und Abgasrezirkulation;
- Fig. 2:
- den Brenner gemäß
Fig. 1 in einer geschnittenen Draufsicht gemäß einer Markierung II-II inFig. 1 ; - Fig. 3:
- eine geschnittene Seitenansicht eines Brenners ähnlich
Fig. 1 mit einer Vorrichtung zur Verbrennungsluftzufuhr und Abgasrezirkulation; - Fig. 4:
- den Brenner gemäß
Fig. 3 in einer geschnittenen Draufsicht gemäß einer Markierung IV-IV inFig. 3 ; - Fig. 5:
- einen Brenner ähnlich
Fig. 1 in einer geschnittenen Seitenansicht mit einer Kammer.
- Fig.1:
- a sectional side view of a burner with a device for combustion air supply and exhaust gas recirculation;
- Fig. 2:
- the burner according to
Fig.1 in a sectional plan view according to a marking II-II inFig.1 ; - Fig. 3:
- a cutaway side view of a burner similar
Fig.1 with a device for combustion air supply and exhaust gas recirculation; - Fig.4:
- the burner according to
Fig.3 in a sectional plan view according to a marking IV-IV inFig.3 ; - Fig.5:
- a burner similar
Fig.1 in a sectioned side view with one chamber.
Der dargestellte Brenner 1 weist eine Brennstoffzufuhr 3 mit einem Zufuhrstutzen 30, einer koaxial zu einer zentralen Achse A verlaufenden Brennstofflanze 31 und Auslassdüsen 32 auf. Stromaufwärts der Auslassdüsen 31 ist in dem dargestellten Ausführungsbeispiel ein Flammenhalter 4 für eine Stabilisierung einer Flammenfront vorgesehen. Die dargestellte Brennstoffzufuhr 3 umfasst weiter einen innenliegenden Pilotbrenner oder Zündeinrichtung 34. Die Zündeinrichtung 34 ist dabei in einem Rohr 35 angeordnet, welcher einen Kanal für die Brennstoffzufuhr in der Brennstofflanze 31 der Brennstoffzufuhr begrenzt. Der Brennraum 10 ist quer zur Strömungsrichtung durch ein Flammenrohr 12 begrenzt.The illustrated
Die Vorrichtung 2 umfasst eine Verbrennungsluftzufuhr mit einem Zufuhrstutzen 20, mehrere, in dem dargestellten Ausführungsbeispiel sechzehn mit der Verbrennungsluftzufuhr fluidisch verbundene, um die zentrale Achse A und um die Brennstofflanze 31 verteilt angeordnete Treibdüsen 21 und eine den Treibdüsen 21 nachgeschaltete Mischkammer 22. Die Treibdüsen 21 und die Mischkammer 22 bilden eine Strahlpumpe. Dabei dient die mittels der Treibdüsen 21 zugeführte Verbrennungsluft als Treibmedium, durch welche eine Pumpwirkung erzeugt wird, sodass über eine zwischen den Treibdüsen 21 und der Mischkammer 22 vorgesehene Ansaugöffnung 25 ein aus dem Brennraum 10 abströmendes Abgas angesaugt wird. In der Mischkammer 22 wird die aus den Treibdüsen 21 austretende Verbrennungsluft mit den aus dem Brennraum 10 abströmenden und mittels der Treibdüsen 21 rückgesaugten Abgasen zu einem Verbrennungsluft-/Abgasgemisches vermischt und das Verbrennungsluft-/Abgasgemisch wird stromabwärts der Mischkammer 22 einer Reaktionszone in dem Brennraum 10 zugeführt.The
Die Mischkammer 22 der dargestellten Vorrichtung 2 weist einen ringförmigen Querschnitt auf und umgibt die Brennstofflanze 31. An die Mischkammer 22 schließt das Flammenrohr 12 an. In dem dargestellten Ausführungsbeispiel sind das Flammenrohr 12 und die Mischkammer 22 durch ein gemeinsames Bauteil realisiert. In anderen Ausgestaltungen sind separate Bauteile vorgesehen.The mixing
Die in den
Stromabwärts der Mischkammer 22 und in dem dargestellten Ausführungsbeispiel stromabwärts des Auslassende des Bypasskanals 23 sowie stromaufwärts des Flammenhalters 4 und der Auslassdüsen 32 der Brennstoffzufuhr 3 ist eine Sonde 5 für eine Sauerstoffmessung vorgesehen.Downstream of the mixing
Weiter ist ein Messfühler 6 für eine Temperaturmessung des rezirkulierten Abgases vorgesehen. Der Messfühler 6 ist in dem dargestellten Ausführungsbeispiel im Bereich der Ansaugöffnung 25 der durch die Mischkammer 22 und die Treibdüsen 21 gebildeten Strahlpumpe angeordnet.Furthermore, a measuring
Ein Abgasrückführverhältnis des durch die Strahlpumpe geförderten Verbrennungsluft-/Abgasgemisches hängt von einem Querschnittsverhältnis der Mischkammer 22 und der Treibdüsen 21 sowie von Betriebsparametern, wie einer Temperatur des rezirkulierten Abgases, ab.An exhaust gas recirculation ratio of the combustion air/exhaust gas mixture conveyed by the jet pump depends on a cross-sectional ratio of the mixing
Um eine Flammentemperatur auf 1500°C abzusenken, ist je nach Temperatur des rückgeführten Abgases ein Abgasrückführverhältnis von 1 bis 1,5 erforderlich. Ein Querschnittsverhältnis der Mischkammer 22 und der Treibdüsen 21 ist entsprechend durch den Fachmann geeignet für einen Temperaturbereich des rückgeführten Abgases ausgelegt. In dem dargestellten Ausführungsbeispiel ist das Querschnittsverhältnis kleiner 20 gewählt. Die dargestellte Mischkammer 22 weist trichterförmige Zu- und Auslaufbereiche auf. Ein Querschnitt der Mischkammer 22 wird dabei in einem dazwischenliegenden Abschnitt mit konstantem Querschnitt bestimmt.In order to reduce a flame temperature to 1500°C, an exhaust gas recirculation ratio of 1 to 1.5 is required, depending on the temperature of the recirculated exhaust gas. A cross-sectional ratio of the mixing
Sofern es im Betrieb zum Erhalt einer Flammenstabilität, beispielsweise aufgrund Abweichungen der Temperatur des rückgeführten Abgases, notwendig ist, ein Abgasrückführverhältnis zu reduzieren, kann in dem dargestellten Ausführungsbeispiel ein Teil der Verbrennungsluft über den Bypasskanal 23 zugeführt werden. Mittels der Sonde 5 ist ein Sauerstoffgehalt erfassbar und mithilfe des Bypassventil 232 auf einen bestimmten Wert regelbar.If it is necessary to reduce an exhaust gas recirculation ratio during operation in order to maintain flame stability, for example due to deviations in the temperature of the recirculated exhaust gas, a portion of the combustion air can be supplied via the
Im Unterschied zu den Ausführungsbeispiel gemäß den
Im Unterschied zu der Ausgestaltung gemäß den
Claims (12)
- A device for supplying combustion air and for recirculating exhaust gas for a burner (1) having a burner chamber (10), wherein the device (2) comprises a plurality of driving nozzles (21) which are distributed about a central axis (A) and are fluidically connected to a combustion air supply, wherein a mixing chamber (22) arranged downstream of the driving nozzles (21) is provided, the driving nozzles (21) and the mixing chamber (22) forming a jet pump, wherein in the mixing chamber (22), combustion air emerging from the driving nozzles (21) being mixable with exhaust gases, which flow out of the combustion chamber (10) and are sucked back by means of the driving nozzles (21), to form a combustion air/exhaust gas mixture, and the combustion air/exhaust gas mixture being suppliable to a reaction zone downstream of the mixing chamber (22), and wherein a bypass duct (23) is provided by means of which combustion air can be supplied to the reaction zone, bypassing the driving nozzles (21), characterized in that an adjustable bypass valve (231) is provided in the bypass duct (23).
- The device as claimed in claim 1, characterized in that the mixing chamber (22) has an annular cross section.
- The device as claimed in claim 1 or 2, characterized in that eight or more driving nozzles (21) which are distributed uniformly about the central axis (A) are provided.
- The device as claimed in claim 1, 2 or 3, characterized in that a cross-sectional ratio of the mixing chamber (22) and the driving nozzles (21) is smaller than or equal to 20.
- The device as claimed in one of claims 1 to 4, characterized in that nozzle openings (230) are provided at an outlet end of the bypass duct (23).
- The device as claimed in one of claims 1 to 5, characterized in that the bypass valve (231) is adjustable continuously or infinitely variably.
- The device as claimed in one of claims 1 to 6, characterized in that an adjustable valve (27) is provided in an intake opening (25) for the sucked-back exhaust gas, the valve (27) preferably being adjustable continuously or infinitely variably.
- The device as claimed in one of claims 1 to 7, characterized in that a probe (5) is provided for measuring oxygen, preferably upstream of outlet openings of a fuel supply (3), and/or a measurement sensor (6) is provided for measuring the temperature of the recirculated exhaust gas.
- A burner comprising a device as claimed in one of claims 1 to 8 and a fuel lance (31) which is arranged coaxially with respect to the central axis (A) and has outlet openings (32).
- The burner as claimed in claim 9, characterized in that a flame tube (12, 112) is provided which delimits the combustion chamber (10) transversely with respect to the direction of flow.
- The burner as claimed in claim 9 or 10, characterized in that the fuel supply (3) comprises an ignition means (34) or a pilot burner.
- A method for supplying combustion air and for recirculating exhaust gas for a burner (1) having a combustion chamber (10), wherein combustion air is supplied by means of a plurality of driving nozzles (21), which are distributed about a central axis (A), to a mixing chamber (22) arranged downstream of the driving nozzles (21) with exhaust gases being sucked up from the combustion chamber (10), and, in the mixing chamber (22), the combustion air emerging from the driving nozzles (21) is mixed with exhaust gases, which flow out of the combustion chamber (10) and are sucked back by means of the driving nozzles (21), to form a combustion air/exhaust gas mixture, and the combustion air/exhaust gas mixture is supplied to a reaction zone downstream of the mixing chamber (22), wherein combustion air is selectively supplied via a bypass duct (23) to the reaction zone, bypassing the driving nozzles (21), characterized in that an oxygen content of a mixture of the combustion air supplied selectively via the bypass duct (23) and the combustion air/exhaust gas mixture is monitored and a quantity of the combustion air supplied via the bypass duct (23) is adjusted to maintain a defined oxygen content, and/or a temperature of the recirculated exhaust gas is detected and a quantity of the combustion air supplied via the bypass duct (23) is adjusted depending on the detected temperature.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20211530.9A EP4008955B1 (en) | 2020-12-03 | 2020-12-03 | Device and method for supplying combustion air and exhaust gas recirculation for a burner |
JP2023533920A JP2023551951A (en) | 2020-12-03 | 2021-11-17 | Apparatus and method for supplying combustion air and recirculating exhaust gas for burners |
KR1020237021696A KR20230116845A (en) | 2020-12-03 | 2021-11-17 | Apparatus and method for supplying combustion air for burners and recirculating exhaust gas |
US18/265,155 US20240060638A1 (en) | 2020-12-03 | 2021-11-17 | Device and method for supplying combustion air and for recirculating exhaust gas for a burner |
PCT/EP2021/082000 WO2022117345A1 (en) | 2020-12-03 | 2021-11-17 | Device and method for supplying combustion air and for recirculating exhaust gas for a burner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20211530.9A EP4008955B1 (en) | 2020-12-03 | 2020-12-03 | Device and method for supplying combustion air and exhaust gas recirculation for a burner |
Publications (3)
Publication Number | Publication Date |
---|---|
EP4008955A1 EP4008955A1 (en) | 2022-06-08 |
EP4008955B1 true EP4008955B1 (en) | 2024-06-12 |
EP4008955C0 EP4008955C0 (en) | 2024-06-12 |
Family
ID=73698627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20211530.9A Active EP4008955B1 (en) | 2020-12-03 | 2020-12-03 | Device and method for supplying combustion air and exhaust gas recirculation for a burner |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240060638A1 (en) |
EP (1) | EP4008955B1 (en) |
JP (1) | JP2023551951A (en) |
KR (1) | KR20230116845A (en) |
WO (1) | WO2022117345A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202023104586U1 (en) | 2023-05-31 | 2024-09-03 | Kueppers Solutions Gmbh | burner |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3923238C2 (en) * | 1989-07-14 | 1994-08-04 | Electro Oil Gmbh | Device for recycling combustion products |
EP0386732B1 (en) * | 1989-03-10 | 1994-08-31 | Oertli Wärmetechnik Ag | Combustion apparatus for dual fuel burner |
DE19917662C2 (en) * | 1999-04-19 | 2001-10-31 | Elco Kloeckner Heiztech Gmbh | Burners for liquid and / or gaseous fuel |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59007772D1 (en) | 1990-06-29 | 1995-01-05 | Wuenning Joachim | Method and device for burning fuel in a combustion chamber. |
-
2020
- 2020-12-03 EP EP20211530.9A patent/EP4008955B1/en active Active
-
2021
- 2021-11-17 JP JP2023533920A patent/JP2023551951A/en active Pending
- 2021-11-17 US US18/265,155 patent/US20240060638A1/en active Pending
- 2021-11-17 KR KR1020237021696A patent/KR20230116845A/en unknown
- 2021-11-17 WO PCT/EP2021/082000 patent/WO2022117345A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0386732B1 (en) * | 1989-03-10 | 1994-08-31 | Oertli Wärmetechnik Ag | Combustion apparatus for dual fuel burner |
DE3923238C2 (en) * | 1989-07-14 | 1994-08-04 | Electro Oil Gmbh | Device for recycling combustion products |
DE19917662C2 (en) * | 1999-04-19 | 2001-10-31 | Elco Kloeckner Heiztech Gmbh | Burners for liquid and / or gaseous fuel |
Also Published As
Publication number | Publication date |
---|---|
JP2023551951A (en) | 2023-12-13 |
EP4008955A1 (en) | 2022-06-08 |
EP4008955C0 (en) | 2024-06-12 |
WO2022117345A1 (en) | 2022-06-09 |
KR20230116845A (en) | 2023-08-04 |
US20240060638A1 (en) | 2024-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1995515B1 (en) | Supported FLOX operation and burner therefor | |
DE10217913B4 (en) | Gas turbine with combustion chamber for flameless oxidation | |
EP2179222B1 (en) | Burner for a combustion chamber of a turbo group | |
DE60105093T2 (en) | Fuel dilution method and apparatus for NOx reduction | |
DE69614547T2 (en) | burner | |
EP2329196B1 (en) | Burner and method for operating a burner | |
DE2936073A1 (en) | COMBUSTION METHOD FOR REDUCING THE EMISSION OF NITROGEN OXIDES AND SMOKE | |
EP2103876A2 (en) | Burner for gas turbine with scavenging mechanism for the fuel nozzles | |
DE2431573A1 (en) | BURNER ARRANGEMENT WITH REDUCED EMISSIONS OF AIR POLLUTING SUBSTANCES | |
EP1840465A2 (en) | Burner system with staged fuel injection | |
EP1754937B1 (en) | Burner head and method of combusting fuel | |
DE2261596B2 (en) | Method and combustion chamber for burning a fuel | |
EP4008955B1 (en) | Device and method for supplying combustion air and exhaust gas recirculation for a burner | |
DE19738054C2 (en) | Method and device for changing the swirl number of the combustion air of a burner during operation | |
EP2171354B1 (en) | Burner | |
EP0843083A2 (en) | Method and apparatus to feed liquid as well as gaseous fuel to a gas turbine | |
EP3246558B1 (en) | Method for operating a rocket propulsion system and rocket propulsion system | |
EP0225467B1 (en) | Burner for liquid and/or gaseous fuels | |
DE102016118632A1 (en) | Combustion system, use of a combustor system with an attached turbine, and method of performing a combustion process | |
WO1988008503A1 (en) | Process and device for combustion of fuel | |
EP3926238B1 (en) | Gas turbine module with combustion chamber air bypass | |
WO2003076846A1 (en) | Burner, particularly for liquid or gaseous fuels | |
DE68924539T2 (en) | Incinerator. | |
DE3341305A1 (en) | Gasifying oil burner | |
DE19917662A1 (en) | Burner for liquid and/or gas fuel, with at least two air or hydrogen supply jets before burner jet in outflow direction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20221202 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240125 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020008260 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20240705 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240913 |