EP3993917B1 - Kuehlstrecke mit ventilen und druckgefaessen zur vermeidung von druckschlaegen - Google Patents

Kuehlstrecke mit ventilen und druckgefaessen zur vermeidung von druckschlaegen Download PDF

Info

Publication number
EP3993917B1
EP3993917B1 EP20733964.9A EP20733964A EP3993917B1 EP 3993917 B1 EP3993917 B1 EP 3993917B1 EP 20733964 A EP20733964 A EP 20733964A EP 3993917 B1 EP3993917 B1 EP 3993917B1
Authority
EP
European Patent Office
Prior art keywords
water
cooling devices
cooling
pressure vessel
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20733964.9A
Other languages
English (en)
French (fr)
Other versions
EP3993917A1 (de
EP3993917C0 (de
Inventor
Klaus Weinzierl
Erich Opitz
Lukas PICHLER
Florian POESCHL
Alois Seilinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Germany GmbH
Original Assignee
Primetals Technologies Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Germany GmbH filed Critical Primetals Technologies Germany GmbH
Publication of EP3993917A1 publication Critical patent/EP3993917A1/de
Application granted granted Critical
Publication of EP3993917B1 publication Critical patent/EP3993917B1/de
Publication of EP3993917C0 publication Critical patent/EP3993917C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0224Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for wire, rods, rounds, bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/30Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates

Definitions

  • Such a device is, for example, from WO 2018/080 669 A2 known.
  • a single bypass line is arranged in parallel with the stub lines. Pressure surges are to be avoided by means of the bypass line, which can otherwise occur in the event of a rapid interruption of the volume flow flowing through the branch lines.
  • the bypass line must be actively opened and closed.
  • a cooling section for a flat rolling stock is known, the cooling section having a plurality of spray bars, each of which is preceded by a valve.
  • the preamble of claim 1 is based on this document.
  • WO 2013/143 902 A1 also discloses a device for cooling a rolled metal stock rolled in a rolling train.
  • the cooling nozzles of the local cooling section are connected to a water reservoir via a supply line.
  • the water supply to the cooling nozzles is controlled by one or more valves.
  • the pressure vessel is partly filled with water and partly with air. In this configuration, pressure shocks, which can otherwise occur if the volume flow flowing through the branch lines is interrupted quickly, can be avoided or at least reduced in intensity due to the buffering effect of the pressure vessel.
  • the rolling stock is cooled.
  • Precise temperature control in the cooling section is customary in order to set the desired material properties and keep them as constant as possible.
  • Several cooling devices are installed along the transport direction of the rolling stock, by means of which water is applied to at least one side of the rolling stock.
  • the cooling devices can be designed as cooling beams, for example.
  • the amounts of water applied via the cooling devices are set via valves arranged upstream of the cooling devices. It is particularly problematic when the valves are closed quickly. Because if the valves are closed too quickly, pressure surges often occur, also known as pressure surges in specialist circles. In order to avoid excessive loads, the switch-off time is therefore usually limited to 1 second. This is true even if the valves could be closed faster.
  • Pneumatic valves are generally used in the prior art. These can usually not be faster than 1 switch second. In individual cases, however, lower switching times of 0.6 seconds can also be achieved.
  • WO 2013/143 902 A1 From the WO 2013/143 902 A1 is known to connect a pressure vessel in the supply line to the cooling section.
  • This pressure vessel is mainly used to keep the pressure in the supply to the cooling section constant, but also reduces pressure surges to a certain extent.
  • the pressure vessel there is designed for a volume of several cubic meters. Specifically mentioned in the WO 2013/143 902 A1 a typical volume between 10 and 20 cubic meters.
  • the object of the present invention is to provide an apparatus for cooling a rolled metal stock being rolled in a rolling mill, which has superior operational characteristics.
  • the device can be designed as a cooling section, which is arranged downstream of the rolling train.
  • the device can be designed as a group of interstand cooling systems, with one of the interstand cooling systems being arranged between each two roll stands of the rolling train.
  • the device can also be arranged upstream of the rolling train, for example if the device is arranged between (at least) one roughing stand and a multi-stand finishing train. Mixed forms are also possible.
  • the rolling stock often consists of steel.
  • it can be a flat rolling stock, ie a strip or a heavy plate.
  • the cooling devices can alternatively apply water to the flat rolled stock only on the upper side, only on the lower side or both on the upper side and on the lower side.
  • the amount of water applied to the rolling stock can be set individually for the cooling devices via their valves. It is possible for the groups of coolers to be "real" groups of coolers, each comprising more than one cooler. In many cases, however, at least some of the groups of cooling devices each include only a single cooling device. In particular, it is even possible for all groups to include only a single cooling device. In this case the groups of cooling devices are degenerate.
  • the drives assigned to the valves can be configured as required.
  • they can be designed as electrical drives, for example as stepper motors.
  • the pressure vessel proprietary to a respective group of cooling devices has a vessel volume.
  • the vessel volume is preferably between n ⁇ 20 l and n ⁇ 200 l where n is the number of cooling devices in the respective group.
  • the vessel volume is particularly preferably between n ⁇ 50 l and n ⁇ 125 l.
  • a respective volume flow flows in the respective supply line if the valves of the cooling devices of the respective group are all fully open.
  • a respective line pressure prevails in the respective supply line in the area of the respective connection point.
  • the respective flow resistance is preferably dimensioned in such a way that the respective volume flow, if it flows over the respective flow resistance, causes a pressure drop that is at least 25% and at most 75% of the respective line pressure, in particular approximately half as large as the respective line pressure.
  • minor deviations are acceptable.
  • a rolling stock 1 is rolled in a rolling train. is shown in FIG 1 only the last rolling stand 2 of a multi-stand rolling train.
  • the rolling stock 1 is often a flat rolling stock, ie a strip or a heavy plate.
  • the rolling stock 1 can also have a different format. For example, it can be a profile or a rod-shaped rolling stock 1 .
  • the rolling stock 1 often consists of steel, sometimes of aluminum and in rare cases of another metal or a corresponding alloy.
  • a cooling section 3 is arranged downstream of the rolling train.
  • the rolling stock 1 is cooled in the cooling section 3 .
  • the cooling section 3 is thus a device for cooling the rolled metal rolling stock 1 in the rolling train.
  • cooling section is therefore used in the sense of the device mentioned.
  • the present invention can also be implemented if the device is arranged within the rolling train, ie between the rolling stands 2 of the multi-stand rolling train. Furthermore, it can also be implemented if the device is arranged upstream of the rolling train.
  • the cooling section 3 has according to FIG 1 several cooling devices 4 on.
  • Water 5 is applied to the rolling stock 1 by means of the cooling devices 4 .
  • the cooling devices 4 are generally designed as spray bars which apply the water 5 to the rolling stock 1 over the entire width of the rolling stock 1 .
  • the water 5 in its entirety is fed to the cooling section 3 via a supply line 6 .
  • the water 5 is distributed within the cooling section 3 until it enters branch lines 7 , via which the water 5 is fed to the respective cooling device 4 .
  • branch lines 7 one (1) valve 8 is arranged, by means of which the amount of water 5, the respective cooling device 4 per unit of time is supplied can be adjusted. There is thus a 1:1 assignment of cooling devices 4, branch lines 7 and valves 8.
  • the amount of water 5 that is supplied to the respective cooling device 4 per unit of time represents a respective water flow.
  • FIG 1 a total of eight cooling devices 4 are shown, in the illustration according to FIG 1 one part of the cooling devices 4 applies the water 5 to the rolling stock 1 from above, and another part of the cooling devices 4 applies the water 5 to the rolling stock 1 from below. Furthermore, the cooling devices 4 are arranged in a staggered manner one behind the other as seen in the transport direction x of the rolling stock 1 .
  • these facts are purely exemplary. Thus, more or fewer than eight cooling devices 4 can easily be present. It is also possible for the water 5 to be applied to the rolling stock 1 exclusively from above or exclusively from below by means of the cooling devices 4 .
  • the rolling stock 1 is a flat rolling stock, it is as shown in FIG FIG 2 it is also possible for a plurality of cooling devices 4 to be arranged next to one another, viewed in the width direction y of the rolling stock 1 . It is crucial that the respective valve 8 is arranged in the respective branch line 7, by means of which the respective water flow flowing through the respective branch line 7 can be adjusted.
  • a drive 9 is assigned to each of the valves 8 as an actuating device.
  • the drives 9 are as shown in FIG 2 designed as electric drives.
  • the respective valve 8 is activated via the respective drive 9 .
  • This fact is also in the valves 8 of FIG 1 the case. In FIG 1 However, this is not shown to FIG 1 not to overload.
  • Due to the design of the actuating devices as electric drives switching times can be realized for the valves 8 that are well below 1 second, for example 0.2 seconds or less.
  • electric drives can be adjusted very quickly and accurately. This is both a fast as well as a precise adjustment of a respective valve position possible.
  • the electrical drives can be designed as stepping motors, for example. Stepper motors can easily be turned 90° in less than 0.2 seconds. This angle also corresponds to the angle of rotation of a conventional valve 8 between the fully closed and fully open positions. Thus, the respective valve 8 can be transferred from the fully closed position to the fully open position and vice versa in a time of 0.2 seconds and less. Furthermore, the adjustment in a stepper motor usually takes place in angular steps that are well below 1° (mechanical), for example at 0.1° (or a similarly small angle). In this case, an adjustment of the respective valve 8 between the fully closed and the fully open position in steps of 0.1° (or a similarly small angle) is possible. Furthermore, the control electronics of an electric drive is sufficiently simple and inexpensive.
  • the cooling devices 4 continue to form as shown in 3 several groups.
  • the groups are each assigned their own proprietary pressure vessel 10 .
  • the term “assigned proprietary” is intended to mean that the respective pressure vessel 10 interacts with the cooling devices 4 of the respective group and only interacts with these cooling devices 4 .
  • the respective pressure vessel 10 is connected to a respective supply line 12 at a respective connection point 11 .
  • the water 5 is the branch lines 7 of the cooling devices 4 assigned to the appropriate group. Viewed in the direction of flow of the water 5 , the respective connection point 11 is therefore arranged in front of the valves 8 of the respective group of cooling devices 4 .
  • the water 5 is not routed to the branch lines 7 from other cooling devices 4 via the respective supply line 12 .
  • the respective connection point 11 is therefore not arranged in front of the valves 8 of other groups of cooling devices 4.
  • the respective pressure vessel 10 thus defines the respective group of cooling devices 4: all cooling devices 4 whose water 5 flows via the respective connection point 11 form one (1) group of cooling devices 4. All other cooling devices 4 do not belong to this group.
  • the respective connection point 11 for the respective pressure vessel 10 should be located as close to the valves 8 of the respective group as is possible. If - see in 3 left - the respective group of cooling devices 4 includes only a single cooling device 4, the respective connection point 11 should thus be arranged as close as possible to the valve 8 of this cooling device 4. If - see in 3 right - the respective group of cooling devices 4 comprises several cooling devices 4, the respective connection point 11 should be arranged as close as possible to a distribution point 13 at which the supply line 12 branches off to the cooling devices 4 of the respective group for the first time.
  • the representation in 3 includes a part of the groups of cooling devices 4 only a single cooling device 4. In the representation of 3 this is specifically the case with the two cooling devices 4 shown on the left. In these cases, the respective supply line 12 is identical to the respective stub line 7 . Alternatively, it is also possible for the groups of cooling devices 4 to each include a plurality of cooling devices 4 . In the representation of 3 this is specifically the case with the two cooling devices 4 shown on the right. In these cases, the respective Lead 12 upstream of the respective stubs 7 .
  • the decisive criterion for the arrangement of the pressure vessels 10 is the amount of water 5 that is located between the respective connection point 11 and the respective valves 8 or--in the case of a single downstream valve 8--the respective valve 8. This is because this amount of water cannot be diverted into the corresponding pressure vessel 10 . This quantity must therefore be decelerated directly and quickly in front of the respective valves 8 if the respective valves 8 close quickly. As a rule, this is not critical if the distances between the respective valves 8 and the respective pressure vessel 10 are small enough, for example 10 m or less, in particular less than 5 m. This is to be illustrated using an example for a single valve 8.
  • the flow rate of the water 5 in the corresponding branch line 7 is 3 m/s.
  • the respective valve 8 is completely closed within 0.2 seconds. Then the water 5 must be decelerated from 3 m/s to 0 m/s within 0.2 seconds. This results in an average acceleration of 15 m/s 2 , ie approximately 1.5 times the acceleration due to gravity. It is also known that a 10 m high water column generates a pressure of 1 bar. The same applies to a 10 m long column of water that is decelerated with gravitational acceleration. It is also assumed that the distance from the respective connection point 11 to the respective valve 8 is 5 m.
  • a 10 m long water column does not have to be decelerated with 1.0 times the acceleration due to gravity, but a 5 m long water column with the 1 .5 times the acceleration due to gravity.
  • this water column generates a pressure of 0.75 bar when braking from 3.0 m/s to 0 m/s in 0.2 seconds.
  • pressure vessels 10 are used to equalize the water balance. They should therefore be able to receive water 5 from the supply line 12 to which they are connected in the event of a rapid reduction in the water requirement, and feed water 5 back into the supply line 12 in the event of a sudden increase in the water requirement. So that the pressure vessels 10 can take up and feed back this water 5, the pressure vessels 10 are, as shown in 3 in each case partly filled with water 5 and partly with air 14 during operation. As a rule, a filling level F of water should be 5 (see FIG 4 ) of about 50% should be aimed for. However, certain deviations - for example between 40% and 60% - are quite possible. The pressure vessel 10 is therefore intended to be partially filled with water 5 and partially with air 14 during operation.
  • the pressure vessels 10 can have a respective air valve 15, for example.
  • Air 14 can be supplied to the respective pressure vessel 10 or air 14 can be discharged from the respective pressure vessel 10 via the respective air valve 15 .
  • the respective air valve 15 is a manually operated check valve (such as the valve of a bicycle or other road vehicle with air-filled tires).
  • the respective pressure vessel 10 preferably has a fill level indicator and/or a pressure indicator.
  • the level indicator can be a simple sight glass, for example, and the pressure indicator can be a standard manometer.
  • the respective air valve 15 of a control device (not shown) of the cooling section 3 can be controlled.
  • the respective air valve 15 is preferably divided into two valve paths, one of the two valve paths being connected to a compressed air supply for refilling air 14 into the respective pressure vessel 10, and the other of the two valve paths for releasing air 14 from the respective pressure vessel 10 has an outlet to the environment. Furthermore, in this case, the respective degree of filling F and/or the pressure prevailing in the respective pressure vessel 10 are preferably measured and transmitted to the named control device.
  • the amount of water moving in the respective supply line 12 is thus gently decelerated by the respective pressure vessel 10 .
  • the groups of cooling devices 4 are usually relatively small - usually no more than six to ten cooling devices 4 - the pressure vessels 10 can still be dimensioned relatively small. This is discussed below in connection with the 4 to 6 explained for an embodiment in which the respective group of cooling devices 4 comprises only a single cooling device 4. However, the corresponding statements can also be used if the respective group of cooling devices 4 comprises a plurality of cooling devices 4 . In this case, the following explanations must be modified in such a way that it is assumed that the valves 8 of the respective group are controlled uniformly.
  • a respective volume flow V of water 5 flows in the respective supply line 12 - which is identical to the branch line 7 in the case of a group with a single cooling device 4. This state is in 5 shown on the left.
  • the degree of filling F is according to the representation in FIG 4 initially at around 50%.
  • the respective pressure vessel 10 is thus filled with water 5 and air 14 in approximately equal parts.
  • the corresponding valve 8 is switched from the fully open to the fully closed position.
  • the transition from the fully open to the fully closed position takes place as quickly as possible, for example in a time of 0.1 seconds or 0.2 seconds.
  • the respective pressure vessel 10 were not present, a high pressure surge would occur when the respective valve 8 was closed, since the respective volume flow V flowing in the respective feed line 12 would have to be abruptly reduced to zero. Due to the respective pressure vessel 10, however, the respective volume flow V can be deflected into the respective pressure vessel 10. As a result, the respective pressure vessel 10 is further filled beyond its previous fill level F. By filling the respective pressure vessel 10, however, the air 14 located in the respective pressure vessel is compressed, so that the air pressure there increases. The increased air pressure opposes increasing resistance to the further supply of water 5 into the respective pressure vessel.
  • the respective degree of filling F therefore initially increases from time t0, but then reaches a maximum and then decreases again. If necessary, a slight, mostly clearly damped oscillation can occur. This is best in due to the change in sign of the flow rate 5 recognizable.
  • the maximum of the degree of filling F is usually reached within 1 second, sometimes even in a shorter time of, for example, only 0.5 seconds.
  • the quotient mentioned should preferably be in the range between 0.2 seconds and 2.0 seconds. In practice, this corresponds to a volume of between 20 l and 200 l for an individual cooling device 4, usually in the range between 50 l and 125 l, in particular approximately 100 l. If the group includes several cooling devices 4, the volume values mentioned must be scaled accordingly.
  • the pressure drop ⁇ p is preferably approximately half the size of the respective line pressure p0. Consequently, the respective line pressure p must rise abruptly to a value which corresponds to approximately 1.4 to 1.6 times the value p0, ie approximately 1.5 times. In absolute values, the pressure drop ⁇ p is usually in the order of 1 bar in practice. The respective line pressure p then drops again.
  • the respective flow resistance 16 can be set as a result by appropriate dimensioning of the respective connection line between the respective connection point 11 and the respective pressure vessel 10, in particular by dimensioning the cross section of the entire respective connection line or the cross section of a section of the respective connection line. Suitable dimensioning of the flow resistance 16 in particular suppresses and dampens a tendency to oscillate.
  • the present invention has many advantages.
  • pressure surges can be avoided even though the valves 8 are switched very quickly (with switching times well below 1 s).
  • the influence of the pressure vessels 10 on the quantities of water actually supplied to the cooling devices 4 can be taken into account with a corresponding model of the cooling section 3 or can be easily compensated for via a basic automation of the cooling section 3 .
  • the pressure vessels 10 continue to reduce pressure fluctuations within the fluid power system (consisting of the supply line 6, the feed lines 12 and the branch lines 7). This simplifies the regulation of pumps that convey the water 5 . This applies in particular when pressure measurements are used to control the pumps.
  • drops in pressure when valves 8 are switched on are also reduced, since in this case water 5 is fed from the pressure vessels 10 into the corresponding supply lines 12 .
  • the design of the drives 9 as electric drives allows for a simple Ensure reliable and fast control of the valves 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

    Gebiet der Technik
  • Die vorliegende Erfindung geht aus von einer Vorrichtung zum Kühlen eines in einer Walzstraße gewalzten metallischen Walzguts,
    • wobei die Vorrichtung mehrere Kühleinrichtungen aufweist, denen über eine jeweilige Stichleitung Wasser zugeführt wird und mittels derer das Wasser auf das Walzgut aufgebracht wird,
    • wobei in den Stichleitungen jeweils ein Ventil angeordnet ist, mittels dessen der die jeweilige Stichleitung durchfließende Wasserstrom eingestellt wird,
    • wobei den Ventilen jeweils ein Antrieb zugeordnet ist, über den das jeweilige Ventil angesteuert wird.
    Stand der Technik
  • Eine derartige Vorrichtung ist beispielsweise aus der WO 2018/080 669 A2 bekannt. Bei dieser Vorrichtung ist den Stichleitungen eine einzelne Bypassleitung parallelgeordnet. Mittels der Bypassleitung sollen Druckstöße vermieden werden, die anderenfalls bei einer raschen Unterbrechung des die Stichleitungen durchströmenden Volumenstroms auftreten können. Die Bypassleitung muss aktiv geöffnet und geschlossen werden.
  • Aus der EP 2 767 353 A1 ist eine Kühlstrecke für ein flaches Walzgut bekannt, wobei die Kühlstrecke mehrere Spritzbalken aufweist, denen jeweils ein Ventil vorgeordnet ist. Der Oberbegriff von Anspruch 1 basiert auf diesem Dokument.
  • Aus der WO 2013/143 902 A1 ist ebenfalls eine Vorrichtung zum Kühlen eines in einer Walzstraße gewalzten metallischen Walzguts bekannt. Bei dieser Vorrichtung sind die Kühldüsen der dortigen Kühlstrecke mit einem Wasserreservoir über eine Zuleitung verbunden. Die Wasserzufuhr zu den Kühldüsen wird über ein Ventil oder mehrere Ventile gesteuert. Es ist ein Druckgefäß vorhanden, das dem Ventil bzw. den Ventilen in Strömungsrichtung des Wassers gesehen vorgeordnet ist. Das Druckgefäß ist teilweise mit Wasser und teilweise mit Luft gefüllt. Bei dieser Ausgestaltung können Druckschläge, die anderenfalls bei einer raschen Unterbrechung des die Stichleitungen durchströmenden Volumenstroms auftreten können, aufgrund der Pufferwirkung des Druckgefäßes vermieden oder zumindest in ihrer Stärke reduziert werden.
  • Zusammenfassung der Erfindung
  • In der Kühlstrecke eines Walzwerks wird nach dem Walzen eines metallischen Walzguts das Walzgut abgekühlt. Üblich ist eine exakte Temperaturführung in der Kühlstrecke, um die gewünschten Materialeigenschaften einzustellen und so konstant wie möglich zu halten. Dabei sind entlang der Transportrichtung des Walzguts mehrere Kühleinrichtungen verbaut, mittels derer auf mindestens eine Seite des Walzguts Wasser aufgebracht wird. Die Kühleinrichtungen können beispielsweise als Kühlbalken ausgebildet sein. Die über die Kühleinrichtungen aufgebrachten Wassermengen werden über den Kühleinrichtungen vorgeordnete Ventile eingestellt. Problematisch ist insbesondere, wenn die Ventile schnell geschlossen werden. Denn wenn die Ventile zu schnell geschlossen werden, treten oftmals Druckstöße auf, in Fachkreisen auch als Druckschläge bezeichnet. Um übermäßige Belastungen zu vermeiden, wird daher die Ausschaltzeit in der Regel auf 1 Sekunde begrenzt. Dies gilt sogar dann, wenn die Ventile schneller geschlossen werden könnten.
  • Im Stand der Technik werden in der Regel pneumatische Ventile verwendet. Diese können in der Regel nicht schneller als 1 Sekunde schalten. In Einzelfällen können aber auch geringere Schaltzeiten von 0,6 Sekunden erreicht werden.
  • Aus der eingangs genannten WO 2018/080 669 A2 ist eine Kühlstrecke eines Walzwerks bekannt, bei welcher die Kühleinrichtungen über elektrisch angesteuerte Ventile geschaltet werden.
  • Aus der WO 2013/143 902 A1 ist bekannt, in der Zuleitung zur Kühlstrecke ein Druckgefäß anzuschließen. Dieses Druckgefäß dient hauptsächlich der Konstanthaltung des Drucks in der Versorgung der Kühlstrecke, bewirkt aber auch in gewissem Umfang eine Reduzierung von Druckschlägen. Das dortige Druckgefäß ist für ein Volumen von etlichen Kubikmetern ausgelegt. Konkret genannt ist in der WO 2013/143 902 A1 ein typisches Volumen zwischen 10 und 20 Kubikmetern.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, eine Vorrichtung zum Kühlen eines in einer Walzstraße gewalzten metallischen Walzguts zu schaffen, die überlegene Betriebseigenschaften aufweist.
  • Die Aufgabe wird durch eine Vorrichtung zum Kühlen eines in einer Walzstraße gewalzten metallischen Walzguts mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Vorrichtung sind Gegenstand der abhängigen Ansprüche 2 bis 6.
  • Erfindungsgemäß wird eine Vorrichtung zum Kühlen eines in einer Walzstraße gewalzten metallischen Walzguts der eingangs genannten Art dadurch ausgestaltet,
    • dass die Kühleinrichtungen mehrere Gruppen bilden, denen jeweils proprietär ein eigenes Druckgefäß zugeordnet ist,
    • dass das jeweilige Druckgefäß an einer jeweiligen Anschlussstelle an eine jeweilige Zuleitung angeschlossen ist, über die das Wasser den Stichleitungen der Kühleinrichtungen der entsprechenden Gruppe zugeführt wird, so dass in Strömungsrichtung des Wassers gesehen die jeweilige Anschlussstelle den Ventilen der jeweiligen Gruppe von Kühleinrichtungen vorgeordnet ist.
  • Die Vorrichtung kann als Kühlstrecke ausgebildet sein, die der Walzstraße nachgeordnet ist. Alternativ kann die Vorrichtung als Gruppe von Zwischengerüstkühlungen ausgebildet sein, wobei je eine der Zwischengerüstkühlungen zwischen je zwei Walzgerüsten der Walzstraße angeordnet ist. Im Einzelfall kann die Vorrichtung der Walzstraße auch vorgeordnet sein, beispielsweise wenn die Vorrichtung zwischen (mindestens) einem Vorgerüst und einer mehrgerüstigen Fertigstraße angeordnet ist. Auch Mischformen sind möglich.
  • Das Walzgut besteht oftmals aus Stahl. Es kann sich insbesondere um ein flaches Walzgut handeln, also um ein Band oder ein Grobblech. Im Falle eines flachen Walzguts können die Kühleinrichtungen das flache Walzgut alternativ nur auf der Oberseite, nur auf der Unterseite oder sowohl auf der Oberseite als auch auf der Unterseite mit Wasser beaufschlagen.
  • Für die Kühleinrichtungen ist über ihre Ventile individuell einstellbar, welche Menge an Wasser sie auf das Walzgut aufbringen. Es ist möglich, dass die Gruppen von Kühleinrichtungen "echte" Gruppen von Kühleinrichtungen sind, die jeweils mehr als eine Kühleinrichtung umfassen. In vielen Fällen umfasst jedoch zumindest ein Teil der Gruppen von Kühleinrichtungen jeweils nur eine einzige Kühleinrichtung. Insbesondere ist es sogar möglich, dass alle Gruppen jeweils nur eine einzige Kühleinrichtung umfassen. In diesem Fall sind die Gruppen von Kühleinrichtungen entartet.
  • Die den Ventilen zugeordneten Antriebe können nach Bedarf ausgebildet sein. Insbesondere können sie als elektrische Antriebe ausgebildet sein, beispielsweise als Schrittmotoren.
  • Das einer jeweiligen Gruppe von Kühleinrichtungen proprietär zugeordnete Druckgefäß weist ein Gefäßvolumen auf. Das Gefäßvolumen liegt vorzugsweise zwischen n × 20 l und n × 200 l liegt, wobei n die Anzahl an Kühleinrichtungen der jeweiligen Gruppe ist. Besonders bevorzugt liegt das Gefäßvolumen zwischen n × 50 l und n × 125 l.
  • Vorzugsweise ist zwischen der jeweiligen Anschlussstelle und dem jeweiligen Druckgefäß ein jeweiliger Strömungswiderstand angeordnet. Es ist also eine Einrichtung vorhanden, deren Sinn und Zweck es ist, der Wasserströmung einen Widerstand entgegenzusetzen (= Strömungswiderstand).
  • Wie bereits erwähnt, fließt in der jeweiligen Zuleitung ein jeweiliger Volumenstrom, sofern die Ventile der Kühleinrichtungen der jeweiligen Gruppe alle vollständig geöffnet sind. In diesem Zustand herrscht in der jeweiligen Zuleitung im Bereich der jeweiligen Anschlussstelle ein jeweiliger Leitungsdruck. Der jeweilige Strömungswiderstand ist vorzugsweise derart bemessen, dass der jeweilige Volumenstrom, sofern er über den jeweiligen Strömungswiderstand fließt, einen Druckabfall hervorruft, der mindestens 25 % und maximal 75 % des jeweiligen Leitungsdruckes beträgt, insbesondere in etwa halb so groß wie der jeweilige Leitungsdruck ist. Geringfügige Abweichungen sind jedoch hinnehmbar.
  • Kurze Beschreibung der Zeichnungen
  • Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die in Verbindung mit den Zeichnungen näher erläutert werden. Hierbei zeigen in schematischer Darstellung:
  • FIG 1
    ein Walzgerüst und eine Kühlstrecke,
    FIG 2
    einen Teil einer Kühlstrecke,
    FIG 3
    eine Kühlstrecke,
    FIG 4
    ein Zeitdiagramm eines Füllgrades und
    FIG 5
    ein Zeitdiagramm eines Volumenstroms,
    FIG 6
    ein Zeitdiagramm eines Druckes.
    Beschreibung der Ausführungsformen
  • Gemäß FIG 1 wird in einer Walzstraße ein Walzgut 1 gewalzt. Dargestellt ist in FIG 1 nur das letzte Walzgerüst 2 einer mehrgerüstigen Walzstraße. Das Walzgut 1 ist oftmals ein flaches Walzgut, also ein Band oder ein Grobblech. Das Walzgut 1 kann jedoch auch ein anderes Format aufweisen. Beispielsweise kann es sich um ein Profil oder um ein stabförmiges Walzgut 1 handeln. Das Walzgut 1 besteht oftmals aus Stahl, manchmal aus Aluminium und in seltenen Fällen aus einem anderen Metall bzw. einer entsprechenden Legierung.
  • Der Walzstraße ist eine Kühlstrecke 3 nachgeordnet. In der Kühlstrecke 3 wird das Walzgut 1 gekühlt. Die Kühlstrecke 3 ist somit eine Vorrichtung zum Kühlen des in der Walzstraße gewalzten metallischen Walzguts 1. In Verbindung mit der in FIG 1 dargestellten Kühlstrecke 3, die der Walzstraße nachgeordnet ist, wird die vorliegende Erfindung erläutert. Der Begriff "Kühlstrecke" wird also im Sinne der genannten Vorrichtung verwendet. Die vorliegende Erfindung ist aber auch dann realisierbar, wenn die Vorrichtung innerhalb der Walzstraße angeordnet ist, also zwischen den Walzgerüsten 2 der mehrgerüstigen Walzstraße. Weiterhin ist sie auch dann realisierbar, wenn die Vorrichtung der Walzstraße vorgeordnet ist.
  • Die Kühlstrecke 3 weist gemäß FIG 1 mehrere Kühleinrichtungen 4 auf. Mittels der Kühleinrichtungen 4 wird Wasser 5 auf das Walzgut 1 aufgebracht. Die Kühleinrichtungen 4 sind in der Regel als Spritzbalken ausgebildet, die das Wasser 5 über die gesamte Breite des Walzguts 1 auf das Walzgut 1 aufbringen. Das Wasser 5 in seiner Gesamtheit wird der Kühlstrecke 3 über eine Versorgungsleitung 6 zugeführt. Innerhalb der Kühlstrecke 3 wird das Wasser 5 verteilt, bis es in Stichleitungen 7 eintritt, über welche das Wasser 5 der jeweiligen Kühleinrichtung 4 zugeführt wird. In den Stichleitungen 7 ist jeweils ein (1) Ventil 8 angeordnet, mittels dessen die Menge an Wasser 5, die der jeweiligen Kühleinrichtung 4 pro Zeiteinheit zugeführt wird, eingestellt werden kann. Es besteht somit eine 1:1-Zuordnung von Kühleinrichtungen 4, Stichleitungen 7 und Ventilen 8. Die Menge an Wasser 5, die der jeweiligen Kühleinrichtung 4 pro Zeiteinheit zugeführt wird, stellt einen jeweiligen Wasserstrom dar.
  • In FIG 1 sind insgesamt acht Kühleinrichtungen 4 dargestellt, wobei in der Darstellung gemäß FIG 1 ein Teil der Kühleinrichtungen 4 das Wasser 5 von oben auf das Walzgut 1 aufbringt und ein weiterer Teil der Kühleinrichtungen 4 das Wasser 5 von unten auf das Walzgut 1 aufbringt. Weiterhin sind die Kühleinrichtungen 4 in Transportrichtung x des Walzguts 1 gesehen gestaffelt hintereinander angeordnet. Diese Sachverhalte sind jedoch rein beispielhaft. So können ohne weiteres auch mehr oder weniger als acht Kühleinrichtungen 4 vorhanden sein. Auch ist es möglich, dass mittels der Kühleinrichtungen 4 das Wasser 5 ausschließlich von oben oder ausschließlich von unten auf das Walzgut 1 aufgebracht wird. Wenn das Walzgut 1 ein flaches Walzgut ist, ist es entsprechend der Darstellung in FIG 2 weiterhin möglich, dass in Breitenrichtung y des Walzguts 1 gesehen mehrere Kühleinrichtungen 4 nebeneinander angeordnet sind. Entscheidend ist, dass in der jeweiligen Stichleitung 7 das jeweilige Ventil 8 angeordnet ist, mittels dessen der die jeweilige Stichleitung 7 durchfließende jeweilige Wasserstrom einstellbar ist.
  • Den Ventilen 8 ist als Betätigungseinrichtung jeweils ein Antrieb 9 zugeordnet. Die Antriebe 9 sind entsprechend der Darstellung in FIG 2 als elektrische Antriebe ausgebildet. Über den jeweiligen Antrieb 9 wird das jeweilige Ventil 8 angesteuert. Dieser Sachverhalt ist auch bei den Ventilen 8 von FIG 1 der Fall. In FIG 1 ist dies jedoch nicht dargestellt, um FIG 1 nicht zu überfrachten. Aufgrund der Ausbildung der Betätigungseinrichtungen als elektrische Antriebe lassen sich für die Ventile 8 Schaltzeiten realisieren, die deutlich unter 1 Sekunde liegen, beispielsweise bei 0,2 Sekunden oder darunter. Weiterhin können elektrische Antriebe sehr schnell genau eingestellt werden. Dadurch ist sowohl eine schnelle als auch eine präzise Einstellung einer jeweiligen Ventilstellung möglich.
  • Die elektrischen Antriebe können beispielsweise als Schrittmotoren ausgebildet sein. Schrittmotoren lassen sich problemlos in einer Zeit, die unter 0,2 Sekunden liegt, um 90° verstellen. Dieser Winkel entspricht auch dem Drehwinkel eines üblichen Ventils 8 zwischen der vollständig geschlossenen und der vollständigen geöffneten Stellung. Somit ist mit einer Zeit von 0,2 Sekunden und weniger das jeweilige Ventil 8 von der vollständig geschlossenen Stellung in die vollständig geöffnete Stellung und umgekehrt überführbar. Weiterhin erfolgt das Verstellen bei einem Schrittmotor üblicherweise in Winkelschritten, die deutlich unter 1° (mechanisch) liegen, beispielsweise bei 0,1° (oder einem ähnlich kleinen Winkel). In diesem Fall ist ein Verstellen des jeweiligen Ventils 8 zwischen der vollständig geschlossenen und der vollständigen geöffneten Stellung in Schritten von 0,1° (oder einem ähnlich kleinen Winkel) möglich. Weiterhin ist die Steuerelektronik eines elektrischen Antriebs hinreichend einfach und kostengünstig. Verschleiß und Ausfallrisiko sind um ein Vielfaches kleiner als bei einem pneumatischen Antrieb. Die erforderliche Kapselung zum Schutz vor Spritzwasser und dergleichen (beispielsweise in der Schutzart IP 65) ist ohne weiteres realisierbar. Dies gilt sowohl für den jeweiligen elektrischen Antrieb selbst als auch für dessen Steuerelektronik.
  • Unabhängig von der konkreten geometrischen Anordnung der Kühleinrichtungen 4 bilden die Kühleinrichtungen 4 weiterhin entsprechend der Darstellung in FIG 3 mehrere Gruppen. Den Gruppen ist jeweils proprietär ein eigenes Druckgefäß 10 zugeordnet. Der Begriff "proprietär zugeordnet" soll bedeuten, dass das jeweilige Druckgefäß 10 mit den Kühleinrichtungen 4 der jeweiligen Gruppe zusammenwirkt und nur mit diesen Kühleinrichtungen 4 zusammenwirkt. Insbesondere ist das jeweilige Druckgefäß 10 an einer jeweiligen Anschlussstelle 11 an eine jeweilige Zuleitung 12 angeschlossen. Über die jeweilige Zuleitung 12 wird das Wasser 5 den Stichleitungen 7 der Kühleinrichtungen 4 der entsprechenden Gruppe zugeführt. In Strömungsrichtung des Wassers 5 gesehen ist die jeweilige Anschlussstelle 11 somit den Ventilen 8 der jeweiligen Gruppe von Kühleinrichtungen 4 vorgeordnet. Hingegen wird über die jeweilige Zuleitung 12 nicht das Wasser 5 zu den Stichleitungen 7 von anderen Kühleinrichtungen 4 geführt. In Strömungsrichtung des Wassers 5 gesehen ist die jeweilige Anschlussstelle 11 somit den Ventilen 8 anderer Gruppen von Kühleinrichtungen 4 nicht vorgeordnet. Das jeweilige Druckgefäß 10 definiert somit die jeweilige Gruppe von Kühleinrichtungen 4: Alle Kühleinrichtungen 4, deren Wasser 5 über die jeweilige Anschlussstelle 11 fließt, bilden eine (1) Gruppe von Kühleinrichtungen 4. Alle anderen Kühleinrichtungen 4 gehören nicht zu dieser Gruppe.
  • Die jeweilige Anschlussstelle 11 für das jeweilige Druckgefäß 10 sollte so nahe an den Ventilen 8 der jeweiligen Gruppe angeordnet sein, wie dies möglich ist. Wenn - siehe in FIG 3 links - die jeweilige Gruppe von Kühleinrichtungen 4 nur eine einzige Kühleinrichtung 4 umfasst, sollte die jeweilige Anschlussstelle 11 somit so nahe wie möglich am Ventil 8 dieser Kühleinrichtung 4 angeordnet sein. Wenn - siehe in FIG 3 rechts - die jeweilige Gruppe von Kühleinrichtungen 4 mehrere Kühleinrichtungen 4 umfasst, sollte die jeweilige Anschlussstelle 11 so nahe wie möglich an einem Verteilerpunkt 13 angeordnet sein, an dem die Zuleitung 12 sich zu den Kühleinrichtungen 4 der jeweiligen Gruppe hin erstmals verzweigt.
  • Entsprechend der Darstellung in FIG 3 umfasst ein Teil der Gruppen von Kühleinrichtungen 4 jeweils nur eine einzige Kühleinrichtung 4. In der Darstellung von FIG 3 ist dies konkret bei den beiden links dargestellten Kühleinrichtungen 4 der Fall. In diesen Fällen ist die jeweilige Zuleitung 12 mit der jeweiligen Stichleitung 7 identisch. Alternativ ist es ebenso möglich, dass die Gruppen von Kühleinrichtungen 4 jeweils mehrere Kühleinrichtungen 4 umfassen. In der Darstellung von FIG 3 ist dies konkret bei den beiden rechts dargestellten Kühleinrichtungen 4 der Fall. In diesen Fällen ist die jeweilige Zuleitung 12 den jeweiligen Stichleitungen 7 vorgeordnet.
  • Entscheidendes Kriterium für die Anordnung der Druckgefäße 10 ist die Menge an Wasser 5, die sich zwischen der jeweiligen Anschlussstelle 11 und den jeweiligen Ventilen 8 bzw. - im Falle eines einzigen nachgeordneten Ventils 8 - dem jeweiligen Ventil 8 - befindet. Denn diese Menge an Wasser kann nicht in das entsprechende Druckgefäß 10 umgeleitet werden. Diese Menge muss somit bei einem schnellen Schließen der jeweiligen Ventile 8 vor den jeweiligen Ventilen 8 direkt und schnell abgebremst werden. In der Regel ist dies unkritisch, wenn die Abstände der jeweiligen Ventile 8 vom jeweiligen Druckgefäß 10 klein genug ist, beispielsweise 10 m oder weniger beträgt, insbesondere weniger als 5 m. Dies soll anhand eines Beispiels für ein einzelnes Ventil 8 verdeutlicht werden.
  • Man nehme an, die Strömungsgeschwindigkeit des Wassers 5 in der entsprechenden Stichleitung 7 liege bei 3 m/s. Das jeweilige Ventil 8 werde binnen 0,2 Sekunden vollständig geschlossen. Dann muss das Wasser 5 binnen 0,2 Sekunden von 3 m/s auf 0 m/s abgebremst werden. Somit ergibt sich eine mittlere Beschleunigung von 15 m/s2, also ungefähr das 1,5-fache der Erdbeschleunigung. Weiterhin ist bekannt, dass eine 10 m hohe Wassersäule einen Druck von 1 bar erzeugt. Gleiches gilt für eine 10 m lange Wassersäule, die mit Erdbeschleunigung abgebremst wird. Man nehmen weiterhin an, der Abstand der jeweiligen Anschlussstelle 11 zum jeweiligen Ventil 8 betrage 5 m. In diesem Fall muss nicht eine 10 m lange Wassersäule mit dem 1,0-fachen der Erdbeschleunigung abgebremst werden, sondern eine 5 m lange Wassersäule mit dem 1,5-fachen der Erdbeschleunigung. Somit erzeugt diese Wassersäule unter den gegebenen Betriebsbedingungen beim Abbremsen von 3,0 m/s auf 0 m/s in 0,2 Sekunden einen Druck von 0,75 bar.
  • Bei einem raschen Schließen eines jeweiligen Ventils 8 würde es ohne die Druckgefäße 10 hingegen zu einem hohen Druckstoß kommen, da in diesem Fall auch das in der Zuleitung 12 fließende Wasser 5, soweit es sich in Strömungsrichtung des Wassers 5 gesehen vor der jeweiligen Anschlussstelle 11 befindet, abgebremst werden müsste. Durch die Druckgefäße 10 können derartige Druckstöße jedoch deutlich abgemildert werden, da in diesem Fall das in der jeweiligen Zuleitung 12 fließende Wasser 5 in das der jeweiligen Gruppe von Kühleinrichtungen 4 proprietär zugeordnete Druckgefäß 10 umgeleitet wird.
  • Wie allgemein bekannt, dienen Druckgefäße 10 dazu, den Wasserhaushalt zu vergleichmäßigen. Sie sollen daher nach Bedarf zum einen bei einer schnellen Reduzierung des Wasserbedarfs Wasser 5 aus der Zuleitung 12, an die sie angeschlossen sind, aufnehmen können und zum anderen bei einer plötzlichen Erhöhung des Wasserbedarfs Wasser 5 in die Zuleitung 12 zurückspeisen können. Damit die Druckgefäße 10 dieses Wasser 5 aufnehmen und zurückspeisen können, sind die Druckgefäße 10 entsprechend der Darstellung in FIG 3 im Betrieb jeweils teilweise mit Wasser 5 und teilweise mit Luft 14 gefüllt. In der Regel sollte ein Füllgrad F an Wasser 5 (siehe FIG 4) von etwa 50 % angestrebt werden. Gewisse Abweichungen - beispielsweise zwischen 40 % und 60 % - sind jedoch durchaus möglich. Die Druckgefäßes 10 sind also dazu bestimmt, im Betrieb teilweise mit Wasser 5 und teilweise mit Luft 14 gefüllt zu sein.
  • Um den jeweiligen Füllgrad F einstellen zu können, können die Druckgefäße 10 beispielsweise ein jeweiliges Luftventil 15 aufweisen. Über das jeweilige Luftventil 15 kann dem jeweiligen Druckgefäß 10 Luft 14 zugeführt werden oder Luft 14 aus dem jeweiligen Druckgefäß 10 abgelassen werden. Im einfachsten Fall ist das jeweilige Luftventil 15 ein manuell betätigtes Rückschlagventil (so wie beispielsweise das Ventil eines Fahrrads oder eines anderen Straßenfahrzeugs mit luftgefüllten Reifen). In diesem Fall weist das jeweilige Druckgefäß 10 vorzugsweise eine Füllgradanzeige und/oder eine Druckanzeige auf. Die Füllgradanzeige kann beispielsweise ein einfaches Schauglas sein, die Druckanzeige ein übliches Manometer. Alternativ oder zusätzlich kann das jeweilige Luftventil 15 von einer Steuereinrichtung (nicht dargestellt) der Kühlstrecke 3 ansteuerbar sein. In diesem Fall ist das jeweilige Luftventil 15 vorzugsweise in zwei Ventilpfade aufgeteilt, wobei einer der beiden Ventilpfade zum Nachfüllen von Luft 14 in das jeweilige Druckgefäß 10 mit einer Druckluftversorgung verbunden ist und der andere der beiden Ventilpfade zum Ablassen von Luft 14 aus dem jeweiligen Druckgefäß 10 einen Auslass an die Umgebung aufweist. Weiterhin werden in diesem Fall der jeweilige Füllgrad F und/oder der im jeweiligen Druckgefäß 10 herrschende Druck vorzugsweise messtechnisch erfasst und an die genannte Steuereinrichtung übermittelt.
  • Durch das jeweilige Druckgefäß 10 wird somit die sich in der jeweiligen Zuleitung 12 bewegende Wassermenge sanft abgebremst. Aufgrund des Umstands, dass die Gruppen von Kühleinrichtungen 4 in der Regel relativ klein sind - meist nicht mehr als sechs bis zehn Kühleinrichtungen 4 - können die Druckgefäße 10 weiterhin relativ klein dimensioniert werden. Dies wird nachstehend in Verbindung mit den FIG 4 bis 6 für eine Ausgestaltung erläutert, bei welcher die jeweilige Gruppe von Kühleinrichtungen 4 nur eine einzige Kühleinrichtung 4 umfasst. Die entsprechenden Ausführungen sind jedoch auch anwendbar, wenn die jeweilige Gruppe von Kühleinrichtungen 4 mehrere Kühleinrichtungen 4 umfasst. In diesem Fall müssen die nachfolgenden Ausführungen dahingehend modifiziert werden, dass von einer einheitlichen Ansteuerung der Ventile 8 der jeweiligen Gruppe ausgegangen wird.
  • Wenn das jeweilige Ventil 8 vollständig geöffnet ist, fließt in der jeweiligen Zuleitung 12 - die im Fall einer Gruppe mit einer einzigen Kühleinrichtung 4 mit der Stichleitung 7 identisch ist - ein jeweiliger Volumenstrom V an Wasser 5, beispielsweise 100 Liter pro Sekunde. Dieser Zustand ist in FIG 5 links dargestellt. Der Füllgrad F liegt entsprechend der Darstellung in FIG 4 zunächst bei etwa 50 %. Das jeweilige Druckgefäß 10 ist also zu in etwa gleichen Teilen mit Wasser 5 und Luft 14 gefüllt.
  • Zu einem Zeitpunkt t0 wird das entsprechende Ventil 8 von der vollständig geöffneten in die vollständig geschlossene Stellung überführt. Das Überführen von der vollständig geöffneten in die vollständig geschlossene Stellung erfolgt so schnell wie möglich, beispielsweise in einer Zeit von 0,1 Sekunden oder 0,2 Sekunden. Um die Dimensionierung des jeweiligen Druckgefäßes 10 besser erläutern zu können, wird nachfolgend angenommen, dass das Schließen des entsprechenden Ventils 8 völlig abrupt erfolgt, die zum Schließen benötigte Zeitspanne als solche also vernachlässigt werden kann.
  • Wäre das jeweilige Druckgefäß 10 nicht vorhanden, träte mit dem Schließen des jeweiligen Ventils 8 ein hoher Druckstoß auf, da der in der jeweiligen Zuleitung 12 fließende jeweilige Volumenstrom V abrupt auf Null abgesenkt werden müsste. Aufgrund des jeweiligen Druckgefäßes 10 kann der jeweilige Volumenstrom V jedoch in das jeweilige Druckgefäß 10 umgelenkt werden. Dadurch wird das jeweilige Druckgefäß 10 über seinen vorherigen Füllgrad F hinaus weiter gefüllt. Durch das Füllen des jeweiligen Druckgefäßes 10 wird die im jeweiligen Druckgefäß befindliche Luft 14 jedoch komprimiert, so dass sich der dortige Luftdruck erhöht. Der erhöhte Luftdruck setzt dem weiteren Zuführen von Wasser 5 in das jeweilige Druckgefäß einen steigenden Widerstand entgegen. Der jeweilige Füllgrades F steigt daher ab dem Zeitpunkt t0 zwar zunächst an, erreicht dann aber ein Maximum und sinkt danach wieder. Gegebenenfalls kann eine geringfügige, meist deutlich gedämpfte Oszillation auftreten. Dies ist aufgrund des Vorzeichenwechsels des Volumenstroms am besten in FIG 5 erkennbar. Das Maximum des Füllgrades F wird meist innerhalb 1 Sekunde erreicht, manchmal sogar schon in einer geringeren Zeit von beispielsweise nur 0,5 Sekunden.
  • Zum Zeitpunkt t0 selbst, also zu Beginn des Abbremsens, muss entsprechend der Darstellung in FIG 4 der gesamte zuvor fließende jeweilige Volumenstrom V aufgenommen werden. Würde der jeweilige Volumenstrom V unverändert beibehalten, wäre entsprechend der Darstellung in FIG 4 das jeweilige Druckgefäß 10, gerechnet ab dem Zeitpunkt t0, beispielsweise nach 0,5 Sekunden vollständig gefüllt. In 0,5 Sekunden würden somit 50 % des Volumens des jeweiligen Druckgefäßes 10 in das jeweilige Druckgefäß 10 fließen. Demzufolge würden in 1 Sekunde 100 % des Volumens des jeweiligen Druckgefäßes 10 in das jeweilige Druckgefäß 10 fließen. Gemäß der Darstellung in FIG 4 liegt somit ein Quotient des jeweiligen Gefäßvolumens (Einheit: Liter oder Kubikmeter) und des jeweiligen Volumenstroms V (Einheit: Liter/Sekunde oder Kubikmeter/Sekunde) bei 1 Sekunde. Es sind zwar gewisse Abweichungen von diesem Wert (1 Sekunde) möglich. Vorzugsweise sollte der genannte Quotient jedoch im Bereich zwischen 0,2 Sekunden und 2,0 Sekunden liegen. In der Praxis entspricht dies für eine einzelne Kühleinrichtung 4 einem Volumen zwischen 20 l und 200 l, meist im Bereich zwischen 50 l und 125 l, insbesondere etwa 100 l. Umfasst die Gruppe mehrere Kühleinrichtungen 4, müssen die genannten Volumenwerte entsprechend skaliert werden.
  • Aufgrund des Widerstands, den - gerechnet ab der jeweiligen Anschlussstelle 11 - die jeweilige Stichleitung 7 und die jeweilige Kühleinrichtung 4 aufweisen, herrscht in dem Zustand, von dem in den FIG 4 und 5 zunächst ausgegangen wird - wenn also das entsprechende Ventil 8 sich in der vollständig geöffneten Stellung befindet -, im Bereich der jeweiligen Anschlussstelle 11 ein jeweiliger Leitungsdruck p0. Der aktuelle jeweilige Leitungsdruck p weist also den Wert p0 auf. Dies ist in FIG 6 links dargestellt. Da vor dem Zeitpunkt t0 ein Gleichgewichtszustand herrscht, steht die Luft 14 im jeweiligen Druckgefäß 10 ebenfalls unter dem Druck p0. Zu dem Zeitpunkt t0, also zum Zeitpunkt des Schließens des jeweiligen Ventils 8, muss zunächst der in der jeweiligen Zuleitung 12 fließende jeweilige Volumenstrom V vollständig in das jeweilige Druckgefäß 10 umgelenkt werden. Der Volumenstrom V durch die Zuleitung 12, gemessen an der jeweiligen Anschlussstelle 11 und dargestellt in FIG 5, ruft auf seinem Weg von der jeweiligen Anschlussstelle 11 zum jeweiligen Druckgefäß 10 einen Druckabfall δp an einem jeweiligen Strömungswiderstand 16 hervor, der zwischen der jeweiligen Anschlussstelle 11 und dem jeweiligen Druckgefäß 10 angeordnet ist. Der Druckabfall δp ist vorzugsweise in etwa halb so groß wie der jeweilige Leitungsdruck p0. Demzufolge muss der jeweilige Leitungsdruck p abrupt auf einen Wert ansteigen, der in etwa dem 1,4-fachen bis 1,6-fachen des Wertes p0 entspricht, also in etwa dem 1,5-fachen. In absoluten Werten liegt der Druckabfall δp in der Praxis meist in der Größenordnung von 1 bar. Danach sinkt der jeweilige Leitungsdruck p wieder ab.
  • Der jeweilige Strömungswiderstand 16 kann im Ergebnis durch entsprechende Dimensionierung der jeweiligen Verbindungsleitung zwischen der jeweiligen Anschlussstelle 11 und dem jeweiligen Druckgefäß 10 eingestellt werden, insbesondere durch die Dimensionierung des Querschnitts der gesamten jeweiligen Verbindungsleitung oder des Querschnitts eines Abschnitts der jeweiligen Verbindungsleitung. Durch geeignete Dimensionierung des Strömungswiderstands 16 wird insbesondere eine Schwingungsneigung unterdrückt und gedämpft.
  • Die vorliegende Erfindung weist viele Vorteile auf. Insbesondere können Druckschläge vermieden werden, obwohl die Ventile 8 sehr schnell (mit Schaltzeiten weit unter 1 s) geschaltet werden. Der Einfluss der Druckgefäße 10 auf die den Kühleinrichtungen 4 tatsächlich zugeführten Wassermengen lässt sich mit einem entsprechenden Modell der Kühlstrecke 3 berücksichtigen oder über eine Basisautomatisierung der Kühlstrecke 3 einfach ausgleichen. Durch die Druckgefäße 10 werden weiterhin innerhalb des fluidtechnischen Systems (bestehend aus der Versorgungsleitung 6, den Zuleitungen 12 und den Stichleitungen 7) Druckschwingungen vermindert. Die Regelung von Pumpen, welche das Wasser 5 fördern, wird dadurch vereinfacht. Dies gilt insbesondere dann, wenn Druckmessungen zur Regelung der Pumpen herangezogen werden. Weiterhin werden auch Druckeinbrüche beim Zuschalten von Ventilen 8 verringert, da in diesem Fall Wasser 5 aus den Druckgefäßen 10 in die entsprechenden Zuleitungen 12 eingespeist wird. Die Ausgestaltung der Antriebe 9 als elektrische Antriebe ermöglicht auf einfache Weise eine zuverlässige und schnelle Ansteuerung der Ventile 8.
  • Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Varianten können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.
  • Bezugszeichenliste
  • 1
    Walzgut
    2
    Walzgerüst
    3
    Kühlstrecke
    4
    Kühleinrichtungen
    5
    Wasser
    6
    Versorgungsleitung
    7
    Stichleitungen
    8
    Ventile
    9
    elektrische Antriebe
    10
    Druckgefäße
    11
    Anschlussstellen
    12
    Zuleitungen
    13
    Verteilerpunkt
    14
    Luft
    15
    Luftventile
    16
    Strömungswiderstand
    F
    Füllgrad
    p, p0
    Leitungsdruck
    t0
    Zeitpunkt
    V
    Volumenstrom
    x
    Transportrichtung
    y
    Breitenrichtung
    δp
    Druckabfall

Claims (6)

  1. Vorrichtung zum Kühlen eines in einer Walzstraße gewalzten metallischen Walzguts (1),
    - wobei die Vorrichtung mehrere Kühleinrichtungen (4) aufweist, denen über eine jeweilige Stichleitung (7) Wasser (5) zugeführt wird und mittels derer das Wasser (5) auf das Walzgut (1) aufgebracht wird,
    - wobei in den Stichleitungen (7) jeweils ein Ventil (8) angeordnet ist, mittels dessen der die jeweilige Stichleitung (7) durchfließende Wasserstrom eingestellt wird,
    - wobei den Ventilen (8) jeweils ein Antrieb (9) zugeordnet ist, über den das jeweilige Ventil (8) angesteuert wird,
    dadurch gekennzeichnet,
    - dass die Kühleinrichtungen (4) mehrere Gruppen bilden, denen jeweils proprietär ein eigenes Druckgefäß (10) zugeordnet ist,
    - dass das jeweilige Druckgefäß (10) an einer jeweiligen Anschlussstelle (11) an eine jeweilige Zuleitung (12) angeschlossen ist, über die das Wasser (5) den Stichleitungen (7) der Kühleinrichtungen (4) der entsprechenden Gruppe zugeführt wird, so dass in Strömungsrichtung des Wassers (5) gesehen die jeweilige Anschlussstelle (11) den Ventilen (8) der jeweiligen Gruppe von Kühleinrichtungen (4) vorgeordnet ist.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass zumindest ein Teil der Gruppen von Kühleinrichtungen (4) jeweils nur eine einzige Kühleinrichtung (4) umfasst.
  3. Vorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die Antriebe (9) als elektrische Antriebe ausgebildet sind.
  4. Vorrichtung nach Anspruch 3,
    dadurch gekennzeichnet,
    dass die elektrischen Antriebe als Schrittmotoren ausgebildet sind.
  5. Vorrichtung nach einem der obigen Ansprüche,
    dadurch gekennzeichnet,
    - dass das einer jeweiligen Gruppe von Kühleinrichtungen (4) proprietär zugeordnete Druckgefäß (10) ein Gefäßvolumen aufweist, und
    - dass das Gefäßvolumen zwischen n × 20 l und n × 200 l liegt, wobei n die Anzahl an Kühleinrichtungen (4) der jeweiligen Gruppe ist.
  6. Vorrichtung nach einem der obigen Ansprüche,
    dadurch gekennzeichnet,
    dass zwischen der jeweiligen Anschlussstelle (11) und dem jeweiligen Druckgefäß (10) ein jeweiliger Strömungswiderstand (16) angeordnet ist.
EP20733964.9A 2019-07-03 2020-06-18 Kuehlstrecke mit ventilen und druckgefaessen zur vermeidung von druckschlaegen Active EP3993917B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19184168.3A EP3760326A1 (de) 2019-07-03 2019-07-03 Kühlstrecke mit ventilen und druckgefässen zur vermeidung von druckschlägen
PCT/EP2020/066970 WO2021001162A1 (de) 2019-07-03 2020-06-18 KÜHLSTRECKE MIT VENTILEN UND DRUCKGEFÄßEN ZUR VERMEIDUNG VON DRUCKSCHLÄGEN

Publications (3)

Publication Number Publication Date
EP3993917A1 EP3993917A1 (de) 2022-05-11
EP3993917B1 true EP3993917B1 (de) 2023-08-09
EP3993917C0 EP3993917C0 (de) 2023-08-09

Family

ID=67145724

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19184168.3A Withdrawn EP3760326A1 (de) 2019-07-03 2019-07-03 Kühlstrecke mit ventilen und druckgefässen zur vermeidung von druckschlägen
EP20733964.9A Active EP3993917B1 (de) 2019-07-03 2020-06-18 Kuehlstrecke mit ventilen und druckgefaessen zur vermeidung von druckschlaegen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19184168.3A Withdrawn EP3760326A1 (de) 2019-07-03 2019-07-03 Kühlstrecke mit ventilen und druckgefässen zur vermeidung von druckschlägen

Country Status (7)

Country Link
US (1) US20220362823A1 (de)
EP (2) EP3760326A1 (de)
JP (1) JP7318023B2 (de)
KR (1) KR20220029599A (de)
CN (1) CN114040821A (de)
MX (1) MX2021015940A (de)
WO (1) WO2021001162A1 (de)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064170B2 (ja) * 1988-01-22 1994-01-19 石川島播磨重工業株式会社 金属板冷却用ノズル
US4949656A (en) * 1988-02-01 1990-08-21 The Texas A&M University System Distribution manifold for mobile span-and-tower irrigation systems
EP2644718A1 (de) 2012-03-27 2013-10-02 Siemens Aktiengesellschaft Verfahren zur Druckstabilisierung
DE102012215599A1 (de) * 2012-09-03 2014-03-06 Sms Siemag Ag Verfahren und Vorrichtung zur dynamischen Versorgung einer Kühleinrichtung zum Kühlen von Metallband oder sonstigem Walzgut mit Kühlmittel
US9468940B2 (en) * 2012-11-13 2016-10-18 Cnh Industrial Canada, Ltd. Adjustable orifice valve and calibration method for ammonia applicator system
EP2767353A1 (de) * 2013-02-15 2014-08-20 Siemens VAI Metals Technologies GmbH Kühlstrecke mit Power Cooling und Laminarkühlung
CN204503780U (zh) * 2015-01-30 2015-07-29 中冶南方工程技术有限公司 一种热轧棒材水冷却装置供水系统
US10240099B2 (en) 2016-10-27 2019-03-26 Uop Llc Processes for producing a fuel from a renewable feedstock

Also Published As

Publication number Publication date
WO2021001162A1 (de) 2021-01-07
EP3993917A1 (de) 2022-05-11
JP7318023B2 (ja) 2023-07-31
JP2022538856A (ja) 2022-09-06
CN114040821A (zh) 2022-02-11
MX2021015940A (es) 2022-02-03
EP3760326A1 (de) 2021-01-06
EP3993917C0 (de) 2023-08-09
KR20220029599A (ko) 2022-03-08
US20220362823A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
EP2714304B1 (de) Verfahren zur kühlung eines metallischen strangs und schaltventil zum intermittierenden öffnen und schliessen eines volumenstroms eines kühlmediums
EP2986400B1 (de) Kühleinrichtung mit breitenabhängiger kühlwirkung
EP2892664A1 (de) Verfahren und vorrichtung zur dynamischen versorgung einer kühleinrichtung zum kühlen von metallband oder sonstigem walzgut mit kühlmittel
EP2956250B1 (de) Kühlstrecke mit power cooling und laminarkühlung
EP3826780B1 (de) Kühlstrecke mit einstellung der kühlmittelströme durch pumpen
WO2011038800A1 (de) Vorrichtung und verfahren zur geregelten sekundärkühlung einer stranggiessanlage
EP3594554B1 (de) Vorrichtung zum unterkühlen von verflüssigten gasen
DE102013101104A1 (de) Kühlanordnung zum Kühlen eines Objekts mit einer Kontrolleinrichtung und Verfahren zur Überwachung einer solchen Kühlanordnung
EP3993917B1 (de) Kuehlstrecke mit ventilen und druckgefaessen zur vermeidung von druckschlaegen
EP3554727B2 (de) Kühlanlage zum kühlen von walzgut
EP2712691B1 (de) Vorrichtung und Verfahren zur Sekundarkühlung in einer Gießanlage
EP2927371A1 (de) Schaltungsanordnung
EP2817426B1 (de) Verfahren zur druckstabilisierung
EP3895819B1 (de) Betrieb einer kühleinrichtung mit einem minimalen arbeitsdruck
DE10025639A1 (de) Düsenbalken für die Kühlung oder Entzunderung von metallischem Stranggut, insbesondere von Walzgut
EP1921032B1 (de) Vorrichtung für den Transport von Schüttgut
EP3765216A1 (de) Kühlgruppe einer laminarkühlvorrichtung
DE4016140A1 (de) Einrichtung zum steuern und regeln des gasverbrauchs
DE2558844C3 (de) Verfahren und Vorrichtung zum Versorgen einer durch ein Mehrkreis-Schutzventil abgesicherten Bremsanlage von Kraftfahrzeugen mit Druckluft
EP3941654A1 (de) Kühlung von flachem walzgut ohne nachlaufen des headers
DE102012209739B4 (de) Kontrollsystem für hydraulische Zylinder-Kolbeneinheiten in einem Walzwerk für stabförmige Körper
DE102012106187B4 (de) Vorrichtung zum Versorgen einer Schmierstelle mit einem viskosen Schmierstoff
EP3623068A1 (de) Aufbringeinrichtungen von kühlstrecken mit zweitem anschluss
DE202011101038U1 (de) Feuerlöschanlage und Auslöseeinheit für eine Feuerlöschanlage
DD129937B1 (de) Sicherheitsschaltung fuer an rohrleitungsnetze fuer fluessige medien angeschlossene abnehmeranlagen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230216

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020004650

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230809

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020004650

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT