EP3988797A1 - Ventilateur axial pourvu de pales de roue d'aérateur réduisant le bruit et pourvues de trous - Google Patents

Ventilateur axial pourvu de pales de roue d'aérateur réduisant le bruit et pourvues de trous Download PDF

Info

Publication number
EP3988797A1
EP3988797A1 EP21215518.8A EP21215518A EP3988797A1 EP 3988797 A1 EP3988797 A1 EP 3988797A1 EP 21215518 A EP21215518 A EP 21215518A EP 3988797 A1 EP3988797 A1 EP 3988797A1
Authority
EP
European Patent Office
Prior art keywords
bores
fan wheel
blade tip
axial
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP21215518.8A
Other languages
German (de)
English (en)
Other versions
EP3988797B1 (fr
Inventor
Roland Keber
Tobias SIEGER
Wolfgang Laufer
Jürgen Herr
Arnold Schulde
Georg Eimer
Martin Müller
Dominik Haas
Simon HOPPE
Julien GRILLIAT
Johannes DANNECKER
Clemens GÜNTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst St Georgen GmbH and Co KG
Original Assignee
Ebm Papst St Georgen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst St Georgen GmbH and Co KG filed Critical Ebm Papst St Georgen GmbH and Co KG
Publication of EP3988797A1 publication Critical patent/EP3988797A1/fr
Application granted granted Critical
Publication of EP3988797B1 publication Critical patent/EP3988797B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • F04D19/005Axial flow fans reversible fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/388Blades characterised by construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • F05D2260/962Preventing, counteracting or reducing vibration or noise by means of "anti-noise"

Definitions

  • the invention relates to an axial fan with a housing and a fan wheel arranged in the housing for generating an axial air flow through the housing.
  • the object of the invention is to improve the noise behavior of an axial fan.
  • an axial fan with a housing and a fan wheel arranged in the housing is proposed for generating an axial air flow through the housing.
  • the fan wheel has a plurality of fan wheel blades which extend radially outwards from a hub to the respective blade tip and which run at a distance from an inner wall of the housing via a head gap.
  • the blade tip is the extension of the fan wheel blades along the inner wall of the housing, which surrounds the fan wheel in particular as a housing ring.
  • the fan wheel blades have bores along the respective blade tip.
  • the holes along the respective blade tip interact directly with the tip gap vortex and reduce the noise emissions of the fan wheel during operation.
  • shape and propagation of the flow vortex along the blade tips of the fan wheel blades is favorably influenced.
  • reductions in noise development of more than 20% could be achieved in measurements.
  • the bores are particularly advantageous in axial fans in which the fan wheel blades have a very shallow angle of attack relative to the axial plane running perpendicular to the direction of flow, which is in particular in the range of 5-25°, preferably 10-20°.
  • a development of the axial fan is characterized in that the bores are formed on both axial sides of the fan wheel blades.
  • the bores are designed as through bores through the fan wheel blades.
  • the bores are provided for each fan wheel blade along the respective blade tip.
  • the number of holes is at least two, but in particular at least three, preferably at least five, more preferably at least seven.
  • the holes run along a line parallel to the blade tip. Their arrangement is thus defined by the course of the blade tip along the head gap in relation to the inner wall of the housing.
  • the bores with a circular cross-section has proven to be particularly favorable.
  • the size of the holes is determined by their diameter.
  • the bores have a maximum diameter DBmax, which corresponds to 0.7-1.5%, preferably 1%, of a maximum fan wheel diameter of the fan wheel.
  • a special arrangement of the holes in relation to each other also promotes noise reduction.
  • An embodiment variant is advantageous in which the bores are at a distance A from one another along the respective blade tip, which corresponds to twice the maximum diameter DBmax of the bores. The distance A is measured at the center of the respective hole. In relation to the maximum fan wheel diameter D of the fan wheel, the distance A between the holes is along the respective blade tip to each other then advantageous if it corresponds to 2% of the maximum fan wheel diameter D.
  • the bores are spaced somewhat radially inward from the respective blade tip of the respective fan wheel blade but are nevertheless adjacent, so that the radially outer blade tip of the respective fan wheel blade runs continuously and uninterrupted.
  • the bores are preferably offset radially inward from the blade tip by 1.5 times the bore diameter.
  • measurements are always taken in the center of the bores.
  • the length LS with which the bores are spaced apart from the respective blade tip corresponds to preferably 1.5% of the maximum fan wheel diameter D of the fan wheel.
  • all bores of the fan wheel are each identical in terms of shape and size.
  • the bores are arranged over an extension along the blade tip of the respective fan wheel blade, which corresponds to 10-40% of a maximum extension of the blade tip along the head gap. This means that there is a predominant section along the blade tip in which no bores are provided, but in which a minimum quantity and a minimum extent must not be undershot. Furthermore, it is favorable that the bores are in particular in a region of the blade tip to be arranged, which is adjacent to the respective blade leading edge and / or respective blade trailing edge.
  • the axial fan provides that each of the fan wheel blades has a central section along the blade tip that is free of bores and adjoins a radial center line of the fan wheel blades on both sides.
  • the bores are thus provided in an area of the front edge and rear edge of the fan wheel blades.
  • the middle section determines 20-90%, more preferably 40-80% of the maximum extension of the respective fan blade in the circumferential direction.
  • the bores are provided along the leading edge and the trailing edge of the fan wheel blades.
  • the distances from one another or from the front edge and/or a rear edge preferably correspond to those of the bores along the blade tip or from the blade tip.
  • an embodiment is favorable in which, in the case of the axial fan, the respective number of bores along the front edge and the rear edge of the fan wheel blades is less than or equal to the number of bores along the blade tip. This means that the number of holes on the leading edge and on the trailing edge is always no greater than the number of holes on the blade tip.
  • the axial fan is further characterized in that the fan wheel is designed to be reversible and its generated during operation Flow direction depends on its direction of rotation. Then they will Bores are preferably provided both on the front edge and the rear edge and on both axial sides of the respective fan wheel blades.
  • a first embodiment variant of the axial fan 1 is shown.
  • This comprises a ring-shaped, closed housing 2 in which the reversible fan wheel 3 is arranged for generating the axial air flow, the direction of flow of which depends on the direction of rotation of the fan wheel 4 .
  • the fan wheel 3 has the hub 5 with a plurality of ventilation openings 25 arranged in a circle, in which the drive motor is accommodated, which is electrically supplied via the connections 14 .
  • the drive motor is held by the bracket 20, which is distributed over the circumferential direction arranged webs 11 with the Housing 2 is connected.
  • the webs 11 run in a straight line, but are inclined relative to a radial plane.
  • the fan wheel blades 4 extend radially outward from the hub 5 to their respective blade tip 8 , which forms the blade edge adjoining the inner wall of the housing 2 .
  • the head gap 12 is provided between the blade tips 8 and the inner wall of the housing 2 so that the fan wheel 3 can rotate relative to the housing 2 .
  • the fan wheel blades 4 are each shaped identically. Adjacent to the blade tip 8 , viewed in the circumferential direction, they each have a radially constricted section 9 on both sides, in which the blade edge still faces radially outwards, but is at a distance from the inner wall of the housing 2 .
  • the blade edge then transitions into the front edge 17 and rear edge 18 , which each point in the circumferential direction, but are designed to be drawn in in the circumferential direction compared to the radially outermost section of the fan wheel blade 4 .
  • An axial step 24 is formed on each of the fan wheel blades 4 along their central axis, viewed in the circumferential direction, which increases in size viewed radially inward and tapers off towards the blade tip 8, so that the impeller blade 4 runs steplessly in the area of the blade tip 8.
  • a plurality of bores 7 with a circular cross-section are provided on each of the fan wheel blades 4 along the respective blade tip 8 on both axial sides.
  • the bores 7 are formed on both axial sides at the respective identical position and thus have the respective identical central axis. Provision is preferably made for the bores 7 to be in the form of through bores.
  • eight bores 7 are provided on the two end sections pointing towards the front edge 17 and the rear edge 18 along the blade tip 8, i.e. a total of 16 bores 7 per fan wheel blade 4, of which six bores 7 are located in each area with bores 7 along the blade tip 8 along the head gap 12 and two bores 7 each located in the confiscated section 9.
  • each of the fan wheel blades 4 comprises a central section 15 along the blade tip 8 which adjoins a radial center line of the fan wheel blades 4 on both sides and is free of bores 7 .
  • the middle section 15 without holes 7 determined in both versions according to figures 1 and 5 No bores 7 are provided in the comparatively larger area, ie over a larger extent of the respective fan wheel blade 4, since these are essentially located in the peripheral edge sections.
  • the fan wheel blades 4 have a very small angle of attack of less than 25° with respect to the axial plane extending through the housing 2, which is good in figure 3 can be seen. With such small angles of attack, the bores 7 are particularly effective.
  • the size, shape and arrangement of the holes 7 influences the noise-reducing effect significantly.
  • advantageous dimensions which are identical for the embodiment of Figures 1-4 are applicable.
  • the bores 7 have a maximum diameter DBmax, which corresponds to 1% of the maximum fan wheel diameter D of the fan wheel 4, measured in each case in the center of the bores 7.
  • the distance A of the bores 7 to one another along the respective blade tip 8 corresponds to twice the maximum diameter DBmax and 2 % of the maximum impeller diameter D of the impeller 4.
  • the bores 7 are spaced apart from the blade tip 8 over the length LS, which makes up 1.5% of the impeller diameter D and 1.5 times the maximum diameter DBmax.
  • the radially outer blade tip 8 of the respective fan blade 4 runs continuously and without interruption.
  • the bores 7 are distributed along the blade tip 8 over a length which corresponds to 10% of the blade tip length L, along which the tip gap 12 is formed. In the execution according to Figures 1 - 4 it is 20%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
EP21215518.8A 2019-02-28 2020-02-05 Ventilateur axial pourvu de pales de roue d'aérateur réduisant le bruit et pourvues de trous Active EP3988797B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019105190.8A DE102019105190A1 (de) 2019-02-28 2019-02-28 Axialventilator mit geräuschreduzierenden Lüfterradschaufeln
EP20155642.0A EP3702620B1 (fr) 2019-02-28 2020-02-05 Ventilateur axial pourvu d'aubes de roue de ventilateur réduisant le bruit et pourvues de trous

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP20155642.0A Division EP3702620B1 (fr) 2019-02-28 2020-02-05 Ventilateur axial pourvu d'aubes de roue de ventilateur réduisant le bruit et pourvues de trous
EP20155642.0A Division-Into EP3702620B1 (fr) 2019-02-28 2020-02-05 Ventilateur axial pourvu d'aubes de roue de ventilateur réduisant le bruit et pourvues de trous

Publications (2)

Publication Number Publication Date
EP3988797A1 true EP3988797A1 (fr) 2022-04-27
EP3988797B1 EP3988797B1 (fr) 2022-11-23

Family

ID=69379900

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20155642.0A Active EP3702620B1 (fr) 2019-02-28 2020-02-05 Ventilateur axial pourvu d'aubes de roue de ventilateur réduisant le bruit et pourvues de trous
EP21215518.8A Active EP3988797B1 (fr) 2019-02-28 2020-02-05 Ventilateur axial pourvu de pales de roue d'aérateur réduisant le bruit et pourvues de trous

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20155642.0A Active EP3702620B1 (fr) 2019-02-28 2020-02-05 Ventilateur axial pourvu d'aubes de roue de ventilateur réduisant le bruit et pourvues de trous

Country Status (6)

Country Link
US (1) US11391282B2 (fr)
EP (2) EP3702620B1 (fr)
KR (1) KR102320943B1 (fr)
CN (1) CN210050072U (fr)
DE (1) DE102019105190A1 (fr)
PL (2) PL3988797T3 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD972706S1 (en) * 2019-02-28 2022-12-13 Ebm-Papst St. Georgen Gmbh & Co. Kg Ventilating fan
DE102019105355B4 (de) * 2019-03-04 2024-04-25 Ebm-Papst Mulfingen Gmbh & Co. Kg Lüfterrad eines Axialventilators
USD972707S1 (en) * 2019-04-29 2022-12-13 Ebm-Papst Mulfingen Gmbh & Co. Kg Ventilating fan
DE102021116749A1 (de) 2021-06-29 2022-12-29 Stiebel Eltron Gmbh & Co. Kg Dezentrales Lüftungsgerät und Strömungsgleichrichter
USD1028366S1 (en) * 2023-08-28 2024-05-21 Xu Wang Nail vacuum cleaner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201090A (ja) 1998-01-13 1999-07-27 Daikin Ind Ltd 送風機用羽根車
JP2005240749A (ja) 2004-02-27 2005-09-08 Mitsubishi Electric Corp 送風機
CN107313979A (zh) 2017-08-31 2017-11-03 广东美的制冷设备有限公司 轴流风轮及具有其的空调器
CN107489658A (zh) 2017-08-31 2017-12-19 中国航天空气动力技术研究院 基于叶片改型的电风扇降噪方法及改进的电风扇叶片结构

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900007252B1 (ko) * 1986-05-19 1990-10-06 우수이 고꾸사이 산교 가부시기가이샤 저속축류팬용 블레이드
JP3008930B2 (ja) * 1998-06-23 2000-02-14 ダイキン工業株式会社 送風機用羽根車
JP3746647B2 (ja) 1999-11-12 2006-02-15 タナカ工業株式会社 エンジンブロア
US20050186070A1 (en) * 2004-02-23 2005-08-25 Ling-Zhong Zeng Fan assembly and method
DE102008052981A1 (de) * 2008-10-23 2010-04-29 Mtu Aero Engines Gmbh Leitschaufel eines Axialverdichters
CN101440822A (zh) * 2008-11-28 2009-05-27 中山大洋电机股份有限公司 一种轴流风扇及离心风扇的风叶
GB0910838D0 (en) * 2009-06-24 2009-08-05 Rolls Royce Plc A shroudless blade
US20120100001A1 (en) * 2010-10-20 2012-04-26 Zaward Corporation Fan structure
US9909505B2 (en) * 2011-07-05 2018-03-06 United Technologies Corporation Efficient, low pressure ratio propulsor for gas turbine engines
CN102635572A (zh) * 2012-04-27 2012-08-15 浙江理工大学 一种叶片穿孔小型轴流风扇
CN102705264A (zh) * 2012-06-15 2012-10-03 美的集团有限公司 一种轴流风轮
DE102014102311A1 (de) * 2014-02-21 2015-08-27 Ebm-Papst St. Georgen Gmbh & Co. Kg Lüfter mit einem mit Laufschaufeln versehenen Laufrad
CN204242077U (zh) * 2014-10-30 2015-04-01 烟台职业学院 新式计算机风扇
CN104454641B (zh) 2014-11-13 2017-06-16 中国北车集团大连机车研究所有限公司 高速电力机车冷却系统用低噪轴流风机叶轮
USD897520S1 (en) * 2017-12-13 2020-09-29 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan
USD903085S1 (en) * 2017-12-13 2020-11-24 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan
WO2020091150A1 (fr) * 2018-10-30 2020-05-07 주식회사 명성 Filet de sécurité pour ventilateur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201090A (ja) 1998-01-13 1999-07-27 Daikin Ind Ltd 送風機用羽根車
JP2005240749A (ja) 2004-02-27 2005-09-08 Mitsubishi Electric Corp 送風機
CN107313979A (zh) 2017-08-31 2017-11-03 广东美的制冷设备有限公司 轴流风轮及具有其的空调器
CN107489658A (zh) 2017-08-31 2017-12-19 中国航天空气动力技术研究院 基于叶片改型的电风扇降噪方法及改进的电风扇叶片结构

Also Published As

Publication number Publication date
EP3702620A1 (fr) 2020-09-02
KR20200105627A (ko) 2020-09-08
EP3988797B1 (fr) 2022-11-23
EP3702620B1 (fr) 2022-04-27
CN210050072U (zh) 2020-02-11
KR102320943B1 (ko) 2021-11-04
US11391282B2 (en) 2022-07-19
PL3702620T3 (pl) 2022-08-16
DE102019105190A1 (de) 2020-09-03
PL3988797T3 (pl) 2023-03-06
US20200277962A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
EP3988797B1 (fr) Ventilateur axial pourvu de pales de roue d'aérateur réduisant le bruit et pourvues de trous
EP2025945B1 (fr) Machine de traitement des écoulements dotée d'un creux de paroi de canal de ceinture
DE102007056953B4 (de) Strömungsarbeitsmaschine mit Ringkanalwandausnehmung
EP3289224A1 (fr) Hélice de ventilateur et système comprenant au moins un ventilateur
DE102008011644A1 (de) Gehäusestrukturierung für Axialverdichter im Nabenbereich
DE102004054752A1 (de) Schaufel einer Strömungsarbeitsmaschine mit erweiterter Randprofiltiefe
EP3298284B1 (fr) Grille de guidage d'écoulement plane
EP0916812A1 (fr) Etage final pour turbine axial
EP3705728A1 (fr) Boîtier pour une turbomachine, en particulier pour un aérateur radial
DE102008052401A1 (de) Strömungsarbeitsmaschine mit Laufspalteinzug
WO2017093245A1 (fr) Roue de ventilateur pour un ventilateur axial
DE102004023270A1 (de) Axialschraubengebläse
DE602004008811T2 (de) Axiallüfter
EP3181813B1 (fr) Filetage centré d'aubes
DE112018001703T5 (de) Variable statorschaufel und verdichter
EP3865711A1 (fr) Ventilateur pourvu de plaque de recouvrement sur la cloche de rotor
DE102017130767A1 (de) Strömungsoptimierter axialer Lüfter
EP1371813A1 (fr) Aubage de turbomachine
DE202019101166U1 (de) Axialventilator mit geräuschreduzierenden Lüfterradschaufeln
DE102007005384A1 (de) Strömungsarbeitsmaschine sowie Rotorschaufel einer Strömungsarbeitsmaschine
WO2019030006A1 (fr) Ventilateur
CH650563A5 (en) Diffuser in a centrifugal driven machine
EP4063663A1 (fr) Diffuseur d'écoulement sans aube
EP3877653B1 (fr) Machine hydraulique à plusieurs étages
EP4375514A1 (fr) Ventilateur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3702620

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220518

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220720

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20220915

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3702620

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020002073

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1533289

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230224

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020002073

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

26N No opposition filed

Effective date: 20230824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240220

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240220

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240216

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240130

Year of fee payment: 5

Ref country code: IT

Payment date: 20240229

Year of fee payment: 5

Ref country code: FR

Payment date: 20240221

Year of fee payment: 5

Ref country code: BE

Payment date: 20240219

Year of fee payment: 5