EP3702620A1 - Ventilateur axial pourvu d'aubes de roue de ventilateur réduisant le bruit et pourvues de trous - Google Patents

Ventilateur axial pourvu d'aubes de roue de ventilateur réduisant le bruit et pourvues de trous Download PDF

Info

Publication number
EP3702620A1
EP3702620A1 EP20155642.0A EP20155642A EP3702620A1 EP 3702620 A1 EP3702620 A1 EP 3702620A1 EP 20155642 A EP20155642 A EP 20155642A EP 3702620 A1 EP3702620 A1 EP 3702620A1
Authority
EP
European Patent Office
Prior art keywords
bores
fan
blade tip
axial
fan wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20155642.0A
Other languages
German (de)
English (en)
Other versions
EP3702620B1 (fr
Inventor
Roland Keber
Tobias SIEGER
Wolfgang Laufer
Jürgen Herr
Arnold Schulde
Georg Eimer
Martin Müller
Dominik Haas
Simon HOPPE
Julien GRILLIAT
Johannes DANNECKER
Clemens GÜNTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst St Georgen GmbH and Co KG
Original Assignee
Ebm Papst St Georgen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst St Georgen GmbH and Co KG filed Critical Ebm Papst St Georgen GmbH and Co KG
Priority to EP21215518.8A priority Critical patent/EP3988797B1/fr
Publication of EP3702620A1 publication Critical patent/EP3702620A1/fr
Application granted granted Critical
Publication of EP3702620B1 publication Critical patent/EP3702620B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • F04D19/005Axial flow fans reversible fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/388Blades characterised by construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • F05D2260/962Preventing, counteracting or reducing vibration or noise by means of "anti-noise"

Definitions

  • the invention relates to an axial fan with a housing and a fan wheel arranged in the housing for generating an axial air flow through the housing.
  • the invention is based on the object of improving the noise behavior of an axial fan.
  • an axial fan with a housing and a fan wheel arranged in the housing for generating an axial air flow through the housing is proposed.
  • the fan wheel has a plurality of fan wheel blades extending radially outward from a hub to the respective blade tip, which run spaced apart from an inner wall of the housing via a head gap.
  • the blade tip is the extension of the fan impeller blades along the inner wall of the housing, which in particular surrounds the fan impeller as a housing ring.
  • the fan wheel blades have bores along the respective blade tip.
  • the bores along the respective blade tip interact directly with the head gap vortex and reduce the noise emissions of the fan wheel during operation.
  • the shape and spread of the flow vortex along the blade tips of the fan impeller blades is favorably influenced.
  • axial fans which only differ in terms of the impeller blades with and without holes provided along the blade tip, it was possible to achieve reductions in noise development of over 20% during measurements.
  • the bores have a particularly advantageous effect in axial fans in which the fan wheel blades have a very flat angle of incidence with respect to the axial plane running perpendicular to the direction of flow, which is in the range of 5-25 °, preferably 10-20 °.
  • a further development of the axial fan is characterized in that the bores are formed on both axial sides of the fan wheel blades.
  • the bores are designed as through bores through the fan wheel blades.
  • the bores per fan wheel blade are provided along the respective blade tip.
  • the number of bores is at least two, but in particular at least three, preferably at least five, more preferably at least seven.
  • the bores run along a line parallel to the blade tip. Their arrangement is thus determined by the course of the blade tip along the head gap with respect to the inner wall of the housing.
  • the bores with a circular cross-section has proven to be particularly favorable.
  • the size of the holes is determined by their diameter.
  • the bores have a maximum diameter DBmax, which corresponds to 0.7-1.5%, preferably 1% of a maximum fan wheel diameter of the fan wheel.
  • a special arrangement of the holes in relation to one another also favors noise reduction.
  • An embodiment variant is favorable in which the bores have a distance A from one another along the respective blade tip which corresponds to twice the maximum diameter DBmax of the bores. The distance A is measured at the center of each hole. The distance A between the holes is related to the maximum fan wheel diameter D of the fan wheel along the respective blade tip to one another when it corresponds to 2% of the maximum fan wheel diameter D.
  • the bores are somewhat spaced radially inward from the respective blade tip of the respective fan wheel blade, but are nevertheless adjacent, so that the radially outer blade tip of the respective fan wheel blade runs continuously and uninterrupted.
  • the bores are preferably offset radially inward by 1.5 times the bore diameter from the blade tip.
  • measurements are always taken in the center of the holes.
  • the length LS with which the bores are spaced apart from the respective blade tip corresponds to preferably 1.5% of the maximum fan wheel diameter D of the fan wheel.
  • all of the bores of the fan wheel are identical in shape and size.
  • the bores are arranged over an extension along the blade tip of the respective fan wheel blade which corresponds to 10-40% of a maximum extension of the blade tip along the head gap. This means that there is a predominant section along the blade tip in which no bores are provided, but a minimum amount and a minimum extent must not be exceeded. It is also favorable to have the bores particularly in a region of the blade tip to be arranged, which is adjacent to the respective blade leading edge and / or respective blade trailing edge.
  • the axial fan also provides that each of the fan wheel blades along the blade tip has a central section which is free of bores and adjoins a radial center line of the fan wheel blades on both sides.
  • the bores are thus provided in a region of the front edge and / or rear edge of the fan wheel blades.
  • the central section preferably determines 20-90%, more preferably 40-80% of the maximum extent of the respective fan wheel blade in the circumferential direction.
  • the bores are additionally provided along a front edge and / or a rear edge of the fan impeller blades.
  • the distances to one another or to the front edge and / or a rear edge preferably correspond to those of the bores along the blade tip or to the blade tip.
  • an embodiment is favorable in which, in the axial fan, the respective number of bores along the front edge and / or the rear edge of the fan impeller blades is smaller than or equal to the number of bores along the blade tip. This means that the number of holes on the leading edge and on the trailing edge is always not greater than the number of holes on the blade tip.
  • the axial fan is further characterized in that the fan wheel is designed to be reversible and its generated during operation Direction of flow depends on its direction of rotation.
  • the bores are then preferably provided both on the front edge and on the rear edge as well as on both axial sides of the respective fan wheel blades.
  • a first variant of the axial fan 1 is shown.
  • This comprises a ring-shaped closed housing 2 in which the reversible fan wheel 3 is arranged for generating the axial air flow, the direction of flow of which depends on the direction of rotation of the fan wheel 4.
  • the fan wheel 3 has the hub 5 with several ventilation openings 25 which are arranged in a circle and in which the drive motor is received, which is electrically powered via the connections 14 is supplied.
  • the drive motor is held by the holder 20, which is connected to the housing 2 via webs 11 distributed in the circumferential direction.
  • the webs 11 run in a straight line, but are inclined with respect to a radial plane.
  • the fan impeller blades 4 extend radially outward as far as their respective blade tip 8, which forms the blade edge adjoining the inner wall of the housing 2.
  • the head gap 12 is provided between the blade tips 8 and the inner wall of the housing 2, so that the fan wheel 3 can rotate relative to the housing 2.
  • the fan wheel blades 4 are each shaped identically. Adjacent to the blade tip 8, viewed in the circumferential direction, they each have a radially retracted section 9 on both sides, in which the blade edge still points radially outward, but is spaced from the inner wall of the housing 2.
  • the blade edge then merges into the front edge 17 and rear edge 18, which each point in the circumferential direction, but are each designed to be drawn in in the circumferential direction with respect to the radially outermost section of the fan wheel blade 4.
  • An axial step 24 is formed on each of the fan impeller blades 4 along their central axis, viewed in the circumferential direction, which increases in size in the radial direction and tapers towards the blade tip 8, so that the impeller blade 4 has a stepless profile in the area of the blade tip 8.
  • a plurality of bores 7 with a circular cross section are provided along the respective blade tip 8 on both axial sides.
  • the bores 7 are formed on both axial sides at the respectively identical position and thus have the respectively identical central axis. Provision is preferably made for the bores 7 to be designed as through bores.
  • eight holes 7, ie A total of 16 bores 7 are provided per fan wheel blade 4, of which there are six bores 7 per area with bores 7 along the blade tip 8 along the head gap 12 and two bores 7 in each case in the drawn-in section 9.
  • Each of the fan impeller blades 4 comprises, along the blade tip 8, in each case a central section 15 which adjoins a radial center line of the fan impeller blades 4 on both sides and is free of bores 7.
  • the middle section 15 without holes 7 determined in both embodiments according to FIG Figures 1 and 5 In the comparatively larger area, ie over a greater extent of the respective fan wheel blade 4, no bores 7 are provided, since these are essentially located in the peripheral edge sections.
  • the fan wheel blades 4 have a very small angle of incidence of less than 25 ° with respect to the axial plane extending through the housing 2, which is well in Figure 3 can be seen. With such low angles of attack, the bores 7 particularly effective.
  • the size, shape and arrangement of the bores 7 clearly influence the noise-reducing effect.
  • Advantageous dimensions are entered, which are identical for the embodiment of Figures 1-4 are applicable.
  • the holes 7 have a maximum diameter DBmax, which corresponds to 1% of the maximum fan wheel diameter D of the fan wheel 4, measured in each case in the center of the holes 7.
  • the distance A of the holes 7 to one another along the respective blade tip 8 corresponds to twice the maximum diameter DBmax and 2 % of the maximum fan wheel diameter D of the fan wheel 4.
  • the bores 7 are spaced from the blade tip 8 over the length LS, which makes up 1.5% of the impeller diameter D and 1.5 times the maximum diameter DBmax.
  • the radially outer blade tip 8 of the respective fan wheel blade 4 runs continuously and without interruption.
  • the bores 7 are distributed along the blade tip 8 over a length which corresponds to 10% of the blade tip length L along which the head gap 12 is formed. In the execution according to the Figures 1 - 4 it's 20%.
EP20155642.0A 2019-02-28 2020-02-05 Ventilateur axial pourvu d'aubes de roue de ventilateur réduisant le bruit et pourvues de trous Active EP3702620B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21215518.8A EP3988797B1 (fr) 2019-02-28 2020-02-05 Ventilateur axial pourvu de pales de roue d'aérateur réduisant le bruit et pourvues de trous

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019105190.8A DE102019105190A1 (de) 2019-02-28 2019-02-28 Axialventilator mit geräuschreduzierenden Lüfterradschaufeln

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP21215518.8A Division EP3988797B1 (fr) 2019-02-28 2020-02-05 Ventilateur axial pourvu de pales de roue d'aérateur réduisant le bruit et pourvues de trous
EP21215518.8A Division-Into EP3988797B1 (fr) 2019-02-28 2020-02-05 Ventilateur axial pourvu de pales de roue d'aérateur réduisant le bruit et pourvues de trous

Publications (2)

Publication Number Publication Date
EP3702620A1 true EP3702620A1 (fr) 2020-09-02
EP3702620B1 EP3702620B1 (fr) 2022-04-27

Family

ID=69379900

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20155642.0A Active EP3702620B1 (fr) 2019-02-28 2020-02-05 Ventilateur axial pourvu d'aubes de roue de ventilateur réduisant le bruit et pourvues de trous
EP21215518.8A Active EP3988797B1 (fr) 2019-02-28 2020-02-05 Ventilateur axial pourvu de pales de roue d'aérateur réduisant le bruit et pourvues de trous

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21215518.8A Active EP3988797B1 (fr) 2019-02-28 2020-02-05 Ventilateur axial pourvu de pales de roue d'aérateur réduisant le bruit et pourvues de trous

Country Status (6)

Country Link
US (1) US11391282B2 (fr)
EP (2) EP3702620B1 (fr)
KR (1) KR102320943B1 (fr)
CN (1) CN210050072U (fr)
DE (1) DE102019105190A1 (fr)
PL (2) PL3988797T3 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD972706S1 (en) * 2019-02-28 2022-12-13 Ebm-Papst St. Georgen Gmbh & Co. Kg Ventilating fan
DE102019105355B4 (de) * 2019-03-04 2024-04-25 Ebm-Papst Mulfingen Gmbh & Co. Kg Lüfterrad eines Axialventilators
USD972707S1 (en) * 2019-04-29 2022-12-13 Ebm-Papst Mulfingen Gmbh & Co. Kg Ventilating fan
DE102021116749A1 (de) 2021-06-29 2022-12-29 Stiebel Eltron Gmbh & Co. Kg Dezentrales Lüftungsgerät und Strömungsgleichrichter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201090A (ja) * 1998-01-13 1999-07-27 Daikin Ind Ltd 送風機用羽根車
JP2005240749A (ja) * 2004-02-27 2005-09-08 Mitsubishi Electric Corp 送風機
CN107313979A (zh) * 2017-08-31 2017-11-03 广东美的制冷设备有限公司 轴流风轮及具有其的空调器
CN107489658A (zh) * 2017-08-31 2017-12-19 中国航天空气动力技术研究院 基于叶片改型的电风扇降噪方法及改进的电风扇叶片结构

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3716718A1 (de) * 1986-05-19 1987-11-26 Usui Kokusai Sangyo Kk Blaetter fuer niedriggeschwindigkeits-propellerventilatoren
JP3008930B2 (ja) * 1998-06-23 2000-02-14 ダイキン工業株式会社 送風機用羽根車
JP3746647B2 (ja) 1999-11-12 2006-02-15 タナカ工業株式会社 エンジンブロア
US20050186070A1 (en) * 2004-02-23 2005-08-25 Ling-Zhong Zeng Fan assembly and method
DE102008052981A1 (de) * 2008-10-23 2010-04-29 Mtu Aero Engines Gmbh Leitschaufel eines Axialverdichters
CN101440822A (zh) * 2008-11-28 2009-05-27 中山大洋电机股份有限公司 一种轴流风扇及离心风扇的风叶
GB0910838D0 (en) * 2009-06-24 2009-08-05 Rolls Royce Plc A shroudless blade
US20120100001A1 (en) * 2010-10-20 2012-04-26 Zaward Corporation Fan structure
US9909505B2 (en) * 2011-07-05 2018-03-06 United Technologies Corporation Efficient, low pressure ratio propulsor for gas turbine engines
CN102635572A (zh) * 2012-04-27 2012-08-15 浙江理工大学 一种叶片穿孔小型轴流风扇
CN102705264A (zh) * 2012-06-15 2012-10-03 美的集团有限公司 一种轴流风轮
DE102014102311A1 (de) * 2014-02-21 2015-08-27 Ebm-Papst St. Georgen Gmbh & Co. Kg Lüfter mit einem mit Laufschaufeln versehenen Laufrad
CN204242077U (zh) * 2014-10-30 2015-04-01 烟台职业学院 新式计算机风扇
CN104454641B (zh) 2014-11-13 2017-06-16 中国北车集团大连机车研究所有限公司 高速电力机车冷却系统用低噪轴流风机叶轮
USD903085S1 (en) * 2017-12-13 2020-11-24 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan
USD897520S1 (en) * 2017-12-13 2020-09-29 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan
WO2020091150A1 (fr) * 2018-10-30 2020-05-07 주식회사 명성 Filet de sécurité pour ventilateur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201090A (ja) * 1998-01-13 1999-07-27 Daikin Ind Ltd 送風機用羽根車
JP2005240749A (ja) * 2004-02-27 2005-09-08 Mitsubishi Electric Corp 送風機
CN107313979A (zh) * 2017-08-31 2017-11-03 广东美的制冷设备有限公司 轴流风轮及具有其的空调器
CN107489658A (zh) * 2017-08-31 2017-12-19 中国航天空气动力技术研究院 基于叶片改型的电风扇降噪方法及改进的电风扇叶片结构

Also Published As

Publication number Publication date
KR20200105627A (ko) 2020-09-08
EP3988797B1 (fr) 2022-11-23
EP3988797A1 (fr) 2022-04-27
PL3988797T3 (pl) 2023-03-06
US11391282B2 (en) 2022-07-19
CN210050072U (zh) 2020-02-11
DE102019105190A1 (de) 2020-09-03
PL3702620T3 (pl) 2022-08-16
EP3702620B1 (fr) 2022-04-27
US20200277962A1 (en) 2020-09-03
KR102320943B1 (ko) 2021-11-04

Similar Documents

Publication Publication Date Title
EP3702620B1 (fr) Ventilateur axial pourvu d'aubes de roue de ventilateur réduisant le bruit et pourvues de trous
EP2025945B1 (fr) Machine de traitement des écoulements dotée d'un creux de paroi de canal de ceinture
DE102008011644A1 (de) Gehäusestrukturierung für Axialverdichter im Nabenbereich
WO2017036470A1 (fr) Hélice de ventilateur et système comprenant au moins un ventilateur
DE2551614A1 (de) Axial kurzer axialventilator
EP3298284B1 (fr) Grille de guidage d'écoulement plane
DE202015104813U1 (de) Strömungsleitgitter zur Anordnung an einem Ventilator
DE102007056953B4 (de) Strömungsarbeitsmaschine mit Ringkanalwandausnehmung
DE102004054752A1 (de) Schaufel einer Strömungsarbeitsmaschine mit erweiterter Randprofiltiefe
EP0916812A1 (fr) Etage final pour turbine axial
EP3705728A1 (fr) Boîtier pour une turbomachine, en particulier pour un aérateur radial
DE602004008811T2 (de) Axiallüfter
DE102004023270A1 (de) Axialschraubengebläse
DE10105570B4 (de) Windkraftmaschine
EP2410131A2 (fr) Rotor d'une turbomachine
EP3473808B1 (fr) Pale d'aube pour une aube mobile de turbine à refroidissement intérieur ainsi que procédé de fabrication d'une telle pale
EP3181813B1 (fr) Filetage centré d'aubes
WO2015132077A1 (fr) Roue de ventilateur pour ventilateur axial
DE202019101166U1 (de) Axialventilator mit geräuschreduzierenden Lüfterradschaufeln
EP1371813A1 (fr) Aubage de turbomachine
DE1161481B (de) Einrichtung zur Stabilisierung der Charakteristik von Kreiselradarbeitsmaschinen mit axialdurchstroemtem Laufrad
DE102019108811B4 (de) Laufschaufel einer Strömungsmaschine
EP3865711A1 (fr) Ventilateur pourvu de plaque de recouvrement sur la cloche de rotor
EP3623576A1 (fr) Aube de turbine à gaz
CH650563A5 (en) Diffuser in a centrifugal driven machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210128

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020000983

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1487114

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220829

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020000983

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230220

Year of fee payment: 4

26N No opposition filed

Effective date: 20230130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230216

Year of fee payment: 4

Ref country code: FR

Payment date: 20230217

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230203

Year of fee payment: 4

Ref country code: IT

Payment date: 20230228

Year of fee payment: 4

Ref country code: DE

Payment date: 20230216

Year of fee payment: 4

Ref country code: BE

Payment date: 20230220

Year of fee payment: 4

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240220

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240220

Year of fee payment: 5