EP3980204A1 - Composite material composed of metal and ceramic, and method for production thereof - Google Patents

Composite material composed of metal and ceramic, and method for production thereof

Info

Publication number
EP3980204A1
EP3980204A1 EP20742155.3A EP20742155A EP3980204A1 EP 3980204 A1 EP3980204 A1 EP 3980204A1 EP 20742155 A EP20742155 A EP 20742155A EP 3980204 A1 EP3980204 A1 EP 3980204A1
Authority
EP
European Patent Office
Prior art keywords
metal
magnesium oxide
composite material
ceramic
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20742155.3A
Other languages
German (de)
French (fr)
Inventor
Christos G. Aneziris
Christian Weigelt
Piotr MALCZYK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAUKESEMRAU GmbH
Original Assignee
SaukeSemrau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SaukeSemrau GmbH filed Critical SaukeSemrau GmbH
Publication of EP3980204A1 publication Critical patent/EP3980204A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a composite material made of metal and ceramic for applications in aluminum metallurgy according to claims 1 and 2 and a method for producing a composite material made of metal and ceramic for applications in aluminum metallurgy according to claims 6, 7 and 8.
  • patent specification DD 210931 discloses high refractory products with high corrosion resistance to metal melts, which high refractory products are made from a mixture of 15-9% by weight of aluminum-titanium slag, as is obtained in the production of iron-titanium alloys by the aluminothermic process , Marked are.
  • the high refractory products have a composition of 64 - 66% A12O3, 19 - 22% TiO 2 , 4 - 7% MgO, 3 - 6% CaO, 1.5 - 3% Fe 2 0 3 , 0.5 - 1.5% SiO2 and a grain size of 0 to 6 mm or grain size fractions in this range and known binders for the production of refractory linings which are processed with water into a rammed or sprayed mixture or into molded bodies and dried or prebaked.
  • the highly refractory products are suitable for lining or use in pyrotechnic, heat-generating or heat-storing systems. Due to the purely ceramic
  • US Pat. No. 5,037,070 describes a material based on Ni-Al alloys, in which resistance to metal melts and the like. a. compared to aluminum melts, is generated by previous oxidation. It is disadvantageous that uniform oxidation leads to susceptibility to corrosion.
  • US Pat. No. 4,546,052 also discloses a metallic material for high-temperature applications which is given an oxide protective layer through previous oxidation.
  • German laid-open specification DE 10 2012 021 906 A1 finally describes a composite material made from S1 3 N 4 and ZrO 2 , which is given an oxide protective layer (ZrSi04) for applications in non-ferrous metallurgy, among others, through heat treatment.
  • the composite material has a purely ceramic composition in the system mentioned, whereby its properties are determined.
  • the invention is based on the object of developing a composite material made of metal and ceramic which has a high level of corrosion resistance in contact with aluminum melts or aluminum alloys, while avoiding the disadvantages of the prior art.
  • the invention provides a corrosion-resistant and ductile composite material made of metal and ceramic for applications in aluminum metallurgy with at least 40% by volume of metal and at least 1% by volume of magnesium oxide and / or compounds containing magnesium oxide, the composite material With- by means of a 3-dimensional printing process, debinding and sintering of a metalloceramic slip from powder containing magnesium oxide or magnesium hydroxide and metal powder at room temperature.
  • the invention provides a corrosion-resistant and ductile composite material made of metal and ceramic for applications in aluminum metallurgy with at least 40% by volume of metal and at least 1% by volume of magnesium oxide and / or compounds containing magnesium oxide, the composite material by means of a 3-dimensional printing process, debinding and sintering of a paste from powder containing magnesium oxide or magnesium hydroxide and metal powder can be produced at room temperature.
  • the invention provides a method for producing a composite material of metal and ceramic for applications in aluminum metallurgy containing at least 40% by volume of metal and at least 1% by volume of magnesium oxide and / or compounds containing magnesium oxide, wherein the metal and the ceramic in the form of a granulate, powder and / or a fiber are pressed, dried, debinded and sintered in a protective gas atmosphere or in a vacuum in the temperature range 1000 ° C to 1500 ° C at room temperature.
  • the invention provides a method for producing a composite material of metal and ceramic for applications in aluminum metallurgy containing at least 40% by volume of metal and at least 1% by volume of magnesium oxide and / or compounds containing magnesium oxide, wherein the metal and the ceramic in the form of metal-ceramic slips on an aqueous or non-aqueous basis are cast, dried, debinded and sintered in a protective gas atmosphere or in a vacuum in the temperature range 1000 ° C to 1500 ° C at room temperature.
  • the invention provides a method for producing a composite material made of metal and ceramic for applications in aluminum tallurgy containing at least 40% by volume of metal and at least 1% by volume of magnesium oxide and / or compounds containing magnesium oxide, with a metal-ceramic mass being extruded, dried, debinded and under a protective gas atmosphere or in a vacuum in the temperature range 1000 ° C to 1500 ° at room temperature C is sintered.
  • a metallic matrix with addition of particles in the form of ceramic oxide particles in the form of magnesium oxide and / or compounds containing magnesium oxide is used in order to provide a corrosion-resistant and ductile composite material.
  • the composite material according to the invention made of metal and ceramic and the composite material produced according to the method according to the invention for producing a composite material from metal and ceramic can u. a. in the field of aluminum metallurgy as a lining material for metallurgical vessels or as a material in key components that are in direct contact with the melt, such as B. stirrers, slide plates, pouring pipes, channels, pouring bridges, flushing cones, riser pipes, pouring rings or pump and conveyor components can be used.
  • the invention has the advantage of creating a composite material which shows no brittle fracture behavior at room temperature under tensile, bending or compressive stress.
  • One embodiment of the composite material according to the invention contains at least 10% by volume of magnesium oxide and / or compounds containing magnesium oxide.
  • the composite material according to the invention preferably contains at least 20% by volume of magnesium oxide and / or compounds containing magnesium oxide.
  • the composite material according to the invention further preferably contains at least 30% by volume of magnesium oxide and / or compounds containing magnesium oxide.
  • the composite material can be have proportions of magnesium oxide and / or compounds containing magnesium oxide ranging from 1% by volume to 60% by volume.
  • the composite material according to the invention can assume all possible compositions within this range in addition to the compositions specifically mentioned below with reference to exemplary embodiments.
  • One embodiment of the composite material according to the invention contains at most 60% by volume of magnesium oxide and / or of compounds containing magnesium oxide. This has the advantage that plastic deformation is already present at room temperature in the event of a tensile, bending and / or compressive load.
  • the metal comprises one or more steel alloys.
  • Steels with chromium, nickel, vanadium, manganese and titanium alloy elements are also preferably used as the metal component.
  • Another embodiment of the composite material according to the invention contains chromium, nickel, vanadium, manganese and / or titanium as alloying elements.
  • metals in the form of powders, granules or fibers are mixed with magnesium oxide or magnesium hydroxide in the form of powders, granules or fibers, the binder is removed and then sintered under a protective gas atmosphere.
  • the mixed metals in the form of powders, granules or fibers are formed with magnesium oxide or magnesium hydroxide in the form of powders, granules or fibers as semi-finished products via a powder metallurgical primary shaping process at room temperature before debinding and sintering. It is further preferred that the semi-finished products are shaped before drying.
  • components or products that have not yet been dried are coated with aqueous or non-aqueous metallic or metal-ceramic slurries and / or plastic compounds and joined, dried, debonded at room temperature. modified and sintered under a protective gas atmosphere or vacuum in the temperature range 1000 ° C to 1500 ° C.
  • a pressed, cast or extruded semi-finished product is formed from the metal and the ceramic before debinding and sintering.
  • the pressed, cast or extruded semi-finished product is preferably formed from the metal and the ceramic in the process according to the invention before drying.
  • the powder-metallurgical primary shaping processes at room temperature are pressing processes for granulates made of metal and ceramics, casting processes based on metal-ceramic slurries on an aqueous or non-aqueous basis, or extrusion processes based on metal-ceramic compounds that are malleable at room temperature, preferably kneadable.
  • metal-ceramic papers can be formed by filtration casting processes at room temperature.
  • the not yet dried products can be coated with the help of aqueous or non-aqueous metallic or metal-ceramic slips in the sense of ceramic gameting or with metal-ceramic plastic compounds and joined together at room temperature.
  • the products are preferably dried and the binder removed in the temperature range from 200 ° C to 500 ° C and then in an atmosphere of protective gases such as inert or reducing gases based on argon, hydrogen or under vacuum, in the temperature range from 1000 ° C to 1500 ° C sintered.
  • protective gases such as inert or reducing gases based on argon, hydrogen or under vacuum
  • HP pressure-assisted sintering process hot pressing
  • HIP hot isostatic pressing
  • SPS spark plasma sintering
  • a flexible route to the production of composite materials includes mixing, homogenizing and kneading the starting materials (steel and non-metallic components) with the addition of there would be water and a water-soluble organic binder system based on cellulose derivatives, wetting agents and lubricants. Shaping into filigree (eg honeycomb bodies, hollow spaghetti) and compact semi-finished extruded products (eg solid cylinders) takes place by means of an extruder at room temperature by pressing the deformable mass through a die (mouthpiece). The geometry of the composite materials to be produced can be varied over a wide range. After drying, the extruded samples have sufficient strength for handling, mechanical processing and for joining. During debinding at 200-500 ° C, the organic processing aids required for shaping are burned out. The subsequent sintering creates the final strength and the desired thermo-mechanical and corrosive properties of the composite materials.
  • filigree eg honeycomb bodies, hollow spaghetti
  • compact semi-finished extruded products e
  • Figs. 1a-c a light microscope image of test specimens
  • Figs. 2a-c the light microscope image according to FIGS. la-c in higher magnification
  • Figs. 3a, b a light microscope image of test specimens before and after an immersion test
  • Figs. 7a-f test specimen after an oxidation test.
  • an exemplary composite material according to the invention is explained in more detail on the basis of its advantageous properties, partly in comparison with conventional materials.
  • the composite material according to the invention was produced or provided as follows. A mixture of 90% by volume, 80% by volume or 60% by volume of steel 316L (grain size 2 - 80 ⁇ m, i.e. 31 mth from TLStechnik GmbH & Co. Spezialpulver KG) and 10% by volume, 20% by volume or 40% by volume, magnesium oxide (MgO) (grain size 0.5-200 ⁇ m or 16 ⁇ m, Refratechnik), converted into prisms by means of uniaxial pressing and fired at 1350 ° C. in an inert argon atmosphere.
  • MgO magnesium oxide
  • test specimens based on DIN CEN / TS 15418 on a guide for raising / lowering were dipped into the metal melt for defined times
  • the dynamic test variant with a sample rotating in the melt was selected to ensure practical corrosion conditions.
  • FIG. 3 shows light microscope images of test specimens with 40% by volume of MgO: 3a) before the immersion test and 3b) after a 96 h immersion test in an aluminum melt of the alloy AlSi7MgO, 3 (EN AC-42100) at 850 ° C.
  • Fig. 3 microscopic investigations The results of the material combination 40M (60 vol.% steel 316L + 40 vol.% MgO) before and after the corrosion test are compared.
  • the analysis reveals a change in the structure of the test specimen after contact with molten aluminum alloy due to immersion in AlSi7MgO.3 at 850 ° C. for 96 hours. Both in FIG. 3 a and FIG.
  • FIGS. 3a, b black marginal strips labeled 1 are visible on the left edge of the image, which are not a reproduction of the test specimens shown in area 2.
  • Black areas in FIG. 3a represent ceramic components, whereas metal components or metal particles implemented as steel are shown in light gray.
  • a comparison of FIGS. 3a, b reveals a changed structure with a decrease in the light areas, i.e. steel. The reduction in the light areas is due to an oxidized layer formed around the steel particles.
  • FIG. 4 shows a picture taken with a scanning electron microscope (SEM) in the corrosion area of a composite material according to the invention composed of 60% by volume of steel and 40% by volume of MgO after 96 hours of contact with AlSi7Mg0.3 shows the specimen in area 1, in area 2 the solidified aluminum melt and the embedding resin required for analysis in area 3.
  • SEM scanning electron microscope
  • the recording on the right is an enlargement of the section marked with a rectangle in the left recording.
  • areas with different chemical constituents or compositions can be seen with numbers.
  • an area 5 made of 316L steel areas 6 made of magnesium-iron oxide (Mg-Fe-O)
  • the enlargement shows that the aluminum melt did not penetrate the composite material.
  • a chemical composition of the corresponding areas A, B, C and D shown in FIG. 5 in the form of tables of weight percent and atomic percent does not indicate any infiltration of the composite material specimen by the aluminum melt.
  • FIG. 6 An element-selective representation, shown as FIG. 6, of selected elements in the contact area between the composite material specimen and a solidified aluminum melt.
  • the overall representation of the corrosively stressed composite test specimen marked with SEM is followed by the respective distributions of the elements iron (Fe), chromium (Cr), nickel (Ni), magnesium (Mg), oxygen (O), aluminum (Al) shown as shades of gray ) and silicon (Si) in the entire area of the SEM image. If the elements iron (Fe), chromium (Cr), nickel (Ni), or oxygen (O) and also magnesium (Mg) are distributed over a large area, the elements aluminum and silicon are only minimal and available at certain points.
  • the composite material according to the invention is not enriched with aluminum even at the edge. If there is no enrichment of aluminum in the edge area of the composite material specimen, the interior of the composite material specimen should also be free from aluminum and thus free from aluminum melt that has penetrated from the outside. This underlines the high corrosion resistance of the composite material according to the invention in contact with aluminum melts or aluminum alloys.
  • the change in the structure of the composite material does not result from the contact with the aluminum melt but from the reaction with the oxygen-containing atmosphere Sphere in the furnace during heating to the test temperature of 850 ° C before the immersion process.
  • samples were heated to 850 ° C. within 4 hours as usual and then exposed to the furnace atmosphere at this temperature for a further 24 hours.
  • Figs. 7a to f show sample specimens made of pure steel and composite material variants each with 40% by volume magnesium oxide and further oxides after 24 h oxidation tests in a gas furnace at 850 ° C as follows: a) steel 316L, b) steel 16-7 -3, c) steel 316L +
  • the steel variant 16-7-3 is a non-standardized alloy with 16% chromium, 7% manganese, 3% nickel, ⁇ 0.1% molybdenum and other other compositions according to steel 316L.
  • FIGS. 7a to f which have photographically caused shadows or shadows, markings serving to identify the test specimens are identified by dotted rectangles 1 marked with an arrow 1.
  • the reference specimens made of steel or steel and TiO 2 - FIGS. 7a, b, c, d - show significant impairments.
  • the reference specimens of FIGS. 7a, b at 2 shown oxidations such as iron oxide formation in the form of flakes.
  • FIGS. 7c, d shown are surrounded by oxide skins 3.
  • test specimens with MgO - Figs. 7e, f - show almost no, at best extremely slight, signs of oxidation due to layers or flakes growing on the outside.
  • areas 4, which correspond to the marked areas 2, 3 of the reference specimens, are shown in FIGS. 7e, f no changes observed.
  • test specimens were measured and weighed in order to identify the influence of the sample composition on the thermophysical properties. The results are shown in Table 1.
  • test specimens according to the invention with 40 vol.% MgO show the most intensive changes during the oxidation in the gas furnace compared to the sintered state.
  • test specimens according to the invention show the lowest shrinkage during sintering, which is an essential factor for the design and manufacture of large-format parts.
  • the steels used in the investigated composite material according to the invention are structured as follows.
  • the matrix-forming metal consists of high-alloy steel, preferably with chromium, nickel, manganese, vanadium, titanium as the main alloying elements. Further alloy components can be one or more from the field of silicon, carbon or aluminum.

Abstract

The invention relates to a corrosion-resistant and ductile composite material composed of metal and ceramic for uses in aluminum metallurgy, comprising at least 40 vol.% metal and at least 1 vol.% magnesium oxide and/or magnesium oxide-containing compounds, the composite material being producible by a 3D printing method, debindering and sintering a metalloceramic slip or a paste consisting of magnesium oxide-containing powder or magnesium hydroxide-containing powder and metal powder at room temperature. The invention also describes a method for producing a composite material composed of metal and ceramic for uses in aluminum metallurgy, comprising at least 40 vol.% metal and at least 1 vol.% magnesium oxide and/or magnesium oxide-containing compounds, the metal and the ceramic in the form of granules, a powder and/or a fiber being compressed or cast or extruded at room temperature, dried, debindered and sintered under a protective gas atmosphere or in a vacuum in a temperature range of 1000°C to 1500°C.

Description

Verbundwerkstoff aus Metall und Keramik und Verfahren zu dessen Herstellung Metal and ceramic composite material and process for its manufacture
Die Erfindung betrifft einen Verbundwerkstoff aus Metall und Keramik für Anwendungen in der Aluminiummetallurgie gemäß den Ansprüchen 1 und 2 sowie ein Verfahren zur Herstellung eines Verbundwerkstoffs aus Metall und Keramik für Anwendungen in der Aluminiummetallurgie gemäß den Ansprüchen 6, 7 und 8. The invention relates to a composite material made of metal and ceramic for applications in aluminum metallurgy according to claims 1 and 2 and a method for producing a composite material made of metal and ceramic for applications in aluminum metallurgy according to claims 6, 7 and 8.
Auf dem Gebiet der Ahuniniummetallurgie sind bereits zahlreche Werkstoffe bekannt. So offenbart die Patentschrift DD 210931 Hochfeuerfesterzeugnisse mit hoher Korrosionsbe- ständigkeit gegen Metallschmelzen, welche Hochfeuerfesterzeugnisse durch eine Mi- schung von 15 - 9 Gew% Aluminium-Titan-Schlacke, wie sie bei der Erzeugung von Eisen- Titan-Legierungen nach dem aluminothermischen Verfahren anfällt, gekennzeichnet sind. Die Hochfeuerfesterzeugnisse weisen eine Zusammensetzung von 64 - 66 % A12O3, 19 - 22 % TiO2 , 4 - 7 % MgO, 3 - 6 % CaO, 1,5 - 3 % Fe203, 0,5 - 1,5 % Si02und eine Korngröße von 0 bis 6 mm oder Komfraktionen in diesem Bereich und bekannten Bindemitteln zur Her- Stellung feuerfester Zustellungen, die mit Wasser zu einem Stampf- oder Spritzgemenge oder zu Formkörpem verarbeitet und getrocknet oder vorgebrannt wird, auf. Die Hoch- feuerfesterzeugnisse sind für die Auskleidung bzw. den Einsatz in pyrotechnischen, wär- meerzeugenden oder wärmespeichemden Anlagen geeignet. Aufgrund der rein kerami- Numerous materials are already known in the field of aluminum metallurgy. For example, patent specification DD 210931 discloses high refractory products with high corrosion resistance to metal melts, which high refractory products are made from a mixture of 15-9% by weight of aluminum-titanium slag, as is obtained in the production of iron-titanium alloys by the aluminothermic process , Marked are. The high refractory products have a composition of 64 - 66% A12O3, 19 - 22% TiO 2 , 4 - 7% MgO, 3 - 6% CaO, 1.5 - 3% Fe 2 0 3 , 0.5 - 1.5% SiO2 and a grain size of 0 to 6 mm or grain size fractions in this range and known binders for the production of refractory linings which are processed with water into a rammed or sprayed mixture or into molded bodies and dried or prebaked. The highly refractory products are suitable for lining or use in pyrotechnic, heat-generating or heat-storing systems. Due to the purely ceramic
1 1
Bestätigungskopie sehen Zusammensetzung und Herstellung ergeben sich die bekannten Nachteile von Ke- ramik wie Sprödigkeit und begrenzte Bearbeitbarkeit. Confirmation copy See composition and production, the known disadvantages of ceramics such as brittleness and limited machinability arise.
Das US-Patent US 5,037,070 beschreibt einen Werkstoff auf Basis von Ni-Al-Legierungen, bei dem eine Beständigkeit gegenüber Metallschmelzen u. a. gegenüber Aluminium- schmelzen durch vorherige Oxidation erzeugt wird. Nachteilig ist, dass eine imgleichmä- ßige Oxidation zu einer Korrosionsanfälligkeit führt. US Pat. No. 5,037,070 describes a material based on Ni-Al alloys, in which resistance to metal melts and the like. a. compared to aluminum melts, is generated by previous oxidation. It is disadvantageous that uniform oxidation leads to susceptibility to corrosion.
Weiter offenbart das US-Patent US 4,546,052 einen metallischen Werkstoff für Hochtempe- raturanwendungen, der durch vorherige Oxidation eine Oxidschutzschicht erhält. US Pat. No. 4,546,052 also discloses a metallic material for high-temperature applications which is given an oxide protective layer through previous oxidation.
Die deutsche Offenlegungsschrift DE 10 2012 021 906 Al beschreibt schließlich einen Kom- positwerkstoff aus S13N4 und ZrO2, der durch eine Wärmebehandlung eine Oxidschutz- schicht (ZrSi04) für Anwendungen u. a. in der Nichteisenmetallurgie erhält. Der Kompo- sitwerkstoff weist eine rein keramische Zusammensetzung im genannten System auf, wodurch dessen Eigenschaften festgelegt werden. The German laid-open specification DE 10 2012 021 906 A1 finally describes a composite material made from S1 3 N 4 and ZrO 2 , which is given an oxide protective layer (ZrSi04) for applications in non-ferrous metallurgy, among others, through heat treatment. The composite material has a purely ceramic composition in the system mentioned, whereby its properties are determined.
Der Erfindung liegt die Aufgabe zugrunde, unter Vermeidung der Nachteüe des Standes der Technik einen Verbundwerkstoff aus Metall und Keramik zu entwickeln, der eine hohe Korrosionsbeständigkeit in Kontakt mit Aluminiumschmelzen bzw. Aluminiumlegienm- gen aufweist. The invention is based on the object of developing a composite material made of metal and ceramic which has a high level of corrosion resistance in contact with aluminum melts or aluminum alloys, while avoiding the disadvantages of the prior art.
Die Aufgabe wird mit einem Verbundwerkstoff gemäß den Ansprüchen 1 und 2 sowie ei- nem Verfahren zur Herstellung eines Verbundwerkstoffs gemäß den Ansprüchen 6, 7 und 8 gelöst. The object is achieved with a composite material according to claims 1 and 2 and a method for producing a composite material according to claims 6, 7 and 8.
Demgemäß sieht die Erfindung in einem ersten Aspekt einen korrosionsbeständigen und duktilen Verbundwerkstoff aus Metall und Keramik für Anwendungen in der Alumini- ummetallurgie mit mindestens 40 Vol.% Metall und mindestens 1 Vol.% Magnesiumoxid und/oder Magnesiumoxid-haltigen Verbindungen vor, wobei der Verbundwerkstoff mit- tels eines 3-dimensionalen Druckverfahrens, Entbinderung und Sintern von einem me- tallokeramischen Schlicker aus Magnesiumoxid- bzw. Magnesiumhydroxid-haltigem- Pulver und Metallpulver bei Raumtemperatur herstellbar ist. Accordingly, in a first aspect, the invention provides a corrosion-resistant and ductile composite material made of metal and ceramic for applications in aluminum metallurgy with at least 40% by volume of metal and at least 1% by volume of magnesium oxide and / or compounds containing magnesium oxide, the composite material With- by means of a 3-dimensional printing process, debinding and sintering of a metalloceramic slip from powder containing magnesium oxide or magnesium hydroxide and metal powder at room temperature.
In einem zweiten Aspekt sieht die Erfindung einen korrosionsbeständigen und duktilen Verbundwerkstoff aus Metall und Keramik für Anwendungen in der Aluminiummetallur- gie mit mindestens 40 Vol.% Metall und mindestens 1 Vol.% Magnesiumoxid und/oder Magnesiumoxid-haltigen Verbindungen vor, wobei der Verbundwerkstoff mittels eines 3- dimensionalen Druckverfahrens, Entbinderung und Sintern von einer Paste aus Magnesi- umoxid- bzw. Magnesiumhydroxid-haltigem-Pulver und Metallpulver bei Raumtempera- tur herstellbar ist. In a second aspect, the invention provides a corrosion-resistant and ductile composite material made of metal and ceramic for applications in aluminum metallurgy with at least 40% by volume of metal and at least 1% by volume of magnesium oxide and / or compounds containing magnesium oxide, the composite material by means of a 3-dimensional printing process, debinding and sintering of a paste from powder containing magnesium oxide or magnesium hydroxide and metal powder can be produced at room temperature.
In einem dritten Aspekt sieht die Erfindung ein Verfahren zur Herstellung eines Verbund- werkstoffs aus Metall und Keramik für Anwendungen in der Aluminiummetallurgie ent- haltend mindestens 40 Vol.% Metall und mindestens 1 Vol.% Magnesiumoxid und/oder Magnesiumoxid-haltige Verbindungen vor, wobei das Metall und die Keramik in Form ei- nes Granulats, Pulvers und/oder einer Faser bei Raumtemperatur gepresst, getrocknet, entbindert und unter Schutzgasatmosphäre oder in einem Vakuum im Temperaturbereich 1000°C bis 1500°C gesintert werden. In a third aspect, the invention provides a method for producing a composite material of metal and ceramic for applications in aluminum metallurgy containing at least 40% by volume of metal and at least 1% by volume of magnesium oxide and / or compounds containing magnesium oxide, wherein the metal and the ceramic in the form of a granulate, powder and / or a fiber are pressed, dried, debinded and sintered in a protective gas atmosphere or in a vacuum in the temperature range 1000 ° C to 1500 ° C at room temperature.
In einem vierten Aspekt sieht die Erfindung ein Verfahren zur Herstellung eines Verbund- werkstoffs aus Metall und Keramik für Anwendungen in der Aluminiummetallurgie ent- haltend mindestens 40 Vol.% Metall und mindestens 1 Vol.% Magnesiumoxid und/oder Magnesiumoxid-haltige Verbindungen vor, wobei das Metall und die Keramik in Form von metallokeramischen Schlickern auf wässriger oder nicht-wässriger Basis bei Raum- temperatur gegossen, getrocknet, entbindert und unter Schutzgasatmosphäre oder in ei- nem Vakuum im Temperaturbereich 1000°C bis 1500°C gesintert werden. In a fourth aspect, the invention provides a method for producing a composite material of metal and ceramic for applications in aluminum metallurgy containing at least 40% by volume of metal and at least 1% by volume of magnesium oxide and / or compounds containing magnesium oxide, wherein the metal and the ceramic in the form of metal-ceramic slips on an aqueous or non-aqueous basis are cast, dried, debinded and sintered in a protective gas atmosphere or in a vacuum in the temperature range 1000 ° C to 1500 ° C at room temperature.
Schließlich sieht die Erfindung in einem fünften Aspekt ein Verfahren zur Herstellung ei- nes Verbundwerkstoffs aus Metall und Keramik für Anwendungen in der Aluminiumme- tallurgie enthaltend mindestens 40 Vol.% Metall und mindestens 1 Vol.% Magnesiumoxid und/oder Magnesiumoxid-haltige Verbindungen vor, wobei eine metallokeramische Masse bei Raumtemperatur extrudiert, getrocknet, entbindert und unter Schutzgasatmosphäre oder in einem Vakuum im Temperaturbereich 1000°C bis 1500°C gesintert wird. Finally, in a fifth aspect, the invention provides a method for producing a composite material made of metal and ceramic for applications in aluminum tallurgy containing at least 40% by volume of metal and at least 1% by volume of magnesium oxide and / or compounds containing magnesium oxide, with a metal-ceramic mass being extruded, dried, debinded and under a protective gas atmosphere or in a vacuum in the temperature range 1000 ° C to 1500 ° at room temperature C is sintered.
Erfindungsgemäß wird eine metallische Matrix mit Partikelzugabe in Form von kerami- schen Oxidpartikeln in Form von Magnesiumoxid und/oder Magnesiumoxid-haltigen Ver- bindungen angewendet, um einen korrosionsbeständigen und duktilen Verbundwerkstoff bereitzustellen. According to the invention, a metallic matrix with addition of particles in the form of ceramic oxide particles in the form of magnesium oxide and / or compounds containing magnesium oxide is used in order to provide a corrosion-resistant and ductile composite material.
Der erfindungsgemäße Verbundwerkstoff aus Metall und Keramik und der nach dem er- findungsgemäßen Verfahren zur Herstellung eines Verbundwerkstoffs aus Metall und Ke- ramik hergestellte Verbundwerkstoff kann u. a. auf dem Gebiet der Aluminiummetallurgie als Auskleidungsmaterial von metallurgischen Gefäßen oder als Werkstoff in Schlüsselbau- teilen, die in direktem Kontakt mit der Schmelze stehen, wie z. B. Rührern, Schieberplatten, Ausgussrohren Rinnen, Gießbrücken, Spülkegeln, Steigrohren, Abgussringen oder Pum- pen- und Förderbauteilen eingesetzt werden. The composite material according to the invention made of metal and ceramic and the composite material produced according to the method according to the invention for producing a composite material from metal and ceramic can u. a. in the field of aluminum metallurgy as a lining material for metallurgical vessels or as a material in key components that are in direct contact with the melt, such as B. stirrers, slide plates, pouring pipes, channels, pouring bridges, flushing cones, riser pipes, pouring rings or pump and conveyor components can be used.
Die Erfindung bringt den Vorteil einer Schaffung eines Verbundwerkstoffs mit sich, der kein sprödes Bruchverhalten bei Raumtemperatur unter Zug-, Biege- oder Druckbeanspru- chung zeigt. The invention has the advantage of creating a composite material which shows no brittle fracture behavior at room temperature under tensile, bending or compressive stress.
Weitere Vorteile ergeben sich aus den Unteransprüchen. Further advantages result from the subclaims.
Eine Ausführungsform des erfindungsgemäßen Verbundwerkstoffs enthält mindestens 10 Vol.% Magnesiumoxid und/oder Magnesiumoxid-haltige Verbindungen. Vorzugsweise enthält der erfindungsgemäße Verbundwerkstoff mindestens 20 Vol.% Magnesiumoxid und/oder Magnesiumoxid-haltige Verbindungen. Weiter bevorzugt enthält der erfindungs- gemäße Verbundwerkstoff mindestens 30 Vol.% Magnesiumoxid und/oder Magnesium- oxid-haltige Verbindungen. Im Rahmen der Erfindung kann der Verbundwerkstoff im Be- reich von 1 Vol.% bis 60% Vol.% liegende Anteile an Magnesiumoxid und/oder Magnesi- umoxid-haltigen Verbindungen aufweisen. Der erfindungsgemäße Verbundwerkstoff kann innerhalb dieses Bereichs neben den anhand von Ausführungsbeispielen nachfolgend kon- kret erwähnten Zusammensetzungen alle möglichen Zusammensetzungen annehmen. One embodiment of the composite material according to the invention contains at least 10% by volume of magnesium oxide and / or compounds containing magnesium oxide. The composite material according to the invention preferably contains at least 20% by volume of magnesium oxide and / or compounds containing magnesium oxide. The composite material according to the invention further preferably contains at least 30% by volume of magnesium oxide and / or compounds containing magnesium oxide. In the context of the invention, the composite material can be have proportions of magnesium oxide and / or compounds containing magnesium oxide ranging from 1% by volume to 60% by volume. The composite material according to the invention can assume all possible compositions within this range in addition to the compositions specifically mentioned below with reference to exemplary embodiments.
Eine Ausführungsform des erfindungsgemäßen Verbundwerkstoffs enthält höchstens 60 Vol.% an Magnesiumoxid und/oder an Magnesiumoxid-haltigen Verbindungen. Mit Vor- teil wird dadurch erreicht, dass eine plastische Verformung bei einer Zug-, Biege- und/oder Druckbelastung bereits bei Raumtemperatur vorliegt. One embodiment of the composite material according to the invention contains at most 60% by volume of magnesium oxide and / or of compounds containing magnesium oxide. This has the advantage that plastic deformation is already present at room temperature in the event of a tensile, bending and / or compressive load.
In einer Ausführungsform des erfindungsgemäßen Verbundwerkstoffs umfasst das Metall eine oder mehrere Stahllegierungen. Weiter bevorzugt dienen als Metallkomponente Stähle mit Chrom-, Nickel-, Vanadium-, Mangan- und Titan-Legierungselementen. In one embodiment of the composite material according to the invention, the metal comprises one or more steel alloys. Steels with chromium, nickel, vanadium, manganese and titanium alloy elements are also preferably used as the metal component.
Eine andere Ausführungsform des erfindungsgemäßen Verbundwerkstoffs enthält Chrom, Nickel, Vanadium, Mangan und/der Titanium als Legierungselemente. Another embodiment of the composite material according to the invention contains chromium, nickel, vanadium, manganese and / or titanium as alloying elements.
Zur Herstellung eines erfindungsgemäßen Verbundwerkstoffs werden Metalle in Form von Pulvern, Granulaten oder Fasern mit Magnesiumoxid oder Magnesiumhydroxid in Form von Pulvern, Granulaten oder Fasern gemischt, entbindert und anschließend unter Schutzgasatmosphäre gesintert. In bevorzugter Ausführung werden die gemischten Metal- le in Form von Pulvern, Granulaten oder Fasern mit Magnesiumoxid oder Magnesiumhyd- roxid in Form von Pulvern, Granulaten oder Fasern als Halbzeuge über ein pulvermetal- lurgisches Urformgebungsverfahren bei Raumtemperatur vor dem Entbindem und Sintern geformt. Weiter bevorzugt findet das Formen der Halbzeuge vor dem Trocknen statt. To produce a composite material according to the invention, metals in the form of powders, granules or fibers are mixed with magnesium oxide or magnesium hydroxide in the form of powders, granules or fibers, the binder is removed and then sintered under a protective gas atmosphere. In a preferred embodiment, the mixed metals in the form of powders, granules or fibers are formed with magnesium oxide or magnesium hydroxide in the form of powders, granules or fibers as semi-finished products via a powder metallurgical primary shaping process at room temperature before debinding and sintering. It is further preferred that the semi-finished products are shaped before drying.
In einer weiteren Ausführung des erfindungsgemäßen Verfahrens zur Herstellung des Verbundwerkstoffs werden noch nicht getrocknete Bauteile bzw. Erzeugnisse mit wässri- gen oder nicht-wässrigen metallischen oder metallokeramischen Schlickern und/oder bild- samen Massen beschichtet und bei Raumtemperatur zusammengefügt, getrocknet, entbin- dert und unter Schutzgasatmosphäre oder Vakuum im Temperaturbereich 1000°C bis 1500°C gesintert. In a further embodiment of the method according to the invention for producing the composite material, components or products that have not yet been dried are coated with aqueous or non-aqueous metallic or metal-ceramic slurries and / or plastic compounds and joined, dried, debonded at room temperature. modified and sintered under a protective gas atmosphere or vacuum in the temperature range 1000 ° C to 1500 ° C.
In einer Ausführung des erfindungsgemäßen Verfahrens wird ein gepresstes, gegossenes oder extrudiertes Halbzeug aus dem Metall und der Keramik vor dem Entbindem und Sin- tern geformt. Bevorzugt wird bei dem erfindungsgemäßen Verfahrens wird das gepresste, gegossene oder extrudierte Halbzeug aus dem Metall und der Keramik bei dem erfin- dungsgemäßen Verfahrens vor dem Trocknen geformt. In one embodiment of the method according to the invention, a pressed, cast or extruded semi-finished product is formed from the metal and the ceramic before debinding and sintering. In the process according to the invention, the pressed, cast or extruded semi-finished product is preferably formed from the metal and the ceramic in the process according to the invention before drying.
Als pulvermetallurgische Urformgebungsverfahren bei Raumtemperatur dienen erfin- dungsgemäß Pressverfahren von Granulaten aus Metall und Keramik, Gießverfahren auf der Basis von metallokeramischen Schlickern auf wässriger oder nicht-wässriger Basis oder Extrusionsverfahren auf der Basis von bei Raumtemperatur bildsamen, vorzugsweise knet- baren metallokeramischen Massen. Darüber hinaus können erfindungsgemäß über Filtrati- onsgießprozesse bei Raumtemperatur metallokeramische Papiere geformt werden. Erfin- dungsgemäß können die noch nicht getrockneten Erzeugnisse mit Hilfe von wässrigen o- der nicht-wässrigen metallischen oder metallokeramischen Schlickern im Sinne des kera- mischen Gamierens oder mit metallokeramischen bildsamen Massen beschichtet und bei Raumtemperatur zusammengefügt werden. According to the invention, the powder-metallurgical primary shaping processes at room temperature are pressing processes for granulates made of metal and ceramics, casting processes based on metal-ceramic slurries on an aqueous or non-aqueous basis, or extrusion processes based on metal-ceramic compounds that are malleable at room temperature, preferably kneadable. In addition, according to the invention, metal-ceramic papers can be formed by filtration casting processes at room temperature. According to the invention, the not yet dried products can be coated with the help of aqueous or non-aqueous metallic or metal-ceramic slips in the sense of ceramic gameting or with metal-ceramic plastic compounds and joined together at room temperature.
Die Erzeugnisse werden vorzugsweise getrocknet und im Temperaturbereich von 200 °C bis 500 °C entbindert und nachfolgend in einer Atmosphäre von Schutzgasen wie inerten bzw. reduzierenden Gasen auf der Basis von Argon, Wasserstoff oder unter Vakuum, im Temperaturbereich von 1000 °C bis 1500 °C gesintert. Die druckunterstützten Sinterverfah- ren Heißpressen (HP), heißisostatisches Pressen (HIP) oder Spark-Plasma-Sintem (SPS) können erfindungsgemäß ebenfalls zur Verdichtung der geformten Körper angewendet werden. The products are preferably dried and the binder removed in the temperature range from 200 ° C to 500 ° C and then in an atmosphere of protective gases such as inert or reducing gases based on argon, hydrogen or under vacuum, in the temperature range from 1000 ° C to 1500 ° C sintered. The pressure-assisted sintering process hot pressing (HP), hot isostatic pressing (HIP) or spark plasma sintering (SPS) can also be used according to the invention for densifying the shaped bodies.
Eine bildsame Route zur Herstellung der Verbundwerkstoffe umfasst Mischen, Homogeni- sieren und Kneten der Ausgangsstoffe (Stahl und nichtmetallische Komponente) unter Zu- gäbe von Wasser und einem wasserlöslichen organischen Bindersystem auf der Basis von Cellulosederivaten, Netzmitteln und Gleitmitteln. Eine Formgebung in filigrane (z. B. Wa- benkörper, Hohlspaghetti) und kompakte Stranghalbzeuge (z. B. Vollzylinder) erfolgt mit- tels eines Extruders bei Raumtemperatur durch Pressen der verformbaren Masse durch ei- ne Matrize (Mundstück). Die Geometrie der zu erzeugenden Verbundwerkstoffe kann in weiten Bereichen variiert werden. Nach der Trocknung weisen die extrudierten Proben ei- ne ausreichende Festigkeit zur Handhabung, mechanischen Bearbeitung und zum Fügen auf. Während der Entbinderung bei 200-500 °C werden die zur Formgebung notwendigen organischen Prozesshilfsstoffe ausgebrannt. Die anschließende Sinterung erzeugt die end- gültige Festigkeit und gewünschte thermo-mechanische und korrosive Eigenschaften der Verbundwerkstoffe. A flexible route to the production of composite materials includes mixing, homogenizing and kneading the starting materials (steel and non-metallic components) with the addition of there would be water and a water-soluble organic binder system based on cellulose derivatives, wetting agents and lubricants. Shaping into filigree (eg honeycomb bodies, hollow spaghetti) and compact semi-finished extruded products (eg solid cylinders) takes place by means of an extruder at room temperature by pressing the deformable mass through a die (mouthpiece). The geometry of the composite materials to be produced can be varied over a wide range. After drying, the extruded samples have sufficient strength for handling, mechanical processing and for joining. During debinding at 200-500 ° C, the organic processing aids required for shaping are burned out. The subsequent sintering creates the final strength and the desired thermo-mechanical and corrosive properties of the composite materials.
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert, wo- bei auf die in unterschiedlichen Maßstäben gehaltenen Figuren Bezug genommen wird. Es zeigen: In the following, the invention is explained in more detail using an exemplary embodiment, reference being made to the figures that are kept in different scales. Show it:
Fign. 1a-c eine lichtmikroskopische Aufnahme von Probekörpern, Figs. 1a-c a light microscope image of test specimens,
Fign. 2a-c die lichtmikroskopische Aufnahme gemäß Fign. la-c in höherer Vergrö- ßerung, Figs. 2a-c the light microscope image according to FIGS. la-c in higher magnification,
Fign. 3a, b eine lichtmikroskopische Aufnahme von Probekörpem vor und nach ei- nem Eintauchtest, Figs. 3a, b a light microscope image of test specimens before and after an immersion test,
Fig. 4 rasterelektronenmikroskopische Aufnahmen des Probekörpers nach dem Fig. 4 scanning electron micrographs of the test specimen after
Eintauchtest gemäß Fig. 3b, Immersion test according to Fig. 3b,
Fig. 5 energiedispersive röntgenspektroskopische Analyse (EDX) von charakte- ristischen Bereichen des Probekörpers nach Fig. 4, 5 energy-dispersive X-ray spectroscopic analysis (EDX) of characteristic areas of the specimen according to FIG. 4,
Fig. 6 eine Darstellung der Intensitätsverteilung ausgewählter Elemente im 6 shows the intensity distribution of selected elements in the
Kontaktbereich zwischen einem Verbundwerkstoff und einer erstarrten Aluminiumschmelze und Contact area between a composite material and a solidified aluminum melt and
Fign. 7a-f Probekörper nach einem Oxidationsversuch. Nachfolgend wird ein beispielhafter erfindungsgemäßer Verbundwerkstoff anhand seiner vorteilhaften Eigenschaften teilweise im Vergleich mit herkömmlichen Werkstoffen näher erläutert. Figs. 7a-f test specimen after an oxidation test. In the following, an exemplary composite material according to the invention is explained in more detail on the basis of its advantageous properties, partly in comparison with conventional materials.
Dabei erfolgte die Her- bzw. Bereitstellung des erfindungsgemäßen Verbundwerkstoffs wie folgt. Es wurde eine Mischung aus 90 Vol.%, 80 Vol.% oder 60 Vol.% Stahl 316L (Korn- größe 2 - 80 pm, dso 31 mth Fa. TLS Technik GmbH & Co. Spezialpulver KG) und 10 Vol.%, 20 Vol.% oder 40 Vol.%, Magnesiumoxid (MgO) (Korngröße 0,5 - 200 pm dso 16 pm, Fa. Refratechnik) hergestellt, mittels uniaxialen Pressens in Prismen überführt und bei 1350 °C in inerter Argonatmosphäre gebrannt. The composite material according to the invention was produced or provided as follows. A mixture of 90% by volume, 80% by volume or 60% by volume of steel 316L (grain size 2 - 80 μm, i.e. 31 mth from TLS Technik GmbH & Co. Spezialpulver KG) and 10% by volume, 20% by volume or 40% by volume, magnesium oxide (MgO) (grain size 0.5-200 μm or 16 μm, Refratechnik), converted into prisms by means of uniaxial pressing and fired at 1350 ° C. in an inert argon atmosphere.
Als Test zur Bestimmung der Beständigkeit gegenüber aluminiumbasierter Schmelze (Le- gierung ALSbMgo DIN/EN 42100) wurden Probekörper („Finger") in Anlehnung an DIN CEN/TS 15418 an einer Führung zum Heben/Senken für definierte Zeiten in die Metall- schmelze getaucht. Zur Gewährleistung praxisnaher Korrosionsbedingungen wurde die dynamische Prüfvariante mit in der Schmelze rotierender Probe gewählt. As a test to determine the resistance to aluminum-based melt (alloy ALSbMgo DIN / EN 42100), test specimens ("fingers") based on DIN CEN / TS 15418 on a guide for raising / lowering were dipped into the metal melt for defined times The dynamic test variant with a sample rotating in the melt was selected to ensure practical corrosion conditions.
Vermehrte Schwarz- Anteile in lichtmikroskopischen Aufnahmen von Probekörpem der jeweiligen Zusammensetzung Fig. la 10 Vol.% MgO und 90 Vol.% Stahl 316L, Fig. lb 20 Vol.% MgO und 80 Vol.% Stahl 316L und Fig. lc 40 Vol.% MgO und 60 Vol.% Stahl 316L spiegeln in der dargestellten optischen Auflösung den steigenden MgO- Anteil der Probe- körper wider. Die grauen Streifen an den jeweiligen linken Bildrändern sind nicht probe- körperspezifisch, sondern durch den Untergrund bedingt. Bei einer höheren, in den Fig. 2a-c gezeigten Auflösung wird die Verteilung von Stahl (hellgrau), Poren (schwarz) und Magnesiumoxid (dunkelgrau) wiedergegeben. Increased black proportions in light microscope images of test specimens of the respective composition Fig. La 10 vol.% MgO and 90 vol.% Steel 316L, Fig. Lb 20 vol.% MgO and 80 vol.% Steel 316L and Fig. % MgO and 60% by volume of steel 316L reflect the increasing MgO content of the test specimen in the optical resolution shown. The gray stripes at the respective left edges of the picture are not specimen-specific, but are caused by the background. At a higher resolution, shown in FIGS. 2a-c, the distribution of steel (light gray), pores (black) and magnesium oxide (dark gray) is reproduced.
Fig. 3 zeigt lichtmikroskopische Aufnahmen von Probekörpem mit 40 Vol.% MgO: 3a) vor dem Eintauchtest und 3b) nach 96 h Eintauchtest in eine Aluminiumschmelze der Legie- rung AlSi7MgO,3 (EN AC-42100) bei 850 °C. In Fig. 3 werden mikroskopische Untersu- chungen an der Werkstoffkombination 40M (60 Vol.% Stahl 316L + 40 Vol.% MgO) vor vmd nach dem Korrosionsversuch gegenübergestellt. Die Analyse ergibt eine Veränderung der Struktur der Probekörper nach Kontakt mit geschmolzener Aluminiumlegierung durch 96 h Eintauchen in AlSi7MgO,3 bei 850 °C. Sowohl in Fig. 3a als auch Fig. 3b sind am linken Bildrand mit 1 bezeichnete schwarze Randstreifen sichtbar, die keine Wiedergabe der im Bereich 2 dargestellten Probekörper sind. Schwarze Bereiche in Fig. 3a stellen keramische Bestandteile dar, wohingegen als Stahl ausgeführte Metallbestandteile bzw. Metallpartikel hellgrau dargestellt sind. Aus einem Vergleich der Fign 3a, b ist ein verändertes Gefüge mit einer Abnahme der hellen Bereiche also Stahl ersichtlich. Die Verringerung der hellen Be- reiche ist auf eine um die Stahlpartikel gebildete oxidierte Schicht zurückzuführen. 3 shows light microscope images of test specimens with 40% by volume of MgO: 3a) before the immersion test and 3b) after a 96 h immersion test in an aluminum melt of the alloy AlSi7MgO, 3 (EN AC-42100) at 850 ° C. In Fig. 3 microscopic investigations The results of the material combination 40M (60 vol.% steel 316L + 40 vol.% MgO) before and after the corrosion test are compared. The analysis reveals a change in the structure of the test specimen after contact with molten aluminum alloy due to immersion in AlSi7MgO.3 at 850 ° C. for 96 hours. Both in FIG. 3 a and FIG. 3 b, black marginal strips labeled 1 are visible on the left edge of the image, which are not a reproduction of the test specimens shown in area 2. Black areas in FIG. 3a represent ceramic components, whereas metal components or metal particles implemented as steel are shown in light gray. A comparison of FIGS. 3a, b reveals a changed structure with a decrease in the light areas, i.e. steel. The reduction in the light areas is due to an oxidized layer formed around the steel particles.
Fig. 4 stellt in der linken Hälfte eine mit einem Rasterelektronenmikroskop (REM) gemach- te Aufnahme im Korrosionsbereich eines erfindungsgemäßen Verbundwerkstoffs aus 60 Vol.% Stahl und 40 Vol.% MgO nach einem 96 -stündigen Kontakt mit AlSi7Mg0.3 dar. Die Aufnahme zeigt den Probekörper im Bereich 1, im Bereich 2 die erstarrte Aluminium- schmelze und das zur Analyse erforderliche Einbettharz im Bereich 3. In the left half, FIG. 4 shows a picture taken with a scanning electron microscope (SEM) in the corrosion area of a composite material according to the invention composed of 60% by volume of steel and 40% by volume of MgO after 96 hours of contact with AlSi7Mg0.3 shows the specimen in area 1, in area 2 the solidified aluminum melt and the embedding resin required for analysis in area 3.
Die rechts angeordnete Aufnahme ist dabei eine Vergrößerung des in der linken Aufnahme mit einem Rechteck markierten Ausschnitts. In der Vergrößerung sind mit Ziffern versehe- ne Bereiche unterschiedlicher chemischer Bestandteile bzw. Zusammensetzungen zu se- hen. Davon sind im Einzelnen ein Bereich 4 aus Magnesiumoxid (MgO) , ein Bereich 5 aus 316L-Stahl, Bereiche 6 aus Magnesium-Eisen-Oxid (Mg-Fe-O), Bereiche 7 aus Eisen-Chrom- Nickel-Oxid (Fe-Cr-Ni-O) und ein Spinell-Bereich 8 bezeichnet. Die Vergrößerung zeigt, dass die Aluminiumschmelze nicht in den Verbundwerkstoff eingedrungen ist. The recording on the right is an enlargement of the section marked with a rectangle in the left recording. In the enlargement, areas with different chemical constituents or compositions can be seen with numbers. Of these, an area 4 made of magnesium oxide (MgO), an area 5 made of 316L steel, areas 6 made of magnesium-iron oxide (Mg-Fe-O), areas 7 made of iron-chromium-nickel oxide (Fe- Cr-Ni-O) and a spinel region 8. The enlargement shows that the aluminum melt did not penetrate the composite material.
Dies wird durch eine Kombination der REM- Aufnahmen mit einer energiedispersiven Röntgenspektroskopie - Energy Dispersive X-Ray-Spectroscopy (EDX) - von charakteristi- schen Bereichen einer Kontaktzone zwischen dem Verbundwerkstoff-Probekörper und der Aluminiumschmelze deutlich. Fig. 5 zeigt dabei den Verbundwerkstoff-Probekörper 1, der in einer durch eine punktierte Linie 2 dargestellten Kontaktzone mit der bei 3 im erstarrten zustand gezeigten Schmelze 3 in Kontakt war. Zum Aufnahmerand hin ist bei 4 das Ein- bettharz dargestellt. This is made clear by a combination of the SEM images with energy dispersive X-ray spectroscopy - Energy Dispersive X-Ray Spectroscopy (EDX) - of characteristic areas of a contact zone between the composite material specimen and the aluminum melt. 5 shows the composite material specimen 1, which has solidified in a contact zone represented by a dotted line 2 with that at 3 state shown melt 3 was in contact. The embedding resin is shown at 4 towards the receiving edge.
Eine in Fig. 5 gezeigte chemische Zusammensetzung der entsprechenden Bereiche A, B, C und D in Form von Gewichtsprozent- und Atomprozent-Tabellen gibt keine Hinweise auf eine Infiltration des Verbundwerkstoff-Probekörpers durch die Aluminiumschmelze. A chemical composition of the corresponding areas A, B, C and D shown in FIG. 5 in the form of tables of weight percent and atomic percent does not indicate any infiltration of the composite material specimen by the aluminum melt.
Dies wird zusätzlich durch eine als Fig. 6 gezeigte elementselektive Darstellung ausge- wählter Elemente im Kontaktbereich zwischen dem Verbundwerkstoff-Probekörper und einer erstarrten Alurnirdumschmelze deutlich. Der mit REM markierten Gesamtdarstellung des korrosiv beanspruchten Verbundwerkstoff-Probekörpers folgen jeweilige, als Grau- schattierungen dargestellte Verteilungen der Elemente Eisen (Fe), Chrom (Cr), Nickel (Ni), Magnesium (Mg), Sauerstoff (O), Aluminium(Al) und Silizium (Si) in dem Gesamtbereich des REM-Bildes nach. Ist für die Elemente Eisen (Fe), Chrom (Cr), Nickel (Ni), oder Sauer- stoff (O) und auch Magnesium (Mg) durchaus eine großflächige Verteilung zu verzeich- nen, so sind die Elemente Aluminium und Silizium nur minimal und punktuell vorhan- den. Das bedeutet, dass der erfindungsgemäße Verbundwerkstoff selbst am Rand nicht mit Aluminium angereichert ist. Bei fehlender Anreicherung von Aluminium im Randbereich des Verbundwerkstoff-Probekörpers sollte auch das Innere des Verbundwerkstoff-Probe- körpers frei von Aluminium und damit frei von von außen eingedrungener Aluminium- schmelze sein. Das unterstreicht die hohe Korrosionsbeständigkeit des erfindungsgemäßen Verbundwerkstoffs in Kontakt mit Aluminiumschmelzen bzw. Aluminiumlegierungen. This is also made clear by an element-selective representation, shown as FIG. 6, of selected elements in the contact area between the composite material specimen and a solidified aluminum melt. The overall representation of the corrosively stressed composite test specimen marked with SEM is followed by the respective distributions of the elements iron (Fe), chromium (Cr), nickel (Ni), magnesium (Mg), oxygen (O), aluminum (Al) shown as shades of gray ) and silicon (Si) in the entire area of the SEM image. If the elements iron (Fe), chromium (Cr), nickel (Ni), or oxygen (O) and also magnesium (Mg) are distributed over a large area, the elements aluminum and silicon are only minimal and available at certain points. This means that the composite material according to the invention is not enriched with aluminum even at the edge. If there is no enrichment of aluminum in the edge area of the composite material specimen, the interior of the composite material specimen should also be free from aluminum and thus free from aluminum melt that has penetrated from the outside. This underlines the high corrosion resistance of the composite material according to the invention in contact with aluminum melts or aluminum alloys.
Eine Korrosion des Verbundwerkstoffs wurde vorliegend durch neugebildete komplexe MgO-basierte Oxidmischungen gehemmt. Anhand der elementselektiven Darstellung (Mapping) ist sichtbar, dass keine Korrosion durch Diffusion von Aluminium in die Probe- körper erfolgte. In the present case, corrosion of the composite material was inhibited by newly formed complex MgO-based oxide mixtures. The element-selective representation (mapping) shows that there was no corrosion due to diffusion of aluminum into the test specimen.
Die Veränderung der Struktur des Verbundwerkstoffs ergibt sich nicht aus dem Kontakt mit der Aluminiumschmelze sondern aus der Reaktion mit der sauerstoffhaltigen-Atmo- Sphäre im Ofen während des Aufheizens auf die Prüftemperatur von 850 °C vor dem Ein- tauch-Prozess. Dazu wurden Proben wie üblich innerhalb 4 h auf 850 °C aufgeheizt und anschließend weitere 24 h bei dieser Temperatur der Ofenatmosphäre ausgesetzt. The change in the structure of the composite material does not result from the contact with the aluminum melt but from the reaction with the oxygen-containing atmosphere Sphere in the furnace during heating to the test temperature of 850 ° C before the immersion process. For this purpose, samples were heated to 850 ° C. within 4 hours as usual and then exposed to the furnace atmosphere at this temperature for a further 24 hours.
Fign. 7a bis f stellen beispielhaft Probekörper aus reinem Stahl und Verbundwerkstoffvari- anten mit jeweüs 40 Vol.% Magnesiumoxid und weiteren Oxiden nach 24 h Oxidationsver- suchen im Gasofen bei 850 °C wie folgt dar: a) Stahl 316L, b) Stahl 16-7-3, c) Stahl 316L +Figs. 7a to f show sample specimens made of pure steel and composite material variants each with 40% by volume magnesium oxide and further oxides after 24 h oxidation tests in a gas furnace at 850 ° C as follows: a) steel 316L, b) steel 16-7 -3, c) steel 316L +
40 Vol.% Titandioxid ( TiO2 ), d) Stahl 16-7-3 + 40 Vol.% TiO2 , e) Stahl 316L + 40 Vol.% MgO und f) Stahl 16-7-3 + 40 Vol.% MgO. Die Stahlvariante 16-7-3 ist eine nicht genormte Legie- rung mit 16 % Chrom, 7 % Mangan, 3 % Nickel, < 0,1 % Molybdän und weiterer sonstigen Zusammensetzung gemäß Stahl 316L. 40 vol.% Titanium dioxide (TiO 2 ), d) steel 16-7-3 + 40 vol.% TiO 2 , e) steel 316L + 40 vol.% MgO and f) steel 16-7-3 + 40 vol.% MgO. The steel variant 16-7-3 is a non-standardized alloy with 16% chromium, 7% manganese, 3% nickel, <0.1% molybdenum and other other compositions according to steel 316L.
In den Fign. 7a bis f, die photographisch bedingte Schattenwürfe bzw. Schattierungen auf- weisen, sind einer Identifizierung der Probekörper dienende Markierungen durch punk- tierte, mit einem Pfeil 1 bezeichnete Rechtecke 1 kenntlich gemacht. Die Referenz-Probe- körper aus Stahl bzw. Stahl und TiO2 - Fign. 7a, b, c, d - weisen deutliche Beeinträchti- gungen auf. So weisen die Referenz-Probekörper der Fign. 7a, b bei 2 dargestellte Oxidati- onen wie eine Eisenoxidbildung in Form von Flocken auf. Die in den Fign. 7c, d dargestell- ten Referenz-Probekörper sind von Oxidhäuten 3 umgeben. In FIGS. 7a to f, which have photographically caused shadows or shadows, markings serving to identify the test specimens are identified by dotted rectangles 1 marked with an arrow 1. The reference specimens made of steel or steel and TiO 2 - FIGS. 7a, b, c, d - show significant impairments. The reference specimens of FIGS. 7a, b at 2 shown oxidations such as iron oxide formation in the form of flakes. The in FIGS. 7c, d shown are surrounded by oxide skins 3.
Es ist deutlich sichtbar, dass die Probekörper mit MgO - Fign. 7e, f - dagegen nahezu kei- ne, allenfalls äußerst geringe Oxidationserscheinungen durch außen aufwachsende Schich- ten bzw. Flocken aufweisen. In Bereichen 4, die den markierten Bereichen 2, 3 der Refe- renz-Probekörper entsprechen, sind in den Fign. 7e, f keine Veränderungen zu beobachten. It is clearly visible that the test specimens with MgO - Figs. 7e, f - on the other hand, show almost no, at best extremely slight, signs of oxidation due to layers or flakes growing on the outside. In areas 4, which correspond to the marked areas 2, 3 of the reference specimens, are shown in FIGS. 7e, f no changes observed.
Die Probekörper wurden nach dem Oxidationsversuch vermessen und gewogen, um den Einfluss der Probenzusammensetzung auf die thermophysikalischen Eigenschaften zu identifizieren. Die Ergebnisse sind in Tabelle 1 gezeigt. Im Rahmen der untersuchten Vari- anten weisen die erfindungsgemäßen Probekörper mit 40 Vol.% MgO die intensivsten Ver- änderungen während der Oxidation im Gasofen gegenüber dem gesinterten Zustand auf. After the oxidation test, the test specimens were measured and weighed in order to identify the influence of the sample composition on the thermophysical properties. The results are shown in Table 1. Within the scope of the investigated variants, the test specimens according to the invention with 40 vol.% MgO show the most intensive changes during the oxidation in the gas furnace compared to the sintered state.
Tabelle 1. Einfluss der Probenzusammensetzung auf die thermophysikalischen Eigen- schäften im gesinterten Zustand und nach dem Oxidationsversuch im gasbeheizten Ofen. Table 1. Influence of the sample composition on the thermophysical properties in the sintered state and after the oxidation test in a gas-heated furnace.
Aufgrund der Ausbildung von Schutzschichten im Probeninneren (siehe auch Fig. 3) erge- ben sich verbesserte Korrosionseigenschaften im Vergleich zu den locker anhaftenden Oxidschichten der Proben Fign. 5 a-d. The formation of protective layers in the interior of the sample (see also FIG. 3) results in improved corrosion properties compared to the loosely adhering oxide layers of the samples in FIGS. 5 a-d.
Zusätzlich weisen die erfindungsgemäßen Probekörper die geringste Schwindung wäh- rend der Sinterung auf, was ein wesentlicher Faktor für die Konstruktion und Herstellung großformatiger Teile ist. In addition, the test specimens according to the invention show the lowest shrinkage during sintering, which is an essential factor for the design and manufacture of large-format parts.
Die bei dem untersuchten erfindungsgemäßen Verbundwerkstoff eingesetzten Stähle sind wie folgt aufgebaut. Das matrixbildende Metall besteht aus hochlegiertem Stahl, bevorzugt mit Chrom, Nickel, Mangan, Vanadium, Titan als Hauptlegierungselementen. Weitere Le- gierungsbestandteile können ein oder mehrere aus dem Bereich Silizium, Kohlenstoff bzw. Aluminium sein. The steels used in the investigated composite material according to the invention are structured as follows. The matrix-forming metal consists of high-alloy steel, preferably with chromium, nickel, manganese, vanadium, titanium as the main alloying elements. Further alloy components can be one or more from the field of silicon, carbon or aluminum.

Claims

Patentansprüche: Patent claims:
1. Verbundwerkstoff aus Metall und Keramik für Anwendungen in der Aluminiumme- tallurgie mit mindestens 40 Vol.% Metall und mindestens 1 Vol.% Magnesiumoxid und/oder Magnesiumoxid-haltigen Verbindungen, wobei der Verbundwerkstoff mittels eines 3-dimensionalen Druckverfahrens, Entbinderung und Sintern von einem metalloke- ramischen Schlicker aus Magnesiumoxid- bzw. Magnesiumhydroxid-haltigem-Pulver und Metallpulver bei Raumtemperatur herstellbar ist. 1. Composite material made of metal and ceramic for applications in aluminum metallurgy with at least 40% by volume of metal and at least 1% by volume of magnesium oxide and / or compounds containing magnesium oxide, whereby the composite material is made using a 3-dimensional printing process, debinding and sintering a metal-ceramic slip from powder containing magnesium oxide or magnesium hydroxide and metal powder can be produced at room temperature.
2. Verbundwerkstoff aus Metall und Keramik für Anwendungen in der Aluminiumme- tallurgie mit mindestens 40 Vol.% Metall und mindestens 1 Vol.% Magnesiumoxid und/oder Magnesiumoxid-haltigen Verbindungen, wobei der Verbundwerkstoff mittels eines 3-dimensionalen Druckverfahrens, Entbinderung und Sintern von einer Paste aus Magnesiumoxid- bzw. Magnesiumhydroxid-haltigem-Pulver und Metallpulver bei Raum- temperatur herstellbar ist. 2. Composite material made of metal and ceramics for applications in aluminum metallurgy with at least 40% by volume of metal and at least 1% by volume of magnesium oxide and / or compounds containing magnesium oxide, the composite material using a 3-dimensional printing process, debinding and sintering of a paste from powder containing magnesium oxide or magnesium hydroxide and metal powder can be produced at room temperature.
3. Verbundwerkstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Ver- bundwerkstoff mindestens 10 Vol.% Magnesiumoxid und/oder Magnesiumoxid-haltige Verbindungen enthält. 3. Composite material according to claim 1 or 2, characterized in that the composite material contains at least 10% by volume of magnesium oxide and / or compounds containing magnesium oxide.
4. Verbvmd Werkstoff nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Metall Stahl umfasst. 4. Verbvmd material according to one of claims 1 to 3, characterized in that the metal comprises steel.
5. Verbundwerkstoff nach Anspruch 4, dadurch gekennzeichnet, dass der Verbund- werkstoff Chrom, Nickel, Vanadium, Mangan und/oder Titanium als Legierungselemente enthält. 5. Composite material according to claim 4, characterized in that the composite material contains chromium, nickel, vanadium, manganese and / or titanium as alloying elements.
6. Verfahren zur Herstellung eines Verbundwerkstoffs aus Metall und Keramik für Anwendungen in der Aluminiummetallurgie enthaltend mindestens 40 Vol.% Metall und mindestens 1 Vol.% Magnesiumoxid oder Magnesiumoxid-haltige Verbindungen, wobei das Metall und die Keramik in Form eines Granulats, Pulvers und/oder einer Faser bei Raumtemperatur gepresst, getrocknet, entbindert und unter Schutzgasatmosphäre oder in einem Vakuum im Temperaturbereich 1000°C bis 1500°C gesintert werden. 6. Process for the production of a composite material from metal and ceramic for applications in aluminum metallurgy containing at least 40% by volume of metal and at least 1% by volume of magnesium oxide or compounds containing magnesium oxide, the metal and the ceramic in the form of granules, powder and / or a fiber can be pressed, dried, debinded and sintered in a protective gas atmosphere or in a vacuum in the temperature range 1000 ° C to 1500 ° C at room temperature.
7. Verfahren zur Herstellung eines Verbundwerkstoffs aus Metall und Keramik für Anwendungen in der Aluminiummetallurgie enthaltend mindestens 40 Vol.% Metall und mindestens 1 Vol.% Magnesiumoxid oder Magnesiumoxid-haltige Verbindungen, wobei das Metall und die Keramik in Form von metallokeramischen Schlickern auf wässriger o- der nicht-wässriger Basis bei Raumtemperatur gegossen, getrocknet, entbindert und unter Schutzgasatmosphäre oder in einem Vakuum im Temperaturbereich 1000°C bis 1500°C ge- sintert werden. 7. A method for producing a composite material made of metal and ceramic for applications in aluminum metallurgy containing at least 40% by volume of metal and at least 1% by volume of magnesium oxide or compounds containing magnesium oxide, the metal and the ceramic in the form of metal-ceramic slurries on aqueous or similar substances - the non-aqueous base can be poured, dried, debinded and sintered in a protective gas atmosphere or in a vacuum in the temperature range 1000 ° C to 1500 ° C at room temperature.
8. Verfahren zur Herstellung eines Verbundwerkstoffs aus Metall und Keramik für Anwendungen in der Aluminiummetallurgie enthaltend mindestens 40 Vol.% Metall und mindestens 1 Vol.% Magnesiumoxid oder Magnesiumoxid-haltige Verbindungen, wobei eine bei Raumtemperatur bildsame, metallokeramische Masse bei Raumtemperatur extru- diert, getrocknet, entbindert und unter Schutzgasatmosphäre oder in einem Vakuum im Temperaturbereich 1000°C bis 1500°C gesintert wird. 8. A process for the production of a composite material made of metal and ceramics for applications in aluminum metallurgy containing at least 40% by volume of metal and at least 1% by volume of magnesium oxide or compounds containing magnesium oxide, a metal-ceramic material that is malleable at room temperature extruding at room temperature, dried, debinded and sintered under a protective gas atmosphere or in a vacuum in the temperature range 1000 ° C to 1500 ° C.
9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass das ge- presste, gegossene oder extrudierte Halbzeug aus dem Metall und der Keramik vor dem Entbindem und Sintern geformt wird. 9. The method according to any one of claims 6 to 8, characterized in that the pressed, cast or extruded semi-finished product is formed from the metal and the ceramic before debinding and sintering.
10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass metallo- keramische Schlicker oder Pasten aus Magnesiumoxid-Pulvem und/oder Magnesiumhyd- roxid-haltigen Pulvern in Kombination mit Stahlpulvem mittels 3-dimensionaler, generati- ver Fertigungsverfahren gedruckt und anschließend entbindert und gesintert werden. 10. The method according to any one of claims 6 to 9, characterized in that metallo-ceramic slips or pastes of magnesium oxide powders and / or magnesium hydroxide-containing powders in combination with steel powders by means of 3-dimensional, generative ver manufacturing processes are printed and then debinded and sintered.
11. Verfahren nach einem der Ansprüche 6 bislO, dadurch gekennzeichnet, dass noch nicht getrocknete Erzeugnisse mit wässrigen oder nicht-wässrigen metallischen oder me- tallokeramischen Schlickern und/oder bildsamen Massen beschichtet werden und bei11. The method according to any one of claims 6 to 10, characterized in that products which have not yet dried are coated with aqueous or non-aqueous metallic or metalloceramic slips and / or plastic masses and at
Raumtemperatur zusammengefügt, getrocknet, entbindert und unter Schutzgasatmosphä- re oder Vakuum im Temperaturbereich 1000°C bis 1500°C gesintert werden. They can be assembled at room temperature, dried, debinded and sintered in a protective gas atmosphere or vacuum in the temperature range 1000 ° C to 1500 ° C.
EP20742155.3A 2019-06-07 2020-06-08 Composite material composed of metal and ceramic, and method for production thereof Pending EP3980204A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019004037 2019-06-07
DE102019006457.7A DE102019006457A1 (en) 2019-06-07 2019-09-12 Metal and ceramic composite material and process for its manufacture
PCT/DE2020/000125 WO2020244695A1 (en) 2019-06-07 2020-06-08 Composite material composed of metal and ceramic, and method for production thereof

Publications (1)

Publication Number Publication Date
EP3980204A1 true EP3980204A1 (en) 2022-04-13

Family

ID=73459753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20742155.3A Pending EP3980204A1 (en) 2019-06-07 2020-06-08 Composite material composed of metal and ceramic, and method for production thereof

Country Status (3)

Country Link
EP (1) EP3980204A1 (en)
DE (2) DE102019006457A1 (en)
WO (1) WO2020244695A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113172724A (en) * 2021-03-05 2021-07-27 南京航空航天大学 Preparation process of controllable network ceramic/metal composite material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD210931A1 (en) 1981-04-06 1984-06-27 Univ Halle Wittenberg HIGH-FIBER SOLID PRODUCTS WITH HIGH CORROSION RESISTANCE TO METAL MELTS
EP0134821B1 (en) 1983-07-22 1987-07-15 BBC Aktiengesellschaft Brown, Boveri & Cie. High-temperature protective coating
US5037070A (en) 1990-09-20 1991-08-06 General Motors Corporation Melt containment apparatus with protective oxide melt contact surface
EP0575685B1 (en) * 1992-06-23 1997-01-15 Sulzer Innotec Ag Investment casting with wear surfaces
DE19855422A1 (en) * 1998-12-01 2000-06-08 Basf Ag Hard material sintered part with a nickel- and cobalt-free, nitrogen-containing steel as a binder of the hard material phase
US6645270B2 (en) * 2001-12-18 2003-11-11 C. Edward Eckert Method of heating a crucible for molten aluminum
WO2004043875A2 (en) * 2002-11-11 2004-05-27 Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt Ceramic-metal or metal-ceramic composite
DE102012021906A1 (en) 2012-11-09 2014-05-15 Fct Ingenieurkeramik Gmbh Ceramic composite material for metallurgy-material-affecting conservation, comprises composite obtained by mixing substance portions of silicon nitride and zirconium oxide, and surface layer obtained by heat-treating composite
CN105458256A (en) * 2015-12-07 2016-04-06 株洲西迪硬质合金科技股份有限公司 Metal-based composite material and material additive manufacturing method thereof

Also Published As

Publication number Publication date
DE102019006457A1 (en) 2020-12-10
DE212020000614U1 (en) 2022-03-30
WO2020244695A4 (en) 2021-01-28
WO2020244695A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
EP0800495B1 (en) Production of an aluminide-containing ceramic moulding
EP0531378A1 (en) Reaction-bonded mullite-containing ceramic, its formation and use.
DE112007000923B4 (en) Composite material of metal and ceramic, process for its production, its use and energy absorption component
EP0902771B1 (en) Metal-ceramic shaped body and process for manufacturing the same
EP1718777A1 (en) Method for the production of a molybdenum alloy
EP1764062A1 (en) Shaped body made of dental alloy for making a dental restoration
WO2014044429A1 (en) Production of a refractory metal component
EP3034640A1 (en) Composite material made of metal and ceramic, method for manufacturing a composite of metal and ceramic, and use of a compound material for components in direct contact with aluminium melting
EP3980204A1 (en) Composite material composed of metal and ceramic, and method for production thereof
DE102015211623A1 (en) Method for producing a valve seat ring
DE19750599A1 (en) Metal-ceramic construction element - its structure and its manufacture
DE102004002714B3 (en) To produce sintered components, of light metal alloys, the powder is compressed into a green compact to be give a low temperature sintering followed by further compression and high temperature sintering
WO2004043875A2 (en) Ceramic-metal or metal-ceramic composite
AT10479U1 (en) FLUID-DENSITY SINTERED METAL PARTS AND METHOD FOR THE PRODUCTION THEREOF
DE102012009374B4 (en) Inorganic, metal-containing moldings in a specific form previously imaged in a paper structure and process for its preparation
DE10117394A1 (en) Metal-ceramic brake disk used for brakes comprises a matrix made from column and/or crystal-like silicon nitride infiltrated with an aluminum alloy in a squeeze-casting method
AT403576B (en) FIREPROOF STONE
DE19750600A1 (en) New constructional element consists of a magnesium-infiltrated porous metal reinforcing element body
Wędrychowicz et al. The effect of adding iron powder from plasma cutting on the microstructure, mechanical properties of the composite based on aluminum powder matrix made using powder metallurgy
EP1252349B1 (en) Die casting of refractory metal-ceramic composite materials
WO2017186202A1 (en) Composite material comprising metal and a ceramic, method for producing a composite material comprising metal and ceramic and use of the composite material for components that are in direct contact with aluminium melts
DE19752775C1 (en) Sacrificial body for aluminum oxide-titanium aluminide composite body production by molten aluminum filling
WO2008086930A1 (en) Ceramic preform for the production of metal-ceramic composite materials
DE202016008715U1 (en) Composite material of metal and a ceramic
DE10354260A1 (en) Carbon-free, chromium oxide-free refractory stone with non-oxide components

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAUKE.SEMRAU GMBH