WO2017186202A1 - Composite material comprising metal and a ceramic, method for producing a composite material comprising metal and ceramic and use of the composite material for components that are in direct contact with aluminium melts - Google Patents

Composite material comprising metal and a ceramic, method for producing a composite material comprising metal and ceramic and use of the composite material for components that are in direct contact with aluminium melts Download PDF

Info

Publication number
WO2017186202A1
WO2017186202A1 PCT/DE2016/000180 DE2016000180W WO2017186202A1 WO 2017186202 A1 WO2017186202 A1 WO 2017186202A1 DE 2016000180 W DE2016000180 W DE 2016000180W WO 2017186202 A1 WO2017186202 A1 WO 2017186202A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
ceramic
metal
room temperature
titanium
Prior art date
Application number
PCT/DE2016/000180
Other languages
German (de)
French (fr)
Inventor
Christos Aneziris
Steffen Dudczig
Christian Weigelt
Original Assignee
Zpf Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zpf Gmbh filed Critical Zpf Gmbh
Priority to PCT/DE2016/000180 priority Critical patent/WO2017186202A1/en
Publication of WO2017186202A1 publication Critical patent/WO2017186202A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/10Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on titanium carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides

Definitions

  • Composite material of metal and a ceramic Method for producing a composite material of metal and ceramic and use of a composite material for components that are in direct contact with aluminum melts
  • the invention relates to a composite material of metal and a titanium-containing ceramic according to claim 1, a method for producing a composite material of metal and ceramic according to claim 6 and a use of a composite material according to claim 12.
  • DE 10 2007 044 160 AI describes a composite material made of metal and ceramic, wherein at least one ceramic and / or metallic material consists of a material which is capable of a volume change via a phase transformation in the solid state.
  • the metallic material component is a metal with transformation-induced plasticity (TRIP), TRIP metal) and / or a metal with twinning induced plasticity (TWIP), TWIP metal ) or a TRIP and / or TWIP metal alloy.
  • the ceramic material component is zirconium dioxide, zirconia-containing materials, quartz and quartz-containing materials, aluminum titanate
  • DE 10 2010 033 485.5 discloses a composite material comprising 90 to 99.9% by volume, preferably 95 to 99.5% by volume, of metallic materials with TRIP / TWIP properties and 10 to 0.1% by volume, preferably 5 to 0.5 vol.% of a ceramic component which has undergone a volume change in-situ by chemical phase regeneration or phase decomposition in the solid state.
  • the ceramic component is magnesium aluminate spinel and / or its starting oxides or ⁇ -aluminum titanate and Al 2 O 3 and TiC.
  • This composite material is also intended for material replacement under high mechanical loads.
  • the aforementioned composites are not intended for contact with aluminum melts. It is known that refractory liners with dense structure so low porosity using primary raw materials such. As chamottes, corundum, sintered magnesite, forsterite, chrome ore, silicon carbide, etc. can be produced.
  • a slag of iron titanium alloy production can be used as an additive for refractory products.
  • the aforementioned refractory linings are used as material in key components such as As stirrers, slide plates, spout, gutters, G fool Hampshiren, flushing cones, risers or casting rings due to the brittle fracture behavior at room temperature under tensile, bending or compressive stress can not be used.
  • the invention is based on the technical object of increasing the corrosion resistance of composite materials in contact with aluminum melts or aluminum alloys and largely avoiding or precluding brittle fracture behavior of composite materials at room temperature under tensile, bending or compressive stress.
  • the invention solves the problem with a composite material according to claim 1, a method for producing a composite material according to claim 6 and a use of a composite material in the aluminum metallurgy according to claim 12.
  • the invention provides for a ductile composite of 40 to 99 vol.%, In particular 60 to 99 vol.% Of metal and 1 to 60 vol.%, In particular 1 to 40 vol.% Of a titanium-containing ceramic before.
  • the invention provides a method for producing a composite material of metal and ceramic, in particular a composite material according to the first aspect, comprising metals in the form of powders, granules or fibers with titanium-containing, oxides, carbides, nitrides, borides ceramic powders, granules or fibers mixed, are formed by a powder metallurgical Urform styless vide at room temperature in components that are dried, debindered in the temperature range of 200 to 500 ° C and then sintered in a protective gas atmosphere or under vacuum in the temperature range of 1000 to 1500 ° C.
  • the invention provides for a use of a preferably ductile composite of 60-99 vol.% Of metal and 1-40 vol.% Of a titanium-containing ceramic in aluminum metallurgy as lining material of metallurgical vessels or as material in key components produced in direct Contact with molten metal such as stirrers, slide plates, pumps, spouts, gutters, pouring bridges, flushing cones, risers or casting rings are present.
  • the composite material according to the invention can be used in the field of aluminum metallurgy as lining material of metallurgical vessels or as material in key components which are in direct contact with the molten metal.
  • Key components include stirrers, gate plates, pumps, spouts, gutters, pouring bridges, scoops, pumps, risers, or casting rings.
  • the invention has the advantage of being able to adjust the properties of a composite material in a targeted manner and thus of being able to use it in a variety of ways in aluminum metallurgy.
  • the metal is a steel.
  • the steel preferably contains chromium, nickel, vanadium, manganese and titanium alloying elements.
  • the titanium-containing ceramic is a titanium oxide-containing ceramic and / or titanium carbide (TiC) and / or titanium nitride (TiN) and / or titanium boride (TiB2).
  • the inventive titanium oxide-containing ceramic contains titanium dioxide (T1O2) and / or aluminum titanate (Al2T1O5) and / or magnesium titanate (MgTiCb) and / or iron titanate (FeTiCb) and / or barium titanate (BaTiO) and / or zirconium titanate (ZrTiO-t).
  • the ductile composite material according to the invention may be composed such that a ductile deformation under tensile, bending or compressive load is already present at room temperature.
  • hot press processes for densification or spark plasma sintering processes may be used.
  • the use according to the invention of a composite material can be distinguished by the use of products which are produced by means of pressing processes at room temperature of granules or powders or fibers of metal and ceramic, casting methods based on metalloceramic slips on an aqueous or nonaqueous basis or extrusion processes the basis of room-temperature, kneadable metalloceramic masses are formed, then dried, debindered and sintered under a protective gas atmosphere or vacuum in the temperature range 1000 ° C to 1500 ° C.
  • composite metalloceramic papers which are formed by Filtrationsgnite mitochondrial at room temperature and then dried, debindered and sintered under a protective gas atmosphere or vacuum in the temperature range 1000 ° C to 1500 ° C.
  • Fig. Lb is a stress-strain diagram
  • Fig. 2 is a picture of three specimens after corrosion tests.
  • a vivid route of composites involves mixing, homogenizing, and kneading the powdered solids with the addition of water and a water-soluble or- ganic binder system based on cellulose derivatives, wetting agents and lubricants.
  • Steel powder of high-alloy CrMnNi steel with the following chemical composition is used: 16.2% chromium, 6.1% nickel, 6.2% manganese, 0.07% carbon and 0.8% silicon, and aluminum titanate as a ceramic component.
  • a shaping in filigree (eg honeycomb body, hollow spaghetti) and compact semi-finished stranded products (eg solid cylinder) takes place by means of an extruder at room temperature by pressing the deformable mass through a die (mouthpiece).
  • the geometry of the composites to be produced can be varied within wide ranges.
  • the extruded samples After drying, the extruded samples have sufficient strength for handling, machining and joining.
  • the organic processing aids required for shaping are burned out without residue. Subsequent sintering produces the final strength and desired thermo-mechanical and corrosive properties of the composite materials.
  • the Fign. 1a, b show a stress-strain or stress-strain diagram of the composite materials according to the invention with additions of 5 or 10% by volume of aluminum titanate (ALTiOs) under quasistatic deformation at room temperature in a compression test (FIG ) and in the tensile test (Fig. lb).
  • the comparative sample used is the steel used in the production of the composite material.
  • prism-shaped honeycomb bodies having dimensions of 2.5 ⁇ 2.5 ⁇ 12.5 cm 3 were dipped on a guide for raising and lowering and rotating in a molten metal.
  • metal pieces of AlSi7Mg alloy with a mass of 2 kg were melted in a crucible made of corundum under ambient atmosphere and kept at 800 ° C.
  • the metalloceramic samples were half immersed in a new melt and rotated for three hours at 30 U / min. After the corrosion attempts were Sawing the samples for review of cross-sectional changes and partially etching with dilute HCl for a short time.
  • FIG. 2 shows three selected samples each containing 10 vol.% Titanium dioxide (TiC), aluminum titanate (AhTiOs) and zirconium dioxide (ZrO 2).
  • FIG. 2 shows the difference in cross-sectional change between samples containing titanium oxide and the inert oxide sample (ZrCh).
  • the sample of the 10 vol.% T1O2 are shown on the left, in the middle the sample of the 10 vol.% AhTiOs and on the right the sample of the 10 vol.% ZrOi.
  • the experiments show that the cross section remains the same but the length changes.
  • the sample with 10 vol.% Zirconia ( ⁇ ) is compared to that with 10 vol.% Titanium dioxide

Abstract

Use of a ductile composite material comprising metal and a ceramic containing titanium compounds for components that are in direct contact with aluminium melts. The ductile composite material used consists of 40 to 90% by volume metal, in particular steel, and 1 to 60% by volume a ceramic containing titanium compounds. This material is obtained by using products that are formed by means of compression moulding processes at room temperature from granules or powders or fibres of metal and ceramic, casting processes on the basis of aqueous or nonaqueous metalloceramic slips or extrusion processes on the basis of metalloceramic compounds that are malleable or kneadable at room temperature, subsequently dried, debindered and sintered under an inert gas atmosphere or vacuum in a temperature range of from 1000°C to 1500°C.

Description

Verbundwerkstoff aus Metall und einer Keramik, Verfahren zur Herstellung eines Verbundwerkstoffs aus Metall und Keramik und Verwendung eines Verbundwerkstoffs für Bauteile, die in direktem Kontakt mit Aluminiumschmelzen stehen  Composite material of metal and a ceramic, method for producing a composite material of metal and ceramic and use of a composite material for components that are in direct contact with aluminum melts
Die Erfindung betrifft einen Verbundwerkstoff aus Metall und einer Titanverbindungen enthaltenden Keramik gemäß Patentanspruch 1, ein Verfahren zur Herstellung eines Verbundwerkstoffs aus Metall und Keramik gemäß Patentanspruch 6 und eine Verwendung eines Verbundwerkstoffs gemäß Patentanspruch 12. Die DE 10 2007 044 160 AI beschreibt einen Verbundwerkstoff aus Metall und Keramik, wobei mindestens ein keramischer und/oder metallischer Werkstoff aus einem Werkstoff besteht, der zu einer Volumenänderung über eine Phasenumwandlung im festen Zustand fähig ist. Bei der metallischen Werkstoffkomponente handelt es sich dabei um ein Metall mit transformations-induzierter Plastizität (transformation-induced plasticity (TRIP), TRIP- Metall) und/oder ein Metall mit durch Zwillingsbildung induzierter Plastizität (Twinning Induced Plasticity (TWIP), TWIP-Metall) oder um eine TRIP- und/oder TWIP-Metallle- gierung. Bei der keramischen Werkstoffkomonente handelt es sich um Zirconiumdioxide, zirconiumdioxidhaltige Werkstoffe, Quarz und quarzhaltige Werkstoffe, Aluminiumtitana- The invention relates to a composite material of metal and a titanium-containing ceramic according to claim 1, a method for producing a composite material of metal and ceramic according to claim 6 and a use of a composite material according to claim 12. DE 10 2007 044 160 AI describes a composite material made of metal and ceramic, wherein at least one ceramic and / or metallic material consists of a material which is capable of a volume change via a phase transformation in the solid state. The metallic material component is a metal with transformation-induced plasticity (TRIP), TRIP metal) and / or a metal with twinning induced plasticity (TWIP), TWIP metal ) or a TRIP and / or TWIP metal alloy. The ceramic material component is zirconium dioxide, zirconia-containing materials, quartz and quartz-containing materials, aluminum titanate
1 1
BESTÄTIGUNGSKOPIE te, Bariumtitanate, Perowskitkeramiken oder Spinellkeramiken. Der Verbundwerkstoff wird verwendet für crashbeanspruchte Bauteile und versteifende Strukturkomponenten, Fahrwerkbauteile, Verschleiß- und Festigkeitskomponenten. Die DE 10 2010 033 485.5 offenbart einen Verbundwerkstoff, der aus 90 bis 99,9 Vol.%, vorzugsweise 95 bis 99,5 Vol.% metallischen Werkstoffen mit TRIP/TWIP-Eigenschaften und 10 bis 0,1 Vol.%, vorzugsweise 5 bis 0,5 Vol.% einer keramischen Komponente, die eine Volumenänderung in-situ durch chemische Phasenneubildung bzw. Phasenzersetzung im festen Zustand erfahren hat, besteht. Bei der keramischen Komponente handelt es sich dabei um Magnesiumaluminatspinell und/oder dessen Ausgangsoxide bzw. ß-Aluminiumtitanat und AI2O3 und TiC . Auch dieser Verbundwerkstoff ist für den Werkstoffernsatz bei hohen mechanischen Belastungen vorgesehen. Vorgenannte Verbundwerkstoffe sind nicht für den Kontakt mit Aluminiumschmelzen vorgesehen. Es ist bekannt, dass Feuerfest-Zustellungen mit dichter Struktur also mit niedriger Porosität unter Einsatz von primären Rohstoffen wie z. B. Schamotten, Korund, Sintermagnesit, Forsterit, Chromerz, Siliziumkarbid usw. hergestellt werden können. (Routschka, G., Wuthnow, H.,„Praxishandbuch Feuerfeste Werkstoffe", Vulkan Verlag, 2011). Es sind verschiedene Schädigungsarten durch die Wechselwirkung von schmelzflüssigem Aluminium bzw. Aluminiumlegierungen mit dem Feuerfesterzeugnis bekannt. Schmelzflüssiges Aluminium bzw. eine schmelzflüssige Aluminiumlegierung dringt in offene Poren des Feuerfesterzeugnisses ein. Das hat zur Folge, dass nach Abschluss einer Schmelzoder Behandlungskampagne mit dem Feuerfesterzeugnis und dessen Erkalten das Alumi- nium bzw. die Aluminiumlegierung in den Poren des Feuerfesterzeugnisses erstarrt. Nach erneutem Aufheizen des Feuerfesterzeugnisses kommt es dann aufgrund des unterschiedlichen thermischen Ausdehnungsverhaltens von Aluminium bzw. der Aluminiumlegierung und des Feuerfesterzeugnisses, d. h. der stärkeren thermischen Ausdehnung des A- luminiums bzw. der Aluminiumlegierung zur mechanischen Belastung der Poren des Feu- erfesterzeugnisses. In der Folge kommt es zu Rissbildungen und zum Abplatzen von Teilen des Feuerfesterzeugnisses. CONFIRMATION COPY te, barium titanates, perovskite ceramics or spinel ceramics. The composite material is used for crash-stressed components and stiffening structural components, chassis components, wear and strength components. DE 10 2010 033 485.5 discloses a composite material comprising 90 to 99.9% by volume, preferably 95 to 99.5% by volume, of metallic materials with TRIP / TWIP properties and 10 to 0.1% by volume, preferably 5 to 0.5 vol.% of a ceramic component which has undergone a volume change in-situ by chemical phase regeneration or phase decomposition in the solid state. The ceramic component is magnesium aluminate spinel and / or its starting oxides or β-aluminum titanate and Al 2 O 3 and TiC. This composite material is also intended for material replacement under high mechanical loads. The aforementioned composites are not intended for contact with aluminum melts. It is known that refractory liners with dense structure so low porosity using primary raw materials such. As chamottes, corundum, sintered magnesite, forsterite, chrome ore, silicon carbide, etc. can be produced. (Routschka, G., Wuthnow, H., "Practical Guide Refractory Materials", Vulkan Verlag, 2011.) There are various types of damage due to the interaction of molten aluminum or aluminum alloys with the refractory product known melted aluminum or a molten aluminum alloy penetrates As a result, after completion of a smelting or treatment campaign with the refractory product and its cooling, the aluminum or aluminum alloy solidifies in the pores of the refractory product Expansion behavior of aluminum or the aluminum alloy and the refractory product, ie the greater thermal expansion of the aluminum or the aluminum alloy for mechanical loading of the pores of the fire erfesterzeugnisses. As a result, cracking and flaking of parts of the refractory product occurs.
Des Weiteren erfolgt ein Angriff durch das Medium Aluminium bzw. Aluminiumlegie- rung auf das Feuerfesterzeugnis im schmelzflüssigen Zustand des Aluminiums bzw. der Aluminiumlegierung als Folge des Kontaktes des Aluminiums bzw. der Aluminiumlegierung mit den im Feuerfesterzeugniss enthaltenen Si-O-Gruppierungen. Die folgende chemische Korrosionsreaktion betrifft die Zersetzung bzw. Umwandlung der Si-O-Bestand- teile. Es kann folgende Primär-Reaktion angeführt werden (Furness A.G. and T.E.J Talbot, Sixth Conference and Exhibition of the European Ceramic Society, Vol. 2, Brighton, UK, 20. - 24. Juni 1999, S. 151-152): Furthermore, an attack by the medium aluminum or Aluminiumlegie- tion takes place on the refractory product in the molten state of the aluminum or aluminum alloy as a result of contact of the aluminum or aluminum alloy with the Si-O groups contained in the refractory product. The following chemical corrosion reaction involves the decomposition or conversion of the Si-O components. The following primary reaction can be cited (Furness A.G. and T.E.J Talbot, Sixth Conference and Exhibition of the European Ceramic Society, Vol.2, Brighton, UK, June 20-24, 1999, pp. 151-152):
2Aliiquid + 1,5 S1O2 -> AI2O3 + 1,5 Si Als Folge dieser Austauschreaktion kann das Feuerfesterzeugnis völlig zersetzt und unbrauchbar für die vorgesehenen Zwecke des Einsatzes in pyrotechnischen, wärmeerzeugenden oder wärmespeichernden Anlagen werden. 2Aliiquid + 1.5 S1O2 -> AI2O3 + 1.5 Si As a result of this exchange reaction, the refractory product may become completely degraded and unusable for the intended purpose of use in pyrotechnic, heat generating or heat storage facilities.
Schließlich erfolgt ein ungeklärtes Wachstum von korundartigen Knollen im Kontaktbe- reich des Feuerfesterzeugnisses mit dem schmelzflüssigen Aluminium bzw. der schmelzflüssigen Aluminiumlegierung. Diese Knollen wachsen in das Feuerfesterzeugnis hinein. Vorausgehend ist die Infiltration des Aluminiums bzw. der Aluminiumlegierung in das Hochfeuerfesterzeugnis (Neff, D.V., Teller, R.G.„Mechanism of corundum formation and prevention techniques", 2nd International Conference on molten aluminum processing 1989, S. 18.1-18.19). Finally, there is an unexplained growth of corundum-like tubers in the contact area of the refractory product with the molten aluminum or the molten aluminum alloy. These tubers grow into the refractory product. Preceding the infiltration of the aluminum or aluminum alloy is in the high refractory article (Neff, DV, plates, RG "Mechanism of corundum formation and prevention techniques", 2 nd International Conference on molten aluminum processing 1989, pp 18.1-18.19).
Infolge dieses Wachstums von Korundknollen kommt es zu einer Verkleinerung der Wirkfläche des Hochfeuerfesterzeugnisses mit dem schmelzflüssigen Aluminium bzw. mit der schmelzflüssigen Aluminiumlegierung. An besonders heißen Stellen des Hochfeuerfester- Zeugnisses, die mit Schmelzen in direktem Kontakt stehen, kommt es zur verstärkten Bil- dung und Wucherung dieser Knollen, bis diese Teile des Hochfeuerfesterzeugnisses von Zeit zu Zeit völlig erneuert werden müssen. Die Kosten für Schmelzen und Behandeln von Aluminium bzw. von Aluminiumlegierungen in Hochfeuerfesterzeugnissen steigen somit an. As a result of this growth of corundum tubers, there is a reduction in the effective area of the refractory product with the molten aluminum or with the molten aluminum alloy. In particularly hot spots of the Hochfeuerfester certificate, which are in direct contact with melts, increased the growth and proliferation of these tubers until these parts of the High Firing Product have to be completely renewed from time to time. The costs of melting and treating aluminum or aluminum alloys in refractory products thus increase.
Aus der DD 210 931 ist es bekannt, dass eine Schlacke der Eisentitan-Legierungserzeugung (aluminothermisches Verfahren) als Zuschlagstoff für Feuerfesterzeugnisse verwendet werden kann. Dadurch kommt es zu einer hohen Korrosionsbeständigkeit des Feuerfesterzeugnisses gegenüber Metallschmelzen. Vorgenannte Feuerfestzustellungen sind als Werk- stoff in Schlüsselbauteilen wie z. B. Rührern, Schieberplatten, Ausgussrohren, Rinnen, Gießbrücken, Spülkegeln, Steigrohren oder Abgussringen infolge des spröden Bruchverhaltens bei Raumtemperatur unter Zug-, Biege- oder Druckbeanspruchung nicht einsetzbar. Der Erfindung liegt die technische Aufgabe zugrunde, die Korrosionsbeständigkeit von Verbundwerkstoffen in Kontakt mit Aluminiumschmelzen bzw. Aluminiumlegierungen zu erhöhen und ein sprödes Bruchverhalten von Verbundwerkstoffen bei Raumtemperatur unter Zug-, Biege- oder Druckbeanspruchung weitestgehend zu vermeiden bzw. auszuschließen. From DD 210 931 it is known that a slag of iron titanium alloy production (aluminothermic process) can be used as an additive for refractory products. This leads to a high corrosion resistance of the refractory product compared to molten metal. The aforementioned refractory linings are used as material in key components such as As stirrers, slide plates, spout, gutters, Gießbrücken, flushing cones, risers or casting rings due to the brittle fracture behavior at room temperature under tensile, bending or compressive stress can not be used. The invention is based on the technical object of increasing the corrosion resistance of composite materials in contact with aluminum melts or aluminum alloys and largely avoiding or precluding brittle fracture behavior of composite materials at room temperature under tensile, bending or compressive stress.
Die Erfindung löst die Aufgabe mit einem Verbundwerkstoff gemäß Patentanspruch 1, einem Verfahren zur Herstellung eines Verbundwerkstoffs gemäß Patentanspruch 6 und einer Verwendung eines Verbundwerkstoffs in der Aluminiummetallurgie gemäß Patentanspruch 12. The invention solves the problem with a composite material according to claim 1, a method for producing a composite material according to claim 6 and a use of a composite material in the aluminum metallurgy according to claim 12.
In einem ersten Aspekt sieht die Erfindung dazu einen duktilen Verbundwerkstoff aus 40 bis 99 Vol.%, insbesondere 60 bis 99 Vol.% Metall und 1 bis 60 Vol.%, insbesondere 1 bis 40 Vol.% einer Titanverbindungen enthaltenden Keramik vor. In einem zweiten Aspekt sieht die Erfindung dazu ein Verfahren zur Herstellung eines Verbundwerkstoffs aus Metall und Keramik, insbesondere eines Verbundwerkstoffs nach dem ersten Aspekt vor, bei dem Metalle in Form von Pulvern, Granulaten oder Fasern mit titanhaltigen, Oxide, Karbide, Nitride, Boride umfassenden keramischen Pulvern, Granu- laten oder Fasern gemischt, über ein pulvermetallurgisches Urformgebungsverfahren bei Raumtemperatur in Bauteile geformt werden, die getrocknet, im Temperaturbereich von 200 bis 500°C entbindert und anschließend in Schutzgasatmosphäre oder unter Vakuum im Temperaturbereich von 1000 bis 1500°C gesintert werden. In einem dritten Aspekt sieht die Erfindung schließlich eine Verwendung eines vorzugsweise duktilen Verbundwerkstoffs aus 60 - 99 Vol.% Metall und 1 - 40 Vol.% einer Titanverbindungen enthaltenden Keramik in der Aluminiummetallurgie als Auskleidungsmaterial von metallurgischen Gefäßen oder als Werkstoff in Schlüsselbauteilen, die in direktem Kontakt mit der Metallschmelze stehen, wie Rührern, Schieberplatten, Pumpen, Ausguss- röhren, Rinnen, Gießbrücken, Spülkegeln, Steigrohren oder Abgussringen vor. In a first aspect, the invention provides for a ductile composite of 40 to 99 vol.%, In particular 60 to 99 vol.% Of metal and 1 to 60 vol.%, In particular 1 to 40 vol.% Of a titanium-containing ceramic before. In a second aspect, the invention provides a method for producing a composite material of metal and ceramic, in particular a composite material according to the first aspect, comprising metals in the form of powders, granules or fibers with titanium-containing, oxides, carbides, nitrides, borides ceramic powders, granules or fibers mixed, are formed by a powder metallurgical Urformgebungsverfahren at room temperature in components that are dried, debindered in the temperature range of 200 to 500 ° C and then sintered in a protective gas atmosphere or under vacuum in the temperature range of 1000 to 1500 ° C. , Finally, in a third aspect, the invention provides for a use of a preferably ductile composite of 60-99 vol.% Of metal and 1-40 vol.% Of a titanium-containing ceramic in aluminum metallurgy as lining material of metallurgical vessels or as material in key components produced in direct Contact with molten metal such as stirrers, slide plates, pumps, spouts, gutters, pouring bridges, flushing cones, risers or casting rings are present.
Der erfindungsgemäße Verbundwerkstoff ist auf dem Gebiet der Aluminiummetallurgie als Auskleidungsmaterial von metallurgischen Gefäßen oder als Werkstoff in Schlüsselbauteilen, die in direktem Kontakt mit der Metallschmelze stehen, einsetzbar. Zu den Schlüsselbauteilen gehören Rührer, Schieberplatten, Pumpen, Ausgussrohre, Rinnen, Gießbrücken, Spülkegel, Pumpen, Steigrohre oder Abgussringe. The composite material according to the invention can be used in the field of aluminum metallurgy as lining material of metallurgical vessels or as material in key components which are in direct contact with the molten metal. Key components include stirrers, gate plates, pumps, spouts, gutters, pouring bridges, scoops, pumps, risers, or casting rings.
Die Erfindung bringt den Vorteil mit sich, die Eigenschaften eines Verbundwerkstoffs gezielt einstellen zu können und diesen so auf vielfältige Weise in der Aluminiummetallurgie einsetzen zu können. The invention has the advantage of being able to adjust the properties of a composite material in a targeted manner and thus of being able to use it in a variety of ways in aluminum metallurgy.
Weitere Vorteile ergeben sich aus den abhängigen Patentansprüchen. In einer Ausführung des erfindungsgemäßen Verbundwerkstoffs ist das Metall ein Stahl. Bevorzugt enthält der Stahl erfindungsgemäß Chrom-, Nickel-, Vanadium-, Mangan- und Titan-Legierungselemente . Die Titanverbindungen enthaltende Keramik ist eine titanoxidhaltige Keramik und/oder Titancarbid (TiC) und/oder Titannitrid (TiN) und/oder Titanborid (TiB2). Die erfindungsgemäße titanoxidhaltige Keramik enthält Titandioxid (T1O2) und/oder Aluminiumtitanat (AI2T1O5) und/oder Magnesiumtitanat (MgTiCb) und/oder Eisentitanat (FeTiCb) und/oder Barium titanat (BaTiO) und/oder Zirconiumtitanat (ZrTiO-t). Further advantages emerge from the dependent claims. In one embodiment of the composite material according to the invention, the metal is a steel. According to the invention, the steel preferably contains chromium, nickel, vanadium, manganese and titanium alloying elements. The titanium-containing ceramic is a titanium oxide-containing ceramic and / or titanium carbide (TiC) and / or titanium nitride (TiN) and / or titanium boride (TiB2). The inventive titanium oxide-containing ceramic contains titanium dioxide (T1O2) and / or aluminum titanate (Al2T1O5) and / or magnesium titanate (MgTiCb) and / or iron titanate (FeTiCb) and / or barium titanate (BaTiO) and / or zirconium titanate (ZrTiO-t).
In einer Ausführungsform des erfindungsgemäßen, duktilen Verbundwerkstoffs kann dieser so zusammengesetzt sein, dass eine duktile Verformung bei Zug-, Biege- oder Druckbelastung bereits bei Raumtemperatur vorliegt. In einer Ausführung des Herstellungsverfahrens können Heißpress-Verfahren zur Verdichtung oder Spark-Plasma-Sinterprozesse angewandt werden. In one embodiment of the ductile composite material according to the invention, it may be composed such that a ductile deformation under tensile, bending or compressive load is already present at room temperature. In one embodiment of the manufacturing process, hot press processes for densification or spark plasma sintering processes may be used.
Bei einer anderen Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung eines Verbundwerkstoffs aus Metall und Keramik dienen Pressverfahren von Granulaten aus Metall und Keramik, Gießverfahren auf der Basis metallokeramischer Schlickern auf wässriger oder nicht-wässriger Basis oder Extrusionsverfahren auf der Basis von bei Raumtemperatur bildsamen, knetbaren metallokeramischen Massen als pulvermetallurgische Urformgebungsverfahren bei Raumtemperatur. Auch können über Filtrationsgießprozesse bei Raumtemperatur metallokeramische Papiere bei dem erfindungsgemäßen Herstellungsverfahren geformt werden. Weiter können noch nicht getrocknete Erzeugnisse mit Hilfe von wässrigen oder nicht-wässrigen metallischen oder metallokeramischen Schlickern im Sinne des keramischen Garnierens oder mit metallokeramischen, büdsamen Massen beschichtet und bei Raumtemperatur zusammengefügt werden. Die erfindungsgemäße Verwendung eines Verbundwerkstoffes kann sich dadurch auszeichnen, dass Erzeugnisse eingesetzt werden, die mittels Pressverfahren bei Raumtemperatur von Granulaten oder Pulvern oder Faserns aus Metall und Keramik, Gießver- fahren auf der Basis von metallokeramischen Schlickern auf wässriger oder nicht-wässriger Basis oder Extrusionsverfahren auf der Basis von bei Raumtemperatur bildsamen, knetbaren metallokeramischen Massen geformt werden, anschließend getrocknet, entbindert und unter Schutzgasatmosphäre oder Vakuum im Temperaturbereich 1000°C bis 1500°C gesintert werden. In another embodiment of the method according to the invention for the production of a composite material of metal and ceramic are pressing methods of granules of metal and ceramic casting methods based on metalloceramic slips on aqueous or non-aqueous basis or extrusion process based on plasticisable at room temperature, kneadable metalloceramic materials as powder metallurgical primary shaping processes at room temperature. It is also possible to form metalloceramic papers by filtration casting processes at room temperature in the production method according to the invention. Further not yet dried products can be coated with the aid of aqueous or non-aqueous metallic or metallo-ceramic slip in the sense of ceramic Garnierens or metalloceramic, bulky masses and joined together at room temperature. The use according to the invention of a composite material can be distinguished by the use of products which are produced by means of pressing processes at room temperature of granules or powders or fibers of metal and ceramic, casting methods based on metalloceramic slips on an aqueous or nonaqueous basis or extrusion processes the basis of room-temperature, kneadable metalloceramic masses are formed, then dried, debindered and sintered under a protective gas atmosphere or vacuum in the temperature range 1000 ° C to 1500 ° C.
Auch können bei der Verwendung eines Verbundwerkstoffes metallokeramische Papiere eingesetzt werden, die über Filtrationsgießprozesse bei Raumtemperatur geformt und anschließend getrocknet, entbindert und unter Schutzgasatmosphäre oder Vakuum im Temperaturbereich 1000°C bis 1500°C gesintert werden. Also, when using a composite metalloceramic papers can be used, which are formed by Filtrationsgießprozesse at room temperature and then dried, debindered and sintered under a protective gas atmosphere or vacuum in the temperature range 1000 ° C to 1500 ° C.
Ebenso ist es denkbar, bei der Verwendung Bauteile einzusetzen, die hergestellt worden sind, indem die noch nicht getrockneten Erzeugnisse mit Hilfe von wässrigen oder nicht- wässrigen metallischen oder metallokeramischen Schlickern oder bildsamen Massen beschichtet werden und bei Raumtemperatur zusammengefügt werden und anschließend ge- trocknet, entbindert und unter Schutzgasatmosphäre oder Vakuum im Temperaturbereich 1000°C bis 1500°C gesintert werden. It is also conceivable, in use, to use components which have been produced by coating the not yet dried products with the aid of aqueous or nonaqueous metallic or metalloceramic slips or viscous masses and combining them at room temperature and then drying, be debinded and sintered under a protective gas atmosphere or vacuum in the temperature range 1000 ° C to 1500 ° C.
Die Erfindung wird nachfolgend an einem Ausführungsbeispiel im Zusammenhang mit den begleitenden Abbildungen näher erläutert. Es zeigen: The invention will be explained in more detail below using an exemplary embodiment in conjunction with the accompanying drawings. Show it:
Fig. la ein Spannungs-Stauchungs-Diagramm, 1a is a voltage-compression diagram,
Fig. lb ein Spannungs-Dehnungs-Diagramm und Fig. Lb is a stress-strain diagram and
Fig. 2 eine Abbildung von drei Probestücken nach Korrosionsversuchen.  Fig. 2 is a picture of three specimens after corrosion tests.
Eine bildsame Route der Verbundwerkstoffe umfasst Mischen, Homogenisieren und Kne- ten der pulverförmigen Feststoffe unter Zugabe von Wasser und einem wasserlöslichen or- ganischen Bindersystem auf der Basis von Cellulosederivaten, Netzmitteln und Gleitmitteln. Eingesetzt wird dabei Stahlpulver eines hochlegierten CrMnNi-Stahls mit folgender chemischer Zusammensetzung: 16,2% Chrom, 6,1% Nickel, 6,2% Mangan, 0,07% Kohlenstoff und 0,8% Silizium und als keramische Komponente Aluminiumtitanat. A vivid route of composites involves mixing, homogenizing, and kneading the powdered solids with the addition of water and a water-soluble or- ganic binder system based on cellulose derivatives, wetting agents and lubricants. Steel powder of high-alloy CrMnNi steel with the following chemical composition is used: 16.2% chromium, 6.1% nickel, 6.2% manganese, 0.07% carbon and 0.8% silicon, and aluminum titanate as a ceramic component.
Eine Formgebung in filigrane (z. B. Wabenkörper, Hohlspaghetti) und kompakte Stranghalbzeuge (z. B. Vollzylinder) erfolgt mittels eines Extruders bei Raumtemperatur durch Pressen der verformbaren Masse durch eine Matrize (Mundstück). Die Geometrie der zu erzeugenden Verbundwerkstoffe kann in weiten Bereichen variiert werden. Nach der Trocknung weisen die extrudierten Proben eine ausreichende Festigkeit zur Handhabung, mechanischen Bearbeitung und zum Fügen auf. Während der Entbinderung bei 200 bis 500°C werden die zur Formgebung notwendigen organischen Prozesshilfsstoffe rückstandsfrei ausgebrannt. Eine anschließende Sinterung erzeugt die endgültige Festigkeit und die gewünschten thermo-mechanischen und korrosiven Eigenschaften der Verbund- Werkstoffe. A shaping in filigree (eg honeycomb body, hollow spaghetti) and compact semi-finished stranded products (eg solid cylinder) takes place by means of an extruder at room temperature by pressing the deformable mass through a die (mouthpiece). The geometry of the composites to be produced can be varied within wide ranges. After drying, the extruded samples have sufficient strength for handling, machining and joining. During debindering at 200 to 500 ° C, the organic processing aids required for shaping are burned out without residue. Subsequent sintering produces the final strength and desired thermo-mechanical and corrosive properties of the composite materials.
Die Fign. la,b zeigen ein Spannungs-Stauchungs- bzw. ein Spannungs-Dehnungs-Dia- gramm der erfindungsgemäßen Verbundwerkstoffe mit Zusätzen von 5 bzw. 10 Vol.% A- luminiumtitanat (ALTiOs) unter quasistatischer Deformation bei Raumtemperatur im Druckversuch (Fig. 1 a) und im Zugversuch (Fig. lb). Als Vergleichsprobe dient der bei der Herstellung des Verbundwerkstoffs eingesetzte Stahl. The Fign. 1a, b show a stress-strain or stress-strain diagram of the composite materials according to the invention with additions of 5 or 10% by volume of aluminum titanate (ALTiOs) under quasistatic deformation at room temperature in a compression test (FIG ) and in the tensile test (Fig. lb). The comparative sample used is the steel used in the production of the composite material.
Als Test zur Bestimmung der Beständigkeit gegenüber aluminiumbasierender Schmelze wurden prismenförmige Wabenkörper mit Abmessungen von 2,5 x 2,5 x 12,5 cm3 an einer Führung zum Heben bzw. Senken sowie Rotieren in eine Metallschmelze getaucht. Hierzu wurden Metallstücke der Legierung AlSi7Mg mit einer Masse von 2 kg in einem Feuerfesttiegel aus Korund unter Umgebungsatmosphäre aufgeschmolzen und bei 800°C gehalten. Die metallokeramischen Proben wurden zur Hälfte in jeweils eine neue Schmelze getaucht und für drei Stunden mit 30 U/min rotiert. Nach den Korrosionsversuchen wurden die Proben zwecks Begutachtung der Querschnittsänderungen gesägt und teilweise mit verdünnter HCl kurzzeitig angeätzt. As a test for determining the resistance to aluminum-based melt, prism-shaped honeycomb bodies having dimensions of 2.5 × 2.5 × 12.5 cm 3 were dipped on a guide for raising and lowering and rotating in a molten metal. For this purpose, metal pieces of AlSi7Mg alloy with a mass of 2 kg were melted in a crucible made of corundum under ambient atmosphere and kept at 800 ° C. The metalloceramic samples were half immersed in a new melt and rotated for three hours at 30 U / min. After the corrosion attempts were Sawing the samples for review of cross-sectional changes and partially etching with dilute HCl for a short time.
Fig. 2 zeigt drei ausgewählte Proben mit jeweils 10 Vol.% Titandioxid (TiC ), Aluminiumti- tanat (AhTiOs) bzw. Zirconiumdioxid (Zr02). In Fig. 2 ist der Unterschied in Hinblick auf eine Querschnittsänderung zwischen titanoxidhaltigen Proben und der Probe mit inertem Oxidanteil (ZrCh) zu erkennen. In Fig. 2 sind links die Probe des 10 Vol.% T1O2, in der Mitte die Probe des 10 Vol.% AhTiOs und rechts die Probe des 10 Vol.% ZrOi gezeigt. Die Versuche zeigen, dass der Querschnitt gleich bleibt, die Länge sich aber verändert. Die Probe mit 10 Vol.% Zirconiumdioxid (ΖΓΟΣ) ist gegenüber denjenigen mit 10 Vol.% Titandioxid FIG. 2 shows three selected samples each containing 10 vol.% Titanium dioxide (TiC), aluminum titanate (AhTiOs) and zirconium dioxide (ZrO 2). FIG. 2 shows the difference in cross-sectional change between samples containing titanium oxide and the inert oxide sample (ZrCh). In Fig. 2 the sample of the 10 vol.% T1O2 are shown on the left, in the middle the sample of the 10 vol.% AhTiOs and on the right the sample of the 10 vol.% ZrOi. The experiments show that the cross section remains the same but the length changes. The sample with 10 vol.% Zirconia (ΖΓΟΣ) is compared to that with 10 vol.% Titanium dioxide
(T1O2), Aluminiumtitanat (AhTiOs) durch Beeinträchtigung mit der Metallschmelze in der Länge reduziert und zeigt deutlich eine geringere Beständigkeit gegenüber der Alumini- um-basierten Schmelze.  (T1O2), aluminum titanate (AhTiOs) is reduced in length by degradation with the molten metal and clearly shows less resistance to the aluminum-based melt.

Claims

Patentansprüche claims
1. Verbundwerkstoff aus Metall und Keramik, gekennzeichnet durch 40 bis 99 Vol.%, insbesondere 60 bis 99 Vol.% Metall und 1 bis 60 Vol.%, insbesondere 1 bis 40 Vol.% einer Titanverbindungen enthaltenden Keramik. 1. Composite material of metal and ceramic, characterized by 40 to 99 vol.%, In particular 60 to 99 vol.% Of metal and 1 to 60 vol.%, In particular 1 to 40 vol.% Of a titanium-containing ceramic.
2. Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, dass das Metall Stahl ist. 2. Composite material according to claim 1, characterized in that the metal is steel.
3. Verbundwerkstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Stahl Chrom-, Nickel-, Vanadium-, Mangan- und Titan-Legierungselemente enthält. 3. Composite material according to claim 1 or 2, characterized in that the steel contains chromium, nickel, vanadium, manganese and titanium alloying elements.
4 Verbundwerkstoff nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Titanverbindungen enthaltende Keramik eine titanoxidhaltige Keramik und/oder Ti- tancarbid (TiC) und/oder Titannitrid (TiN) und/oder Titanborid (ΉΒ2) ist. 4 composite material according to one of claims 1 to 3, characterized in that the titanium-containing ceramic is a titanium oxide-containing ceramic and / or titanium tan carbide (TiC) and / or titanium nitride (TiN) and / or titanium boride (ΉΒ2).
5. Verbundwerkstoff nach Anspruch 4, dadurch gekennzeichnet, dass die titanoxidhal- tige Keramik T1O2 und/oder ALTiOs und/oder MgTiÜ3 und/oder FeTi03 und/oder BaTiCb und/oder ZrTiC>4 enthält. 5. A composite material according to claim 4, characterized in that the titanium oxide-containing ceramic T1O2 and / or ALTiOs and / or MgTiÜ3 and / or FeTi03 and / or BaTiCb and / or ZrTiC> 4 contains.
6. Verbundwerkstoff nach einem der Ansprüche 1 bis 5, gekennzeichnet durch eine duktile Verformung bei Zug-, Biege- oder Druckbelastung bei Raumtemperatur. 6. Composite material according to one of claims 1 to 5, characterized by a ductile deformation under tensile, bending or compressive stress at room temperature.
7. Verfahren zur Herstellung eines Verbundwerkstoffs aus Metall und Keramik, insbesondere eines Verbundwerkstoffs nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Metalle in Form von Pulvern, Granulaten oder Fasern mit titanhaltigen, Oxide, Karbide, Nitride, Boride umfassenden keramischen Pulvern, Granulaten oder Fasern ge- mischt, über ein pulvermetallurgisches Urformgebungsverfahren bei Raumtemperatur in Bauteile geformt werden, die getrocknet, im Temperaturbereich von 200 bis 500°C entbindert und anschließend in Schutzgasatmosphäre oder unter Vakuum im Temperaturbereich von 1000 bis 1500°C gesintert werden. 7. A method for producing a composite material from metal and ceramic, in particular a composite material according to one of claims 1 to 6, characterized in that metals in the form of powders, granules or fibers with titanium-containing, oxides, carbides, nitrides, borides comprising ceramic powders, Granules or fibers are mixed, by a powder metallurgical Urformgebungsverfahren at room temperature in Be formed components that are dried, debind in the temperature range of 200 to 500 ° C and then sintered in an inert gas atmosphere or under vacuum in the temperature range of 1000 to 1500 ° C.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass Heißpress- Verfahren zur Verdichtung oder Spark-Plasma-Sinterprozesse angewendet werden. 8. The method according to claim 7, characterized in that hot-pressing method for densification or spark plasma sintering processes are used.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die pulvermetallurgischen Urformgebungsverf ahren Pressverfahren von Granulaten aus Metall und Ke- ramik, Gießverfahren auf der Basis metallokeramischer Schlickern auf wässriger oder nicht-wässriger Basis oder Extrusionsverf ahren auf der Basis von bei Raumtemperatur bildsamen, knetbaren metallokeramischen Massen umfassen. 9. The method according to claim 7 or 8, characterized in that the powder metallurgical Urformgebungsfrahren pressing method of granules of metal and ceramics, casting methods based on metalloceramic slips on aqueous or non-aqueous basis or Extrusionsverf erhren based on room temperature at room temperature , kneadable metalloceramic compositions.
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass metallo- keramische Papiere über Filtrationsgießprozesse bei Raumtemperatur geformt werden. 10. The method according to any one of claims 7 to 9, characterized in that metallo-ceramic papers are formed by filtration casting processes at room temperature.
11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass noch nicht getrocknete Erzeugnisse mit Hilfe von wässrigen oder nicht-wässrigen metallischen oder metallokeramischen Schlickern im Sinne des keramischen Garnierens oder mit metal- lokeramischen, bildsamen Massen beschichtet und bei Raumtemperatur zusammengefügt werden. 11. The method according to any one of claims 7 to 10, characterized in that not yet dried products coated with the aid of aqueous or non-aqueous metallic or metalloceramic slips in the sense of ceramic Garnierens or metallocerameramic, viscous masses and joined together at room temperature ,
12. Verwendung eines Verbundwerkstoffs nach einem der Ansprüche 1 bis 6 in der A- luminiummetallurgie als Auskleidungsmaterial von metallurgischen Gefäßen oder als Werkstoff in Schlüsselbauteilen, die in direktem Kontakt mit der Metallschmelze stehen, wie Rührern, Schieberplatten, Pumpen, Ausgussrohren, Rinnen, Gießbrücken, Spülkegeln, Steigrohren oder Abgussringen. 12. Use of a composite material according to any one of claims 1 to 6 in the aluminum metallurgy as lining material of metallurgical vessels or as a material in key components which are in direct contact with the molten metal, such as stirrers, slide plates, pumps, spouts, gutters, pouring bridges, Flushing cones, risers or casting rings.
13. Verwendung nach Anspruch 12, dadurch gekennzeichnet, dass Erzeugnisse einge- setzt werden, die mittels Pressverfahren von Granulaten oder Pulvern oder Fasern aus Me- tall und Keramik, Gießverfahren auf der Basis von metallokeramischen Schlickern auf wässriger oder nicht-wässriger Basis oder Extrusionsverfahren auf der Basis von bei Raumtemperatur bildsamen, knetbaren metallokeramischen Massen geformt werden, anschließend getrocknet, entbindert und unter Schutzgasatmosphäre oder Vakuum im Tempera- turbereich 1000°C bis 1500°C gesintert werden. 13. Use according to claim 12, characterized in that products are used, which are produced by means of pressing of granules or powders or fibers of methylene chloride. and ceramics, casting methods based on metalloceramic slips on an aqueous or nonaqueous basis or extrusion processes based on plasticisable room temperature, kneadable metalloceramic materials, then dried, debindered and under protective gas atmosphere or vacuum in the temperature range 1000 ° C. be sintered to 1500 ° C.
14. Verwendung nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass metallokera- mische Papiere eingesetzt werden, die über Filtrationsgießprozesse bei Raumtemperatur geformt und anschließend getrocknet, entbindert und unter Schutzgasatmosphäre oder Vakuum im Temperaturbereich 1000°C bis 1500°C gesintert werden. 14. Use according to claim 12 or 13, characterized in that metallokera- mischen papers are used, which are formed by Filtrationsgießprozesse at room temperature and then dried, debindered and sintered under a protective gas atmosphere or vacuum in the temperature range 1000 ° C to 1500 ° C.
15. Verwendung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass Bauteile eingesetzt werden, die hergestellt worden sind, indem die noch nicht getrockneten Erzeugnisse mit Hilfe von wässrigen oder nicht-wässrigen metallischen oder metallokera- mischen Schlickern oder bildsamen Massen beschichtet werden und bei Raumtemperatur zusammengefügt werden und anschließend getrocknet, entbindert und unter Schutzgasatmosphäre oder Vakuum im Temperaturbereich 1000°C bis 1500°C gesintert werden. 15. Use according to one of claims 12 to 14, characterized in that components are used which have been prepared by the not yet dried products are coated using aqueous or non-aqueous metallic or metallo-ceramic slip or viscous mass, and be combined at room temperature and then dried, debindered and sintered under a protective gas atmosphere or vacuum in the temperature range 1000 ° C to 1500 ° C.
PCT/DE2016/000180 2016-04-28 2016-04-28 Composite material comprising metal and a ceramic, method for producing a composite material comprising metal and ceramic and use of the composite material for components that are in direct contact with aluminium melts WO2017186202A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/DE2016/000180 WO2017186202A1 (en) 2016-04-28 2016-04-28 Composite material comprising metal and a ceramic, method for producing a composite material comprising metal and ceramic and use of the composite material for components that are in direct contact with aluminium melts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2016/000180 WO2017186202A1 (en) 2016-04-28 2016-04-28 Composite material comprising metal and a ceramic, method for producing a composite material comprising metal and ceramic and use of the composite material for components that are in direct contact with aluminium melts

Publications (1)

Publication Number Publication Date
WO2017186202A1 true WO2017186202A1 (en) 2017-11-02

Family

ID=56194184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2016/000180 WO2017186202A1 (en) 2016-04-28 2016-04-28 Composite material comprising metal and a ceramic, method for producing a composite material comprising metal and ceramic and use of the composite material for components that are in direct contact with aluminium melts

Country Status (1)

Country Link
WO (1) WO2017186202A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD210931A1 (en) 1981-04-06 1984-06-27 Univ Halle Wittenberg HIGH-FIBER SOLID PRODUCTS WITH HIGH CORROSION RESISTANCE TO METAL MELTS
US20030110894A1 (en) * 2001-12-18 2003-06-19 Eckert C. Edward Method of heating a crucible for molten aluminum
DE102007044160A1 (en) 2006-12-12 2008-06-19 Technische Universität Bergakademie Freiberg Composite material of metal and ceramic and method for its production
DE102010033485A1 (en) 2010-08-05 2012-02-09 Technische Universität Bergakademie Freiberg Composite, useful for e.g. crash-stressed components, comprises specified amount of metallic material with transformation induced plasticity/twinning induced plasticity properties, and ceramic component e.g. magnesium aluminate spinel
CN103627943A (en) * 2013-12-09 2014-03-12 株洲硬质合金集团有限公司 TiC series steel bond hard alloy
WO2014040783A1 (en) * 2012-09-14 2014-03-20 Tata Steel Nederland Technology Bv TiC-PARTICLE-REINFORCED HIGH STRENGTH AND LOW DENSITY STEEL PRODUCTS WITH IMPROVED E-MODULUS AND METHOD FOR PRODUCING SAID PRODUCT
EP3034640A1 (en) * 2014-12-20 2016-06-22 ZPF GmbH Composite material made of metal and ceramic, method for manufacturing a composite of metal and ceramic, and use of a compound material for components in direct contact with aluminium melting

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD210931A1 (en) 1981-04-06 1984-06-27 Univ Halle Wittenberg HIGH-FIBER SOLID PRODUCTS WITH HIGH CORROSION RESISTANCE TO METAL MELTS
US20030110894A1 (en) * 2001-12-18 2003-06-19 Eckert C. Edward Method of heating a crucible for molten aluminum
DE102007044160A1 (en) 2006-12-12 2008-06-19 Technische Universität Bergakademie Freiberg Composite material of metal and ceramic and method for its production
DE102010033485A1 (en) 2010-08-05 2012-02-09 Technische Universität Bergakademie Freiberg Composite, useful for e.g. crash-stressed components, comprises specified amount of metallic material with transformation induced plasticity/twinning induced plasticity properties, and ceramic component e.g. magnesium aluminate spinel
WO2014040783A1 (en) * 2012-09-14 2014-03-20 Tata Steel Nederland Technology Bv TiC-PARTICLE-REINFORCED HIGH STRENGTH AND LOW DENSITY STEEL PRODUCTS WITH IMPROVED E-MODULUS AND METHOD FOR PRODUCING SAID PRODUCT
CN103627943A (en) * 2013-12-09 2014-03-12 株洲硬质合金集团有限公司 TiC series steel bond hard alloy
EP3034640A1 (en) * 2014-12-20 2016-06-22 ZPF GmbH Composite material made of metal and ceramic, method for manufacturing a composite of metal and ceramic, and use of a compound material for components in direct contact with aluminium melting

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
C. WEIGELT ET AL: "Effect of zirconia and aluminium titanate on the mechanical properties of transformation-induced plasticity-matrix composite materials", JOURNAL OF COMPOSITE MATERIALS, vol. 49, no. 28, 13 January 2015 (2015-01-13), USA, pages 3567 - 3579, XP055333226, ISSN: 0021-9983, DOI: 10.1177/0021998314567698 *
FURNESS A.G.; T.E.J TALBOT, SIXTH CONFERENCE AND EXHIBITION OF THE EUROPEAN CERAMIC SOCIETY, vol. 2, no. 20, 24 June 1999 (1999-06-24), pages 151 - 152
NEFF, D.V.; TELLER, R.G.: "Mechanism of corundum formation and prevention techniques", 2ND INTERNATIONAL CONFERENCE ON MOLTEN ALUMINUM PROCESSING, 1989, pages 18.1 - 18.19
ROUTSCHKA, G.; WUTHNOW, H.: "Praxishandbuch Feuerfeste Werkstoffe", 2011, VULKAN VERLAG
WENZEL CLAUDIA ET AL: "Metal-Matrix Composites Prepared by Paper-Manufacturing Technology", METALLURGICAL AND MATERIALS TRANSACTIONS A: PHYSICAL METALLURGY & MATERIALS SCIENCE, ASM INTERNATIONAL, MATERIALS PARK, OH, US, vol. 47, no. 1, 4 March 2015 (2015-03-04), pages 160 - 169, XP035944191, ISSN: 1073-5623, [retrieved on 20150304], DOI: 10.1007/S11661-015-2819-2 *

Similar Documents

Publication Publication Date Title
EP3034640A1 (en) Composite material made of metal and ceramic, method for manufacturing a composite of metal and ceramic, and use of a compound material for components in direct contact with aluminium melting
EP3366389B1 (en) Composites with very high wear resistance
EP1720812A1 (en) Ceramic batch and associated product for fireproof applications
DE3914010C2 (en) Process for the production of metal-ceramic composites and use of the process for controlling the material properties of composites
EP3371129A1 (en) Sintered zirconia mullite refractory composite material, method for the production thereof and use of the same
EP0531378A1 (en) Reaction-bonded mullite-containing ceramic, its formation and use.
DE102012021906A1 (en) Ceramic composite material for metallurgy-material-affecting conservation, comprises composite obtained by mixing substance portions of silicon nitride and zirconium oxide, and surface layer obtained by heat-treating composite
DE102005036394A1 (en) Thermoshock- and corrosion-resistant ceramic material based on a zirconia-free refractory oxide and process for its preparation
DE102016100810A1 (en) Refractory material and its use
EP2057106B1 (en) Baked refractory product
DE102004010739B4 (en) Process for the preparation of an unshaped or shaped, fired or unfired refractory product
DE102009006778A1 (en) Producing thermal shock and corrosion resistant ceramic material based on aluminum-titanium-zirconium oxides, comprises preparing slurry, shapeable mass or granule from external mixture by adding dispensing agent and then forming workpiece
WO2017186202A1 (en) Composite material comprising metal and a ceramic, method for producing a composite material comprising metal and ceramic and use of the composite material for components that are in direct contact with aluminium melts
DE202016008715U1 (en) Composite material of metal and a ceramic
EP3980204A1 (en) Composite material composed of metal and ceramic, and method for production thereof
EP2730552A1 (en) Ceramic composite material, component formed from this and process for the production of the composite material
DE202012010696U1 (en) Ceramic composite material and formed by this component
WO1996036578A1 (en) Use of a water-containing fire-resistant ceramic casting material
EP1560799A2 (en) Ceramic-metal or metal-ceramic composite
EP3502078B9 (en) Refractory batch, a method for producing an unshaped refractory ceramic product from the batch, and an unformed ceramic product produced using the method
DE19859372C1 (en) Refractory ceramic material, especially for fired products exposed to alkali or alkali salt attack e.g. in cement rotary kilns, comprises sintered and-or fused magnesia containing galaxite- or jacobsite-type spinel
AT10479U1 (en) FLUID-DENSITY SINTERED METAL PARTS AND METHOD FOR THE PRODUCTION THEREOF
DE102014008892B4 (en) Process for improving the thermal shock resistance of refractory products
WO2008086930A1 (en) Ceramic preform for the production of metal-ceramic composite materials
EP3483134B1 (en) Refractory plate for slide gate, use of a melt as a raw material in such a plate and a melting vessel comprising such a plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16731492

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16731492

Country of ref document: EP

Kind code of ref document: A1