EP3978805B1 - Verbrennungsvorrichtung mit regeleinrichtung zur luftzahl-regelung, sowie heizgerät - Google Patents
Verbrennungsvorrichtung mit regeleinrichtung zur luftzahl-regelung, sowie heizgerät Download PDFInfo
- Publication number
- EP3978805B1 EP3978805B1 EP21199318.3A EP21199318A EP3978805B1 EP 3978805 B1 EP3978805 B1 EP 3978805B1 EP 21199318 A EP21199318 A EP 21199318A EP 3978805 B1 EP3978805 B1 EP 3978805B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- combustion
- stream
- fuel gas
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims description 126
- 238000002485 combustion reaction Methods 0.000 title claims description 95
- 230000033228 biological regulation Effects 0.000 title description 4
- 239000000203 mixture Substances 0.000 claims description 95
- 238000001514 detection method Methods 0.000 claims description 21
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 2
- 239000000567 combustion gas Substances 0.000 claims 12
- 239000002737 fuel gas Substances 0.000 description 150
- 230000001105 regulatory effect Effects 0.000 description 16
- 239000007789 gas Substances 0.000 description 10
- 230000009467 reduction Effects 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007620 mathematical function Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005293 physical law Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N3/00—Regulating air supply or draught
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/02—Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/002—Regulating fuel supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N3/00—Regulating air supply or draught
- F23N3/002—Regulating air supply or draught using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/003—Systems for controlling combustion using detectors sensitive to combustion gas properties
- F23N5/006—Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/12—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
- F23N5/123—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/9901—Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2233/00—Ventilators
- F23N2233/06—Ventilators at the air intake
- F23N2233/08—Ventilators at the air intake with variable speed
Definitions
- a combustion device for providing an air-fuel gas mixture stream consisting of an air stream and a fuel gas stream in a predeterminable air/fuel gas ratio, and for combustion of the mixture stream, is already known, in which a heating output is generated by the combustion and wherein an air conveying unit conveys an air stream, a fuel gas metering unit meters a fuel gas stream and a mixer unit mixes the mixture stream.
- the WO2020/182902 A1 on which the two-part form of claim 1 is based, discloses a burner system with a mechanism for specifying an air/fuel gas ratio, the air/fuel gas ratio depending at least in part on a heating output.
- the EP1522790 A2 discloses a method for controlling a gas burner with an electronic control, which specifies a target signal for the amount of fuel gas and the amount of air for a predetermined burner output, with a fuel gas-air mixture being enriched and/or leaned in a defined manner over the modulation range.
- the EP3182007 A1 discloses a heater system with a control and/or regulating unit, which is intended to set an air ratio parameter to a target air ratio parameter that is dependent on a heating output.
- the invention relates to a combustion device, in particular a hydrogen combustion device, for a heater for heating at least one room and/or for heating at least one useful fluid.
- the combustion device serves to provide an air-fuel gas mixture stream consisting of an air stream and a fuel gas stream, in particular a hydrogen stream, with at least one predeterminable air ratio ⁇ in the mixture stream, and to burn the mixture stream, with a heating output being generated by the combustion.
- the air ratio ⁇ characterizes a quantitative ratio of air to fuel gas and is calculated as a quotient of a quantity of air actually present in the mixture stream and a quantity of air required for stoichiometric combustion of the mixture stream.
- Q is the value of the relative heating power of the combustion device and is in the range 0.05 ⁇ Q ⁇ 1.
- an air delivery unit promotes the air flow, in particular depending on a power requirement
- a fuel gas metering unit meters the fuel gas flow, in particular depending on the air flow
- a mixer unit mixes the mixture flow.
- a combustion device is to be understood here in particular as a burner or a burner device, with the aid of which a combustible mixture stream can be provided and burned.
- the combustion device is used in particular in a heater, for example a heater for heating at least one room and/or for heating at least one useful fluid such as heating water and/or drinking water.
- the mixture stream is a gas stream comprising an air stream and a fuel gas stream.
- the air flow is taken in particular from an installation environment of the combustion device or from an outside environment of a building in which the combustion device is installed.
- the fuel gas stream is taken in particular from a fuel gas line or a fuel gas tank.
- the combustion device is designed in particular to use the fuel gas hydrogen. Alternatively or additionally, the combustion device can also be designed to use other fuel gases.
- the mixture flow has a predeterminable air/fuel gas ratio or an air ratio ⁇ .
- An air/fuel gas ratio here means a quantitative ratio of air to fuel gas. The fact that the air/fuel gas ratio can be specified means in particular that the quantitative ratio is adjustable.
- the mixture stream is ignited in the combustion device and burned to form a flame.
- the combustion device includes a burner mouth or burner surface that acts as a flame holder: here the flame should burn in a spatially stable manner.
- the energy (heat) released during combustion per unit of time is determined by the size of the burned mixture stream, in particular the size of the fuel flow burned. The energy released per unit of time characterizes the heating output of the combustion device.
- the heating output can be modulated gradually or continuously between a minimum heating output and a maximum heating output.
- the term heating output can be understood to mean both an absolute heating output (unit watt) and a relative heating output.
- the relative heating output is calculated as the actual absolute heating output based on the maximum absolute heating output.
- the relative heating power is a dimensionless quantity with values generally between 0 and 1. However, since a real combustion device generally cannot be operated with a relative heating power just above 0, the values of the relative heating power are in reality 0 for the switched-off state (no combustion) and in firing mode between 0.05 and 1.
- An air delivery unit is understood to mean a device for conveying the air flow; this can in particular be an - in particular speed-controlled - air blower or air fan or an air valve.
- the air delivery unit is controlled in particular by an electrical signal.
- the air flow can be promoted in particular depending on a power requirement, for example a heating power requirement or a temperature requirement, on the combustion device and/or the heater.
- a size of the air volume flow conveyed can depend on a size of a requested heating power.
- a requested heating output is understood to mean, in particular, a theoretically required heating output that serves to meet a user's need for space heating and/or domestic hot water preparation.
- an actual heating output is a measurable quantity that correlates with the size of the mixture flow that is used for combustion.
- a fuel gas metering unit is understood to mean a device for metering the fuel gas stream; this can in particular be a fuel gas valve or a fuel gas fitting.
- the fuel gas metering unit is regulated in particular by an electrical and/or a pressure signal.
- the fuel gas flow can be metered in particular depending on the air flow.
- the size of the metered fuel gas flow can be determined depending on the size of the air flow.
- a mixer unit is a device for combining and mixing air flow and Fuel gas flow and generation of the air-fuel gas mixture stream are understood, this can in particular be a venturi mixer.
- a control device is understood to mean a device for controlling and/or regulating at least one process step, in particular for varying the air/fuel gas ratio and/or the air ratio ⁇ .
- regulation is understood to mean controlling and/or regulating in the narrower sense.
- a regulation here is understood to mean a control and/or regulation in the narrower sense.
- a composite means in particular that a setpoint of a first variable, for example the air flow, is specified, for example based on an electrical signal, and that a setpoint of a subsequent variable, for example the fuel gas flow, for example based on an electrical or a pressure signal, in the composite, adapted to the resulting actual value of the first variable is tracked.
- a variable combination means that the setpoint of the following variable is not only adjusted to the actual value of the first variable, but this adjustment is also varied depending on a third variable, here the heating output.
- the value of the air/fuel gas ratio is regulated so that a heating output-dependent air/fuel gas ratio is established.
- the fact that the air/fuel gas ratio is varied depending on the heating output means that the size of the heating output at least determines the value of the air/fuel gas ratio.
- the control device is designed in particular in such a way that the air/fuel gas ratio and/or the air ratio ⁇ assumes a larger value with a smaller heating output and/or assumes a smaller value with a larger heating output.
- the control device also intervenes in particular in the operation of the air delivery unit, the fuel gas metering unit and/or the mixer unit.
- the air/fuel gas ratio is increased as the heating power decreases and is reduced as the heating power increases.
- the variation of the air/fuel gas ratio over the heating output can have a stepped course or a continuous course. Under enlarge The air/fuel gas ratio is understood here as a leaning of the air/fuel gas mixture stream, i.e. a reduction in the fuel gas content in the mixture stream.
- Reducing the air/fuel gas ratio here means enriching the air/fuel gas mixture stream, i.e. enriching the fuel gas content in the mixture stream.
- the air flow, the fuel gas flow and/or the mixture flow are variable in quantity and can be modulated in stages or continuously between a respective minimum value and a respective maximum value.
- control device can in particular be designed as an independent component “control device”.
- the control device can alternatively or additionally (in the sense of a distributed system) also be designed as part of the air delivery unit, the fuel gas metering unit and/or the mixer unit.
- the air ratio ⁇ is a special parameter used in combustion technology to characterize the air/fuel gas ratio of an air/fuel gas mixture stream.
- the invention creates an improved method for operating a combustion device compared to the known prior art.
- Air-fuel gas mixture streams with an air ratio ⁇ from the above-mentioned range of values are particularly advantageous to burn.
- air-hydrogen mixture streams with an air ratio ⁇ from the above-mentioned value range are particularly advantageous to burn.
- the combustion of such an air-fuel gas mixture stream is characterized by reliable ignition, high flame stability (avoidance of lifting flames and flashback), optimal thermal efficiencies, complete combustion with low pollutant levels, low noise and compatibility with commercially available pneumatic air-gas systems.
- Ratio controllers The control device can regulate the fuel gas metering unit depending on the heating output, with the fuel gas metering unit metering a relatively smaller fuel gas flow with a smaller heating output and metering a relatively larger fuel gas flow with a larger heating output.
- the fuel gas metering unit can be controlled in particular by means of an electrical signal or a pressure signal that is output by the control device to the fuel gas metering unit.
- a relatively smaller (or larger) fuel gas stream expresses that the reduction (or increase) in the dosage of the fuel gas stream with a smaller (or larger) heating output is not proportional, but rather disproportionate, so that the air/ Fuel gas ratio and the air ratio ⁇ becomes larger with a lower heating output or smaller with a higher heating output.
- control device regulates the fuel gas metering unit depending on the heating output, so that an air ratio ⁇ is established in the mixture flow within the air ratio value interval mentioned above.
- control device as a distributed system can also include parts that come into contact with the air flow, for example air flow measuring devices or air pressure probes that detect a size of the air flow.
- the fuel gas flow is metered according to the size of the air flow and depending on the heating output so that an air ratio is achieved in the mixture flow within the air ratio value interval mentioned above.
- the control device can regulate the air delivery unit depending on the heating power, with the air delivery unit promoting a relatively larger air flow with a smaller heating power and a relatively smaller air flow with a larger heating power.
- the air delivery unit can be controlled in particular by means of an electrical signal or a pressure signal which is output by the control device to the air delivery unit.
- a relatively larger (or smaller) air flow expresses that the reduction (or increase) in the delivery of the air flow with a smaller (or larger) heating output is not proportional, but disproportionate, so that the air/ Fuel gas ratio and the air ratio ⁇ becomes larger with a lower heating output or smaller with a higher heating output.
- control device regulates the air delivery unit depending on the heating output, so that an air ratio is established in the mixture flow within the air ratio value interval mentioned above.
- control device as a distributed system can also include parts that come into contact with the fuel gas flow, for example Fuel gas flow meters or fuel gas pressure probes that record a size of the fuel gas flow.
- the air flow is metered according to the size of the fuel gas flow and depending on the heating output so that an air ratio is achieved in the mixture flow within the air ratio value interval mentioned above.
- An advantageous embodiment of the invention is characterized in that the control device is set up to detect the heating power, to generate a mixture signal depending on the heating power and to output it to the fuel gas metering unit and/or the air delivery unit.
- the mixture signal is intended to meter a relatively smaller fuel gas flow and/or to promote a relatively larger air flow at a lower heating output; and with greater heating power, to meter a relatively larger fuel gas flow and/or to promote a relatively smaller air flow.
- the heating output mentioned here can be a recorded actual heating output or a requested heating output.
- the mixture signal can in particular be an electrical signal or a pressure signal.
- the fact that the control device generates a mixture signal depending on the heating power can be understood in particular to mean that a correlation between heating power and mixture signal - in the form of a mechanism, a table of values, a mathematical function and / or an algorithm - can be called up in the control device the generation of the mixture signal is used as a basis.
- the mixture signal includes in particular a single signal or two partial signals, one for the air delivery unit and/or another for the fuel gas metering unit, and in particular acts on the air flow delivery of the air delivery unit and/or the fuel gas flow metering of the fuel gas metering unit.
- control device regulates the air delivery unit and/or the fuel gas metering unit depending on the heating output, so that an air ratio is established in the mixture flow within the air ratio value interval mentioned above.
- a further advantageous embodiment of the invention is characterized in that the control device is set up to receive and process a power signal characterizing the heating power, the power signal being based on a detection of an actual or requested heating power, the mixture flow, the fuel gas flow, the air flow, etc Fan speed of an air blower promoting the air flow and / or a combustion temperature of the combustion of the air-fuel gas mixture flow, the control device being set up to generate the mixture signal based on the power signal.
- the power signal can in particular be an electrical signal or a pressure signal.
- the combustion device comprises at least one measuring device, for example an electrical, electronic or pneumatic sensor, for detecting the heating power, the mixture flow, the fuel gas flow, the air flow, the fan speed of an air blower promoting the air flow, and / or the combustion temperature of the combustion of the air-fuel gas -Mixture flow.
- a value of the power signal corresponds to a size of the heating output.
- the control device receives the power signal and translates it into the mixture signal.
- a further advantageous embodiment of the invention is characterized by a first detection unit, the first detection unit being set up to detect the air ratio ⁇ and to output a corresponding first feedback signal to the control device, the control device being set up to determine the air ratio ⁇ depending on the first to regulate the feedback signal.
- the first detection unit can in particular be a lambda sensor or an ionization electrode, which measures a signal representing the air/fuel gas ratio, in particular the air ratio ⁇ .
- the control device can use a closed control loop to regulate the air/fuel gas ratio, in particular the air ratio ⁇ , within the limits defined above.
- a further advantageous embodiment of the invention is characterized by a second detection unit, wherein the second detection unit is set up to detect flame stability of the combustion and to output a corresponding second feedback signal to the control device, the control device being set up to determine the air ratio ⁇ depending on the second feedback signal.
- Flame stability here is understood to mean, in particular, a spatially permanent presence of the flame at a desired target distance from the burner mouth or burner surface.
- lifting a flame from the burner mouth or burner surface means an unstable burning flame, increasing the distance and "flying away" of the flame from the burner mouth or burner surface. This is accompanied by undesirable extinguishing of the burner and escape of unburned mixture and represents a dangerous condition that must be avoided and/or recognized.
- a flashback of a flame also means a flame that does not burn stably, a reduction in the distance and the flame resting on the burner mouth or burner surface, or even a penetration of the flame through the burner mouth or burner surface into an interior of the combustion device, for example to the mixer unit. This results in undesirable overheating of the burner surface or other elements inside the combustion device and represents a dangerous condition that must be avoided and/or recognized.
- the second detection unit can in particular be a temperature sensor or an optical sensor. These measure a signal representing flame stability, for example a burner surface that is “too cold” (tendency to lift off) or “too hot” (tendency to flashback), or a flame distance from the burner surface that is too large or too small.
- the temperature sensor can, for example, be arranged close to the burner surface.
- control device determines, for example based on a signal from the second detection unit, that the flame is not burning stably, it can regulate the air/fuel gas ratio, in particular the air ratio ⁇ , within the limits defined above so that a desired flame stability is established again.
- a third detection unit can be set up to detect a combustion noise of the combustion and to output a corresponding third feedback signal to the control device, the control device being set up to regulate the air ratio ⁇ depending on the second feedback signal.
- the third detection unit can in particular be an acoustic sensor or a vibration sensor. These measure a signal representing the combustion noise, for example combustion that is “too loud” or strongly oscillating (based on a predeterminable limit value).
- the control device can use a control loop to regulate the air/fuel gas ratio, in particular the air ratio ⁇ , within the limits defined above, thereby ensuring quiet operation of the combustion device.
- a further advantageous embodiment of the invention is characterized in that the control device is set up to output an error message if a predefinable flame stability or a predefinable noise limit value or a predefinable vibration limit value is not achieved within the air ratio value interval.
- Such a combustion device ensures operation that is characterized by high flame stability, high efficiencies, low pollutant levels and low noise.
- the invention further relates to a heater with a combustion device according to the invention.
- FIG. 1 Those described below Figures 1, 2 and 3 (Special features are highlighted in each case) show a combustion device 100 for providing an air-fuel gas mixture stream M from an air stream A and a fuel gas stream G, in particular a hydrogen stream G, in at least one predeterminable air/fuel gas ratio, and for combustion of the mixture stream M , whereby combustion generates heating power.
- the combustion device 100 comprises an air delivery unit 102, a fuel gas metering unit 104, a mixer unit 106, a burner surface 108 or a burner mouth 108, a control device 110, and lines for connecting the aforementioned components in an air, fuel gas, mixture or signal-conducting manner.
- the air delivery unit 102 is used to suck in an air flow A, in particular from an installation environment 1 of the combustion device 100, and to convey the air flow A to the mixer unit 106.
- the air delivery unit 102 is a speed-controllable air blower 102.
- the air delivery unit 102 is from the control device 110, for example based on a signal S1 of a requested heating power, by specifying a target delivery value S20, in particular a target fan speed S20.
- a power signal S21 in particular an actual delivery value such as an actual fan speed, is detected, which describes a size of the heating power (here in particular the actually delivered air flow A).
- the fuel gas metering unit 104 serves to meter a fuel gas stream G, the fuel gas stream G being fed into the mixer unit 106.
- the fuel gas metering unit 104 is a pneumatically controllable fuel gas valve 104 (in particular Figure 1 ) or electronically controllable fuel gas valve 104 (in particular Figures 2 and 3 ).
- a mixture signal S3 gives the fuel gas metering unit 104 a control value, based on which the fuel gas flow G is metered.
- the mixer unit 106 is used to combine air stream A and fuel gas stream G and mix them to form a mixture stream M.
- the mixer unit 106 is a Venturi nozzle 106.
- a power signal S21 in particular an actual air flow signal such as an air pressure, is detected, which describes a size of the heating power (here in particular the air flow A actually conveyed).
- the fuel gas metering unit 104 is based on the power signal S21 Figure 1 regulated.
- the mixture stream M exits into a combustion chamber 2 (not shown here), is ignited and burned to form flames F.
- the combustion device 100 further comprises a control device 110, which is set up to vary the air/fuel gas ratio depending on the heating output, the air/fuel gas ratio assuming a larger value with a smaller heating output and/or a smaller value with a larger heating output accepts.
- the values of the lower air ratio limit curve ⁇ -min and the upper air ratio limit curve ⁇ -max depend on the value of the heating output.
- Q stands for the value of the relative heating power of the combustion device 100.
- an actually regulated air ratio value ⁇ lies, in the best case scenario, essentially in the middle between the lower and upper air ratio limits.
- the air ratio limit curves ⁇ -min and ⁇ -max therefore represent the permissible deviations of the air ratio ⁇ from an ideal value.
- the control device 110 regulates the fuel gas flow G based on a power signal S21, in particular an air pressure signal, which is detected at the mixer unit 106 and describes the magnitude of the heating power (here in particular the air flow A flowing through the mixer unit).
- the power signal S21 acts on the control device 110.
- the control device 110 then uses a mixture signal S3 to meter an adapted fuel gas flow G, so that the air ratio ⁇ in the mixture flow M assumes values from the selected value interval.
- the fuel gas metering unit 104 and at least parts of the control device 110 according to Figure 1 can be formed in particular by a pneumatic air-fuel gas ratio controller 112.
- a pneumatic air-fuel gas ratio controller 112 can be understood in particular as a fitting consisting of a control device 110 and a fuel gas metering unit 104 combined into a structural unit.
- the air-fuel gas ratio controller 112 receives a power signal S21 describing an air flow A, for example an air pressure signal, translates this into a mixture signal S3, for example a control signal for a fuel gas pressure, opens the gas valve in particular to set a fuel gas pressure in correlation to the air pressure, and doses one Fuel gas flow G corresponding to the air flow A.
- the aforementioned correlation is defined by settings made on the air-fuel gas ratio controller 112 (for example an offset setting to the ratio, in particular difference, of fuel gas pressure and air pressure).
- the control device 110 controls both the air flow A and the fuel gas flow G using two mixture signals S3 based on one requested heating output S1. This control is carried out in such a way that the air ratio ⁇ in the mixture flow M assumes values from the selected value interval.
- the basis of the mixture signals S3 can be a table of values, a parameterized functional equation or another calculation algorithm that is stored in the control device 110 and establishes a correlation with the requested heating power S1.
- the control device 110 regulates the air flow A based on the requested heating output S1.
- the fuel gas flow G is metered using a mixture signal S3 based on a power signal S21 detected at the air delivery unit 102, in particular an actual delivery value such as an actual fan speed, which describes a size of the actually delivered air flow A.
- This control is carried out in such a way that the air ratio ⁇ in the mixture flow M assumes values from the selected value interval.
- the basis of the mixture signal S3 can be a table of values, a parameterized functional equation or another calculation algorithm that is stored in the control device 110 and establishes a correlation with the power signal S21.
- the combustion device 100 after Figure 3 shows an optional first detection unit 114 for detecting the actual air/fuel gas ratio, in particular the actual air ratio ⁇ , and for outputting a corresponding first feedback signal S4 to the control device 110, the control device 110 determining the air/fuel gas ratio, in particular the air ratio ⁇ , depending on the first feedback signal S4, regulates so that the actual air ratio ⁇ in the mixture flow M assumes values from the selected value interval.
- the first detection unit 114 may include a lambda sensor or an ionization electrode.
- the air/fuel gas ratio is regulated in particular by regulating the fuel gas metering unit 104.
- the first feedback signal S4 influences the mixture signal S3 output by the control device 110.
- the combustion device 100 shows Figure 3 an optional second detection unit 116 for detecting flame stability of the combustion and for outputting a corresponding second feedback signal S6 to the control device 110, the control device 110 being the Air/fuel gas ratio, in particular the air ratio ⁇ , is controlled depending on the second feedback signal S6 so that the air ratio ⁇ in the mixture flow M assumes values from the selected value interval.
- the second detection unit 116 may include a temperature sensor in or on the plane of the burner surface 108. With this temperature sensor, a distance D of the flame F from the burner surface 108, which characterizes the flame stability, can be recognized and compared with a target distance.
- the air/fuel gas ratio is regulated in particular by regulating the fuel gas metering unit 104.
- the target distance can then also be set again via the air/fuel gas ratio or the air ratio ⁇ .
- the second feedback signal S6 influences the mixture signal S3 output by the control device 110.
- the first detection unit 114 and the second detection unit 116, which are connected to the combustion device 100 Figure 3 shown can also be used with the combustion devices 100 Figure 1 or Figure 2 be used.
- Figure 4 shows the limit curves ⁇ -min and ⁇ -max of the selected lower and upper air ratio limits depending on the relative heating output Q.
- the courses of the limit curves ⁇ -min and ⁇ -max of the selected lower and upper air ratio limits are designed depending on the relative heating output Q on the basis of these three operating sections under consideration, which each have restrictions in the direction of larger and / or smaller air ratio values and a permissible minimum and /or set the maximum value for the air ratio at a certain relative heating output.
- the air ratio value interval ensures a low flame speed and low ignition energy in the mixture flow M.
- the air ratio value ⁇ should be so high that a flame speed of the mixture flow M is so low that excess pressures due to sudden ignition of the mixture flow M can be safely controlled and sufficiently quiet. The low flame speed helps to prevent the flame from flashing back.
- the air ratio value ⁇ should also be so low that the ignition energy of the mixture flow M is so low that a quick and reliable ignition of a flame is possible. Low ignition energy means that the mixture flow ignites easily and ensures reliable, instantaneous and safely controllable ignition.
- the air ratio value interval ensures the avoidance of flashback.
- the air ratio value ⁇ should be so high that an interaction between the exit speed of the mixture stream M on the burner surface 108 and the flame speed in the mixture stream M excludes a flashback.
- the exit velocity must be higher than the flame speed.
- increasing the air ratio simultaneously increases the exit velocity of the mixture flow because the mixture volume flow is increased. In this way, flashback can be avoided even with relatively low heating outputs.
- the air ratio value interval is guaranteed optimal thermal efficiency, complete combustion, elimination of flying flames and compatibility with pneumatic air-fuel gas ratio controllers 112.
- Pneumatic air-gas ratio control relies on flow restrictions and a nominally set regulated gas pressure from the gas valve. This physically limits one form of air ratio limit curves that the regulated air-fuel gas system can provide. Compatibility means that the shape of the limit curve can be brought into agreement with the physical behavior of a pneumatic air-fuel gas ratio controller 112. Another important aspect is to avoid the flame lifting.
- the air ratio value ⁇ must continue to be so low that a heater comprising a combustion device 100 according to the invention achieves the highest possible thermal efficiency.
- the air ratio ⁇ must therefore be set optimally in order to form a framework (which specifies both an upper and a lower limit to the claimed operating conditions) that meets all of the above requirements and also through an air-fuel gas ratio controller 112 for regulating the air / fuel gas ratio can be done.
- Air-fuel gas ratio controllers 112 are, in particular, passive physical systems whose possible behavior is limited by physical laws. For example, the curve must be strictly monotonic and either convex or concave.
- Another advantage of the method, in particular the air ratio value interval found, is that the method can also be implemented with known pneumatic air-fuel gas ratio controllers 112 with the appropriate setting.
- the selected air ratio value interval or the selected air ratio limit curves ⁇ -min and ⁇ -max can be Figure 4 in particular for air-hydrogen combustion can be achieved by setting a higher amount for the, in particular negative, offset pressure than is usual, for example, for hydrocarbon-based fuel gases (although the curve is still in the modulation range of existing gas valves).
- This offset setting can be made using an adjusting screw on the controller 112.
- the air ratio ⁇ achieved in this way is influenced by a negative pressure triggered by the mixer unit 106, a throttling of the fuel gas flow G (including the adjustable throttle valve in the gas valve, if present) and the offset pressure.
- the actual offset pressure delivered by the gas valve varies over the modulation range, its size increases with increasing heating power. However, this follows a linear relationship to heating output and maintains a very small amount (a few tens of Pascals). Due to its small size, the influence of the offset pressure is negligible at high heating powers (where the Venturi effect and the throttling of the fuel gas flow G are high). Conversely, the influence of the offset pressure is very strong at low heating outputs and allows the air ratio to vary greatly over the heating output, as shown in the air ratio limit curves ⁇ -min and ⁇ -max.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
Description
- Aus dem Stand der Technik ist bereits eine Verbrennungsvorrichtung zur Bereitstellung eines Luft-Brenngas-Gemischstroms aus einem Luftstrom und einem Brenngasstrom in einem vorgebbaren Luft/Brenngas-Verhältnis, und zur Verbrennung des Gemischstroms, bekannt, bei der durch die Verbrennung eine Heizleistung erzeugt wird und wobei eine Luftfördereinheit einen Luftstrom fördert, eine Brenngasdosiereinheit einen Brenngasstrom dosiert und eine Mischereinheit den Gemischstrom mischt.
- Die
WO2020/182902 A1 , auf welcher die zweiteilige Form von Anspruch 1 basiert, offenbart ein Brennersystem mit einem Mechanismus zum Vorgeben eines Luft/Brenngas-Verhältnis, wobei das Luft/Brenngas-Verhältnis zumindest teilweise von einer Heizleistung abhängt. - Die
EP1522790 A2 offenbart ein Verfahren zur Regelung eines Gasbrenners mit einer elektronischen Regelung, welche zu einer vorgegebenen Brennerleistung ein Sollsignal für die Brenngasmenge und die Luftmenge vorgibt, wobei ein Brenngas-Luft-Gemisch über den Modulationsbereich definiert angefettet und/oder abgemagert wird. - Die
EP3182007 A1 offenbart ein Heizgerätesystem mit einer Steuer- und/oder Regeleinheit, welche dazu vorgesehen ist, eine Luftzahlkenngröße auf eine von einer Heizleistung abhängige Soll-Luftzahlkenngröße einzustellen. - Die Erfindung betrifft eine Verbrennungsvorrichtung, insbesondere eine Wasserstoff-Verbrennungsvorrichtung, für ein Heizgerät zum Beheizen zumindest eines Raumes und/oder zur Erwärmung zumindest eines Nutzfluids. Die Verbrennungsvorrichtung dient zur Bereitstellung eines Luft-Brenngas-Gemischstroms aus einem Luftstrom und einem Brenngasstrom, insbesondere einem Wasserstoffstrom, mit zumindest einer vorgebbaren Luftzahl λ im Gemischstrom, und zur Verbrennung des Gemischstroms, wobei durch die Verbrennung eine Heizleistung erzeugt wird.
- Die Verbrennungsvorrichtung umfasst eine Regeleinrichtung, und eine Brenngasdosiereinheit und/oder eine Luftfördereinheit, wobei die Regeleinrichtung dazu ausgebildet ist,
- die Brenngasdosiereinheit in Abhängigkeit der Heizleistung zu regeln, wobei die Brenngasdosiereinheit bei kleinerer Heizleistung einen relativ kleineren Brenngasstrom dosiert, und bei größerer Heizleistung einen relativ größeren Brenngasstrom dosiert, und/oder
- die Luftfördereinheit in Abhängigkeit der Heizleistung zu regeln, wobei die Luftfördereinheit bei kleinerer Heizleistung einen relativ größeren Luftstrom fördert, und bei größerer Heizleistung einen relativ kleineren Luftstrom fördert.
- Die Erfindung ist dadurch gekennzeichnet, dass die Regeleinrichtung weiter dazu eingerichtet ist, die Luftzahl λ des Luft-Brenngas-Gemischstroms auf einen Wert innerhalb des Luftzahl-Werteintervalls
- Die Luftzahl λ charakterisiert ein Mengenverhältnis von Luft zu Brenngas und ist als Quotient aus einer tatsächlich im Gemischstrom vorhandenen Luftmenge und einer für eine stöchiometrische Verbrennung des Gemischstroms benötigten Luftmenge berechnet. Q ist der Wert der relativen Heizleistung der Verbrennungsvorrichtung und liegt im Bereich 0,05 ≤ Q ≤ 1.
- Insbesondere fördert eine Luftfördereinheit den Luftstrom, insbesondere in Abhängigkeit einer Leistungsanforderung, dosiert eine Brenngasdosiereinheit den Brenngasstrom, insbesondere in Abhängigkeit des Luftstroms, und mischt eine Mischereinheit den Gemischstrom.
- Unter einer Verbrennungsvorrichtung soll hier insbesondere ein Brenner oder eine Brennervorrichtung verstanden werden, mit deren Hilfe ein brennbarer Gemischstrom bereitgestellt und verbrannt werden kann. Eine Anwendung findet die Verbrennungsvorrichtung insbesondere bei einem Heizgerät, beispielsweise ein Heizgerät zur Beheizung zumindest eines Raumes und/oder zur Erwärmung zumindest eines Nutzfluids wie Heizungswasser und/oder Trinkwasser. Bei dem Gemischstrom handelt es sich um einen einen Luftstrom und einen Brenngasstrom umfassenden Gasstrom. Der Luftstrom wird insbesondere einer Aufstellumgebung der Verbrennungsvorrichtung oder einer Außenumgebung eines Gebäudes, in dem die Verbrennungsvorrichtung aufgestellt ist, entnommen. Der Brenngasstrom wird insbesondere einer Brenngasleitung oder einem Brenngastank entnommen. Die Verbrennungsvorrichtung ist insbesondere zur Verwendung des Brenngases Wasserstoff konzipiert. Alternativ oder ergänzend kann die Verbrennungsvorrichtung auch zur Verwendung anderer Brenngase konzipiert sein. Zu seiner sauberen und effizienten Verbrennung weist der Gemischstrom ein vorgebbares Luft/Brenngas-Verhältnis beziehungsweise eine Luftzahl λ auf. Unter einem Luft/Brenngas-Verhältnis ist hier ein Mengenverhältnis von Luft zu Brenngas zu verstehen. Darunter, dass das Luft/Brenngas-Verhältnis vorgebbar ist, ist insbesondere zu verstehen, dass das Mengenverhältnis einstellbar ist. Der Gemischstrom wird in der Verbrennungsvorrichtung gezündet und unter Ausbildung einer Flamme verbrannt. Die Verbrennungsvorrichtung umfasst eine Brennermündung oder Brenneroberfläche, die als Flammenhalter fungiert: hier soll die Flamme räumlich stabil brennen. Die bei der Verbrennung pro Zeiteinheit frei werdende Energie (Wärme) wird durch die Größe des verbrannten Gemischstroms, insbesondere die Größe des verbrannten Brennstoffstroms, bestimmt. Die pro Zeiteinheit frei werdende Energie charakterisiert die Heizleistung der Verbrennungsvorrichtung. Die Heizleistung ist zwischen einer minimalen Heizleistung und einer maximalen Heizleistung stufig oder kontinuierlich modulierbar. Unter dem Begriff der Heizleistung kann sowohl eine absolute Heizleistung (Einheit Watt) als auch eine relative Heizleistung verstanden werden. Die relative Heizleistung berechnet sich als die tatsächliche absolute Heizleistung bezogen auf die maximale absolute Heizleistung. Bei der relativen Heizleistung handelt es sich um eine dimensionslose Größe mit Werten im Allgemeinen zwischen 0 und 1. Da aber eine reale Verbrennungsvorrichtung in der Regel nicht bei einer relativen Heizleistung knapp über 0 betrieben werden kann, liegen die Werte der relativen Heizleistung in der Realität bei 0 für den ausgeschalteten Zustand (keine Verbrennung) sowie im Feuerungsbetrieb zwischen 0,05 und 1. Unter einer Luftfördereinheit wird eine Einrichtung zum Fördern des Luftstroms verstanden, dabei kann es sich insbesondere um ein - insbesondere drehzahlgeregeltes - Luftgebläse oder Luftventilator oder ein Luftventil handeln. Die Luftfördereinheit wird insbesondere von einem elektrischen Signal gesteuert. Die Förderung des Luftstroms kann insbesondere in Abhängigkeit einer Leistungsanforderung, beispielsweise eine Heizleistungsanforderung oder eine Temperaturanforderung, an die Verbrennungsvorrichtung und/oder das Heizgerät erfolgen. Insbesondere kann eine Größe des geförderten Luftvolumenstroms in Abhängigkeit einer Größe einer angeforderten Heizleistung erfolgen. Unter einer angeforderten Heizleistung wird insbesondere eine theoretisch erforderliche Heizleistung verstanden, die zur Erfüllung eines Bedarfs eines Nutzers zur Raumheizung und/oder Trinkwarmwasserbereitung dient. Im Gegensatz dazu ist eine tatsächliche Heizleistung eine messbare Größe, die mit der Größe des zur Verbrennung gelangenden Gemischstroms korreliert. Unter einer Brenngasdosiereinheit wird eine Einrichtung zum Dosieren des Brenngasstroms verstanden, dabei kann es sich insbesondere um ein Brenngasventil oder eine Brenngasarmatur handeln. Die Brenngasdosiereinheit wird insbesondere von einem elektrischen und/oder einem Drucksignal geregelt. Die Dosierung des Brenngasstroms kann insbesondere in Abhängigkeit des Luftstroms erfolgen. Insbesondere kann eine Größe des dosierten Brenngasstroms in Abhängigkeit der Größe des Luftstroms erfolgen. Unter einer Mischereinheit wird eine Einrichtung zum Zusammenführen und Mischen von Luftstrom und Brenngasstrom und Erzeugen des Luft-Brenngas-Gemischstroms verstanden, dabei kann es sich insbesondere um einen Venturimischer handeln.
- Unter einer Regeleinrichtung wird eine Einrichtung zum Steuern und/oder Regeln zumindest eines Verfahrensschrittes, insbesondere des Variierens des Luft/Brenngas-Verhältnisses und/oder der Luftzahl λ, verstanden. Unter einem Regeln wird hier übergreifend ein Steuern und/oder Regeln im engeren Sinn verstanden. Unter einer Regelung wird hier übergreifend eine Steuerung und/oder Regelung im engeren Sinn verstanden. Mit dem Variieren wird das Luft/Brenngas-Verhältnis und/oder die Luftzahl λ vorgebbar verändert. Mittels der Regeleinrichtung kann eine variierbare Verbundregelung zum Regeln des Luft/Brenngas-Verhältnisses und/oder der Luftzahl λ aufgebaut sein. Ein Verbund bedeutet insbesondere, dass ein Sollwert einer ersten Größe, beispielsweise des Luftstroms, beispielsweise anhand eines elektrischen Signals, vorgegeben wird, und dass ein Sollwert einer Folgegröße, beispielsweise des Brenngasstroms, beispielsweise anhand eines elektrischen oder eines Drucksignals, im Verbund, angepasst an den resultierenden Istwert der ersten Größe, nachgeführt wird. Ein variierbarer Verbund bedeutet, dass der Sollwert der Folgegröße nicht nur an den Istwert der ersten Größe angepasst wird, sondern darüber hinaus diese Anpassung in Abhängigkeit einer dritten Größe, hier der Heizleistung, variiert wird. Im Ergebnis wird so der Wert des Luft/Brenngas-Verhältnisses geregelt, so dass sich ein heizleistungsabhängiges Luft/Brenngas-Verhältnis einstellt. Darunter, dass das Luft/Brenngas-Verhältnis in Abhängigkeit der Heizleistung variiert wird, ist zu verstehen, dass die Größe der Heizleistung den Wert des Luft/Brenngas-Verhältnisses zumindest mitbestimmt.
- Die Regeleinrichtung ist insbesondere so ausgebildet, dass das Luft/Brenngas-Verhältnis und/oder die Luftzahl λ bei kleinerer Heizleistung einen größeren Wert annimmt und/oder bei größerer Heizleistung einen kleineren Wert annimmt. Dabei greift die Regeleinrichtung insbesondere auch in den Betrieb der Luftfördereinheit, der Brenngasdosiereinheit und/oder der Mischereinheit ein. Insbesondere wird das Luft/Brenngas-Verhältnis mit kleiner werdender Heizleistung vergrößert und mit größer werdender Heizleistung verkleinert. Die Variation des Luft/Brenngas-Verhältnisses über der Heizleistung kann einen stufigen Verlauf oder einen kontinuierlichen Verlauf aufweisen. Unter Vergrößern des Luft/Brenngas-Verhältnisses wird hier ein Abmagern des Luft-Brenngas-Gemischstroms, also ein Verringern des Brenngasgehalts im Gemischstrom, verstanden. Unter Verkleinern des Luft/Brenngas-Verhältnisses wird hier ein Anfetten des Luft-Brenngas-Gemischstroms, also ein Anreichern des Brenngasgehalts im Gemischstrom, verstanden. Der Luftstrom, der Brenngasstrom und/oder der Gemischstrom sind mengenvariabel und zwischen einem jeweiligen minimalen Wert und einem jeweiligen maximalen Wert stufig oder kontinuierlich modulierbar.
- Die Regeleinrichtung kann insbesondere als eigenständige Komponente "Regelgerät" ausgebildet sein. Die Regeleinrichtung kann alternativ oder ergänzend (im Sinn eines verteilten Systems) auch als Teil der Luftfördereinheit, der Brenngasdosiereinheit und/oder der Mischereinheit ausgebildet sein.
- Die Luftzahl λ ist ein in der Feuerungstechnik verwendeter spezieller Parameter zur Charakterisierung des Luft/Brenngas-Verhältnisses eines Luft-Brenngas-Gemischstroms. Die Luftzahl λ wird als Quotient aus einer tatsächlich im Gemischstrom vorhandenen Luftmenge L und einer für eine stöchiometrische Verbrennung des Gemischstroms benötigten Luftmenge L-st berechnet:
-
-
- Dass die Herausnahme des Wertes Q = 0 keine Einschränkung der Gültigkeit des angegebenen Luftzahl-Werteintervalls für die Verbrennungspraxis darstellt, wird aus den obigen Ausführungen zu realen Verbrennungsvorrichtungen deutlich, denenzufolge die Werte der relativen Heizleistung Q im realen Feuerungsbetrieb zwischen Q-min, beispielsweise ein Wert aus einem Bereich zwischen 0,05 und Q-max = 1 liegen, und nur für den ausgeschalteten Zustand (keine Gemischbildung, keine Verbrennung, keine sinnvolle Luftzahldefinition möglich) den Wert Q = 0 annehmen.
- Mit der Erfindung ist ein gegenüber dem bekannten Stand der Technik verbessertes Verfahren zum Betreiben einer Verbrennungsvorrichtung geschaffen.
- Luft-Brenngas-Gemischströme mit einer Luftzahl λ aus dem oben genannten Werteintervall sind besonders vorteilhaft zu verbrennen. Insbesondere sind Luft-Wasserstoff-Gemischströme mit einer Luftzahl λ aus dem oben genannten Werteintervall besonders vorteilhaft zu verbrennen. Die Verbrennung eines solchen Luft-Brenngas-Gemischstroms zeichnet sich aus durch eine sichere Zündung, hohe Flammenstabilität (Vermeidung von abhebenden Flammen und Flammenrückschlag), optimale thermische Wirkungsgrade, eine vollständige Verbrennung mit niedrigen Schadstoffwerten, geringe Geräuschbildung sowie Kompatibilität mit handelsüblichen pneumatischen Luft-Gas-Verhältnisreglern. Die Regeleinrichtung kann die Brenngasdosiereinheit in Abhängigkeit der Heizleistung regeln, wobei die Brenngasdosiereinheit bei kleinerer Heizleistung einen relativ kleineren Brenngasstrom dosiert, und bei größerer Heizleistung einen relativ größeren Brenngasstrom dosiert.
- Das Regeln der Brenngasdosiereinheit kann insbesondere mittels eines elektrischen Signals oder eines Drucksignals erfolgen, das von der Regeleinrichtung an die Brenngasdosiereinheit ausgegeben wird.
- Der Begriff "ein relativ kleinerer (bzw. größerer) Brenngasstrom" bringt zum Ausdruck, dass die Verkleinerung (bzw. Vergrößerung) der Dosierung des Brenngasstroms bei kleinerer (bzw. größerer) Heizleistung insbesondere nicht proportional, sondern überproportional erfolgt, so dass das Luft/Brenngas-Verhältnis und die Luftzahl λ bei kleinerer Heizleistung größer bzw. bei größerer Heizleistung kleiner wird.
- Insbesondere regelt die Regeleinrichtung die Brenngasdosiereinheit in Abhängigkeit der Heizleistung, so dass sich im Gemischstrom eine Luftzahl λ innerhalb des oben genannten Luftzahl-Werteintervalls einstellt.
- Insbesondere kann die Regeleinrichtung als verteiltes System auch Luftstrom berührte Teile umfassen, beispielsweise Luftdurchsatzmessgeräte oder Luftdrucksonden, die eine Größe des Luftstroms erfassen. Der Brenngasstrom wird entsprechend der Größe des Luftstroms und in Abhängigkeit der Heizleistung so dosiert, dass sich im Gemischstrom eine Luftzahl innerhalb des oben genannten Luftzahl-Werteintervalls einstellt.
- Die Regeleinrichtung kann die Luftfördereinheit in Abhängigkeit der Heizleistung regeln, wobei die Luftfördereinheit bei kleinerer Heizleistung einen relativ größeren Luftstrom fördert, und bei größerer Heizleistung einen relativ kleineren Luftstrom fördert.
- Das Regeln der Luftfördereinheit kann insbesondere mittels eines elektrischen Signals oder eines Drucksignals erfolgen, das von der Regeleinrichtung an die Luftfördereinheit ausgegeben wird.
- Der Begriff "ein relativ größerer (bzw. kleinerer) Luftstrom" bringt zum Ausdruck, dass die Verkleinerung (bzw. Vergrößerung) der Förderung des Luftstroms bei kleinerer (bzw. größerer) Heizleistung insbesondere nicht proportional, sondern überproportional erfolgt, so dass das Luft/Brenngas-Verhältnis und die Luftzahl λ bei kleinerer Heizleistung größer bzw. bei größerer Heizleistung kleiner wird.
- Insbesondere regelt die Regeleinrichtung die Luftfördereinheit in Abhängigkeit der Heizleistung, so dass sich im Gemischstrom eine Luftzahl innerhalb des oben genannten Luftzahl-Werteintervalls einstellt.
- Insbesondere kann die Regeleinrichtung als verteiltes System auch Brenngasstrom berührte Teile umfassen, beispielsweise Brenngasdurchsatzmessgeräte oder Brenngasdrucksonden, die eine Größe des Brenngasstroms erfassen. Der Luftstrom wird entsprechend der Größe des Brenngasstroms und in Abhängigkeit der Heizleistung so dosiert, dass sich im Gemischstrom eine Luftzahl innerhalb des oben genannten Luftzahl-Werteintervalls einstellt.
- Eine vorteilhafte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die Regeleinrichtung dazu eingerichtet ist, die Heizleistung zu erfassen, in Abhängigkeit der Heizleistung ein Gemischsignal zu erzeugen und an die Brenngasdosiereinheit und/oder die Luftfördereinheit auszugeben. Dabei ist das Gemischsignal dazu vorgesehen, bei kleinerer Heizleistung einen relativ kleineren Brenngasstrom zu dosieren und/oder einen relativ größeren Luftstrom zu fördern; und bei größerer Heizleistung einen relativ größeren Brenngasstrom zu dosieren und/oder einen relativ kleineren Luftstrom zu fördern. Die hier angesprochene Heizleistung kann eine erfasste tatsächliche Heizleistung oder auch eine angeforderte Heizleistung sein.
- Das Gemischsignal kann insbesondere ein elektrisches Signal oder ein Drucksignal sein. Darunter, dass die Regeleinrichtung in Abhängigkeit der Heizleistung ein Gemischsignal erzeugt, kann insbesondere verstanden werden, dass in der Regeleinrichtung eine Korrelation zwischen Heizleistung und Gemischsignal - in Form eines Mechanismusses, einer Wertetabelle, einer mathematischen Funktion und/oder eines Algorithmusses - abrufbar ist, die der Erzeugung des Gemischsignals zugrunde gelegt wird. Das Gemischsignal umfasst insbesondere ein einzelnes Signal oder zwei Teilsignale, eins für die Luftfördereinheit und/oder ein anderes für die Brenngasdosiereinheit, und wirkt insbesondere auf die Luftstromförderung der Luftfördereinheit und/oder die Brenngasstromdosierung der Brenngasdosiereinheit.
- Insbesondere regelt die Regeleinrichtung die Luftfördereinheit und/oder die Brenngasdosiereinheit in Abhängigkeit der Heizleistung, so dass sich im Gemischstrom eine Luftzahl innerhalb des oben genannten Luftzahl-Werteintervalls einstellt.
- Eine weitere vorteilhafte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die Regeleinrichtung dazu eingerichtet ist, ein die Heizleistung charakterisierendes Leistungssignal zu erhalten und zu verarbeiten, wobei das Leistungssignal auf einer Erfassung einer tatsächlichen oder angeforderten Heizleistung, des Gemischstroms, des Brenngasstroms, des Luftstroms, einer Gebläsedrehzahl eines den Luftstrom fördernden Luftgebläses und/oder einer Verbrennungstemperatur der Verbrennung des Luft-Brenngas-Gemischstroms beruht, wobei die Regeleinrichtung dazu eingerichtet ist, auf Grundlage des Leistungssignals das Gemischsignal zu generieren.
- Das Leistungssignal kann insbesondere ein elektrisches Signal oder ein Drucksignal sein. Dazu umfasst die Verbrennungsvorrichtung zumindest eine Messeinrichtung, beispielsweise einen elektrischen, elektronischen oder pneumatischen Sensor, zum Erfassen der Heizleistung, des Gemischstroms, des Brenngasstroms, des Luftstroms, der Gebläsedrehzahl eines den Luftstrom fördernden Luftgebläses, und/oder der Verbrennungstemperatur der Verbrennung des Luft-Brenngas-Gemischstroms. Ein Wert des Leistungssignals entspricht einer Größe der Heizleistung. Die Regeleinrichtung empfängt das Leistungssignal und übersetzt es in das Gemischsignal.
- Eine weitere vorteilhafte Ausführungsform der Erfindung ist durch eine erste Erfassungseinheit gekennzeichnet, wobei die erste Erfassungseinheit dazu eingerichtet ist, die Luftzahl λ zu erfassen und ein entsprechendes erstes Rückmeldesignal an die Regeleinrichtung auszugeben, wobei die Regeleinrichtung dazu eingerichtet ist, die Luftzahl λ in Abhängigkeit des ersten Rückmeldesignals zu regeln.
- Bei der ersten Erfassungseinheit kann es sich insbesondere um einen Lambdasensor oder um eine lonisationselektrode handeln, die ein das Luft/Brenngas-Verhältnis, insbesondere die Luftzahl λ, repräsentierendes Signal messen. Mittels des ersten Rückmeldesignals kann die Regeleinrichtung einen geschlossenen Regelkreis zur Regelung des Luft/Brenngas-Verhältnisses, insbesondere der Luftzahl λ, in den oben definierten Grenzen nutzen.
- Eine weitere vorteilhafte Ausführungsform der Erfindung ist durch eine zweite Erfassungseinheit gekennzeichnet, wobei die zweite Erfassungseinheit dazu eingerichtet ist, eine Flammenstabilität der Verbrennung zu erfassen und ein entsprechendes zweites Rückmeldesignal an die Regeleinrichtung auszugeben, wobei die Regeleinrichtung dazu eingerichtet ist, die Luftzahl λ in Abhängigkeit des zweiten Rückmeldesignals zu regeln.
- Unter Flammenstabilität wird hier insbesondere eine räumlich-dauerhafte Präsenz der Flamme in einem gewünschten Sollabstand von der Brennermündung oder Brenneroberfläche verstanden. Im Gegensatz dazu bedeutet ein Abheben einer Flamme von der Brennermündung oder Brenneroberfläche eine nicht stabil brennende Flamme, ein Vergrößern des Abstands und "Wegfliegen" der Flamme von der Brennermündung oder Brenneroberfläche. Dies geht mit einem unerwünschten Verlöschen des Brenners und Austritt von unverbranntem Gemisch einher und stellt einen gefährlichen Zustand dar, der vermieden und/oder erkannt werden muss. Ein Rückschlagen einer Flamme bedeutet ebenfalls eine nicht stabil brennende Flamme, ein Verkleinern des Abstands und Aufsitzen der Flamme auf der Brennermündung oder Brenneroberfläche, oder sogar ein Durchschlagen der Flamme durch die Brennermündung oder Brenneroberfläche in ein Inneres der Verbrennungsvorrichtung, beispielsweise bis zur Mischereinheit. Dies geht mit einem unerwünschten Überhitzen der Brenneroberfläche oder anderer Elemente im Inneren der Verbrennungsvorrichtung einher und stellt einen gefährlichen Zustand dar, der vermieden und/oder erkannt werden muss.
- Bei der zweiten Erfassungseinheit kann es sich insbesondere um einen Temperatursensor oder einen optischen Sensor handeln. Diese messen ein die Flammenstabilität repräsentierendes Signal, beispielsweise eine "zu kalte" (Abhebeneigung) oder "zu heiße" (Rückschlagsneigung) Brenneroberfläche, oder einen zu großen oder zu kleinen Flammenabstand von der Brenneroberfläche. Der Temperatursensor kann beispielsweise dicht an der Brenneroberfläche angeordnet sein. Mittels des zweiten Rückmeldesignals kann die Regeleinrichtung einen Regelkreis zur Regelung des Luft/Brenngas-Verhältnisses, insbesondere der Luftzahl λ, in den oben definierten Grenzen nutzen, wodurch ein sicherer Betrieb der Verbrennungsvorrichtung mit stabiler Flammenbildung gewährleistet ist.
- Wenn die Regeleinrichtung beispielsweise anhand eines Signals der zweiten Erfassungseinheit feststellt, dass die Flamme nicht stabil brennt, kann sie das Luft/Brenngas-Verhältnis, insbesondere die Luftzahl λ, innerhalb der oben definierten Grenzen so regeln, dass eine gewünschte Flammenstabilität sich wieder einstellt.
- Eine dritte Erfassungseinheit kann dazu eingerichtet sein, ein Verbrennungsgeräusch der Verbrennung zu erfassen und ein entsprechendes drittes Rückmeldesignal an die Regeleinrichtung auszugeben, wobei die Regeleinrichtung dazu eingerichtet ist, die Luftzahl λ in Abhängigkeit des zweiten Rückmeldesignals zu regeln.
- Bei der dritten Erfassungseinheit kann es sich insbesondere um einen Akustiksensor oder einen Schwingungssensor handeln. Diese messen ein das Verbrennungsgeräusch repräsentierendes Signal, beispielsweise eine "zu laute" oder stark schwingende Verbrennung (bezogen auf einen vorgebbaren Grenzwert). Mittels des dritten Rückmeldesignals kann die Regeleinrichtung einen Regelkreis zur Regelung des Luft/Brenngas-Verhältnisses, insbesondere der Luftzahl λ, in den oben definierten Grenzen nutzen, wodurch ein leiser Betrieb der Verbrennungsvorrichtung gewährleistet ist.
- Eine weitere vorteilhafte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die Regeleinrichtung dazu eingerichtet ist, eine Fehlermeldung auszugeben, wenn eine vorgebbare Flammenstabilität oder ein vorgebbarer Geräuschgrenzwert oder ein vorgebbarer Schwingungsgrenzwert innerhalb des Luftzahl-Werteintervalls nicht erreicht wird.
- Da ein Abweichen von der Flammenstabilität und/oder dem Geräuschgrenzwert und/oder Schwingungsgrenzwert einen gefährlichen Zustand darstellen kann, der vermieden werden muss, kann es sinnvoll sein, die Fehlermeldung mit einem Abschalten der Verbrennungsvorrichtung zu ergänzen.
- Eine solche Verbrennungsvorrichtung gewährleistet einen Betrieb, der sich durch hohe Flammenstabilität, hohe Wirkungsgrade, niedrige Schadstoffwerte und geringe Geräuschbildung auszeichnet.
- Die Erfindung betrifft ferner ein Heizgerät mit einer erfindungsgemäßen Verbrennungsvorrichtung.
- Weitere Ausgestaltungen und Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.
- Figur 1
- zeigt ein erstes Ausführungsbeispiel einer Verbrennungsvorrichtung,
- Figur 2
- zeigt ein zweites Ausführungsbeispiel einer Verbrennungsvorrichtung,
- Figur 3
- zeigt ein drittes Ausführungsbeispiel einer Verbrennungsvorrichtung,
- Figur 4
- zeigt einen Grenzkurvenverlauf der Luftzahlwerte λ in einem ausgewählten Werteintervall in Abhängigkeit der relativen Heizleistung Q.
- Die im Folgenden beschriebenen
Figuren 1, 2 und3 (Besonderheiten werden jeweils hervorgehoben) zeigen jeweils eine Verbrennungsvorrichtung 100 zur Bereitstellung eines Luft-Brenngas-Gemischstroms M aus einem Luftstrom A und einem Brenngasstrom G, insbesondere einem Wasserstoffstrom G, in zumindest einem vorgebbaren Luft/Brenngas-Verhältnis, und zur Verbrennung des Gemischstroms M, wobei durch die Verbrennung eine Heizleistung erzeugt wird. Die Verbrennungsvorrichtung 100 umfasst eine Luftfördereinheit 102, eine Brenngasdosiereinheit 104, eine Mischereinheit 106, eine Brenneroberfläche 108 beziehungsweise eine Brennermündung 108, eine Regeleinrichtung 110, sowie Leitungen zum Luft-, Brenngas-, Gemisch- oder Signal-leitenden Verbinden der vorgenannten Komponenten. - Die Luftfördereinheit 102 dient einem Ansaugen eines Luftstroms A, insbesondere aus einer Aufstellumgebung 1 der Verbrennungsvorrichtung 100, sowie einem Fördern des Luftstroms A zur Mischereinheit 106. Beispielsweise handelt es sich bei der Luftfördereinheit 102 um ein Drehzahl-regelbares Luftgebläse 102. Die Luftfördereinheit 102 wird von der Regeleinrichtung 110, beispielsweise auf Basis eines Signals S1 einer angeforderten Heizleistung, mittels einer Vorgabe eines Soll-Förderwerts S20, insbesondere einer Soll-Gebläsedrehzahl S20, geregelt. An der Luftfördereinheit 102 nach
Figur 3 wird ein Leistungssignal S21, insbesondere ein Ist-Förderwert wie beispielsweise eine Ist-Gebläsedrehzahl, erfasst, das eine Größe der Heizleistung (hier insbesondere des tatsächlich geförderten Luftstroms A) beschreibt. - Die Brenngasdosiereinheit 104 dient einem Dosieren eines Brenngasstroms G, wobei der Brenngasstrom G in die Mischereinheit 106 geführt wird. Beispielsweise handelt es sich bei der Brenngasdosiereinheit 104 um ein pneumatisch regelbares Brenngasventil 104 (insbesondere
Figur 1 ) oder elektronisch regelbares Brenngasventil 104 (insbesondereFiguren 2 und3 ). Ein Gemischsignal S3 gibt der Brenngasdosiereinheit 104 einen Stellwert vor, anhand dessen der Brenngasstrom G dosiert wird. - Die Mischereinheit 106 dient einem Zusammenführen von Luftstrom A und Brenngasstrom G und Mischen zu einem Gemischstrom M. Beispielsweise handelt es sich bei der Mischereinheit 106 um eine Venturidüse 106. An der Mischereinheit 106 nach
Figur 1 wird ein Leistungssignal S21, insbesondere ein Ist-Luftstromsignal wie beispielsweise ein Luftdruck, erfasst, das eine Größe der Heizleistung (hier insbesondere des tatsächlich geförderten Luftstroms A) beschreibt. Auf Basis des Leistungssignals S21 wird die Brenngasdosiereinheit 104 nachFigur 1 geregelt. - An der Brenneroberfläche 108 tritt der Gemischstrom M in einen Brennraum 2 (hier nicht dargestellt) aus, wird gezündet und unter Ausbildung von Flammen F verbrannt.
- Die Verbrennungsvorrichtung 100 umfasst weiter eine Regeleinrichtung 110, die dazu eingerichtet ist, das Luft/Brenngas-Verhältnis in Abhängigkeit der Heizleistung zu variieren, wobei das Luft/Brenngas-Verhältnis bei kleinerer Heizleistung einen größeren Wert annimmt und/oder bei größerer Heizleistung einen kleineren Wert annimmt. Die Regeleinrichtung 110 ist insbesondere dazu eingerichtet, eine Luftzahl λ, die das Luft/Brenngas-Verhältnis des Gemischstroms M beschreibt, auf einen Wert aus einem ausgewählten Luftzahl-Werteintervall zu regeln, wobei das Luftzahl-Werteintervall durch eine untere Luftzahlgrenzkurve λ-min und eine obere Luftzahlgrenzkurve λ-max wie folgt definiert ist:
- Die Werte der unteren Luftzahlgrenzkurve λ-min und der oberen Luftzahlgrenzkurve λ-max hängen vom Wert der Heizleistung ab. Dabei steht Q für den Wert der relativen Heizleistung der Verbrennungsvorrichtung 100.
- Insbesondere liegt ein tatsächlich eingeregelter Luftzahlwert λ günstigstenfalls im Wesentlichen in der Mitte zwischen der unteren und oberen Luftzahlgrenze. Somit repräsentieren die Luftzahlgrenzkurven λ-min und λ-max die zulässigen Abweichungen der Luftzahl λ von einem Idealwert.
- Die Regeleinrichtung 110 nach
Figur 1 regelt den Brenngasstrom G auf Basis eines Leistungssignals S21, insbesondere eines Luftdrucksignals, das an der Mischereinheit 106 erfasst wird und die Größe der Heizleistung (hier insbesondere den durch die Mischereinheit strömenden Luftstrom A) beschreibt. Das Leistungssignal S21 wirkt auf die Regeleinrichtung 110. Die Regeleinrichtung 110 bewirkt daraufhin mittels eines Gemischsignals S3 das Dosieren eines angepassten Brenngasstroms G, so dass die Luftzahl λ im Gemischstrom M Werte aus dem ausgewählten Werteintervall annimmt. - Die Brenngasdosiereinheit 104 und zumindest Teile der Regeleinrichtung 110 nach
Figur 1 können insbesondere durch einen pneumatischen Luft-Brenngas-Verhältnisregler 112 gebildet werden. Unter einem pneumatischen Luft-Brenngas-Verhältnisregler 112 kann insbesondere eine zu einer Baueinheit kombinierte Armatur aus Regeleinrichtung 110 und Brenngasdosiereinheit 104 verstanden werden. Der Luft-Brenngas-Verhältnisregler 112 empfängt ein einen Luftstrom A beschreibendes Leistungssignal S21, beispielsweise ein Luftdrucksignal, übersetzt dieses in ein Gemischsignal S3, beispielsweise ein Stellsignal für einen Brenngasdruck, öffnet das Gasventil insbesondere zur Einstellung eines Brenngasdrucks in Korrelation zum Luftdruck, und dosiert einen Brenngasstrom G entsprechend des Luftstroms A. Die vorgenannte Korrelation ist durch an dem Luft-Brenngas-Verhältnisregler 112 vorgenommene Einstellungen (beispielsweise eine Offset-Einstellung zum Verhältnis, insbesondere Differenz, von Brenngasdruck und Luftdruck) definiert. - Die Regeleinrichtung 110 nach
Figur 2 steuert sowohl den Luftstrom A als auch den Brenngasstrom G mittels zweier Gemischsignale S3 auf Basis einer angeforderten Heizleistung S1. Diese Regelung erfolgt so, dass die Luftzahl λ im Gemischstrom M Werte aus dem ausgewählten Werteintervall annimmt. Grundlage der Gemischsignale S3 kann eine Wertetabelle, eine parametrisierte Funktionsgleichung oder ein anderer Berechnungsalgorithmus sein, der in der Regeleinrichtung 110 gespeichert ist und eine Korrelation mit der angeforderten Heizleistung S1 herstellt. - Die Regeleinrichtung 110 nach
Figur 3 regelt den Luftstrom A auf Basis der angeforderten Heizleistung S1. Der Brenngasstrom G wird auf Basis eines an der Luftfördereinheit 102 erfassten Leistungssignals S21, insbesondere eines Ist-Förderwerts wie beispielsweise eine Ist-Gebläsedrehzahl, der eine Größe des tatsächlich geförderten Luftstroms A beschreibt, mittels eines Gemischsignals S3 dosiert. Diese Regelung erfolgt so, dass die Luftzahl λ im Gemischstrom M Werte aus dem ausgewählten Werteintervall annimmt. Grundlage des Gemischsignals S3 kann eine Wertetabelle, eine parametrisierte Funktionsgleichung oder ein anderer Berechnungsalgorithmus sein, der in der Regeleinrichtung 110 gespeichert ist und eine Korrelation mit dem Leistungssignal S21 herstellt. - Die Verbrennungsvorrichtung 100 nach
Figur 3 zeigt eine optionale erste Erfassungseinheit 114 zum Erfassen des tatsächlichen Luft/Brenngas-Verhältnisses, insbesondere der tatsächlichen Luftzahl λ, und zur Ausgabe eines entsprechenden ersten Rückmeldesignals S4 an die Regeleinrichtung 110, wobei die Regeleinrichtung 110 das Luft/Brenngas-Verhältnis, insbesondere die Luftzahl λ, in Abhängigkeit des ersten Rückmeldesignals S4 so regelt, dass die tatsächliche Luftzahl λ im Gemischstrom M Werte aus dem ausgewählten Werteintervall annimmt. Die erste Erfassungseinheit 114 kann eine Lambdasonde oder eine lonisationselektrode umfassen. Die Regelung des Luft/Brenngas-Verhältnisses erfolgt insbesondere durch ein Regeln der Brenngasdosiereinheit 104. Das erste Rückmeldesignal S4 beeinflusst das von der Regeleinrichtung 110 ausgegebene Gemischsignal S3. - Ferner zeigt die Verbrennungsvorrichtung 100 nach
Figur 3 eine optionale zweite Erfassungseinheit 116 zur Erfassung einer Flammenstabilität der Verbrennung und zur Ausgabe eines entsprechenden zweiten Rückmeldesignals S6 an die Regeleinrichtung 110, wobei die Regeleinrichtung 110 das Luft/Brenngas-Verhältnis, insbesondere die Luftzahl λ, in Abhängigkeit des zweiten Rückmeldesignals S6 so regelt, dass die Luftzahl λ im Gemischstrom M Werte aus dem ausgewählten Werteintervall annimmt. Die zweite Erfassungseinheit 116 kann einen Temperaturfühler in oder an der Ebene der Brenneroberfläche 108 umfassen. Mit diesem Temperaturfühler kann ein die Flammenstabilität charakterisierender Abstand D der Flamme F von der Brenneroberfläche 108 erkannt und mit einem Sollabstand verglichen werden. Die Regelung des Luft/Brenngas-Verhältnisses erfolgt insbesondere durch ein Regeln der Brenngasdosiereinheit 104. Über das Luft/Brenngas-Verhältnis beziehungsweise die Luftzahl λ kann dann auch der Sollabstand wieder eingestellt werden. Das zweite Rückmeldesignal S6 beeinflusst das von der Regeleinrichtung 110 ausgegebene Gemischsignal S3. - Die erste Erfassungseinheit 114 und die zweite Erfassungseinheit 116, die an der Verbrennungsvorrichtung 100 nach
Figur 3 gezeigt sind, können auch mit den Verbrennungsvorrichtungen 100 nachFigur 1 oder Figur 2 verwendet werden. -
Figur 4 zeigt die Grenzkurvenverläufe λ-min und λ-max der ausgewählten unteren und oberen Luftzahlgrenzen in Abhängigkeit der relativen Heizleistung Q. - Ein Gesamt-Modulationsbereich der relativen Heizleistung Q der Verbrennungsvorrichtung 100 zwischen einem minimalen Wert Q-min = 0,05 und einem maximalen Wert Q-max = 1 lässt sich in einer vorteilhaften Betrachtung in drei Betriebsabschnitte gliedern.
- Die Verläufe der Grenzkurven λ-min und λ-max der ausgewählten unteren und oberen Luftzahlgrenzen sind in Abhängigkeit der relativen Heizleistung Q auf Basis dieser drei betrachteten Betriebsabschnitte ausgelegt, die jeweils Einschränkungen in Richtung größerer und/oder kleinerer Luftzahlwerte aufweisen und einen zulässigen Mindest- und/oder Höchstwert für die Luftzahl bei einer bestimmten relativen Heizleistung festlegen.
- In einem ersten Betriebsabschnitt, zwischen einer minimalen relativen Heizleistung Q-min = 0,05 und ungefähr Q = 0,15, gewährleistet das Luftzahl-Werteintervall die Sicherstellung einer niedrigen Flammengeschwindigkeit und niedrigen Zündenergie im Gemischstrom M.
- In diesem ersten Betriebsabschnitt sind die Zündfähigkeit des Luft-Brenngas-Gemischstroms M und die sichere Zündung der Flamme F von zentraler Bedeutung. Der Luftzahlwert λ soll so hoch sein, dass eine Flammengeschwindigkeit des Gemischstroms M so gering ist, dass Überdrücke infolge plötzlicher Zündung des Gemischstroms M sicher beherrschbar und ausreichend leise sind. Die geringe Flammengeschwindigkeit hilft ein Rückschlagen der Flamme zu vermeiden. Der Luftzahlwert λ soll andererseits aber auch so niedrig sein, dass die Zündenergie des Gemischstroms M so gering ist, dass eine schnelle und zuverlässige Zündung einer Flamme möglich ist. Niedrige Zündenergie bedeutet, dass der Gemischstrom leicht zündet und eine zuverlässige, unverzögerte und sicher beherrschbare Zündung gewährleistet.
- In einem zweiten Betriebsabschnitt, ungefähr zwischen den relativen Heizleistungen Q = 0,15 und Q = 0,4, gewährleistet das Luftzahl-Werteintervall die Vermeidung von Flammenrückschlag.
- Zur Vermeidung von Flammenrückschlag sollte der Luftzahlwert λ so hoch sein, dass ein Zusammenspiel von Austrittsgeschwindigkeit des Gemischstroms M an der Brenneroberfläche 108 und Flammengeschwindigkeit im Gemischstrom M einen Flammenrückschlag ausschließt. Um das zu gewährleisten, muss die Austrittsgeschwindigkeit höher sein als die Flammengeschwindigkeit. Stöchiometrische Gemischströme (Luftzahl λ = 1) haben die höchste Flammengeschwindigkeit. Durch Anheben der Luftzahl wird die Flammengeschwindigkeit abgesenkt. Andererseits wird durch Anheben der Luftzahl gleichzeitig die Austrittsgeschwindigkeit des Gemischstroms erhöht, weil der Gemischvolumenstrom vergrößert wird. So kann auch bei relativ geringen Heizleistungen ein Flammenrückschlag vermieden werden.
- In einem dritten Betriebsabschnitt, ungefähr zwischen der relativen Heizleistung Q = 0,4 und einer maximalen relativen Heizleistung Q-max = 1 (Nenn-Heizleistung der Verbrennungsvorrichtung 100), gewährleistet das Luftzahl-Werteintervall einen optimalen thermischen Wirkungsgrad, vollständige Verbrennung, Vermeidung von abhebenden Flammen und Kompatibilität mit pneumatischen Luft-Brenngas-Verhältnisreglern 112.
- In diesem dritten Betriebsabschnitt sind ein thermischer Wirkungsgrad der Verbrennung, eine vollständige Verbrennung des Gemischstroms M und die Kompatibilität des Luftzahl-Werteintervalls mit den Möglichkeiten pneumatischer Luft-Brenngas-Verhältnisregler 112 entscheidend. Die pneumatische Luft-Gas-Verhältnisregelung beruht auf Strömungseinschränkungen und einem nominell festgelegten geregelten Gasdruck aus dem Gasventil. Dadurch wird eine Form der Luftzahlgrenzkurven, die das geregelte Luft-Brenngas-System liefern kann, physikalisch eingeschränkt. Kompatibilität bedeutet, dass die Form der Grenzkurve mit dem physikalischen Verhalten eines pneumatischen Luft-Brenngas-Verhältnisreglers 112 in Übereinstimmung gebracht werden kann. Ein weiterer wichtiger Aspekt ist die Vermeidung eines Abhebens der Flamme. Der Luftzahlwert λ muss weiter so niedrig sein, dass ein eine erfindungsgemäße Verbrennungsvorrichtung 100 umfassendes Heizgerät einen möglichst hohen thermischen Wirkungsgrad erzielt. Außerdem muss die Luftzahl λ ausreichend höher als λ = 1,0 sein, um eine vollständige Verbrennung des Gemischstroms M, insbesondere des Brenngasstroms G, zu gewährleisten. Die Luftzahl λ muss also optimal eingestellt werden, um einen Rahmen (der sowohl eine obere als auch eine untere Grenze zu den beanspruchten Betriebsbedingungen angibt) zu bilden, der alle vorstehenden Anforderungen erfüllt und auch durch einen Luft-Brenngas-Verhältnisregler 112 zur Regelung des Luft/Brenngas-Verhältnisses erfolgen kann. Luft-Brenngas-Verhältnisregler 112 sind insbesondere passive physikalische Systeme, deren mögliches Verhalten durch physikalische Gesetze eingeschränkt ist. Beispielsweise muss die Kurve streng monoton und entweder konvex oder konkav sein.
- Durch umfangreiche Forschung und Experimente wurde das im Vorstehenden beschriebene Verfahren zur Variation des Luft/Brenngas-Verhältnisses, insbesondere zur Anpassung der Luftzahl λ aus dem ausgewählten Luftzahl-Werteintervall, in Abhängigkeit der Heizleistung Q gefunden, das all diesen unterschiedlichen, teilweise konkurrierenden Anforderungen gerecht wird. Dabei ist die sichere Verbrennung von Wasserstoff ungleich schwieriger zu bewerkstelligen als die anderer Brennstoffe wie Methan, Propan oder Butan. Das liegt an den verbrennungstechnischen Eigenschaften von Flammengeschwindigkeit, Zündenergie und Zündgrenzen. Das Verfahren und die ausgewählten Luftzahlgrenzen wurden insbesondere an die ganz eigenen Erfordernisse einer Wasserstoff verbrennenden Verbrennungsvorrichtung 100 angepasst.
- Ein weiterer Vorteil des Verfahrens, insbesondere des gefundenen Luftzahl-Werteintervalls, ist, dass das Verfahren bei entsprechender Einstellung auch mit bekannten pneumatischen Luft-Brenngas-Verhältnisreglern 112 realisierbar ist.
- Bei bekannten pneumatischen Luft-Brenngas-Verhältnisreglern 112 können das ausgewählte Luftzahl-Werteintervall beziehungsweise die ausgewählten Luftzahlgrenzkurven λ-min und λ-max nach
Figur 4 insbesondere für eine Luft-Wasserstoff-Verbrennung durch die Einstellung eines höheren Betrags für den, insbesondere negativen, Offsetdruck als beispielsweise für Kohlenwasserstoff basierte Brenngase üblich erreicht werden (obwohl die Kurve noch im Modulationsbereich bestehender Gasventile liegt). Diese Offset-Einstellung kann mittels einer Stellschraube am Regler 112 vorgenommen werden. Die so erreichte Luftzahl λ wird beeinflusst durch einen von der Mischereinheit 106 ausgelösten Unterdruck, eine Drosselung des Brenngasstroms G (einschließlich des einstellbaren Drosselventils im Gasventil, falls vorhanden) und den Offsetdruck. Der tatsächlich abgegebene Offsetdruck des Gasventils variiert über dem Modulationsbereich, seine Größe erhöht sich mit zunehmender Heizleistung. Dies folgt jedoch einem linearen Verhältnis zur Heizleistung und behält einen sehr kleinen Betrag (wenige Zehner von Pascal) bei. Aufgrund seiner geringen Größe ist der Einfluss des Offsetdrucks bei großen Heizleistungen (bei denen der Venturi-Effekt und die Drosselung des Brenngasstroms G hoch sind) vernachlässigbar. Umgekehrt ist der Einfluss des Offsetdrucks bei niedrigen Heizleistungen sehr stark und ermöglicht die große Variation der Luftzahl über der Heizleistung, wie sie in den Luftzahlgrenzkurven λ-min und λ-max wiedergegeben ist.
Claims (7)
- Verbrennungsvorrichtung (100), insbesondere eine Wasserstoff-Verbrennungsvorrichtung, für ein Heizgerät zum Beheizen zumindest eines Raumes und/oder zur Erwärmung zumindest eines Nutzfluids, zur Bereitstellung eines Luft-Brenngas-Gemischstroms (M) aus einem Luftstrom (A) und einem Brenngasstrom (G), insbesondere einem Wasserstoffstrom, mit zumindest einer vorgebbaren Luftzahl λ im Gemischstrom (M), und zur Verbrennung des Gemischstroms (M), wobei durch die Verbrennung eine Heizleistung erzeugt wird, wobei die Verbrennungsvorrichtung (100) eine Regeleinrichtung (110), und eine Brenngasdosiereinheit (104) und/oder eine Luftfördereinheit (102) umfasst, wobei die Regeleinrichtung (110) dazu ausgebildet ist,• die Brenngasdosiereinheit (104) in Abhängigkeit der Heizleistung zu regeln, wobei die Brenngasdosiereinheit (104) bei kleinerer Heizleistung einen relativ kleineren Brenngasstrom (G) dosiert, und bei größerer Heizleistung einen relativ größeren Brenngasstrom (G) dosiert, und/oder• die Luftfördereinheit (102) in Abhängigkeit der Heizleistung zu regeln, wobei die Luftfördereinheit (102) bei kleinerer Heizleistung einen relativ größeren Luftstrom (A) fördert, und bei größerer Heizleistung einen relativ kleineren Luftstrom (A) fördert,dadurch gekennzeichnet, dass
die Regeleinrichtung (110) weiter dazu ausgebildet ist, die Luftzahl λ des Gemischstroms (M) in Abhängigkeit eines Wertes Q der relativen Heizleistung der Verbrennungsvorrichtung (100) für den gesamten Modulationsbereich 0,05 <= Q <= 1 auf einen Wert innerhalb des Luftzahl-Werteintervalls
wobei die Luftzahl λ ein Mengenverhältnis von Luft zu Brenngas charakterisiert und als Quotient aus einer tatsächlich im Gemischstrom (M) vorhandenen Luftmenge und einer für eine stöchiometrische Verbrennung des Gemischstroms (M) benötigten Luftmenge berechnet ist. - Verbrennungsvorrichtung nach Anspruch 1,dadurch gekennzeichnet, dass die Regeleinrichtung (110) dazu eingerichtet ist, die Heizleistung zu erfassen, in Abhängigkeit der Heizleistung ein Gemischsignal (S3) zu erzeugen und an die Brenngasdosiereinheit (104) und/oder die Luftfördereinheit (102) auszugeben,wobei das Gemischsignal (S3) dazu vorgesehen ist, bei kleinerer Heizleistung einen relativ kleineren Brenngasstrom (G) zu dosieren und/oder einen relativ größeren Luftstrom (A) zu fördern; und bei größerer Heizleistung einen relativ größeren Brenngasstrom (G) zu dosieren und/oder einen relativ kleineren Luftstrom (A) zu fördern.
- Verbrennungsvorrichtung nach Anspruch 1 oder 2,dadurch gekennzeichnet, dass die Regeleinrichtung (110) dazu eingerichtet ist, ein die Heizleistung charakterisierendes Leistungssignal (S21) zu erhalten und zu verarbeiten,wobei das Leistungssignal (S21) auf einer Erfassung einer tatsächlichen oder angeforderten Heizleistung, des Gemischstroms (M), des Brenngasstroms (G), des Luftstroms (A), einer Gebläsedrehzahl eines den Luftstrom (A) fördernden Luftgebläses, und/oder einer Verbrennungstemperatur der Verbrennung des Gemischstroms (M) beruht,wobei die Regeleinrichtung (110) dazu eingerichtet ist, auf Grundlage des Leistungssignals (S21) das Gemischsignal (S3) zu generieren.
- Verbrennungsvorrichtung nach einem der vorhergehenden Ansprüche,gekennzeichnet durch eine erste Erfassungseinheit (114), wobei die erste Erfassungseinheit dazu eingerichtet ist, die Luftzahl λ zu erfassen und ein entsprechendes erstes Rückmeldesignal (S4) an die Regeleinrichtung (110) auszugeben,wobei die Regeleinrichtung (110) dazu eingerichtet ist, die Luftzahl λ in Abhängigkeit des ersten Rückmeldesignals (S4) zu regeln.
- Verbrennungsvorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine zweite Erfassungseinheit (116), wobei die zweite Erfassungseinheit dazu eingerichtet ist, eine Flammenstabilität der Verbrennung zu erfassen und ein entsprechendes zweites Rückmeldesignal (S6) an die Regeleinrichtung (110) auszugeben,
wobei die Regeleinrichtung (110) dazu eingerichtet ist, die Luftzahl λ in Abhängigkeit des zweiten Rückmeldesignals (S6) zu regeln. - Verbrennungsvorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Regeleinrichtung (110) dazu eingerichtet ist, eine Fehlermeldung auszugeben, wenn eine vorgebbare Flammenstabilität innerhalb des Luftzahl-Werteintervalls nicht erreicht werden kann. - Heizgerät, aufweisend eine Verbrennungsvorrichtung (100),
dadurch gekennzeichnet, dass die Verbrennungsvorrichtung (100) nach einem der vorhergehenden Ansprüche ausgebildet ist.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB2015572.7A GB2599423A (en) | 2020-10-01 | 2020-10-01 | Method for operating a combustion device, combustion device and heater |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3978805A1 EP3978805A1 (de) | 2022-04-06 |
EP3978805B1 true EP3978805B1 (de) | 2023-12-27 |
Family
ID=73223770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21199318.3A Active EP3978805B1 (de) | 2020-10-01 | 2021-09-28 | Verbrennungsvorrichtung mit regeleinrichtung zur luftzahl-regelung, sowie heizgerät |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3978805B1 (de) |
GB (1) | GB2599423A (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4317778A1 (de) * | 2022-08-01 | 2024-02-07 | BDR Thermea Group B.V. | Nachrüstkitanordnung |
WO2023247689A1 (en) | 2022-06-22 | 2023-12-28 | Bdr Thermea Group B.V. | Retrofit kit assembly |
EP4306850A1 (de) * | 2022-07-15 | 2024-01-17 | BDR Thermea Group B.V. | Steuerverfahren für einen gasheizkessel |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2824472C3 (de) * | 1978-06-03 | 1981-08-06 | Volkswagenwerk Ag, 3180 Wolfsburg | Verfahren und Anordnung zum Betrieb einer Brennkraftmaschine mit Fremdzündung |
DK1522790T3 (da) * | 2003-10-08 | 2012-03-19 | Vaillant Gmbh | Fremgangsmåde til regulering af en gasbrænder, navnlig ved varmeinstallationer med blæser |
US8544445B2 (en) * | 2010-03-09 | 2013-10-01 | Pinnacle Engines, Inc. | Over-compressed engine |
DE102015225886A1 (de) * | 2015-12-18 | 2017-06-22 | Robert Bosch Gmbh | Heizgerätesystem und Verfahren mit einem Heizgerätesystem |
US10738704B2 (en) * | 2016-10-03 | 2020-08-11 | Raytheon Technologies Corporation | Pilot/main fuel shifting in an axial staged combustor for a gas turbine engine |
CN113557390B (zh) * | 2019-03-12 | 2023-09-12 | 贝卡尔特燃烧技术股份有限公司 | 操作可调节的燃烧器的方法 |
-
2020
- 2020-10-01 GB GB2015572.7A patent/GB2599423A/en active Pending
-
2021
- 2021-09-28 EP EP21199318.3A patent/EP3978805B1/de active Active
Also Published As
Publication number | Publication date |
---|---|
EP3978805A1 (de) | 2022-04-06 |
GB202015572D0 (en) | 2020-11-18 |
GB2599423A (en) | 2022-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3978805B1 (de) | Verbrennungsvorrichtung mit regeleinrichtung zur luftzahl-regelung, sowie heizgerät | |
DE102010055567B4 (de) | Verfahren zur Stabilisierung eines Betriebsverhaltens eines Gasgebläsebrenners | |
EP2594848B1 (de) | Verfahren zur Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung | |
DE19918901C1 (de) | Vorrichtung zur Einstellung des Oxydationsmittel/Brennstoffgemisches in der Zuleitung eines Brenners | |
DE2914681C2 (de) | Steuervorrichtung für einen Brenner | |
EP1472447A1 (de) | Verfahren zum betrieb einer gasturbogruppe | |
DE69606640T2 (de) | Verfahren und einrichtung zur regelung von stufenverbrennungsanlagen | |
EP1621811A1 (de) | Betriebsverfahren für eine Feuerungsanlage | |
EP1370806A1 (de) | Verfahren und vorrichtung zur einstellung der luftzahl | |
DE202018101271U1 (de) | Brenngasbetriebenes Heizgerät | |
EP1522790B1 (de) | Verfahren zur Regelung eines Gasbrenners, insbesondere bei Heizungsanlagen mit Gebläse | |
DE19635974A1 (de) | Gas/Luft-Mischsystem für Gasheizgeräte | |
EP3029375B1 (de) | Heizgerätevorrichtung und verfahren zum betrieb einer heizgerätevorrichtung | |
EP3499124A1 (de) | Heizgerätkomponente und verfahren zur einstellung eines brennstoffvolumenstroms | |
DE3630177A1 (de) | Verfahren zum betreiben von vormischbrennern und vorrichtung zum durchfuehren dieses verfahrens | |
WO2019170309A1 (de) | Verfahren zur brenngasartenerkennung beim startvorgang eines brenngasbetriebenen heizgeräts und brenngasbetriebenes heizgerät | |
DE19921045B4 (de) | Brenner zur Verbrennung von flüssigen und/oder gasförmigen Brennstoffen in Feuerungsanlagen | |
EP0369950B1 (de) | Heizanlage | |
EP2413031B1 (de) | Vormischende Verbrennungseinrichtung | |
DE2018187B2 (de) | Verfahren und einrichtung zur vermeidung des flammenrueckschlags in einem brennersystem | |
DE19501749A1 (de) | Verfahren und Vorrichtung zum Steuern eines Gas-Gebläsebrenners | |
DE102011002324A1 (de) | Regeleinrichtung für einen Brenner und Verfahren zum Betrieb eines Brenners | |
DE102004063992B4 (de) | Verfahren zur Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung | |
WO2018054582A1 (de) | Gasbereitungsvorrichtung und verfahren zur bereitstellung eines brenngasgemischs | |
EP4043791A1 (de) | Gastherme sowie verfahren zur einstellung eines brennstoff-oxidator-gemisches in abhängigkeit einer zusammensetzung des brennstoffes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20221006 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230728 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502021002275 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240328 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240328 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240427 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240429 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240429 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502021002275 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240920 Year of fee payment: 4 |