EP3976437B1 - Regenerative energieabsorptionsvorrichtung, kupplungs- oder gelenkanordnung mit einer solchen energieabsorptionsvorrichtung sowie dämpfungsanordnung mit einer solchen energieabsorptionsvorrichtung - Google Patents

Regenerative energieabsorptionsvorrichtung, kupplungs- oder gelenkanordnung mit einer solchen energieabsorptionsvorrichtung sowie dämpfungsanordnung mit einer solchen energieabsorptionsvorrichtung Download PDF

Info

Publication number
EP3976437B1
EP3976437B1 EP20726758.4A EP20726758A EP3976437B1 EP 3976437 B1 EP3976437 B1 EP 3976437B1 EP 20726758 A EP20726758 A EP 20726758A EP 3976437 B1 EP3976437 B1 EP 3976437B1
Authority
EP
European Patent Office
Prior art keywords
energy absorption
absorption device
elastomer body
resistance sensor
sensor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20726758.4A
Other languages
English (en)
French (fr)
Other versions
EP3976437A1 (de
Inventor
Thomas Prill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Patent GmbH
Original Assignee
Voith Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Patent GmbH filed Critical Voith Patent GmbH
Publication of EP3976437A1 publication Critical patent/EP3976437A1/de
Application granted granted Critical
Publication of EP3976437B1 publication Critical patent/EP3976437B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G9/00Draw-gear
    • B61G9/20Details; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G9/00Draw-gear
    • B61G9/20Details; Accessories
    • B61G9/24Linkages between draw-bar and framework
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G9/00Draw-gear
    • B61G9/04Draw-gear combined with buffing appliances
    • B61G9/06Draw-gear combined with buffing appliances with rubber springs

Definitions

  • the present invention relates to a regenerative energy absorption device for damping forces occurring during (normal) operation of a track-guided vehicle, in particular tensile, impact and/or torsional forces.
  • the invention also relates to a coupling or joint arrangement of a track-guided vehicle, in particular a rail vehicle, for the articulated connection of two adjacent car bodies, the coupling or joint arrangement having at least one energy absorption device of the aforementioned type.
  • shock absorber It is generally known from rail vehicle technology to use energy absorption devices, in particular as shock absorbers.
  • a shock absorber consists of a combination of a regenerative energy absorption device/damping device (for example in the form of a spring apparatus) and a destructive energy absorption device.
  • the regeneratively designed energy absorption device or damping device serves to absorb the tensile and impact forces that occur during normal driving dampen, while the vehicle is protected with the destructive trained energy absorption device, especially at higher rear-end speeds.
  • the regeneratively designed energy absorption device serving as a damping device absorbs tensile and impact forces up to a defined magnitude and transmits forces in excess of this to the vehicle underframe.
  • tensile and impact forces which occur during normal driving operation, for example in a multi-part rail vehicle between the individual car bodies, are absorbed in this regeneratively designed energy absorption device.
  • the regeneratively designed energy absorption device serving as a damping device and the optionally intended joint or coupling connection between the individual car bodies or, in general terms, the interface between the individual car bodies may be damaged or even destroyed.
  • the regeneratively designed energy absorption device serving as the damping device is not sufficient for damping the total energy that occurs. As a result, the regenerative energy absorption device is then no longer integrated into the energy consumption concept of the overall vehicle.
  • the energy-absorbing device can have a type of "deformation display" which is designed to display the utilization of the energy-absorbing element after or when the destructively designed energy-absorbing device responds. With such a deformation indicator, it is possible to decide in a simple manner whether or not the energy dissipation element of the energy dissipation device has already (partially or completely) triggered.
  • a signaling element such as a signaling plate
  • a shearing element serving as a trigger
  • the shearing element shearing off in the event of plastic deformation of the energy-absorbing element and losing its holding function, so that the signaling plate then fails is no longer fixed to the energy-absorbing element and it can thus be easily recognized that the destructively designed energy-absorbing element has already responded.
  • a regenerative energy absorption device is for example from the reference EP 1 925 523 A1 known.
  • the present invention is based on the object of specifying a regenerative energy absorption device in which it can be ensured in a manner that is easy to implement that, if necessary, shock absorption always takes place according to a previously defined or definable sequence of events, without the individual Components of the energy absorption device are to be checked individually and regularly.
  • the invention relates in particular to a regenerative energy absorption device for damping forces occurring during (normal) operation of a rail-guided vehicle, in particular tensile, impact and/or torsional forces, the energy absorption device having at least one spring device with an elastomer body which is designed in such a way that this deforms elastically at least in some areas when forces are introduced into the energy absorption device.
  • the elastomeric body is at least partially made of an electrically conductive material is formed, the specific electrical resistance of which varies under tensile and/or compressive stress, the energy absorption device being assigned a resistance sensor device for detecting an electrical conductivity or an electrical resistance of the electrically conductive material.
  • the material of the elastomer body i.e. in the figurative sense the elastomer body itself, can be used as part of a sensor system, which is designed to directly or indirectly determine or estimate a load change to which the elastomer body is subjected.
  • This load change, to which the elastomeric body is subjected is in particular a mechanical tensile, compressive or torsional stress acting on the elastomeric body of the spring device.
  • the functioning of the energy absorption device can be effectively monitored with the help of the sensors integrated in the material of the energy absorption device, at least in regions or in part, for example by using the resistance sensor device to detect loads occurring on the elastomer body during a power transmission via the energy absorption device over a period of time that is specified or can be specified in advance become. From this, an overall load change or an overall load on the elastomer body or other components of the energy absorption device can be determined. In particular, information relating to maintenance and/or replacement of the elastomer body or another component of the energy absorption device can then be output as a function of the determined total load change and/or the determined total load.
  • the resistance sensor device detects at an early stage any degeneration of the (elastomer) material of the elastomer body that may occur during operation of the energy absorption device.
  • the resistance sensor device and the electrically conductive material of the elastomer body which is part of a sensor system, can effectively detect the occurrence of operating states which lead to damage or pre-damage to the regenerative energy absorption device that is not immediately apparent.
  • this sensor system resistance sensor device in combination with the electrically conductive material of the elastomer body
  • a visual inspection when monitoring the regenerative energy absorption device can be dispensed with.
  • any wear or previous damage to other components in particular of the energy absorption device can be effectively detected, such as in particular wear of other regeneratively designed damping elements used in the energy absorption device, such as elastomer bearings.
  • This is particularly advantageous because—like the elastomer body of the energy absorption device—these components are generally not freely accessible and therefore checking them by visual inspection would be very expensive.
  • prior damage to components of the energy absorption device can be detected and signaled early and reliably in order to avoid possible consequential damage and associated failures of the overall system due to unscheduled maintenance measures.
  • the sensor system used for this purpose in the form of the resistance sensor device in combination with the electrically conductive material of the elastomer body, is characterized by a compact and cost-effective design, so that free accessibility of the components of the energy absorption device to be monitored and in particular the elastomer body of the energy absorption device is no longer necessary is.
  • on-board diagnosis can be implemented to enable the vehicle system to diagnose at an early stage and simplify maintenance.
  • the vehicle system automatically interrogates the resistance sensor device or an evaluation device assigned to the resistance sensor device.
  • strain sensors strain gauges or strain gauges
  • the electrically conductive material of the elastomeric body which figuratively assumes the function of a strain sensor, does not affect the damping property of the elastomeric body, so that the dynamic properties of the elastomeric body remain unaffected.
  • the electrically conductive material or the electrically conductive area in the material of the elastomer body is formed by at least one metal-based or carbon-based filler network in a polymer material.
  • the filler network is formed, in particular, by metal-based or carbon-based filler particles that are accommodated in a matrix of the polymer material.
  • the polymer material of the electrically conductive material matches a polymer material from which the elastomer body is formed. In this way, the dynamic damping behavior of the elastomer body is not influenced by the integration of the “sensor system” in the elastomer body.
  • an electrically conductive area in the material of the elastomer body does not require any electrical infrastructure that must be adapted to the special driving conditions and, for example, must withstand local deformations with a high number of repetitions and temperature ranges between minus 50° and +50°.
  • soot-coated threads soot dispersions (soot ink, soot paste, solutions containing soot)
  • soot dispersions soot ink, soot paste, solutions containing soot
  • conductive materials such as soot, graphite, carbon, carbon nanotubes, copper, gold, silver, etc. are incorporated into the polymer matrix. Above a certain degree of filling, these polymers form an electrically conductive network. If the polymer material is subjected to a tensile or compressive load, the resistance changes due to the narrowing of the cross section and the change in the particle distribution in the polymer matrix. With this structure, different expansions of the elastomer body can be measured. Studies in this area have shown that the elastic and electrically conductive material of the elastomer body can be used as a sensor material for determining and measuring tensile or compressive loads. The sensory properties improve as the degree of filling of the polymer material increases, although the mechanical properties of the original polymer material deteriorate.
  • conductive particles are not added to the entire polymer material of the elastomer body, but only individual areas of the polymer material are provided with an appropriate filler network. These areas are advantageously located in an area of the elastomer body through which at least one previously calculated load path runs during damping during operation of the track-guided vehicle.
  • the sensory properties of this electrically conductive area of the elastomeric body are then used with the resistance sensor device to generate corresponding data that are indicative of a load change acting or acting on the elastomeric body and/or indicative of a degeneration of the material of the elastomeric body.
  • the resistance sensor device is designed to detect the electrical conductivity and/or the electrical resistance between at least two measuring points in the electrically conductive material of the elastomer body, with the resistance sensor device having at least one preferably floating measuring sensor for this purpose.
  • the preferably potential-free measuring sensors are arranged in such a way that the electrical resistance or the electrical conductivity of the electrically conductive material in the elastomer body is determined via different spatial axes in order to obtain information about tensile loads or pressure loads or expansion loads of the elastomer body in different spatial axes.
  • the resistance sensor device preferably has an interface device, which in particular operates wirelessly, via which data recorded and optionally evaluated by the resistance sensor device can be read out at least partially, preferably via remote access.
  • the resistance sensor device may be assigned a corresponding evaluation device which is designed to correspondingly evaluate the data recorded by the resistance sensor device with regard to the electrical conductivity or the electrical resistance.
  • these measurement data are compared with corresponding reference data, the reference data preferably having been previously recorded within the framework of a calibration.
  • the invention is based on the knowledge that, for example, due to mechanical wear of the elastomeric body, the expansion properties and thus the damping properties of the elastomeric body change and deviate from an ideal state (desired state). The degree or the extent of the change or the deviation from the desired state can then serve as an indication of a faulty functioning of the elastomer body or of wear of the elastomer body.
  • remote maintenance of components of a track-guided vehicle is becoming increasingly important when it comes to supporting the hardware and software of suppliers in rail vehicle technology. Due to the increasing networking of control systems via the Internet, the development of company-internal intranets and conventional telecommunications channels (ISDN, telephone, etc.), the options for direct support are expanding. Last but not least, because of the savings in travel expenses and the better use of resources (personnel and technology), remote maintenance products are used to reduce costs in companies. Remote maintenance programs enable the remote service technician to access the monitored elastomer body or components of the energy absorption device directly and to query their status in order to plan and carry out anticipatory countermeasures such as maintenance intervals.
  • the resistance sensor device is assigned a memory device for storing expansions, compressions and shearing stresses introduced in the elastomer body, in particular during operation of the rail vehicle, or other relevant information and data, with the memory device being designed in particular, preferably all data recorded with the resistance sensor device and Store information permanently at least for a predetermined or definable period of time.
  • the memory device makes sense for the memory device to be designed so that it can be read out at least partially, preferably via remote access.
  • the resistance sensor device is assigned a memory device for documenting loads (expansion, compression and shear stresses in different spatial directions) of the elastomer body that occur over a predetermined or definable period of time during a power transmission.
  • loads expansion, compression and shear stresses in different spatial directions
  • an evaluation device it makes sense for an evaluation device to be provided in order to determine a total load change and/or a total load on the elastomer body, specifically on the basis of the documented loads.
  • the evaluation device should also be designed to output information relating to maintenance and/or replacement of the elastomer body or another component of the energy absorption device as a function of the total load change determined and/or the total load determined.
  • the invention is based on the finding that components of the energy absorption device, such as the elastomer body, must be replaced or serviced when the tolerable loads have totaled up to a fixed, defined value. So far, a check or maintenance has been carried out by documenting the annual load changes, which is usually based on an estimate. There is a great deal of inaccuracy in this, since it is actually not known exactly how many load changes actually took place and how high the stress was.
  • the collective load can preferably also be written, which enables a greater degree of utilization of the components of the energy absorption device or of the elastomer body.
  • the service life of the components of the energy absorption device can be increased.
  • the evaluation device is assigned at least one display device, in particular in the form of a display and/or at least one light source, for visual display the total load change determined and/or the total load determined and/or corresponding information in this regard.
  • the evaluation device it is advisable for the evaluation device to have a digital interface, in particular a Modbus, CAN, CANopen, IO-Link and/or Ethernet-compatible interface, in order to be able to communicate appropriately with an external device.
  • a digital interface in particular a Modbus, CAN, CANopen, IO-Link and/or Ethernet-compatible interface
  • an on-board diagnosis can be implemented in order to enable the vehicle system to be diagnosed at an early stage and to simplify maintenance.
  • the vehicle system preferably automatically queries the evaluation device or the corresponding resistance sensor device.
  • the at least one area made of the electrically conductive material is preferably formed in an area of the elastomer body which is often exposed to repetitive stretching, compression and/or shearing stresses during operation of the rail-guided vehicle.
  • the area with the electrically conductive material is formed by at least one metal- or carbon-based filler network in a polymer material, with metal- or carbon-based filler particles being used in particular, which are a matrix of the polymer material are included.
  • different electrically conductive carbon allotropes which can differ in their geometric structures, are used as fillers.
  • carbon black (CB) can be used as a filler, which typically consists of almost spherical particles with a diameter of 50 nm. The expansion is in the nanometer range in all three dimensions.
  • carbon nanotubes can be used as a filler, which resemble the shape of a cylinder and have a radius in the range of a few nanometers and a length that is in the micrometer range.
  • graphene nanoplatelets can be used, the structure of which resembles a platelet. The thickness is in the range of a few nanometers, while the lateral extent of the platelets is in the micrometer range.
  • the filler network is formed at least in regions by textiles and metal reinforcements embedded in the elastomer material of the elastomer body, which are provided with an electrically conductive fiber or an electrically conductive coating.
  • the textile and metallic reinforcements already integrated in the elastomer material can be used as electrical conductors.
  • the energy absorption device according to the invention can in particular be part of a coupling or joint arrangement of a track-guided vehicle, this coupling or joint arrangement being used for the articulated connection of two adjacent car bodies.
  • a further possible application is the use of the energy absorption device in a damping arrangement, for example in a side buffer of a track-guided vehicle.
  • the provision of the resistance sensor device and the sensor material formed in the material of the elastomer body (the electrically conductive area) makes it possible to intelligently monitor the functioning of the clutch or joint arrangement or the damping arrangement.
  • loads occurring on the elastomer body during a power transmission over a previously defined or definable period of time are recorded and preferably a total load change or a total load is determined from this, with information relating to maintenance and/or replacement of a component of the energy absorption device is output as a function of the total load change determined and/or as a function of the total load determined.
  • the resistance sensor device is designed only at times and/or events that are or can be specified in advance (for example during a clutch process).
  • an electrical conductivity or an electrical To detect resistance of the electrically conductive area in the elastomeric material For example, it is conceivable in this context that the resistance sensor device is activated (triggered) as soon as a corresponding sensor system detects the introduction of a force that exceeds a predetermined threshold value into the energy absorption device.
  • the resistance sensor device has at least one generator, in particular a nanogenerator, in order to implement the concept of "energy harvesting".
  • the resistance sensor device can obtain at least part of the electrical energy required by the resistance sensor device during operation from the immediate vicinity of the resistance sensor device.
  • a vibration of the elastomer body For example, it is conceivable that with the help of the nanogenerator, corresponding electrical energy can be obtained from a vibration of the elastomer body.
  • a low-power near-field communication (NFC) solution for example ZigBee or Bluetooth LE or other suitable standards, can expediently be used to transmit the information obtained from the resistance sensor device to the nearest data interface
  • FIG. 1 1 is a schematic and isometric view of a coupling linkage 10 of a central buffer coupling for rail vehicles, an exemplary embodiment of the energy absorption device according to the invention being used in this coupling linkage 10 .
  • the representation in FIG. 2 shows the coupling linkage 10 according to FIG. 1 in a side sectional view.
  • An energy absorption device is integrated in the coupling linkage 10 shown, which has a total of three spring devices, each with an annular elastomer body 1 .
  • These ring-shaped elastomeric bodies 1 of the spring devices are designed in such a way that tensile and impact forces are absorbed up to a defined magnitude and forces in excess of this are transmitted via the bearing block 11 into the vehicle underframe.
  • the coupling linkage 10 shown comprises the rear part of a coupling arrangement and serves to horizontally pivot the coupling shaft 15 of a central buffer coupling via the bearing block 11 on a screw-on plate of a car body (not shown in the drawings).
  • the bearing block 11 Since at the in FIG. 1 and FIG. 2 If the coupling linkage 10 shown serves as a damping device, the regenerative energy absorption device is accommodated with the ring-shaped elastomer bodies 1 within the bearing block 11 , the bearing block 11 has a configuration which is adapted with regard to the ring-shaped elastomer body 1 . More specifically, the bearing block 11 has a cage or housing structure 16 to which the bearing shells of the bearing are connected with a vertically extending flange.
  • tensile or compressive forces are introduced into the energy absorption device via the coupling shaft 15. Specifically, when tensile or compressive forces are introduced, the coupling shaft 15 moves relative to the cage or housing structure 16 of the bearing block 11, with the elastomer body 1 of the energy absorption device being correspondingly deformed in order to dampen the transmitted tensile or compressive forces.
  • an elastomer body 1 of the energy absorption device accommodated in the cage or housing structure 16 of the bearing block 11 is formed in regions from an electrically conductive material 2, this region serving as sensor material.
  • the electrically conductive material 2 of the elastomer body 1 is designed in such a way that its specific electrical resistance or its electrical conductivity varies when the area made of the electrically conductive material 2 is subjected to a tensile and/or compressive load.
  • the electrically conductive area 2 of the elastomer body 1 is advantageously formed by a filler network which has metal-based or carbon-based filler particles.
  • the filler network or the filler particles are accommodated in a matrix of the polymer material from which the usual area of the elastomer body 1 is also formed.
  • the at least one electrically conductive region 2 of the material of the elastomer body 1 is formed in a region of the elastomer body 1 in which a load path preferably runs in a specific spatial direction during pressure or tensile transmission or introduction into the energy absorption device.
  • the electrical conductivity or the electrical resistance of the region 2 of the elastomer body 1 serving as sensor material is measured or recorded with the aid of a resistance sensor device 3 .
  • the resistance sensor device 3 has at least one measuring sensor that preferably works in a potential-free manner. An embodiment of such a resistance sensor device 3 is described below with reference to the illustration in FIG. 5 described in more detail.
  • FIG. 3 a further exemplary possible application of the energy absorption device according to the invention is shown in a schematic longitudinal sectional view.
  • FIG. 3 schematically and in a side sectional view, a coupling linkage 10 with an embodiment of the energy absorption device according to the invention.
  • the energy absorption device is designed as a spherical bearing 13 .
  • the coupling linkage 10 according to FIG. 3 a bearing block 11 mounted substantially rigidly on a front side of a car body, and a joint arrangement 12 which has a regenerative energy absorption device in the form of a spherical bearing and a pivot pin 14 running vertically.
  • the joint arrangement 12 is used to connect a coupling rod 15 to the bearing block 11 in an articulated manner, with the car body-side end section of the coupling rod 15 being connected to the bearing block 11 via the joint arrangement 12 in such a way that at least partially a horizontal and vertical movement of the coupling rod 15 relative to the bearing block 11 is possible.
  • horizontal pivoting of the coupling rod 15, i.e. pivoting of the coupling rod 15 within the horizontal coupling plane, is possible by providing the pivot pin 14 running vertically to the horizontal coupling plane.
  • the vertical central longitudinal axis, which is perpendicular to the horizontal plane of the coupling, runs through the pivot pin 14 .
  • the point of intersection between the central longitudinal axis and the horizontal plane of the coupling designates the pivot point about which the coupling rod 15 can be pivoted horizontally or vertically relative to the bearing block 11 which is essentially rigidly flanged to the car body or otherwise fastened.
  • a regenerative energy absorption device which serves to dampen the tensile or compressive forces introduced via the coupling rod 15 during normal driving operation.
  • the energy absorption device is part of a spherical bearing 13 and has a spring device with an elastomer body 1, which is designed in such a way that it at least partially deforms elastically when forces are introduced into the energy absorption device.
  • FIG. 3 An embodiment of the joint arrangement 12 according to FIG. 3
  • the spherical bearing 13 to be used is shown in a schematic and isometric view in FIG. 4 and in a corresponding sectional view in FIG. 5 shown.
  • the elastomeric body 1 of the energy absorption device is formed in some areas from an electrically conductive material 2 .
  • the electrically conductive area 2 of the material of the elastomer body 1 is designed in such a way that its specific electrical resistance or its electrical conductivity varies under tensile and/or compressive stress.
  • a resistance sensor device 3 is also assigned, with the aid of which an electrical conductivity or an electrical resistance of the electrically conductive material region 2 of the elastomer body 1 can be detected.
  • resistance sensor device 3 An embodiment of the resistance sensor device 3 is described below with reference to the circuit diagram according to FIG. 6 described in more detail.
  • the resistance sensor device 3 shown schematically with the aid of a circuit diagram or equivalent circuit diagram serves to detect the conductivity or the electrical resistance between at least two points in the electrically conductive elastomer material 2 of the elastomer body 1 using a dedicated measuring sensor. This can be done, for example, by means of a differentially measuring arrangement that is free of reference potential FIG. 6 take place.
  • the optimal position of the measuring points in the elastomeric material 2 must be determined in each case as a function of the geometry of the elastomeric body 1 .
  • the measuring range of the conductivity or the electrical resistance (R m ) of the electrically conductive elastomer body material serving as the sensor material is to be determined depending on the elastomer mixture present.
  • the frequency bandwidth of the determined signal u(t) is essentially determined by the bandwidth of the occurring mechanical (dynamic) load.
  • the absolute values of the conductivity of the electrically conductive area of the elastomer body 1 can vary greatly, it is expedient to record only the changes in the electrical conductivity or the electrical resistance R m after a calibration process.
  • the calibration process should also include the specified end positions of the entire system concerned (in the case of train couplings: the operational sides and height deflections). The magnitude or amount of the change in resistance can then be a measure of the mechanical stress that occurs on the built-in elastomer body 1 .
  • Changes in the resistance value R m in the mechanical basic position (rest position) may directly indicate a structural change in the elastomer material, a change in the ambient temperature or aging of the elastomer material.
  • FIG. 6 to be integrated directly on or in the elastomer body 1 or on its surface during the manufacturing process. Communication then proceeds to a nearby receiver. This would have the advantage that no complex wiring of the measuring sensor to the evaluation device 4 would be necessary.
  • the resistance sensor device 3 For the practical operation of the resistance sensor device 3, it is advantageous to only have the resistance sensor device 3 measure at certain discrete points in time in order to limit the energy requirement. It is also conceivable to trigger the measurement by an external event, such as coupling processes, traction/braking processes of the track-guided vehicle, cornering in curved tracks or the integration of an additional inertial sensor (acceleration) in the sensor with pressure/tension in the coupling line.
  • an external event such as coupling processes, traction/braking processes of the track-guided vehicle, cornering in curved tracks or the integration of an additional inertial sensor (acceleration) in the sensor with pressure/tension in the coupling line.
  • the provision of conductive fillers in the elastomer material of the elastomer body 1 makes them electrically conductive Areas 2 are formed in the elastomer body 1.
  • the specific property of the electrically conductive area 2 of the elastomer body 1 is utilized, namely by measuring and evaluating a change in the electrical conductivity under mechanical stress during operation of the energy absorption device. It is possible to use the changes in the electrical conductivity in the elastomer body 1 caused by mechanical loading to infer the loading of the elastomer body 1 or the energy absorption device (amount and direction) and, in the event of deviations, to infer extraordinary load cases or aging of the component. In this way, for example, condition-based maintenance of the components of the energy absorption device can be made possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Vibration Prevention Devices (AREA)

Description

  • Die vorliegende Erfindung betrifft eine regenerative Energieabsorptionsvorrichtung zum Abdämpfen von im (normalen) Betrieb eines spurgeführten Fahrzeuges auftretenden Kräften, insbesondere Zug-, Stoß- und/oder Torsionskräften.
  • Die Erfindung betrifft ferner eine Kupplungs- oder Gelenkanordnung eines spurgeführten Fahrzeuges, insbesondere Schienenfahrzeuges, zum gelenkigen Verbinden zweier benachbarter Wagenkästen, wobei die Kupplungs- oder Gelenkanordnung mindestens eine Energieabsorptionsvorrichtung der zuvor genannten Art aufweist.
  • Aus der Schienenfahrzeugtechnik ist es allgemein bekannt, Energieverzehrvorrichtungen insbesondere als Stoßsicherung einzusetzen. In der Regel besteht eine solche Stoßsicherung aus einer Kombination einer regenerativ arbeitenden Energieabsorptionsvorrichtung/Dämpfungseinrichtung (beispielsweise in Gestalt eines Federapparates) und einer destruktiv ausgebildeten Energieverzehreinrichtung. Die regenerativ ausgebildete Energieabsorptionsvorrichtung bzw. Dämpfungseinrichtung dient dazu, die im normalen Fahrbetrieb auftretenden Zug- und Stoßkräfte abzudämpfen, während mit der destruktiv ausgebildeten Energieverzehreinrichtung das Fahrzeug insbesondere bei größeren Auffahrgeschwindigkeiten geschützt wird.
  • Üblicherweise ist dabei vorgesehen, dass die als Dämpfungseinrichtung dienende regenerativ ausgebildete Energieabsorptionsvorrichtung Zug- und Stoßkräfte bis zu einer definierten Größe aufnimmt und darüberhinausgehende Kräfte in das Fahrzeuguntergestell weiterleitet. Dadurch werden Zug- und Stoßkräfte, welche während des normalen Fahrbetriebs beispielsweise bei einem mehrgliedrigen Schienenfahrzeug zwischen den einzelnen Wagenkästen auftreten, in dieser regenerativ ausgebildeten Energieabsorptionsvorrichtung absorbiert.
  • Bei Überschreiten der Betriebslast der regenerativ ausgebildeten Energieabsorptionsvorrichtung hingegen, wie in etwa beim Aufprall des Fahrzeuges auf ein Hindernis oder beim abrupten Abbremsen des Fahrzeuges, oder bei einem Kupplungsvorgang mit überhöhter Geschwindigkeit, besteht die Gefahr, dass die als Dämpfungseinrichtung dienende regenerativ ausgebildete Energieabsorptionsvorrichtung und die gegebenenfalls vorgesehene Gelenk- oder Kupplungsverbindung zwischen den einzelnen Wagenkästen bzw. allgemein ausgedrückt die Schnittstelle zwischen den einzelnen Wagenkästen möglicherweise beschädigt oder sogar zerstört wird. In jedem Fall reicht die als Dämpfungseinrichtung dienende regenerativ ausgebildete Energieabsorptionsvorrichtung nicht zum Abdämpfen der insgesamt anfallenden Energie aus. Dadurch ist die regenerativ ausgebildete Energieabsorptionsvorrichtung dann nicht mehr in das Energieverzehrkonzept des Gesamtfahrzeuges eingebunden.
  • Um zu verhindern, dass in solch einem Crash-Fall die anfallende Stoßenergie direkt auf das Fahrzeuguntergestell übertragen wird, ist es aus der Schienenfahrzeugtechnik allgemein bekannt, der als Dämpfungseinrichtung dienenden regenerativ ausgebildeten Energieabsorptionsvorrichtung eine Energieverzehreinrichtung nachzuschalten. Die Energieverzehreinrichtung spricht üblicherweise nach Überschreiten der Betriebslast der als Dämpfungseinrichtung dienenden regenerativ ausgebildeten Energieabsorptionsvorrichtung an und dient dazu, die anfallende Stoßenergie zumindest teilweise zu verzehren, d.h. in beispielsweise Wärmeenergie und Verformungsarbeit umzuwandeln. Das Vorsehen einer derartigen Energieverzehreinrichtung ist aus Gründen der Entgleisungssicherheit grundsätzlich empfehlenswert, um zu verhindern, dass die in einem Crash-Fall anfallende Stoßenergie direkt auf das Fahrzeuguntergestell übertragen wird, und insbesondere um zu verhindern, dass das Fahrzeuguntergestell extremen Belastungen ausgesetzt und unter Umständen beschädigt oder gar zerstört wird.
  • Um sicherzustellen, dass in dem Energieverzehrkonzept des Gesamtfahrzeuges sowohl im normalen Fahrbetrieb auftretende Situationen als auch Crash-Situationen wirksam berücksichtigt werden können, ist dafür Sorge zu tragen, dass alle in das Energieverzehrkonzept eingebundenen Energieverzehreinrichtungen bzw. Energieabsorptionsvorrichtungen noch nicht angesprochen haben bzw. ordnungsgemäß funktionieren. Im Hinblick auf die destruktiv ausgebildeten Energieverzehreinrichtungen ist es zu diesem Zweck aus der Schienenfahrzeugtechnik beispielsweise bekannt, dass die Energieverzehrvorrichtung eine Art "Verformungsanzeige" aufweisen kann, welche ausgelegt ist, nach bzw. beim Ansprechen der destruktiv ausgebildeten Energieverzehreinrichtung die Inanspruchnahme des Energieverzehrelements anzuzeigen. Mit einer solchen Verformungsanzeige ist es möglich, in einer einfachen Weise zu entscheiden, ob oder ob nicht das Energieverzehrelement der Energieverzehreinrichtung bereits (teilweise oder vollständig) ausgelöst hat.
  • In diesem Zusammenhang wird beispielsweise auf die Druckschrift EP 2 072 370 A1 verwiesen, welche eine derartige (mechanische) Verformungsanzeige für destruktiv ausgebildete Energieverzehreinrichtungen beschreibt. Die aus diesem Stand der Technik bekannte Verformungsanzeige weist eine Triggerung auf, welche bei einer plastischen Verformung des Energieverzehrelements anspricht und die Verformungsanzeige initiiert. Im Einzelnen wird in der EP 2 072 370 A1 dem Fachmann gelehrt, als Verformungsanzeige ein Signalelement, wie beispielsweise ein Signalblech, einzusetzen, welches über ein als Triggerung dienendes Abscherelement an dem Energieverzehrelement fixiert ist, wobei das Abscherelement bei einer plastischen Verformung des Energieverzehrelements abschert und seine Haltefunktion verliert, so dass dann das Signalblech nicht mehr an dem Energieverzehrelement fixiert ist und somit leicht erkannt werden kann, dass das destruktiv ausgebildete Energieverzehrelement bereits angesprochen hat.
  • Obgleich mit einer solchen an sich bekannten Lösung sichergestellt werden kann, dass die destruktiv ausgebildeten Energieverzehreinrichtungen einer Energieverzehrvorrichtung wirksam zur Verfügung stehen und mit in das Gesamt-Energieverzehrkonzept das Fahrzeuges eingebunden sind, ist nicht sichergestellt, dass andere Komponenten der Energieverzehrvorrichtung, insbesondere regenerativ ausgebildete Energieabsorptionsvorrichtungen, auch nach einer längeren Betriebszeit noch ordnungsgemäß funktionieren. "Ordnungsgemäß funktionieren" bedeutet in diesem Sinne, dass sich das Ansprech- und Dämpfungsverhalten der regenerativ ausgebildeten Energieabsorptionsvorrichtungen nicht oder nicht im Wesentlichen im Vergleich zur ursprünglichen Auslegung verändert hat.
  • Andererseits ist die oben im Zusammenhang mit der Druckschrift EP 2 072 370 A1 diskutierte Lösung nicht auf regenerativ ausgebildete Energieabsorptionsvorrichtungen anwendbar, da das Ansprechen der aus diesem Stand der Technik bekannten Verformungsanzeige eine plastische Verformung des Energieverzehrelements voraussetzt, also eine nicht-regenerative Verformung. Eine solche nicht-regenerative Verformung ist bei Energieabsorptionsvorrichtungen der hierin berücksichtigten Art grundsätzlich nicht vorgesehen.
  • Eine regenerative Energieabsorptionsvorrichtung ist zum Beispiel aus der Druckschrift EP 1 925 523 A1 bekannt.
  • Auf Grundlage dieser Problemstellung liegt der vorliegenden Erfindung die Aufgabe zu Grunde, eine regenerativ ausgebildete Energieabsorptionsvorrichtung anzugeben, bei der in einer einfach zu realisierenden Weise sichergestellt werden kann, dass bedarfsweise eine Stoßdämpfung stets nach einem vorab festgelegten oder festlegbaren Ereignisablauf stattfindet, ohne dass hierzu die einzelnen Komponenten der Energieabsorptionsvorrichtung individuell und regelmäßig zu überprüfen sind.
  • Diese Aufgabe wird erfindungsgemäß durch den Gegenstand des unabhängigen Patentanspruches 1 gelöst, wobei vorteilhafte Weiterbildungen der dort angegebenen regenerativen Energieabsorptionsvorrichtung in den entsprechenden abhängigen Patentansprüchen angegeben sind.
  • Demgemäß betrifft die Erfindung insbesondere eine regenerative Energieabsorptionsvorrichtung zum Abdämpfen von im (normalen) Betrieb eines spurgeführten Fahrzeuges auftretenden Kräften, insbesondere Zug-, Stoß- und/oder Torsionskräften, wobei die Energieabsorptionsvorrichtung mindestens eine Federeinrichtung mit einem Elastomerkörper aufweist, welcher derart ausgebildet ist, dass sich dieser bei Einleiten von Kräften in die Energieabsorptionsvorrichtung zumindest bereichsweise elastisch verformt. Erfindungsgemäß ist insbesondere vorgesehen, dass der Elastomerkörper zumindest bereichsweise aus einem elektrisch leitfähigen Material gebildet ist, dessen spezifischer elektrischer Widerstand bei Zug- und/oder Druckbelastung variiert, wobei der Energieabsorptionsvorrichtung eine Widerstandssensoreinrichtung zugeordnet ist zum Erfassen einer elektrischen Leitfähigkeit oder eines elektrischen Widerstandes des elektrisch leitfähigen Materials.
  • Die mit der erfindungsgemäßen Lösung erzielbaren Vorteile liegen auf der Hand: indem der Elastomerkörper der zur Energieabsorptionsvorrichtung gehörenden Federeinrichtung zumindest bereichsweise aus einem elektrisch leitfähigen Material gebildet ist, kann das Material des Elastomerkörpers, also im übertragenen Sinne der Elastomerkörper selber als Teil einer Sensorik verwendet werden, welcher ausgebildet ist, direkt oder indirekt einen Lastwechsel, dem der Elastomerkörper unterzogen ist, zu ermitteln oder abzuschätzen. Bei diesem Lastwechsel, dem der Elastomerkörper unterzogen ist, handelt es sich insbesondere um eine auf den Elastomerkörper der Federeinrichtung wirkende mechanische Zug-, Druck- oder Torsionsspannung.
  • Demnach kann mit Hilfe der in dem Material der Energieabsorptionsvorrichtung zumindest bereichsweise oder teilweise integrierten Sensorik wirksam die Funktionsweise der Energieabsorptionsvorrichtung überwacht werden, und zwar indem beispielsweise mit Hilfe der Widerstandssensoreinrichtung über einen vorab festgelegten oder festlegbaren Zeitraum bei einer Kraftübertragung über die Energieabsorptionsvorrichtung auftretende Belastungen des Elastomerkörpers erfasst werden. Daraus kann ein Gesamt-Lastwechsel oder eine Gesamt-Belastung des Elastomerkörpers oder andere Komponenten der Energieabsorptionsvorrichtung ermittelt werden. Insbesondere kann dann eine, eine Wartung und/oder einen Austausch des Elastomerkörpers oder einer anderen Komponente der Energieabsorptionsvorrichtung betreffende Information in Abhängigkeit von dem ermittelten Gesamt-Lastwechsel und/oder der ermittelten Gesamt-Belastung ausgegeben werden.
  • Alternativ oder zusätzlich ist es mit der Widerstandssensoreinrichtung möglich, beim Betrieb der Energieabsorptionsvorrichtung unter Umständen auftretenden Degenerationen des (Elastomer-)Materials des Elastomerkörpers frühzeitig zu erkennen.
  • Insbesondere kann somit mit der Widerstandssensoreinrichtung und dem elektrisch leitfähigen Material des Elastomerkörpers, der Teil einer Sensorik darstellt, wirksam das Auftreten von Betriebszuständen erfasst werden, welche zu einer insbesondere nicht unmittelbar ersichtlichen Be- oder Vorschädigung der regenerativen Energieabsorptionsvorrichtung führen. Insbesondere kann aufgrund des Vorsehens dieser Sensorik (Widerstandssensoreinrichtung in Kombination mit dem elektrisch leitfähigen Material des Elastomerkörpers) auf eine Sichtprüfung bei der Überwachung der regenerativ ausgebildeten Energieabsorptionsvorrichtung verzichtet werden.
  • Darüber hinaus sind mit der Widerstandssensoreinrichtung und dem elektrisch leitfähigen Material des Elastomerkörpers wirksam etwaige Abnutzungen oder Vorschädigungen von anderen Komponenten insbesondere der Energieabsorptionsvorrichtung erfassbar, wie insbesondere Abnutzungen von weiteren in der Energieabsorptionsvorrichtung zum Einsatz kommenden regenerativ ausgebildeten Dämpfungselementen, wie beispielsweise Elastomerlager. Dies ist insbesondere deshalb von Vorteil, da - wie auch der Elastomerkörper der Energieabsorptionsvorrichtung - diese Komponenten in der Regel nicht frei zugänglich sind und somit eine Überprüfung durch Sichtprüfung sehr aufwendig wäre.
  • Insbesondere kann mit der erfindungsgemäßen Lösung frühzeitig und zuverlässig eine Vorschädigung von Komponenten der Energieabsorptionsvorrichtung erkannt und signalisiert werden, um dadurch mögliche Folgeschäden und damit verbundene Ausfälle des Gesamtsystems durch nichtplanmäßige Instandhaltungsmaßnahmen zu vermeiden. Die hierzu zum Einsatz kommende Sensorik in Gestalt der Widerstandssensoreinrichtung in Kombination mit dem elektrisch leitfähigen Material des Elastomerkörpers zeichnet sich durch einen kompakten und kostengünstigen Aufbau aus, so dass eine freie Zugänglichkeit der zu überwachten Bauteile der Energieabsorptionsvorrichtung und insbesondere des Elastomerkörpers der Energieabsorptionsvorrichtung, nicht mehr notwendig ist.
  • Zudem kann eine On-Board-Diagnose realisiert werden, um dem Fahrzeugsystem eine frühzeitige Diagnose zu ermöglichen und die Wartung zu vereinfachen. Bei einer solchen On-Board-Diagnose erfolgt vom Fahrzeugsystem eine automatische Abfrage der Widerstandssensoreinrichtung bzw. einer der Widerstandssensoreinrichtung zugeordneten Auswerteeinrichtung.
  • Dadurch, dass mit Hilfe der Widerstandssensoreinrichtung eine elektrische Leitfähigkeit oder ein elektrischer Widerstand des elektrisch leitfähigen Materials des Elastomerkörpers erfasst wird, wobei diese Daten anschließend einer weiteren Auswertung zu Grunde gelegt werden, kann insbesondere auch auf externe Sensoren, insbesondere Dehnungssensoren (Dehnungsmessstreifen oder Dehnungsaufnehmer) verzichtet werden. Insbesondere ist es mit der vorliegenden Erfindung nicht mehr erforderlich, entsprechende Sensoren an bestehende Strukturen von außen zu befestigen, wie beispielsweise anzuschrauben, in Folge dessen in struktureller Hinsicht die Komponenten und insbesondere der Elastomerkörper der Energieabsorptionsvorrichtung verändert werden müsste. Auch beeinflusst das elektrisch leitfähige Material des Elastomerkörpers, welches im übertragenen Sinne die Funktion eines Dehnungssensors übernimmt, nicht die Dämpfungseigenschaft des Elastomerkörpers, so dass die dynamischen Eigenschaften des Elastomerkörpers unangetastet bleiben.
  • Zur Ausbildung des elektrisch leitfähigen Bereichs im Material des Elastomerkörpers kommen verschiedene Lösungen in Frage. Gemäß bevorzugten Ausführungsformen ist vorgesehen, dass das elektrisch leitfähige Material bzw. der elektrisch leitfähige Bereich im Material des Elastomerkörpers durch mindestens ein insbesondere metall- oder kohlenstoffbasiertes Füllstoffnetzwerk in einem Polymermaterial gebildet wird. Das Füllstoffnetzwerk wird insbesondere durch metall- oder kohlenstoffbasierte Füllstoffpartikel gebildet, die in einer Matrix des Polymermaterials aufgenommen sind. Dabei ist es von Vorteil, dass das Polymermaterial des elektrisch leitfähigen Materials mit einem Polymermaterial übereinstimmt, aus welchem der Elastomerkörper gebildet ist. Auf diese Weise wird durch die Integration der "Sensorik" in den Elastomerkörper das dynamische Dämpfungsverhalten des Elastomerkörpers nicht beeinflusst.
  • Mit der erfindungsgemäßen Lösung wird weitestgehend auf das Hinzufügen von separaten, aktiven und/oder passiven Bauelementen zu der Energieabsorptionsvorrichtung verzichtet. Das Ausbilden eines elektrisch leitfähigen Bereiches in dem Material des Elastomerkörpers erfordert keine elektrische Infrastruktur, die den besonderen Bedingungen im Fahrbetrieb angepasst sein und beispielsweise lokalen Deformationen mit einer hohen Anzahl von Wiederholungen sowie Temperaturbereichen zwischen minus 50° bis +50° widerstehen muss.
  • Natürlich ist es möglich, dem elektrisch leitfähigen Material im Elastomerkörper mit rußbeschichteten Fäden, Rußdispersionen (Ruß-Tinte, Ruß-Paste, rußhaltige Lösungen), Fäden, die mit Ruß-Tinte oder Ruß-Pasta benetzt wurden, leitende (vernetzte) Gummifäden oder ähnliche Elemente einzusetzen. Allerdings wird das dynamische Verhalten des Elastomerkörpers vollständig unangetastet gehalten, wenn leitende Füllstoffe, wie CNT (=Carbon Nanotubes), Graphen, Grafit oder Metallpulver, insbesondere Amorphiszinnoxid, in das Polymermaterial des Elastomerkörpers eingebettet werden.
  • Gemäß Ausführungsformen der Erfindung werden leitfähige Materialien wie Ruß, Grafit, Carbon, Carbon Nanotubes, Kupfer, Gold, Silber, etc. in die Polymermatrix eingearbeitet. Ab einem bestimmten Füllgrad bilden diese Polymere ein elektrisch leitfähiges Netzwerk. Wird das Polymermaterial einer Zugbelastung oder Druckbelastung ausgesetzt, so ändert sich der Widerstand aufgrund der Querschnittsverengung und der Veränderung der Partikelverteilung in der Polymermatrix. Durch diesen Aufbau können verschiedene Ausdehnungen des Elastomerkörpers gemessen werden. Untersuchungen haben in diesem Bereich ergeben, dass das elastische und elektrisch leitfähige Material des Elastomerkörpers als Sensormaterial zur Feststellung und Messung von Zugbelastung oder Druckbelastung eingesetzt werden kann. Die sensorischen Eigenschaften verbessern sich bei zunehmenden Füllgrad des Polymermaterials, obgleich sich die mechanischen Eigenschaften des ursprünglichen Polymermaterials verschlechtern.
  • Aus diesem Grund ist es von Vorteil, wenn nicht das gesamte Polymermaterial des Elastomerkörpers mit entsprechenden leitfähigen Partikeln versetzt wird, sondern nur einzelne Bereiche des Polymermaterials mit einem entsprechenden Füllstoffnetzwerk versehen werden. In vorteilhafter Weise liegen diese Bereiche in einem Bereich des Elastomerkörpers, durch den beim Abdämpfen von im Betrieb des spurgeführten Fahrzeuges mindestens ein vorab berechneter Lastpfad verläuft. Die sensorischen Eigenschaften dieses elektrisch leitfähigen Bereiches des Elastomerkörpers werden dann mit der Widerstandssensoreinrichtung ausgenutzt, um entsprechende Daten, die indikativ für einen auf den Elastomerkörper einwirkenden bzw. eingewirkten Lastwechsel und/oder indikativ auf eine Degeneration des Materials des Elastomerkörpers sind.
  • Gemäß Realisierungen der erfindungsgemäßen Energieabsorptionsvorrichtung ist vorgesehen, dass die Widerstandssensoreinrichtung ausgebildet ist, die elektrische Leitfähigkeit und/oder den elektrischen Widerstand zwischen mindestens zwei Messpunkten im elektrisch leitfähigen Material des Elastomerkörpers zu erfassen, wobei hierzu die Widerstandssensoreinrichtung mindestens einen vorzugsweise potenzialfrei arbeitenden Messaufnehmer aufweist. Insbesondere ist es in diesem Zusammenhang denkbar, dass die vorzugsweise potenzialfrei arbeitenden Messaufnehmer derart angeordnet sind, dass der elektrische Widerstand bzw. die elektrische Leitfähigkeit des elektrisch leitfähigen Materials im Elastomerkörper über verschiedene Raumachsen bestimmt wird, um so eine Aussage über Zugbelastungen oder Druckbelastungen bzw. Dehnungsbelastungen des Elastomerkörpers in unterschiedlichen Raumachsen erhalten zu können.
  • Die Widerstandssensoreinrichtung weist in bevorzugter Weise eine insbesondere kabellos arbeitende Schnittstelleneinrichtung auf, über welche von der Widerstandssensoreinrichtung erfasste und optional ausgewertete Daten vorzugsweise über einen Fernzugriff zumindest teilweise auslesbar sind.
  • So ist es beispielsweise denkbar, dass der Widerstandssensoreinrichtung eine entsprechende Auswerteeinrichtung zugeordnet ist, welche ausgebildet ist, die von der Widerstandssensoreinrichtung erfassten Daten bezüglich der elektrischen Leitfähigkeit bzw. des elektrischen Widerstandes entsprechend auszuwerten. Zum Auswerten der ermittelten Leitfähigkeits- bzw. Widerstandsdaten werden gemäß Ausführungsformen der vorliegenden Erfindung diese Messdaten mit entsprechenden Bezugsdaten verglichen, wobei die Bezugsdaten vorzugsweise im Rahmen einer Kalibrierung zuvor aufgenommen wurden. Dabei liegt der Erfindung die Erkenntnis zu Grunde, dass sich beispielsweise durch mechanischen Verschleiß des Elastomerkörpers die Dehnungseigenschaften und damit die Dämpfungseigenschaften des Elastomerkörpers ändern und von einem idealen Zustand (Soll-Zustand) abweichen. Der Grad bzw. das Ausmaß der Änderung bzw. der Abweichung von dem Soll-Zustand kann dann als Indiz für eine fehlerhafte Funktionsweise des Elastomerkörpers bzw. für einen Verschleiß des Elastomerkörpers dienen.
  • Potenzielle Abweichungen der Funktionsweise des überwachten Elastomerkörpers bzw. ein potenzieller Verschleiß des Elastomerkörpers werden somit durch die Widerstandssensoreinrichtung und dem elektrisch leitfähigen Bereich des Materials des Elastomerkörpers, der als Sensormaterial dient, detektiert und Abweichungen von einem erwarteten Soll-Zustand werden entweder über Fehlermeldungen an den Betreiber des spurgeführten Fahrzeuges oder über eine Remote-Control-Schnittstelle an einen zuständigen Wartungsservice, insbesondere Fernwartungsservice, übermittelt.
  • Die Fernwartung (Remote Maintenance) von Komponenten eines spurgeführten Fahrzeuges gewinnt beim Support der Hard- und Software von Zulieferern in der Schienenfahrzeugtechnik zunehmend an Bedeutung. Durch die immer stärkere Vernetzung der Steuersysteme über das Internet, dem Aufbau von firmeninternen Intranets und herkömmliche Telekommunikationswege (ISDN, Telefon, etc.) erweitern sich die Möglichkeiten der direkten Unterstützung im Support. Nicht zuletzt wegen der Einsparungsmöglichkeiten bei Reisekosten und die bessere Ressourcennutzung (Personal und Technik) werden Produkte der Fernwartung zur Kostensenkung in Unternehmen genutzt. Fernwartungsprogramme ermöglichen es dem entfernt sitzenden Servicetechniker, direkt auf den überwachten Elastomerkörper bzw. Komponenten der Energieabsorptionsvorrichtung zuzugreifen und deren Status abzufragen, um vorausschauende Gegenmaßnahmen, wie beispielsweise Wartungsintervalle, einzuplanen und durchzuführen.
  • Gemäß Ausführungsformen der Erfindung ist der Widerstandssensoreinrichtung eine Speichereinrichtung zugeordnet zum Speichern von insbesondere im Betrieb des Schienenfahrzeuges in dem Elastomerkörper eingeleiteten Dehnungen, Stauchungen und Scherbeanspruchungen bzw. anderer relevanten Informationen und Daten, wobei die Speichereinrichtung insbesondere ausgebildet ist, vorzugsweise alle mit der Widerstandssensoreinrichtung erfassten Daten und Informationen zumindest für eine vorab festgelegte oder festlegbare Zeitperiode dauerhaft zu speichern. Dabei bietet es sich an, dass die Speichereinrichtung ausgebildet ist, vorzugsweise über einen Fernzugriff zumindest teilweise auslesbar zu sein.
  • Indem in Hinblick auf den Betrieb des überwachten Elastomerkörpers relevante Informationen und Daten und insbesondere Dehnungen, Stauchungen und Scherbeanspruchungen des Elastomerkörpers im Betrieb des Schienenfahrzeuges gespeichert werden, kann der entsprechende Betrieb und die Belastung des Elastomerkörpers dokumentiert werden, um so auch Wartungsintervalle vorhersagend einplanen zu können.
  • Insbesondere ist gemäß Ausführungsformen der vorliegenden Erfindung vorgesehen, dass der Widerstandssensoreinrichtung eine Speichereinrichtung zugeordnet ist zum Dokumentieren von über einen vorabfestgelegten oder festlegbaren Zeitraum bei einer Kraftübertragung auftretenden Belastungen (Dehnungen, Stauchungen und Scherbeanspruchungen in unterschiedlichen Raumrichtungen) des Elastomerkörpers zu dokumentieren. Es bietet sich in diesem Zusammenhang an, dass eine Auswerteeinrichtung vorgesehen ist, um einen Gesamt-Lastwechsel und/oder eine Gesamt-Belastung des Elastomerkörpers zu ermitteln, und zwar auf Grundlage der dokumentierten Belastungen. In diesem Zusammenhang sollte die Auswerteeinrichtung ferner ausgebildet sein, eine eine Wartung und/oder einen Austausch des Elastomerkörpers bzw. einer anderen Komponente der Energieabsorptionsvorrichtung betreffende Information in Abhängigkeit von dem ermittelten Gesamt-Lastwechsel und/oder der ermittelten Gesamt-Belastung auszugeben.
  • Hierbei liegt der Erfindung die Erkenntnis zu Grunde, dass Komponenten der Energieabsorptionsvorrichtung, wie beispielsweise der Elastomerkörper, ausgetauscht oder gewartet werden müssen, wenn sich die ertragbaren Belastungen bis zu einem fest definierten Wert aufsummiert haben. Bislang erfolgt eine Überprüfung oder Wartung über eine Dokumentation der jährlichen Lastwechsel, was in der Regel auf einer Schätzung basiert. Darin liegt eine große Ungenauigkeit, da tatsächlich nicht genau bekannt ist, wie viele Lastwechsel wirklich stattgefunden haben und wie hoch dabei die Beanspruchung war.
  • Mit der vorliegenden Erfindung kann vorzugsweise das Lastkollektiv mitgeschrieben werden, was einen größeren Ausnutzungsgrad der Komponenten der Energieabsorptionsvorrichtung bzw. des Elastomerkörpers ermöglicht. Dadurch kann insbesondere die Lebensdauer der Komponenten der Energieabsorptionsvorrichtung erhöht werden. Ferner ist es möglich, dass schon vorher erkannt wird, wann und welche Komponenten der Energieabsorptionsvorrichtung ausgetauscht werden müssen. Dadurch kann ein entsprechender Ersatz vorab beschafft werden und die Ausfallzeiten werden minimiert und die Prozesssicherheit deutlich erhöht.
  • In diesem Zusammenhang ist es grundsätzlich denkbar, dass der Auswerteeinrichtung mindestens eine Anzeigeeinrichtung, insbesondere in Gestalt eines Displays und/oder mindestens einer Lichtquelle, zugeordnet ist zum optischen Anzeigen des ermittelten Gesamt-Lastwechsels und/oder der ermittelten Gesamt-Belastung und/oder entsprechenden Informationen diesbezüglich.
  • Alternativ oder zusätzlich bietet es sich an, dass die Auswerteeinrichtung eine digitale Schnittstelle aufweist, insbesondere eine Modbus-, CAN-, CANopen-, IO-Link- und/oder Ethernet-kompatible Schnittstelle, um mit einer externen Vorrichtung entsprechend kommunizieren zu können. Auf diese Weise kann insbesondere eine On-Board-Diagnose realisiert werden, um dem Fahrzeugsystem eine frühzeitige Diagnose zu ermöglichen und eine Wartung zu vereinfachen. Bei einer solchen On-Board-Diagnose erfolgt vom Fahrzeugsystem vorzugsweise eine automatische Abfrage der Auswerteeinrichtung oder der entsprechenden Widerstandssensoreinrichtung.
  • Der mindestens eine Bereich aus dem elektrisch leitfähigen Material ist vorzugsweise in einem Bereich des Elastomerkörpers ausgebildet, welcher im Betrieb des spurgeführten Fahrzeuges sich oft wiederholende Dehnungen, Stauchungen und/oder Scherbeanspruchungen ausgesetzt ist.
  • Wie bereits ausgeführt, ist im Rahmen der vorliegenden Erfindung vorzugsweise vorgesehen, dass der Bereich mit dem elektrisch leitfähigen Material durch mindestens ein insbesondere metall- oder kohlenstoffbasiertes Füllstoffnetzwerk in einem Polymermaterial gebildet wird, wobei hierzu insbesondere metall- oder kohlenstoffbasierte Füllstoffpartikel zum Einsatz kommen, die in einer Matrix des Polymermaterials aufgenommen sind. Gemäß Ausführungsformen der vorliegenden Erfindung werden als Füllstoffe unterschiedliche elektrisch leitfähige Kohlenstoffallotrope eingesetzt, die sich in ihren geometrischen Strukturen unterscheiden können. Beispielsweise kann als Füllstoff Ruß (engl.: Carbon Black, CB) verwendet werden, der typischerweise aus nahezu kugelförmigen Partikeln von 50 nm Durchmesser besteht. Die Ausdehnung liegt in allen drei Dimensionen im Nanometer-Bereich. Andererseits können alternativ oder zusätzlich hierzu Kohlenstoffnanoröhrchen (engl.: Carbon Nanotubes, CNT) als Füllstoff verwendet werden, die der Form eines Zylinders gleichen, und die einen Radius im Bereich von wenigen Nanometern und eine Länge, die im Mikrometer-Bereich liegt, aufweisen. Als weiterer Füllstoff können Graphen-Nanoplättchen (engl.: Graphene Nanoplatelets, GNT) eingesetzt werden, deren Struktur einem Plättchen ähnelt. Die Dicke liegt dabei im Bereich von wenigen Nanometern, während die laterale Ausdehnung der Plättchen im Mikrometer-Bereich liegt.
  • Alternativ oder zusätzlich hierzu ist es selbstverständlich aber auch denkbar, wenn zumindest bereichsweise das Füllstoffnetzwerk gebildet wird durch in Elastomermaterial des Elastomerkörpers eingebettete Textile und metallische Festigkeitsträger, welche mit einer elektrisch leitfähigen Faser oder einer elektrisch leitfähigen Beschichtung versehen sind. In diesem Fall können diese im Elastomermaterial bereits integrierten Textile und metallische Festigkeitsträger als elektrische Leiterbahnen genutzt werden.
  • Die erfindungsgemäße Energieabsorptionsvorrichtung kann insbesondere Teil einer Kupplungs- oder Gelenkanordnung eines spurgeführten Fahrzeuges sein, wobei diese Kupplungs- oder Gelenkanordnung zum gelenkigen Verbinden zweier benachbarter Wagenkästen dient. Eine weitere Anwendungsmöglichkeit ist die Verwendung der Energieabsorptionsvorrichtung in einer Dämpfungsanordnung, beispielsweise in einem Seitenpuffer eines spurgeführten Fahrzeuges.
  • Bei diesen Anwendungen ist es durch das Vorsehen der Widerstandssensoreinrichtung und dem in dem Material des Elastomerkörpers ausgebildeten Sensormaterial (dem elektrisch leitfähigen Bereich) möglich, die Funktionsweise der Kupplungs- oder Gelenkanordnung bzw. der Dämpfungsanordnung in intelligenter Weise zu überwachen.
  • Hierbei wird mit Hilfe der Widerstandssensoreinrichtung über einen vorab festgelegten oder festlegbaren Zeitraum bei einer Kraftübertragung auftretende Belastungen des Elastomerkörpers erfasst und vorzugsweise daraus ein Gesamt-Lastwechsel oder eine Gesamt-Belastung ermittelt, wobei eine eine Wartung und/oder einen Austausch einer Komponente der Energieabsorptionsvorrichtung betreffende Information in Abhängigkeit von dem ermittelten Gesamt-Lastwechsel und/oder in Abhängigkeit der ermittelten Gesamt-Belastung ausgegeben wird.
  • Um einen möglichst autarken Betrieb der Widerstandssensoreinrichtung zu ermöglichen, und um insbesondere aufwendige Verkabelungen der Widerstandssensoreinrichtung mit dem Fahrzeugkörper zu verhindern, ist insbesondere vorgesehen, dass die Widerstandssensoreinrichtung ausgebildet ist, nur bei vorab festgelegten oder festlegbaren Zeiten und/oder Ereignissen (beispielsweise während eines Kupplungsvorganges) eine elektrische Leitfähigkeit oder einen elektrischen Widerstand des elektrisch leitfähigen Bereiches in dem Elastomermaterial zu erfassen. Beispielsweise ist es in diesem Zusammenhang denkbar, dass die Widerstandssensoreinrichtung aktiviert (getriggert) wird, sobald über eine entsprechende Sensorik das Einleiten einer einen vorab festgelegten Schwellwert überschreitenden Kraft in die Energieabsorptionsvorrichtung erfasst wird.
  • Auf diese Weise kann der Verbrauch von elektrischer Energie durch die Widerstandssensoreinrichtung minimiert werden.
  • Gemäß Weiterbildungen insbesondere des zuletzt genannten Aspekts weist die Widerstandssensoreinrichtung mindestens einen Generator, insbesondere einen Nanogenerator auf, um das Konzept des "Energy Harvesting" umzusetzen. Mit diesem Generator, insbesondere Nanogenerator, kann die Widerstandssensoreinrichtung zumindest einen Teil der beim Betrieb der Widerstandssensoreinrichtung von dieser benötigten elektrischen Energie aus der unmittelbaren Umgebung der Widerstandssensoreinrichtung gewonnen werden. Beispielsweise ist es denkbar, dass mit Hilfe des Nanogenerators aus einer Vibration des Elastomerkörpers entsprechende elektrische Energie gewonnen wird. Zweckmäßigerweise kann zur Übertragung der von der Widerstandssensoreinrichtung gewonnen Informationen an die nächstliegende Datenschnittstelle vorteilhaft eine Low-Power Near-Field-Communication (NFC-)Lösung, beispielsweise ZigBee oder Bluetooth LE oder andere geeignete Standards verwendet werden
  • Mit diesem Aspekt ist eine vollkommen drahtlose Realisierung der Widerstandssensoreinrichtung denkbar, wobei Einschränkungen durch kabelgebundene Stromversorgung oder Batterien und/oder kabelgebundene Kommunikationstechniken vermieden werden.
  • Nachfolgend wird die Erfindung anhand von exemplarischen Ausführungsformen mit Bezug auf die Zeichnungen näher beschrieben.
  • Es zeigen:
  • FIG. 1
    schematisch und in einer isometrischen Ansicht eine erste Ausführungsform einer Kupplungsanlenkung für eine Mittelpufferkupplung eines spurgeführten Fahrzeuges, insbesondere Schienenfahrzeuges, wobei in dieser Kupplungsanlenkung eine exemplarische Ausführungsform der erfindungsgemäßen Energieabsorptionsvorrichtung zum Einsatz kommt;
    FIG. 2
    die Kupplungsanlenkung gemäß FIG. 1 in einer Seitenschnittansicht;
    FIG. 3
    schematisch und in einer Seitenschnittansicht eine zweite Ausführungsform einer Kupplungsanlenkung für einen Wagenkasten eines mehrgliedrigen Fahrzeuges mit einer exemplarischen Ausführungsform der erfindungsgemäßen Energieabsorptionsvorrichtung;
    FIG. 4
    schematisch und in einer isometrischen Ansicht die bei der Kupplungsanlenkung gemäß FIG. 3 zum Einsatz kommende Energieabsorptionsvorrichtung ("Sphärolager");
    FIG. 5
    schematisch und in einer Schnittansicht die Energieabsorptionsvorrichtung gemäß FIG. 4;
    FIG. 6
    das Schaltbild einer exemplarischen Ausführungsform einer Widerstandssensoreinrichtung der erfindungsgemäßen Energieabsorptionsvorrichtung; und
    FIG. 7
    schematisch eine weitere Ausführungsform einer Widerstandssensoreinrichtung mit Auswerteeinrichtung und Schnittstelleneinrichtung der erfindungsgemäßen Energieabsorptionsvorrichtung.
  • In FIG. 1 ist schematisch und in einer isometrischen Ansicht eine Kupplungsanlenkung 10 einer Mittelpufferkupplung für Schienenfahrzeuge gezeigt, wobei in dieser Kupplungsanlenkung 10 eine exemplarische Ausführungsform der erfindungsgemäßen Energieabsorptionsvorrichtung zum Einsatz kommt. Die Darstellung in FIG. 2 zeigt die Kupplungsanlenkung 10 gemäß FIG. 1 in einer Seitenschnittansicht.
  • In der dargestellten Kupplungsanlenkung 10 ist eine Energieabsorptionsvorrichtung integriert, welche insgesamt drei Federeinrichtungen mit jeweils einem ringförmigen Elastomerkörper 1 aufweist. Diese ringförmigen Elastomerkörper 1 der Federeinrichtungen sind derart ausgelegt, dass Zug- und Stoßkräfte bis zu einer definierten Größe aufgenommen und darüberhinausgehende Kräfte über den Lagerbock 11 in das Fahrzeuguntergestell weitergeleitet werden.
  • Die in FIG. 1 und FIG. 2 dargestellte Kupplungsanlenkung 10 umfasst den hinteren Teil einer Kupplungsanordnung und dient dazu, den Kupplungsschaft 15 einer Mittelpufferkupplung über den Lagerbock 11 an einer (in den Zeichnungen nicht dargestellten) Anschraubplatte eines Wagenkastens horizontal schwenkbar anzulenken.
  • Da bei der in FIG. 1 und FIG. 2 dargestellten Kupplungsanlenkung 10 die als Dämpfungseinrichtung dienende regenerative Energieabsorptionsvorrichtung mit den ringförmigen Elastomerkörpern 1 innerhalb des Lagerbockes 11 aufgenommen ist, weist der Lagerbock 11 eine im Hinblick auf die ringförmigen Elastomerkörper 1 angepasste Konfiguration auf. Im Einzelnen weist der Lagerbock 11 eine Käfig- bzw. Gehäusestruktur 16 auf, mit welcher die Lagerschalen des Lagers mit einem vertikal verlaufenden Flansch verbunden sind.
  • Im Betrieb der Kupplungsanlenkung 10 werden über den Kupplungsschaft 15 Zug- oder Druckkräfte in die Energieabsorptionsvorrichtung eingeleitet. Im Einzelnen bewegt sich bei Einleiten von Zug- oder Druckkräften der Kupplungsschaft 15 relativ zu der Käfig- bzw. Gehäusestruktur 16 des Lagerbockes 11, wobei dabei die Elastomerkörper 1 der Energieabsorptionsvorrichtung entsprechend deformiert werden, um die übertragenen Zug- oder Druckkräfte abzudämpfen.
  • Wie in FIG. 2 schematisch angedeutet, ist bei dieser exemplarischen Ausführungsform ein Elastomerkörper 1 der in der Käfig- bzw. Gehäusestruktur 16 des Lagerbockes 11 aufgenommenen Energieabsorptionsvorrichtung bereichsweise aus einem elektrisch leitfähigen Material 2 gebildet, wobei dieser Bereich als Sensormaterial dient. Das elektrisch leitfähige Material 2 des Elastomerkörpers 1 ist derart ausgebildet, dass sein spezifischer elektrischer Widerstand bzw. seine elektrische Leitfähigkeit bei Zug- und/oder Druckbelastung des Bereiches aus dem elektrisch leitfähigen Material 2 variiert.
  • In vorteilhafter Weise ist der elektrisch leitfähige Bereich 2 des Elastomerkörpers 1 durch ein Füllstoffnetzwerk, welches metall- oder kohlenstoffbasierte Füllstoffpartikel aufweist, gebildet. Das Füllstoffnetzwerk bzw. die Füllstoffpartikel sind in einer Matrix des Polymermaterials aufgenommen, aus welchem auch der übliche Bereich des Elastomerkörpers 1 gebildet ist.
  • Obgleich es der schematischen Darstellung in FIG. 2 nicht unmittelbar entnommen werden kann, ist der mindestens eine elektrisch leitfähige Bereich 2 des Materials des Elastomerkörpers 1 in einem Bereich des Elastomerkörpers 1 ausgebildet, in welchem bei Druck- oder Zugübertragung bzw. Einleitung in die Energieabsorptionsvorrichtung ein Lastpfad vorzugsweise in einer bestimmten Raumrichtung verläuft.
  • Die elektrische Leitfähigkeit bzw. der elektrische Widerstand des als Sensormaterial dienenden Bereiches 2 des Elastomerkörpers 1 wird mit Hilfe einer Widerstandssensoreinrichtung 3 gemessen bzw. erfasst. Hierzu weist die Widerstandssensoreinrichtung 3 mindestens einen vorzugsweise potentialfrei arbeitenden Messaufnehmer auf. Eine Ausführungsform einer solchen Widerstandssensoreinrichtung 3 wird nachfolgend unter Bezugnahme auf die Darstellung in FIG. 5 näher beschrieben.
  • In FIG. 3 ist in einer schematischen Längsschnittansicht eine weitere exemplarische Anwendungsmöglichkeit der erfindungsgemäßen Energieabsorptionsvorrichtung gezeigt. Im Einzelnen zeigt FIG. 3 schematisch und in einer Seitenschnittansicht eine Kupplungsanlenkung 10 mit einer Ausführungsform der erfindungsgemäßen Energieabsorptionsvorrichtung. In diesem Fall ist die Energieabsorptionsvorrichtung als Sphärolager 13 ausgebildet.
  • Im Einzelnen umfasst die Kupplungsanlenkung 10 gemäß FIG. 3 einen an einer Stirnseite eines Wagenkastens im Wesentlichen starr angebrachten Lagerbock 11 sowie eine Gelenkanordnung 12, welche eine regenerative Energieabsorptionsvorrichtung in Gestalt eines Sphärolagers und einen vertikal verlaufenden Schwenkbolzen 14 aufweist. Die Gelenkanordnung 12 dient dazu, eine Kupplungsstange 15 mit dem Lagerbock 11 gelenkig zu verbinden, wobei der wagenkastenseitige Endabschnitt der Kupplungsstange 15 über die Gelenkanordnung 12 derart mit dem Lagerbock 11 verbunden ist, dass zumindest teilweise eine horizontale und vertikale Bewegung der Kupplungsstange 15 relativ zum Lagerbock 11 möglich ist.
  • Im Einzelnen ist ein horizontales Verschwenken der Kupplungsstange 15, d.h. ein Verschwenken der Kupplungsstange 15 innerhalb der horizontalen Kupplungsebene, durch das Vorsehen des vertikal zur horizontalen Kupplungsebene verlaufenden Schwenkbolzens 14 möglich. Durch den Schwenkbolzen 14 läuft die vertikale Mittenlängsachse, welche senkrecht auf der horizontalen Kupplungsebene steht. Der Schnittpunkt zwischen der Mittenlängsachse und der horizontalen Kupplungsebene bezeichnet den Drehpunkt, um welchen die Kupplungsstange 15 relativ zu dem im Wesentlichen starr an dem Wagenkasten angeflanschten oder andersartig befestigten Lagerbock 11 horizontal oder vertikal verschwenkbar ist.
  • In der Gelenkanordnung 12 der in FIG. 3 dargestellten Ausführungsform ist eine regenerative Energieabsorptionsvorrichtung vorgesehen, welche dazu dient, die im normalen Fahrbetrieb über die Kupplungsstange 15 eingeleiteten Zug- oder Druckkräfte abzudämpfen. Die Energieabsorptionsvorrichtung ist Teil eines Sphärolagers 13 und weist eine Federeinrichtung mit einem Elastomerkörper 1 auf, welcher derart ausgebildet ist, dass sich diese bei Einleiten von Kräften in die Energieabsorptionsvorrichtung zumindest teilweise elastisch verformt.
  • Eine Ausführungsform des bei der Gelenkanordnung 12 gemäß FIG. 3 zum Einsatz kommenden Sphärolagers 13 ist in einer schematischen und isometrischen Ansicht in FIG. 4 und in einer entsprechenden Schnittansicht in FIG. 5 gezeigt.
  • Wie es insbesondere der Schnittansicht gemäß FIG. 5 entnommen werden kann, ist der Elastomerkörper 1 der Energieabsorptionsvorrichtung bereichsweise aus einem elektrisch leitfähigen Material 2 gebildet. Wie auch bei der zuvor beschriebenen Ausführungsform gemäß FIG. 1 bzw. FIG. 2 ist der elektrisch leitfähige Bereich 2 des Materials des Elastomerkörpers 1 derart ausgebildet, dass sein spezifischer elektrischer Widerstand bzw. seine elektrische Leitfähigkeit bei Zug- und/oder Druckbelastung variiert.
  • Dem Elastomerkörper 1 gemäß FIG. 5 ist ferner eine Widerstandssensoreinrichtung 3 zugeordnet, mit Hilfe welcher eine elektrische Leitfähigkeit oder ein elektrischer Widerstand des elektrisch leitfähigen Materialbereiches 2 des Elastomerkörpers 1 erfasst werden kann.
  • Eine Ausführungsform der Widerstandssensoreinrichtung 3 wird anschließend unter Bezugnahme auf das Schaltdiagramm gemäß FIG. 6 näher beschrieben.
  • Die in FIG. 6 schematisch mit Hilfe eines Schaltdiagramms bzw. Ersatzschaltbildes gezeigte Widerstandssensoreinrichtung 3 dient dazu, die Leitfähigkeit bzw. den elektrischen Widerstand zwischen mindestens zwei Punkten im elektrisch leitfähigen Elastomermaterial 2 des Elastomerkörpers 1 durch einen dedizierten Messaufnehmer zu erfassen. Dies kann beispielsweise durch eine bezugspotentialfrei differenziell messende Anordnung nach FIG. 6 erfolgen.
  • Die optimale Lage der Messpunkte im Elastomermaterial 2 muss jeweils in Abhängigkeit der Geometrie des Elastomerkörpers 1 bestimmt werden. Der Messbereich der Leitfähigkeit bzw. des elektrischen Widerstandes (Rm) des als Sensormaterial dienenden elektrisch leitfähigen Elastomerkörpermaterials ist in Abhängigkeit der vorliegenden Elastomermischung festzulegen. Die Frequenzbandbreite des ermittelten Signals u(t) wird im Wesentlichen durch die Bandbreite der auftretenden mechanischen (dynamischen) Belastung bestimmt.
  • Um den Änderungsbereich der elektrischen Leitfähigkeit einzugrenzen, sind unter Maßgabe der zusätzlich einzuhaltenden mechanischen Eigenschaften der jeweiligen Elastomer- bzw. Gummimischung auch Änderungen in der Zusammensetzung bzw. im Herstellungsprozess des Elastomers denkbar. Hiermit ließen sich in gewissen Grenzen sogar die Kennwerte der elektrischen Leitfähigkeit in Abhängigkeit der auftretenden mechanischen Belastung einstellen.
  • Da unter Umständen die absoluten Werte der Leitfähigkeit des elektrisch leitfähigen Bereiches des Elastomerkörpers 1 stark streuen können, ist es zweckmäßig, nach einem Kalibrierprozess nur die Änderungen der elektrischen Leitfähigkeit bzw. des elektrischen Widerstandes Rm zu erfassen. Der Kalibrierprozess soll hierbei neben der mechanischen Grundstellung (Ruhelage) auch die spezifizierten Endlagen des betreffenden Gesamtsystems (bei Zugkupplungen: die betrieblichen Seiten und Höhenauslenkungen) beinhalten. Die Größe bzw. der Betrag der Widerstandsänderung kann dann ein Maß der auftretenden mechanischen Belastung des eingebauten Elastomerkörpers 1 sein.
  • Bei Anordnung von mehreren Messaufnehmern, zum Beispiel in sinnvoll gewählten Raumachsen, ist es zudem denkbar, einen Vektor (Betrag und Richtung) der mechanischen Belastung bzw. des Auslenkwinkels der verbauten Komponente zu ermitteln.
  • Veränderungen des Widerstandswertes Rm in der mechanischen Grundstellung (Ruhelage) lassen unter Umständen direkt auf eine Gefügeänderung des Elastomermaterials, eine Änderung der Umgebungstemperatur oder auf Alterung des Elastomermaterials schließen.
  • Um die Messanordnung vorteilhaft zu gestalten, ist es denkbar, diese vollständig in Form eines miniaturisierten "Elastomersensors" mit Auswerteeinrichtung 4, Energieversorgung und insbesondere kabelloser Datenübertragung 5 (zum Beispiel NFC) entsprechend FIG. 6 unmittelbar am oder im Elastomerkörper 1 bzw. an dessen Oberfläche schon im Herstellungsprozess zu integrieren. Die Kommunikation erfolgt dann zu einem in der Nähe angeordneten Empfänger. Dies hätte den Vorteil, dass keine aufwendige Verkabelung des Messaufnehmers hin zur Auswerteeinrichtung 4 notwendig wäre.
  • Als bevorzugte Ausführungsform wird die Anwendung der Erfindung in einem Sphärolager 13 in einer automatischen Zugkupplung gesehen, da Änderungen der mechanischen Belastung bzw. Auslenkungen des gelagerten Bauteils (zum Beispiel der Kupplungsstange 15) sogar in mehreren Raumachsen möglich sind.
  • Für den praktischen Betrieb der Widerstandssensoreinrichtung 3 ist es vorteilhaft, die Widerstandssensoreinrichtung 3 nur zu bestimmten diskreten Zeitpunkten messen zu lassen, um den Energiebedarf zu begrenzen. Denkbar ist auch, die Messung durch ein externes Ereignis auszulösen, wie beispielsweise Kuppelvorgänge, Traktion/Bremsvorgänge des spurgeführten Fahrzeuges, Kurvenfahrten in Gleisbögen oder bei Integration eines zusätzlichen Inertialgebers (Beschleunigung) in den Sensor bei Druck-/Zug im Kuppelstrang.
  • Eine vorteilhafte Ausführungsform des Elastomersensors wäre es auch, wenn die benötigte Energie zum Betrieb aus der Eigenbewegung (Walken) des Gummimaterials mittels Energy-Harvesting gewonnen werden könnte.
  • Zusammenfassend bleibt festzuhalten, dass durch das Vorsehen von leitfähigen Füllstoffen in dem Elastomermaterial des Elastomerkörpers 1 elektrisch leitfähige Bereiche 2 im Elastomerkörper 1 ausgebildet werden. Bei der vorliegenden Erfindung wird die spezifische Eigenschaft des elektrisch leitfähigen Bereiches 2 des Elastomerkörpers 1 nutzbar gemacht, und zwar indem über eine Änderung der elektrischen Leitfähigkeit bei mechanischer Belastung im Betrieb der Energieabsorptionsvorrichtung gemessen und entsprechend bewertet wird. Dabei ist es möglich, durch die bei mechanischer Belastung hervorgerufenen Änderungen der elektrischen Leitfähigkeit im Elastomerkörper 1 auf die Belastung des Elastomerkörpers 1 bzw. der Energieabsorptionsvorrichtung (Betrag und Richtung) sowie bei Abweichungen auf außerordentliche Lastfälle oder auch Alterung des Bauteils zu schließen. Hierdurch kann zum Beispiel eine zustandsorientierte Wartung der Bauteile der Energieabsorptionsvorrichtung ermöglicht werden.
  • Die Erfindung ist nicht auf die in den Zeichnungen gezeigten Ausführungsformen beschränkt, sondern ergibt sich aus einer Zusammenschau sämtlicher in den beiliegenden Ansprüchen offenbarter Merkmale.
  • Bezugszeichenliste
  • 1
    Elastomerkörper
    2
    elektrisch leitfähiger Bereich im Elastomerkörper/Sensorbereich
    3
    Widerstandssensoreinrichtung
    4
    Auswerteeinrichtung
    5
    Schnittstelleneinrichtung
    10
    Kupplungsanlenkung
    11
    Lagerbock
    12
    Gelenkanordnung
    13
    Sphärolager
    14
    Schwenkbolzen
    15
    Kupplungsstange
    16
    Käfig-/Gehäusestruktur

Claims (15)

  1. Regenerative Energieabsorptionsvorrichtung zum Abdämpfen von im Betrieb eines spurgeführten Fahrzeuges auftretenden Kräften, insbesondere Zug-, Stoß- und/oder Torsionskräften, wobei die Energieabsorptionsvorrichtung mindestens eine Federeinrichtung mit einem Elastomerkörper (1) aufweist, welcher derart ausgebildet ist, dass sich dieser bei Einleiten von Kräften in die Energieabsorptionsvorrichtung zumindest bereichsweise elastisch verformt, dadurch gekennzeichnet, dass der Elastomerkörper (1) zumindest bereichsweise aus einem elektrisch leitfähigen Material (2) gebildet ist, dessen spezifischer elektrischer Widerstand bei Zug- und/oder Druckbelastung variiert, und wobei der Energieabsorptionsvorrichtung eine Widerstandssensoreinrichtung (3) zugeordnet ist zum Erfassen einer elektrischen Leitfähigkeit oder eines elektrischen Widerstandes des elektrisch leitfähigen Materials (2).
  2. Energieabsorptionsvorrichtung nach Anspruch 1,
    wobei das elektrisch leitfähige Material (2) gebildet ist durch mindestens ein insbesondere metall- oder kohlenstoffbasiertes Füllstoffnetzwerk in einem Polymermaterial.
  3. Energieabsorptionsvorrichtung nach Anspruch 2,
    wobei das Füllstoffnetzwerk gebildet ist durch insbesondere metall- oder kohlenstoffbasierte Füllstoffpartikel, die in einer Matrix des Polymermaterials aufgenommen sind.
  4. Energieabsorptionsvorrichtung nach Anspruch 2 oder 3,
    wobei das Polymermaterial des elektrisch leitfähigen Materials (2) mit einem Polymermaterial übereinstimmt, aus welchem der Elastomerkörper (1) gebildet ist.
  5. Energieabsorptionsvorrichtung nach einem der Ansprüche 1 bis 4,
    wobei das elektrisch leitfähige Material (2) zumindest in einem Bereich des Elastomerkörpers (1) integriert ist, durch den beim Abdämpfen von im Betrieb des spurgeführten Fahrzeuges auftretenden Kräften mindestens ein Lastpfad, insbesondere ein vorab berechneter Lastpfad, verläuft.
  6. Energieabsorptionsvorrichtung nach einem der Ansprüche 1 bis 5,
    wobei die Widerstandssensoreinrichtung (3) ausgebildet ist, die elektrische Leitfähigkeit und/oder den elektrischen Widerstand zwischen mindestens zwei Messpunkten im elektrisch leitfähigen Material (2) zu erfassen, wobei hierzu die Widerstandssensoreinrichtung (3) mindestens einen vorzugsweise bezugspotentialfrei differentiell arbeitenden Messaufnehmer aufweist.
  7. Energieabsorptionsvorrichtung nach einem der Ansprüche 1 bis 6,
    wobei die Widerstandssensoreinrichtung (3) eine insbesondere kabellos arbeitende Schnittstelleneinrichtung (5) aufweist, über welche von der Widerstandssensoreinrichtung (3) erfasste und optional ausgewertete Daten vorzugsweise über einen Fernzugriff zumindest teilweise auslesbar sind.
  8. Energieabsorptionsvorrichtung nach einem der Ansprüche 1 bis 7,
    wobei die Widerstandssensoreinrichtung (3) eine Speichereinrichtung aufweist, welche vorzugsweise ausgebildet ist, zumindest einen Teil der von der Widerstandssensoreinrichtung (3) erfassten und/oder optional ausgewerteten Daten und Informationen dauerhaft zu speichern, und wobei die Speichereinrichtung ausgebildet ist, vorzugsweise über einen Fernzugriff zumindest teilweise auslesbar zu sein.
  9. Energieabsorptionsvorrichtung nach einem der Ansprüche 1 bis 8,
    wobei die Widerstandssensoreinrichtung (3) ausgebildet ist, nur bei vorab festgelegten oder festlegbaren Zeiten und/oder Ereignissen eine elektrische Leitfähigkeit oder einen elektrischen Widerstand des elektrisch leitfähigen Materials (2) zu erfassen.
  10. Energieabsorptionsvorrichtung nach einem der Ansprüche 1 bis 9,
    wobei die Widerstandssensoreinrichtung (3) mindestens einen Generator, insbesondere Nano-Generator, aufweist zum Gewinnen von zumindest einem Teil der beim Betrieb der Widerstandssensoreinrichtung (3) von dieser benötigten elektrischen Energie, insbesondere aus einer Vibration oder Deformation des Elastomerkörpers (1).
  11. Energieabsorptionsvorrichtung nach einem der Ansprüche 1 bis 10,
    wobei die Widerstandssensoreinrichtung (3) eine Auswerteeinrichtung (4) aufweist oder wobei der Widerstandssensoreinrichtung (3) eine Auswerteeinrichtung (4) zugeordnet ist, wobei die Auswerteeinrichtung (4) ausgebildet ist, die von der Widerstandssensoreinrichtung (3) erfassten Messwerte auszuwerten, wobei die Auswerteeinrichtung (4) insbesondere ausgebildet ist, anhand von mit der Widerstandssensoreinrichtung (3) erfassten Leitfähigkeit- und/oder Widerstandsdaten zu prüfen, ob der Elastomerkörper (1) der Federeinrichtung für die im Betrieb des spurgeführten Fahrzeuges auf die Energieabsorptionsvorrichtung einwirkenden Belastungen ausgelegt ist.
  12. Energieabsorptionsvorrichtung nach Anspruch 11,
    wobei die Auswerteeinrichtung (4) ausgebildet ist, einen Gesamt-Lastwechsel oder eine Gesamt-Belastung des Elastomerkörpers (1) zu ermitteln, und zwar auf Grundlage einer von der Auswerteeinrichtung (4) dokumentierten und über einen vorab festgelegten oder festlegbaren Zeitraum aufgetretenen Belastung des Elastomerkörpers (1), und wobei die Auswerteeinrichtung (4) insbesondere ferner ausgebildet ist, in Abhängigkeit von dem ermittelten Gesamt-Lastwechsel oder in Abhängigkeit von der ermittelten Gesamt-Belastung des Elastomerkörpers (1) eine Wartung und/oder einen Austausch des Elastomerkörpers (1) betreffende Information auszugeben.
  13. Energieabsorptionsvorrichtung nach Anspruch 11 oder 12,
    wobei die Auswerteeinrichtung (4) eine Speichereinrichtung mit im Rahmen einer Kalibrierung aufgenommenen Bezugsdaten aufweist.
  14. Kupplungs- oder Gelenkanordnung (12) eines spurgeführten Fahrzeuges, insbesondere Schienenfahrzeuges, zum gelenkigen Verbinden zweier benachbarter Wagenkästen, wobei die Kupplungs- oder Gelenkanordnung (12) mindestens eine Energieabsorptionsvorrichtung nach einem der Ansprüche 1 bis 13 aufweist.
  15. Dämpfungsanordnung, insbesondere in Gestalt eines Seitenpuffers eines spurgeführten Fahrzeuges, wobei die Dämpfungsanordnung mindestens eine Energieabsorptionsvorrichtung nach einem der Ansprüche 1 bis 13 aufweist.
EP20726758.4A 2019-05-24 2020-05-14 Regenerative energieabsorptionsvorrichtung, kupplungs- oder gelenkanordnung mit einer solchen energieabsorptionsvorrichtung sowie dämpfungsanordnung mit einer solchen energieabsorptionsvorrichtung Active EP3976437B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019113907.4A DE102019113907A1 (de) 2019-05-24 2019-05-24 Regenerative Energieabsorptionsvorrichtung, Kupplungs- oder Gelenkanordnung mit einer solchen Energieabsorptionsvorrichtung sowie Dämpfungsanordnung mit einer solchen Energieabsorptionsvorrichtung
PCT/EP2020/063452 WO2020239458A1 (de) 2019-05-24 2020-05-14 Regenerative energieabsorptionsvorrichtung, kupplungs- oder gelenkanordnung mit einer solchen energieabsorptionsvorrichtung sowie dämpfungsanordnung mit einer solchen energieabsorptionsvorrichtung

Publications (2)

Publication Number Publication Date
EP3976437A1 EP3976437A1 (de) 2022-04-06
EP3976437B1 true EP3976437B1 (de) 2023-05-03

Family

ID=70775352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20726758.4A Active EP3976437B1 (de) 2019-05-24 2020-05-14 Regenerative energieabsorptionsvorrichtung, kupplungs- oder gelenkanordnung mit einer solchen energieabsorptionsvorrichtung sowie dämpfungsanordnung mit einer solchen energieabsorptionsvorrichtung

Country Status (7)

Country Link
US (1) US20220219741A1 (de)
EP (1) EP3976437B1 (de)
CN (1) CN113840768A (de)
DE (1) DE102019113907A1 (de)
HU (1) HUE062879T2 (de)
PL (1) PL3976437T3 (de)
WO (1) WO2020239458A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115288964B (zh) * 2022-09-26 2023-05-26 西南交通大学 一种应用于货运列车自供电传感器的车钩缓冲发电装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150057893A1 (en) * 2013-08-23 2015-02-26 Fuji Jukogyo Kabushiki Kaisha Collision Detection Apparatus and Collision Detection Method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10325624B3 (de) * 2003-06-06 2004-10-07 Contitech Luftfedersysteme Gmbh Luftfeder mit Niveaumesseinrichtung
SE526663C2 (sv) * 2004-02-04 2005-10-18 Dellner Couplers Ab Draginrättning för tågkoppel samt deformationsrör härför
DE602005023978D1 (de) * 2004-04-15 2010-11-18 Textronics Inc Elektrisch leitende elastomere, verfahren zu ihrer herstellung und artikel damit
DE102005043430A1 (de) * 2005-05-19 2006-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Beeinflussung der mechanischen Beanspruchbarkeit und/oder Beanspruchung einer technischen Struktur
US7698962B2 (en) * 2006-04-28 2010-04-20 Amsted Rail Company, Inc. Flexible sensor interface for a railcar truck
ATE422450T1 (de) * 2006-11-22 2009-02-15 Voith Patent Gmbh Kupplungsanlenkung für einen wagenkasten eines mehrgliedrigen fahrzeuges
DE502007004212D1 (de) * 2007-12-17 2010-08-05 Voith Patent Gmbh Energieverzehrvorrichtung für einen Wagenkasten eines mehrgliedrigen Fahrzeuges
GB201000983D0 (en) * 2010-01-22 2010-03-10 Airbus Operations Ltd Method and apparatus for controlling an elastomric damper
EP2753566A1 (de) * 2011-09-07 2014-07-16 J. Schmalz GmbH Greif- oder spannvorrichtung sowie verfahren zur handhabung von gegenständen
DE102013214302A1 (de) * 2013-07-22 2015-01-22 Robert Bosch Gmbh Deformationsvorrichtung für ein Fahrzeug und Verfahren zum Erfassen einer Verkürzung einer Deformationsvorrichtung für ein Fahrzeug
DE102013224023A1 (de) * 2013-11-25 2015-05-28 Contitech Ag Elastomerer Hohlkörper, insbesondere elastomerer Schlauch, mit Sensorelement zur Erfassung eines Druckes sowie Verfahren hierzu
DE102015122863A1 (de) * 2015-12-28 2017-06-29 Voith Patent Gmbh Vorrichtung zum gelenkigen Verbinden einer ersten Komponente mit einer relativ zu der ersten Komponente bewegbaren zweiten Komponente
DE102016203921A1 (de) * 2016-03-10 2017-09-14 Voith Patent Gmbh Auslöseüberwachungseinrichtung für ein Verformungsrohr in einer Kupplung; Verformungsrohr für eine Kupplung und Zugkupplung
CN106626503B (zh) * 2016-12-27 2019-02-12 银川西部大森数控技术有限公司 一种可以实现直接测量力的内藏式力传感器
DE102018110462A1 (de) * 2018-05-02 2019-11-07 Voith Patent Gmbh Überwachungssystem für ein Kuppel- und/oder Dämpfungselement eines Fahrzeugs, insbesondere Schienenfahrzeugs

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150057893A1 (en) * 2013-08-23 2015-02-26 Fuji Jukogyo Kabushiki Kaisha Collision Detection Apparatus and Collision Detection Method

Also Published As

Publication number Publication date
CN113840768A (zh) 2021-12-24
HUE062879T2 (hu) 2023-12-28
US20220219741A1 (en) 2022-07-14
DE102019113907A1 (de) 2020-11-26
EP3976437A1 (de) 2022-04-06
WO2020239458A1 (de) 2020-12-03
PL3976437T3 (pl) 2023-10-30

Similar Documents

Publication Publication Date Title
DE102007024065B3 (de) Vorrichtung und Verfahren zur Fehlerüberwachung von Fahrwerkskomponenten von Schienenfahrzeugen
DE102005027826B3 (de) Kugelgelenk mit Sensoreinrichtung und Verfahren zur Verschleißmessung
DE102010001144A1 (de) Mechanisches Verbindungsbauteil und Verfahren zur drahtlosen Erfassung einer mechanischen Belastung
DE102019106961A1 (de) Kraftübertragungselement für eine kupplung eines spurgeführten fahrzeuges sowie verfahren zum überwachen der funktionsweise einer kupplungsanordnung
EP3541642A1 (de) Schienenfahrzeugfederung und federsystem für ein schienenfahrzeug
DE202005005278U1 (de) Vorrichtung zur Überwachung der Radsatzlagertemperatur an Schienenfahrzeugen zur Vermeidung von Heißläufer-Entgleisungen
EP3976437B1 (de) Regenerative energieabsorptionsvorrichtung, kupplungs- oder gelenkanordnung mit einer solchen energieabsorptionsvorrichtung sowie dämpfungsanordnung mit einer solchen energieabsorptionsvorrichtung
DE202012003564U1 (de) Überwachung der Lagertemperatur eines Lagers, insbesondere eines Drehlagers am Drehgestell eines Hochgeschwindigkeitszuges
DE10233845B4 (de) Diagnose- und Überwachungsvorrichtung einer Bremszuspanneinrichtung eines Fahrzeugs
EP2956348B1 (de) Überwachung von koppelelementen eines fahrzeugs
EP3065968B1 (de) Vorrichtung zur verschleissüberwachung an fahrleitungen
DE102009043225A1 (de) Schienenfahrzeug mit einem Sensor im Fahrwerksbereich
EP2647543B2 (de) System zur Erfassung von Eigenschaften vorbeifahrender Schienenfahrzeuge
EP3461662A1 (de) Dämpfungsvorrichtung
EP4057094B1 (de) Verfahren zur feststellung des beginns einer verschleissbedingten bauteil-restnutzungsdauer eines elastisch verformbaren bauteils, als strukturteil und/oder lagerteil eines geräts
EP1922235B1 (de) Verfahren und vorrichtung zur detektion von störungen in fahrwerken von durch luftfedereinrichtungen gefederten fahrzeugen
EP3871943A2 (de) Verfahren zur ermittlung der belegung eines wagens eines schienenfahrzeugs
DE102014203720A1 (de) Verfahren und Vorrichtung zur Zustandsprüfung eines Antriebsstrangs eines Triebfahrzeugs
DE102014226935A1 (de) Verfahren zum Überwachen einer Radachse eines Fahrzeugs
DE102021104712A1 (de) Energiespeichersystem und Kraftfahrzeug
EP4188770A1 (de) Kupplungsanordnung mit überwachungssystem sowie verfahren zum überwachen einer kupplungsanordnung
DE102005015312A1 (de) Verfahren und Vorrichtung zur Überwachung der Radsatzlagertemperatur an Schienenfahrzeugen zur Vermeidung von Heißläufer-Entgleisungen
WO2022207134A1 (de) Verfahren und fahrzeugsystem zum bestimmen eines zustands der komponenten eines fahrwerks
DE102022117032A1 (de) Verfahren zum zustandsbasierten Warten einer Kupplungsanordnung und Überwachungssystem
WO2023156228A1 (de) Schwingungstechnisches bauteil

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221116

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1564355

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020003191

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230519

Year of fee payment: 4

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230803

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230903

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230629

Year of fee payment: 4

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E062879

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20230524

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020003191

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230623

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503