EP3964659A1 - Modular mesh structure made of of polygonal area modules - Google Patents

Modular mesh structure made of of polygonal area modules Download PDF

Info

Publication number
EP3964659A1
EP3964659A1 EP21189890.3A EP21189890A EP3964659A1 EP 3964659 A1 EP3964659 A1 EP 3964659A1 EP 21189890 A EP21189890 A EP 21189890A EP 3964659 A1 EP3964659 A1 EP 3964659A1
Authority
EP
European Patent Office
Prior art keywords
space lattice
lattice structure
modular space
struts
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP21189890.3A
Other languages
German (de)
French (fr)
Inventor
Horst Mallmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3964659A1 publication Critical patent/EP3964659A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B1/1903Connecting nodes specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D6/00Truss-type bridges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/34Extraordinary structures, e.g. with suspended or cantilever parts supported by masts or tower-like structures enclosing elevators or stairs; Features relating to the elastic stability
    • E04B1/3404Extraordinary structures, e.g. with suspended or cantilever parts supported by masts or tower-like structures enclosing elevators or stairs; Features relating to the elastic stability supported by masts or tower-like structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H1/00Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
    • E04H1/005Modulation co-ordination
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H1/00Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
    • E04H1/02Dwelling houses; Buildings for temporary habitation, e.g. summer houses
    • E04H1/04Apartment houses arranged in two or more levels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/348Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
    • E04B1/34815Elements not integrated in a skeleton
    • E04B1/3483Elements not integrated in a skeleton the supporting structure consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B2001/0053Buildings characterised by their shape or layout grid
    • E04B2001/0084Buildings with non right-angled horizontal layout grid, e.g. triangular or hexagonal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B2001/0053Buildings characterised by their shape or layout grid
    • E04B2001/0084Buildings with non right-angled horizontal layout grid, e.g. triangular or hexagonal
    • E04B2001/0092Small buildings with hexagonal or similar horizontal cross-section
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B2001/1978Frameworks assembled from preformed subframes, e.g. pyramids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B2001/1981Three-dimensional framework structures characterised by the grid type of the outer planes of the framework
    • E04B2001/1987Three-dimensional framework structures characterised by the grid type of the outer planes of the framework triangular grid
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/348Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
    • E04B2001/34876Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form with a sloping or barrel roof
    • E04B2001/34884Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form with a sloping or barrel roof creating a living space between several units
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/348Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
    • E04B2001/34892Means allowing access to the units, e.g. stairs or cantilevered gangways

Definitions

  • the present invention relates to a modular, preferably tree-like space lattice structure that includes nodes, struts and/or area modules.
  • a tubular steel modular system is already known from the MERO ® company, which was also used for spatial frameworks in architecture.
  • the MERO ® system is based on struts with an axial thread and spherical connection nodes with corresponding threaded holes, which are offset by 90° and 45° and thus also 60° to one another. These structures were previously used as load-bearing elements, particularly for ceiling and floor constructions and for exhibition stands.
  • Capsule hotels are also known, for example, which are constructed in a modular manner. With this design, many small, uniform lounge and sleeping capsules are integrated into any architecture, which allows for exceptional use of space.
  • the object of the present invention is to create a modular building that is characterized by the largest possible user areas and diverse modular design options.
  • a modular space lattice structure that includes a latticework of struts and nodes and/or surface modules, the struts of the latticework being connected to the nodes and surface modules on the edge connected to each other or to the struts.
  • Preferred embodiments of area modules and space lattice structures are described in the dependent claims.
  • the area modules can be polygonal, preferably triangular, and connected directly to one another.
  • the polygonal surface modules can also be connected to one another via the struts of the latticework, with each surface module being connected or connectable to the latticework.
  • the surface modules are connected both to the spatial framework and directly to one another.
  • the area modules are connected to the struts via the nodes.
  • the area modules preferably lie on the struts in a statically load-bearing manner.
  • the nodes allow connections of the struts at an angle of 60°, 120° and 180° to one another.
  • the nodes include connection levels, with each connection level having exactly 6 connection interfaces which are arranged at an angle of 60°, 120° or 180° to one another.
  • a node comprises 12 connection interfaces, with each two adjacent connection interfaces being arranged at an angle of 60° to one another.
  • the latticework comprises an fcc lattice.
  • the fcc lattice is used here as just one type of node, and the fcc lattice can therefore also be viewed as a cubic close packing or ccp lattice.
  • the face-centered cubic lattice is defined by the nodes, and allows for one of the two closest packings of spheres.
  • the lattice can be viewed as a packing of spheres whose diameter corresponds to the length of the struts, eg 30 cm.
  • the latticework comprises a lattice of hexagonal closest packing, the lattice being considered as hexagonal closest packing with spheres having a diameter equal to a length of the struts.
  • the latticework of the modular structure can also include combinations of fcc lattice and hexagonal closest packing of spheres.
  • a combination of fcc lattice and hexagonal closest packing of spheres allows considerable freedom in the design of the building. This combination also allows building obstacles such as existing trees, vegetation or To consider and work around terrain features or rocks when building the modular space grid structure.
  • a special embodiment relates to a building in which both grids are used at the same time.
  • this comprises at least one surface module that is designed as a wall, floor, ceiling, roof, path or plant element.
  • isosceles triangular surface modules are preferably designed as a wall, floor, ceiling, roof, path or plant element.
  • houses with floors and ceilings and roofs, but also paths or covered paths and planting elements can be combined with lawns, playgrounds, beds, shrubs or trees.
  • this comprises tetrahedrons or tetrahedron elements, which represent volume elements in addition to the struts and surface elements.
  • tetrahedron volume elements can include functional units such as energy, water, waste water, storage, supply and/or treatment modules or units.
  • the area modules can preferably also have the shape of a trapezium, which corresponds to a regular hexagon halved.
  • floors and ceilings in particular can be joined together in a honeycomb pattern using a hexagonal structure to form larger floor or ceiling elements, with straight joints being avoided.
  • the structure comprises surface modules that have a rectangular shape, a square shape, a triangular shape, the shape of a right-angled triangle or the shape of an equilateral triangle.
  • the modular space lattice structure living or working spaces are included.
  • the building can easily be adapted to a need if it includes living quarters. Due to the modularity, it is possible to simply add an extension without destroying the overall appearance by using other building materials.
  • the modular structure also allows the building to be adapted both during design and later to meet requirements, for example it is possible to raise or lower the ceiling height of a warehouse by adding or removing appropriate struts and surface elements. It is also possible to complete floor plans and paths, green areas and plantings accommodate residents' needs.
  • this forms a bridge or a superstructure over an infrastructure that cannot otherwise be used as living/working space, such as a sealed road, path, body of water or supply or disposal or storage infrastructure.
  • this further comprises at least one foot for supporting the structure, which is preferably designed as a tripod or tetrahedron.
  • the struts, nodes, area modules are detachably connected to one another.
  • This allows further adaptation of the structure to new requirements. For example, it is possible to widen a superstructure over a road using modular construction to allow for an expansion of the road; it is also possible to subsequently raise the building if, for example, a greater headroom is required.
  • the structure allow for relatively free development in the initial design, it can even be partially dismantled and rebuilt later. New foundations can be added or other parts of the building can be dismantled. If the building needs to be moved, it is possible to simply dismantle a part and add it to another location. The elements are screwable, so the structure is mobile.
  • a modular space lattice structure which is composed of polygonal, preferably triangular area modules and, in a basic embodiment, comprises the shape of one of the platonic solids such as tetrahedron, cube, octahedron, dodecahedron or icosahedron.
  • a building with the shape of a platonic solid has the advantage that all surface modules have the same shape and the possibility of erroneous assembly is significantly reduced.
  • the modular space lattice structure comprises at least one truncated platonic solid. By truncating, the building can be given a rounder and thus energetically more favorable shape. For a structure in the form of a truncated platonic solid, it is sufficient to combine two or different surface modules.
  • the cuboctahedron is one of the truncated Platonic solids.
  • the building does not include cube structures.
  • the building preferably includes no triangular prisms. More preferably, the building includes no elongated pyramids, and no elongated prisms.
  • the building preferably does not include any cuboid structures. These exclusions prevent conventional prefabricated buildings such as garden sheds from falling within the language of the claims.
  • the structure comprises at least one tetrahedron, which serves as a base for supporting the structure.
  • tetrahedron which serves as a base for supporting the structure.
  • several cuboctahedrons resting on a triangular surface can be connected to square surfaces, with a resulting difference in height being compensated for by one or more support feet.
  • the modular space lattice structure comprises a plurality of cuboctahedrons or dishheptahedrons, which form a region-spanning arcuate, linear, Y- or X-shaped structure, with cuboctahedrons or dishheptahedrons being connected to square or triangular surfaces .
  • Cuboctahedrons or disheptahedrons can be coupled with each other offset in height on the square surfaces.
  • an arch-shaped structure can be created with which larger spans of between 10 and 40m can be spanned.
  • such a building can be used to be reached via unused arms of water or above streets or parking lots, with noise protection having to be taken into account accordingly.
  • a room-spanning building can also serve as a carport for several parking spaces under the building.
  • the construction is relatively light and does not require the construction of underground parking garages, for example. It is also possible, for example, to build over a rail track with a corresponding building and use it as building or living space, whereby noise protection and protection against structure-borne noise as well as the insulation of any overhead lines must also be taken into account here.
  • a modular Space lattice structure designed in such a way that at least one cuboctahedron or disheptahedron is set up in such a way that one of its triangular surfaces forms a base.
  • the cuboctahedron or disheptahedron preferably has four storeys and a roof. Two or more cuboctahedrons can be joined together at square faces.
  • at least one dormer window and/or a curtain wall can be attached to the square faces of the cuboctahedron.
  • the ground floor is triangular (up to Y-shaped)
  • the first floor is hexagonal (up to Y-shaped)
  • the second floor of the cuboctahedron is formed by a hexagon
  • the third floor is hexagonal (up to Y-shaped) like the first floor
  • the roof is triangular (up to Y-shaped) as is the ground floor.
  • the shapes vary depending on how many terrace elements, dormers or facade parts are attached to the cuboctahedron.
  • the dormers and the facade elements can be used to provide vertical or outwardly inclined window surfaces and wall sections, which better enable the building to be used as a residential and office building.
  • Buildings with three beams crossing each other at right angles can also be composed of 3 to 5 cuboctahedrons each, with one cuboctahedron being arranged in the center of the building.
  • Larger complexes can be assembled by assembling several individual bodies.
  • interior walls can also be integrated into the spatial framework. However, it is also provided to provide straight and right-angled inner walls that do not follow the course of the struts of the space frame.
  • figure 1 shows the construction of a basic element from nodes and struts with a hexagonal structure, with three hexagons being connected by nine struts and forming a kind of triskelion.
  • the lowest level stands on three pillars, which run vertically downwards from a central node of each of the three even hexagons.
  • walkway or floor elements are arranged above the connecting struts that connect the three even hexagons, via which the lowest level can be accessed.
  • a second plane was constructed on top of the right hexagon using a tetrahedral lattice, with the resulting plane having twice the area of the basic regular hexagon.
  • a second level was built on top of the other hexagons also with the tetrahedron grid, completing the second level.
  • the second level again forms a kind of triskele.
  • a third level was constructed on the rightmost back hexagon with a tetrahedral lattice, the resulting level having twice the area of the basic regular hexagon of the second level.
  • the lattice here forms an fcc or ccp lattice, which is also referred to as a face-centered cubic lattice.
  • FIG 6 a completed building is shown with greenery, extending over 4 levels and having an fcc or ccp grid.
  • figure 7 shows a top view of a floor plan with a hexagonal base area.
  • the floor area and preferably a ceiling area is preferably formed from a single hexagonal and self-supporting floor element in order to avoid struts running in an inclined direction in the interior.
  • figure 8 represents a side view of a building according to the invention, wherein the Diagonally running struts are particularly easy to recognize. With a preferred strut length of 7 meters, trees can also be planted on each level. It is also possible to integrate larger trees into the building, which can extend over several levels.
  • the surface module that forms the floor can also be designed to be divisible along the horizontal dashed line. With a strut module with an edge length of between 6.5 m and 7.5 m, practicable ceiling heights of around 2.50 m can be achieved.
  • a divisible module can be prefabricated and divided easily transported by truck to a construction site. A divisible module is also easier to handle on a construction site and also easier to move in scaffolding that is already partially erected.
  • figure 9 shows a tetrahedron composed of 6 struts and 4 nodes.
  • the tetrahedron of figure 9 points to the viewer with one edge of the triangle that forms the base.
  • the struts hidden by the front face are indicated by dashed lines.
  • figure 10 shows 4 joined tetrahedrons.
  • 3 tetrahedrons are joined together.
  • each of the tetrahedra is connected to a respective vertex of one of the other tetrahedra.
  • the three points or nodes connecting the lowest level tetrahedrons form a triangle. All tetrahedra are oriented in the same way.
  • the base of the connected tetrahedron is again a triangle, but with an edge length that is twice as large.
  • the individual tetrahedron of the second level is connected to each of the corners of its base with a vertex of the three tetrahedrons of the first level.
  • figure 11 shows the grid of figure 9 in a version with 4 levels.
  • figure 12 shows the tetrahedron of figure 10 from a different angle.
  • the tetrahedron of figure 12 points to the viewer with a point of the triangle that forms the base. In this view, only the back edge of the base is hidden and is therefore represented by a dashed line.
  • figure 13 shows 4 joined tetrahedrons.
  • the lowest level are 3 tetrahedrons from the figure 9 put together.
  • each tetrahedron of the lowest level is connected to both other tetrahedrons by only one vertex.
  • the outer free corners of the bases of the tetrahedra form a regular hexagon.
  • the single tetrahedron of the second level corresponds to the representation of figure 12 , and is connected to each of the corners of its base with a vertex of the three tetrahedra of the first level.
  • the tetrahedrons of the first level are all oriented in the same way, while the tetrahedron of the second level is in the opposite direction.
  • the long sides are transverse to the viewer and at the second level, one corner of the tetrahedron is facing the viewer. In contrast, show at the figure 9 all corners towards the viewer.
  • figure 14 shows the grid of figure 13 in a version with 4 levels of tetrahedrons and 5 levels of nodes. On the right edge of the grid you can see that the lines are not aligned.
  • figure 13 shows a section of a spatial lattice with 6 levels of tetrahedrons or 7 levels of nodes.
  • the space lattice is designed as a hexagonal closest packing on the left and as an fcc lattice on the left.
  • the nodes form planes, with the nodes of every second plane of nodes lying directly on top of one another in a hexagonal closest packing of spheres.
  • the third level of nodes is shifted from the first level, and only the fourth level nodes are directly above those of the first level.
  • the nodes on the lattice with the hexagonal closest packing of spheres lie directly above one another in planes 1, 3, 5, and 7.
  • the nodes of (node) levels 1, 4 and 7 are directly above one another. So if you combine both grids in a building, you need either 7 node levels or 6 tetrahedron levels in order to be able to seamlessly combine both grids in these levels.
  • This construction is particularly suitable for superstructures and buildings with large, airy spaces. It is also possible for taller buildings with 14 node levels with at least three multiple towers, one completely in an fcc grid, one completely in a hexagonal dense ball grid and one in a mixed grid. In this case it is possible to reconnect the towers at the top sphere level with a regular tetrahedron or sphere level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Residential Or Office Buildings (AREA)

Abstract

Die Erfindung bezieht sich auf ein modulares Raumgitter-Bauwerk, umfassend ein Gitterwerk aus Streben und Knotenpunkten und/oder Flächenmodulen, wobei die Streben des Gitterwerks mit den Knotenpunkten verbunden oder verbindbar sind, wobei die Flächenmodule randseitig miteinander oder mit den Streben verbunden oder verbindbar sind.The invention relates to a modular spatial lattice structure, comprising a latticework of struts and nodes and/or area modules, the struts of the latticework being connected or connectable to the nodes, the area modules being connected or connectable to one another or to the struts at the edges.

Description

Die vorliegende Erfindung betrifft ein modulares bevorzugt baumartiges Raumgitter-Bauwerk, das Knotenpunkte, Streben und/oder Flächenmodule umfasst.The present invention relates to a modular, preferably tree-like space lattice structure that includes nodes, struts and/or area modules.

Es sind bereits verschiedene Häuser und Bauwerke bekannt, deren Funktionen und Konstruktionen sich aufgrund einer unübersehbaren Vielfalt nicht abschließend beschreiben lassen.Various houses and buildings are already known, the functions and constructions of which cannot be described conclusively due to the immense variety.

Von der Firma MERO® ist bereits ein Stahlrohr-Baukastensystem bekannt, das für Raumfachwerke auch in der Architektur genutzt wurde. Das MERO® System basiert auf Streben mit einem axial verlaufenden Gewinde und kugelförmigen Verbindungsknoten mit entsprechenden Gewindebohrungen, die um 90° und 45° und damit auch 60° zueinander versetzt sind. Diese Strukturen wurden bisher als tragende Elemente insbesondere für Decken- und Bodenkonstruktionen und für Messestände verwendet.A tubular steel modular system is already known from the MERO ® company, which was also used for spatial frameworks in architecture. The MERO ® system is based on struts with an axial thread and spherical connection nodes with corresponding threaded holes, which are offset by 90° and 45° and thus also 60° to one another. These structures were previously used as load-bearing elements, particularly for ceiling and floor constructions and for exhibition stands.

Ebenfalls sind beispielsweise Kapselhotels bekannt, die in Modulbauweise aufgebaut sind. Bei dieser Bauweise sind viele kleine gleichförmige Aufenthalts- und Schlafkapseln in eine beliebige Architektur integriert, was eine außergewöhnliche Raumausnutzung gestattet.Capsule hotels are also known, for example, which are constructed in a modular manner. With this design, many small, uniform lounge and sleeping capsules are integrated into any architecture, which allows for exceptional use of space.

Mit dem "Kubushaus" oder auch der "Kubuswohnung" des Architekten Piet Blom und dem Habitat 67 des Architekten Moshe Safdie sind bereits modulare Wohngebäude bekannt. Mit der "Stadtautobahnüberbauung Schlangenbader Straße" in Berlin ist ebenfalls bekannt geworden, Gebäude zu errichten, die sich über Straßen hinweg erstrecken.Modular residential buildings are already known with the "Kubushaus" or the "Kubuswohnung" by the architect Piet Blom and the Habitat 67 by the architect Moshe Safdie. With the "City Motorway Superstructure on Schlangenbader Strasse" in Berlin, it has also become known to erect buildings that extend across streets.

Die vorliegende Erfindung hat zur Aufgabe, ein modulares Bauwerk zu schaffen, das sich durch größtmögliche Nutzerflächen und vielfältige modulare Gestaltungsmöglichkeiten auszeichnet.The object of the present invention is to create a modular building that is characterized by the largest possible user areas and diverse modular design options.

Die Aufgabe wird gelöst durch ein modulares Raumgitter-Bauwerk, das ein Gitterwerk aus Streben und Knotenpunkte und/oder Flächenmodule umfasst, wobei die Streben des Gitterwerks mit den Knotenpunkten verbunden sind, und wobei Flächenmodule randseitig miteinander oder mit den Streben verbunden sind. Bevorzugte Ausführungen von Flächenmodulen und Raumgitter-Bauwerken sind in den abhängigen Ansprüchen beschrieben.The object is achieved by a modular space lattice structure that includes a latticework of struts and nodes and/or surface modules, the struts of the latticework being connected to the nodes and surface modules on the edge connected to each other or to the struts. Preferred embodiments of area modules and space lattice structures are described in the dependent claims.

Die Flächenmodule können vieleckig, bevorzugt dreieckig und direkt miteinander verbunden sein. Die vieleckigen Flächenmodule können auch über die Streben des Gitterwerks miteinander verbunden sein, wobei jedes Flächenmodul mit dem Gitterwerk verbunden bzw. verbindbar ist. In einer weiteren Ausführung sind die Flächenmodule sowohl mit dem Raumfachwerk als auch direkt untereinander verbunden. In einer bevorzugten Ausführung sind die Flächenmodule über die Knotenpunkte mit den Streben verbunden. Bevorzugt liegen die Flächenmodule statisch lastabtragend auf den Streben.The area modules can be polygonal, preferably triangular, and connected directly to one another. The polygonal surface modules can also be connected to one another via the struts of the latticework, with each surface module being connected or connectable to the latticework. In a further embodiment, the surface modules are connected both to the spatial framework and directly to one another. In a preferred embodiment, the area modules are connected to the struts via the nodes. The area modules preferably lie on the struts in a statically load-bearing manner.

Bei einer beispielhaften Ausführungsform des modularen Raumgitter-Bauwerks lassen die Knotenpunkte Verbindungen der Streben in einem Winkel von 60°, 120° und 180° zueinander zu. Bei einer weiteren bevorzugten Ausführung umfassen die Knotenpunkte Verbindungsebenen, wobei jede Verbindungsebene genau 6 Verbindungs-Schnittstellen aufweist, die in einem Winkel von 60°, 120° oder 180° zueinander angeordnet sind. In dieser Ausführung umfasst ein Knotenpunkt 12 Verbindungs-Schnittstellen, wobei jeweils zwei benachbarte Verbindungs-Schnittstellen in einem Winkel von 60° zueinander angeordnet sind.In an exemplary embodiment of the modular space lattice structure, the nodes allow connections of the struts at an angle of 60°, 120° and 180° to one another. In a further preferred embodiment, the nodes include connection levels, with each connection level having exactly 6 connection interfaces which are arranged at an angle of 60°, 120° or 180° to one another. In this embodiment, a node comprises 12 connection interfaces, with each two adjacent connection interfaces being arranged at an angle of 60° to one another.

Bei einer anderen Ausführungsform des modularen Raumgitter-Bauwerks umfasst das Gitterwerk ein fcc-Gitter. Das fcc Gitter wird hier als nur eine Art von Knoten verwendet, und das fcc Gitter kann daher auch als kubisch dichteste Kugelpackung oder ccp Gitter angesehen werden. Das kubisch-Flächenzentrierte Gitter ist hier durch die Knotenpunkte definiert, und gestattet eine der zwei dichtesten Kugelpackungen. Dabei kann man das Gitter als eine Kugelpackung von Kugeln betrachten, deren Durchmesser einer Länge der Streben entspricht, zB 30 cm.In another embodiment of the modular space lattice structure, the latticework comprises an fcc lattice. The fcc lattice is used here as just one type of node, and the fcc lattice can therefore also be viewed as a cubic close packing or ccp lattice. Here, the face-centered cubic lattice is defined by the nodes, and allows for one of the two closest packings of spheres. The lattice can be viewed as a packing of spheres whose diameter corresponds to the length of the struts, eg 30 cm.

Bei einer weiteren Ausführungsform des modularen Raumgitter-Bauwerks umfasst das Gitterwerk ein Gitter einer hexagonal dichtesten Kugelpackung, wobei man das Gitter als hexagonal dichteste Kugelpackung mit Kugeln betrachtet, deren Durchmesser einer Länge der Streben entspricht. Das Gitterwerk des modularen Bauwerks kann dabei in einer weiteren zusätzlichen Ausführung auch Kombinationen von fcc-Gitter und hexagonal dichtester Kugelpackung umfassen. Durch eine Kombination von fcc-Gitter und hexagonal dichtester Kugelpackung wird eine erhebliche Freiheit der Auslegung des Gebäudes erreicht. Diese Kombination ermöglicht ebenfalls Bauhindemisse wie vorhandene Bäume, Bewuchs oder Geländebeschaffenheiten oder Felsen beim Bau des modularen Raumgitter -Bauwerk zu berücksichtigen und zu umgehen. Eine besondere Ausführung betrifft dabei ein Gebäude bei dem beide Gitter gleichzeitig verwendet werden.In another embodiment of the modular space lattice structure, the latticework comprises a lattice of hexagonal closest packing, the lattice being considered as hexagonal closest packing with spheres having a diameter equal to a length of the struts. In a further additional embodiment, the latticework of the modular structure can also include combinations of fcc lattice and hexagonal closest packing of spheres. A combination of fcc lattice and hexagonal closest packing of spheres allows considerable freedom in the design of the building. This combination also allows building obstacles such as existing trees, vegetation or To consider and work around terrain features or rocks when building the modular space grid structure. A special embodiment relates to a building in which both grids are used at the same time.

Bei einer anderen Ausführungsform des modularen Raumgitter ―Bauwerk umfasst dieses mindestens ein Flächenmodul, das als Wand, Boden, Decke, Dach, Weg oder Pflanzelement ausgelegt ist. Dabei werden bevorzugt gleichschenklige dreieckige Flächenmodule als Wand, Boden, Decke, Dach, Weg oder Pflanzelement ausgelegt. So können einerseits Häuser, mit Böden und Decken und Dächer aber auch Wege bzw. überdachte Wege und Pflanzelemente mit Rasen, Spielplätzen, Beeten, Strauch- oder Baumbewuchs kombiniert werden.In another embodiment of the modular space lattice-building, this comprises at least one surface module that is designed as a wall, floor, ceiling, roof, path or plant element. In this case, isosceles triangular surface modules are preferably designed as a wall, floor, ceiling, roof, path or plant element. On the one hand, houses with floors and ceilings and roofs, but also paths or covered paths and planting elements can be combined with lawns, playgrounds, beds, shrubs or trees.

Bei einer weiteren Ausführungsform des modularen Raumgitter-Bauwerks umfasst dieses Tetraeder bzw. Tetraeder-Elemente, die zusätzlich zu den Streben und Flächenelementen Volumenelemente darstellen. Diese Tetraeder-Volumenelemente können Funktionseinheiten wie Energie-, Wasser-, Abwasser-, -Speicher-, -Versorgungs- und/oder -Aufbereitungs-Module oder -Einheiten umfassen.In a further embodiment of the modular space lattice structure, this comprises tetrahedrons or tetrahedron elements, which represent volume elements in addition to the struts and surface elements. These tetrahedron volume elements can include functional units such as energy, water, waste water, storage, supply and/or treatment modules or units.

Bei einer zusätzlichen Ausführungsform des modularen Raumgitter-Bauwerks umfasst dieses nur Flächenmodule, welche die Form eines regelmäßigen Sechsecks aufweisen. Bevorzugt können die Flächenmodule auch die Form eines Trapezes, das einem halbierten regelmäßigen Sechseck entspricht aufweisen. Hier können vor allem Böden und Decken durch eine hexagonale Struktur zu größeren Boden oder Deckenelemente wabenförmig zusammengefügt werden, wobei gerade verlaufende Fügestellen vermieden werden.In an additional embodiment of the modular space lattice structure, this only includes area modules which have the shape of a regular hexagon. The area modules can preferably also have the shape of a trapezium, which corresponds to a regular hexagon halved. Here floors and ceilings in particular can be joined together in a honeycomb pattern using a hexagonal structure to form larger floor or ceiling elements, with straight joints being avoided.

Bei einer anderen Ausführungsform des modularen Raumgitter-Bauwerks umfasst das Bauwerk Flächenmodule, die eine Rechteckform, eine Quadratform, eine Dreiecksform, die Form eines rechtwinkligen Dreiecks oder die Form eines gleichseitigen Dreiecks aufweisen.In another embodiment of the modular space lattice structure, the structure comprises surface modules that have a rectangular shape, a square shape, a triangular shape, the shape of a right-angled triangle or the shape of an equilateral triangle.

Bei einer weiteren Ausführungsform des modularen Raumgitter-Bauwerks umfasst Wohn-oder Arbeitsräume. Das Bauwerk kann sofern es Wohnräume umfasst einfach an einen Bedarf angepasst werden. Durch die Modularität ist es möglich einfach einen Anbau anzufügen, ohne dass ein Gesamterscheinungsbild durch eine Verwendung von anderen Baumaterialien zerstört wird. Ebenso gestattet es der Modulare Aufbau das Gebäude sowohl bei der Auslegung als auch später an einen Bedarf anzupassen, so ist es beispielsweise möglich eine Deckenhöhe einer Lagerhalle anzuheben oder abzusenken, in dem entsprechende Streben und Flächenelemente hinzugefügt oder abgebaut werden. Es ist ebenfalls möglich komplette Grundrisse und Wege, Grünflächen und Bepflanzungen an Wünsche der Bewohner anzupassen.In a further embodiment of the modular space lattice structure, living or working spaces are included. The building can easily be adapted to a need if it includes living quarters. Due to the modularity, it is possible to simply add an extension without destroying the overall appearance by using other building materials. The modular structure also allows the building to be adapted both during design and later to meet requirements, for example it is possible to raise or lower the ceiling height of a warehouse by adding or removing appropriate struts and surface elements. It is also possible to complete floor plans and paths, green areas and plantings accommodate residents' needs.

Bei einer weiteren Ausführung des modularen Raumgitter-Bauwerks bildet diese eine Brücke oder einen Überbau über eine sonst nicht als Wohn / Arbeitsraum nutzbare Infrastruktur, wie eine versiegelte Straßen, Wege, Gewässer oder Versorgungs- oder Entsorgungs- oder eine Speicher- Infrastruktur.In a further embodiment of the modular space lattice structure, this forms a bridge or a superstructure over an infrastructure that cannot otherwise be used as living/working space, such as a sealed road, path, body of water or supply or disposal or storage infrastructure.

Bei einer anderen Ausführungsform des modularen Raumgitter -Bauwerk umfasst diese weiter mindestens einen Fuß zum Abstützen des Bauwerks, der bevorzugt als Dreibein oder Tetraeder ausgeführt ist.In another embodiment of the modular space lattice structure, this further comprises at least one foot for supporting the structure, which is preferably designed as a tripod or tetrahedron.

Bei einer zusätzlichen Ausführungsform des modularen Raumgitter-Bauwerks sind die Streben, Knotenpunkte, Flächenmodule lösbar miteinander verbunden. Dies ermöglicht eine weitere Anpassung des Bauwerks an neue Anforderungen. Es ist z.B. möglich einen Überbau über eine Straße durch die Modulbauweise zu verbreitern, um einen Ausbau der Straße zu ermöglichen; es ist ebenso möglich das Gebäude nachträglich anzuheben sollte beispielsweise eine größere Durchfahrtshöhe erforderlich sein. Das Bauwerk ermöglicht nicht nur eine relativ freie Entfaltung bei der anfänglichen Auslegung, es kann sogar später noch teilweise ab und erweitert wieder aufgebaut werden. Neue Fundamente können dazukommen oder andere Teile des Gebäudes abgebaut werden. Es ist möglich, falls das Gebäude einmal versetzt werden muss einfach ein Teil abzubauen und an einer anderen Stelle wieder zu ergänzen. Die Elemente sind schraubbar, so dass die Struktur mobil ist.In an additional embodiment of the modular space lattice structure, the struts, nodes, area modules are detachably connected to one another. This allows further adaptation of the structure to new requirements. For example, it is possible to widen a superstructure over a road using modular construction to allow for an expansion of the road; it is also possible to subsequently raise the building if, for example, a greater headroom is required. Not only does the structure allow for relatively free development in the initial design, it can even be partially dismantled and rebuilt later. New foundations can be added or other parts of the building can be dismantled. If the building needs to be moved, it is possible to simply dismantle a part and add it to another location. The elements are screwable, so the structure is mobile.

Gemäß einem Aspekt der vorliegenden Erfindung wird ein modulares Raumgitter-Bauwerk bereitgestellt, das aus vieleckigen, bevorzugt dreieckigen Flächenmodulen zusammengesetzt ist und in einer grundlegenden Ausführung die Gestalt eines der Platonischen Körper wie Tetraeder, Würfel, Oktaeder, Dodekaeder oder Ikosaeder umfasst. Ein Gebäude mit der Gestalt eines platonischen Körpers hat den Vorteil, dass alle Flächenmodule die gleiche Gestalt haben und die Möglichkeiten für Fehlmontagen deutlich verringert sind. In einer weiteren Ausführung umfasst das modulare Raumgitter-Bauwerk mindestens einen abgestumpften Platonischen Körper. Durch die Abstumpfung kann dem Bauwerk eine rundere und somit energetisch günstigere Form verliehen werden. Es ist für ein Bauwerk in der Form eines abgestumpften Platonischen Körpers ausreichend, zwei oder verschiedene Flächenmodule zu kombinieren. Der Kuboktaeder zählt zu den abgestumpften Platonischen Körpern.According to one aspect of the present invention, a modular space lattice structure is provided, which is composed of polygonal, preferably triangular area modules and, in a basic embodiment, comprises the shape of one of the platonic solids such as tetrahedron, cube, octahedron, dodecahedron or icosahedron. A building with the shape of a platonic solid has the advantage that all surface modules have the same shape and the possibility of erroneous assembly is significantly reduced. In a further embodiment, the modular space lattice structure comprises at least one truncated platonic solid. By truncating, the building can be given a rounder and thus energetically more favorable shape. For a structure in the form of a truncated platonic solid, it is sufficient to combine two or different surface modules. The cuboctahedron is one of the truncated Platonic solids.

Bevorzugt umfasst das Gebäude keine Würfelstrukturen. Bevorzugt umfasst das Gebäude keine Dreiecksprismen. Weiter bevorzugt umfasst das Gebäude keine verlängerten Pyramiden, und keine verlängerten Prismen. Bevorzugt umfasst das Gebäude keine quaderförmigen Strukturen. Durch diese Ausschlüsse wird verhindert, dass herkömmliche Fertiggebäude wie beispielweise Gartenschuppen unter den Wortlaut der Ansprüche fallen.Preferably the building does not include cube structures. The building preferably includes no triangular prisms. More preferably, the building includes no elongated pyramids, and no elongated prisms. The building preferably does not include any cuboid structures. These exclusions prevent conventional prefabricated buildings such as garden sheds from falling within the language of the claims.

In einer weiteren beispielhaften Ausführungsform umfasst das Bauwerk mindestens einen Tetraeder, der als Fuß zum Abstützen des Bauwerks dient. Durch entsprechende Abstützungen können mehrere Kuboktaeder, die auf einer Dreiecksfläche ruhen, an Quadratflächen miteinander verbunden werden, wobei ein sich ergebender Höhenunterschied durch einen oder mehrere Stützfüße ausgeglichen werden kann.In a further exemplary embodiment, the structure comprises at least one tetrahedron, which serves as a base for supporting the structure. With appropriate supports, several cuboctahedrons resting on a triangular surface can be connected to square surfaces, with a resulting difference in height being compensated for by one or more support feet.

In einer weiteren beispielhaften Ausführungsform des vorliegenden Erfindung umfasst das modulare Raumgitter-Bauwerk mehrere Kuboktaeder oder auch Disheptaeder, die ein Bereich-überspannendes bogenförmiges, lineares, Y- oder X- förmiges Bauwerk bilden, wobei Kuboktaeder oder Disheptaeder an Quadrat- oder Dreiecksflächen miteinander verbunden sind. Kuboktaeder oder Disheptaeder können zueinander in der Höhe versetzt an den Quadratflächen miteinander gekoppelt werden. Dadurch kann ein bogenförmiges Bauwerk geschaffen werden, mit dem größere Spannweiten zwischen 10 und 40m überspannt werden können. Somit kann ein derartiges Gebäude dazu verwendet werden, über ungenutzten Gewässerarmen oder oberhalb von Straßen oder Parkplätzen erreichtet zu werden, wobei dem Lärmschutz entsprechend Rechnung getragen werden muss. Ein Raum-überspannendes Gebäude kann zudem als Carport für mehrere Parkplätze unter dem Gebäude dienen. Die Konstruktion ist dabei relativ leicht, und erfordert nicht die Errichtung beispielsweise von Tiefgargagen. Es ist ebenfalls möglich, beispielsweise einen Schienenstrang durch ein entsprechendes Gebäude zu überbauen und als Bau- oder Wohnfläche zu nutzen, wobei auch hier dem Lärmschutz und dem Körperschallschutz sowie der Isolation einer eventuell vorhandenen Oberleitung Rechnung getragen werden muss.In a further exemplary embodiment of the present invention, the modular space lattice structure comprises a plurality of cuboctahedrons or dishheptahedrons, which form a region-spanning arcuate, linear, Y- or X-shaped structure, with cuboctahedrons or dishheptahedrons being connected to square or triangular surfaces . Cuboctahedrons or disheptahedrons can be coupled with each other offset in height on the square surfaces. As a result, an arch-shaped structure can be created with which larger spans of between 10 and 40m can be spanned. Thus, such a building can be used to be reached via unused arms of water or above streets or parking lots, with noise protection having to be taken into account accordingly. A room-spanning building can also serve as a carport for several parking spaces under the building. The construction is relatively light and does not require the construction of underground parking garages, for example. It is also possible, for example, to build over a rail track with a corresponding building and use it as building or living space, whereby noise protection and protection against structure-borne noise as well as the insulation of any overhead lines must also be taken into account here.

Es ist vorgesehen, bei Bauwerken, die als Kuboktaeder oder Johnson-Körper J27 ausgeführt sind, in der Mitte der Kanten der einzelnen Flächenmodule ebene Böden bzw. Decken anzubringen. Diese Zwischendecken oder Zwischenböden verstärken die Struktur des Bauwerks und können die Nutzfläche der Bauwerke deutlich vergrößern, wodurch die Struktur des Kuboktaeders bzw. der jeweiligen Johnson-Körper stabilisiert wird. Dies ist besonders für Kombinationen aus mehreren Kuboktaedern interessant, bei denen eine weitere Verstärkung der Struktur wünschenswert ist.In the case of structures designed as cuboctahedrons or Johnson bodies J27, it is intended to attach level floors or ceilings in the middle of the edges of the individual area modules. These intermediate ceilings or intermediate floors reinforce the structure of the building and can significantly increase the usable area of the building, thereby stabilizing the structure of the cuboctahedron or the respective Johnson solid. This is particularly interesting for combinations of several cuboctahedra where further strengthening of the structure is desirable.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung ist ein modulares Raumgitter-Bauwerk so ausgeführt, dass mindestens ein Kuboktaeder oder auch Disheptaeder so aufgestellt ist, dass eine seiner Dreiecksflächen jeweils eine Grundfläche bildet. Der Kuboktaeder oder der Disheptaeder weist bevorzugt vier Geschosse und ein Dach auf. Es können zwei oder mehr Kuboktaeder an quadratischen Flächen miteinander verbunden sein. Zudem können an den quadratischen Flächen der Kuboktaeder mindestens eine Dachgaube und/oder eine vorgehängte Fassade angebracht sein.According to another embodiment of the present invention is a modular Space lattice structure designed in such a way that at least one cuboctahedron or disheptahedron is set up in such a way that one of its triangular surfaces forms a base. The cuboctahedron or disheptahedron preferably has four storeys and a roof. Two or more cuboctahedrons can be joined together at square faces. In addition, at least one dormer window and/or a curtain wall can be attached to the square faces of the cuboctahedron.

In dieser Ausführungsform ist das Erdgeschoss dreieckig (bis Y-förmig), das erste Obergeschoss sechseckig (bis Y-förmig), wobei das zweite Obergeschoss des Kuboktaeders durch ein Hexagon gebildet und das dritte Obergeschoss wie das erste sechseckig (bis Y-förmig) und das Dach ebenso wie das Erdgeschoss dreieckig (bis Y-förmig) ist. Die Formen variieren jeweils, je nachdem wie viele Terrassenelemente, Gauben oder Fassadenteile an dem Kuboktaeder angebracht sind. Durch die Gauben und die Fassadenelemente können senkrechte oder nach außen geneigte Fensterflächen und Wandabschnitte bereitgestellt werden, die eine Nutzung des Gebäudes als Wohn und Bürogebäude besser ermöglichen. Es können auch Bauwerke mit drei sich im rechten Winkel kreuzenden Balken aus je 3 bis 5 Kuboktaedern zusammengesetzt werden, wobei jeweils ein Kuboktaeder in dem Zentrum des Gebäudes angeordnet ist. Durch Zusammenfügen mehrerer einzelner Körper können größere Komplexe zusammengesetzt werden. Bei größeren Komplexen können auch Innenwände in das Raumfachwerk integriert werden. Es ist jedoch ebenfalls vorgesehen, gerade und rechtwinklige Innenwände vorzusehen, die nicht dem Verlauf der Streben des Raumfachwerks folgen.In this embodiment, the ground floor is triangular (up to Y-shaped), the first floor is hexagonal (up to Y-shaped), the second floor of the cuboctahedron is formed by a hexagon and the third floor is hexagonal (up to Y-shaped) like the first floor and the roof is triangular (up to Y-shaped) as is the ground floor. The shapes vary depending on how many terrace elements, dormers or facade parts are attached to the cuboctahedron. The dormers and the facade elements can be used to provide vertical or outwardly inclined window surfaces and wall sections, which better enable the building to be used as a residential and office building. Buildings with three beams crossing each other at right angles can also be composed of 3 to 5 cuboctahedrons each, with one cuboctahedron being arranged in the center of the building. Larger complexes can be assembled by assembling several individual bodies. In larger complexes, interior walls can also be integrated into the spatial framework. However, it is also provided to provide straight and right-angled inner walls that do not follow the course of the struts of the space frame.

In den Figuren werden verschiedene Ansichten von erfindungsgemäßen Ausführungsformen dargestellt.

  • Figuren 1 bis 6 zeigen einen Aufbau eines erfindungsgemäßen Bauwerks in mehreren Schritten.
  • Figuren 7 und 8 zeigen eine Grundrissansicht und eine Schnittansicht eines Gebäudes
  • Figuren 9 bis 14 zeigen jeweils Raumgitter mit ein, zwei bzw. vier Ebenen
  • Figur 15 zeigt ein Raumgitter mit 6 Ebenen, das auf der linken Seite als hexagonal dichteste Kugelpackung und auf der linken Seite als fcc-Gitter ausgeführt ist.
Various views of embodiments according to the invention are shown in the figures.
  • Figures 1 to 6 show a construction of a structure according to the invention in several steps.
  • Figures 7 and 8 show a plan view and a sectional view of a building
  • Figures 9 to 14 each show space lattices with one, two and four levels
  • figure 15 shows a space lattice with 6 levels, which is designed as a hexagonal closest packing on the left and as an fcc lattice on the left.

Im Folgenden werden die schematischen Figuren anhand von beispielhaften Ausführungsformen im Detail erläutert.In the following, the schematic figures based on examples Embodiments explained in detail.

Figur 1 zeigt en Aufbau eines Grundelements aus Knoten und Streben mit einer 6-eckigen Struktur, wobei drei Sechsecke durch neun Streben verbunden sind und eine Art Triskele bilden. Die unterste Ebene steht dabei auf drei Säulen, die von einem Mittenknoten jedes der drei gleichmäßigen Sechsecke senkrecht nach unten verläuft. figure 1 shows the construction of a basic element from nodes and struts with a hexagonal structure, with three hexagons being connected by nine struts and forming a kind of triskelion. The lowest level stands on three pillars, which run vertically downwards from a central node of each of the three even hexagons.

In Figur 2 sind über den Verbindungsstreben, die die drei gleichmäßigen Sechsecke verbinden ein Gehweg- bzw. Bodenelemente angeordnet, über die die unterste Ebene betreten werden kann.In figure 2 walkway or floor elements are arranged above the connecting struts that connect the three even hexagons, via which the lowest level can be accessed.

In Figur 3 wurde auf dem rechten Sechseck mit einem Tetraedergitter eine zweite Ebene aufgebaut, wobei die sich ergebende Ebene eine doppelt so große Fläche aufweist wie das grundlegende gleichmäßige Sechseck.In figure 3 a second plane was constructed on top of the right hexagon using a tetrahedral lattice, with the resulting plane having twice the area of the basic regular hexagon.

In Figur 4 wurde auf den anderen Sechsecken ebenfalls mit dem Tetraedergitter eine zweite Ebene aufgebaut, wodurch die zweite Ebene abgeschlossen wurde. Die zweite Ebene bildet wieder eine Art Triskele. In Figur 4 wurde auf dem rechtesten hinteren Sechseck mit einem Tetraedergitter eine dritte Ebene aufgebaut, wobei die sich ergebende Ebene eine doppelt so große Fläche aufweist wie das grundlegende gleichmäßige Sechseck der zweiten Ebene. Das Gitter bildet hier ein fcc- bzw. ein ccp-Gitter das auch als kubisch-flächenzentriertes Gitter bezeichnet wird.In figure 4 a second level was built on top of the other hexagons also with the tetrahedron grid, completing the second level. The second level again forms a kind of triskele. In figure 4 a third level was constructed on the rightmost back hexagon with a tetrahedral lattice, the resulting level having twice the area of the basic regular hexagon of the second level. The lattice here forms an fcc or ccp lattice, which is also referred to as a face-centered cubic lattice.

In Figur 5 sind über den Verbindungsstreben, welche die drei jeweils am äußersten Rand angeordneten gleichmäßigen Sechsecke verbinden, ein Gehweg- bzw. Bodenelemente Angeordnet, über die die zweite Ebene betreten werden kann. Im Bereich der Sechsecke können mit Flächenelementen geschlossene Räume errichtet werden.In figure 5 above the connecting struts, which connect the three uniform hexagons arranged at the outermost edge, a walkway or floor element is arranged, via which the second level can be entered. In the area of the hexagons, closed rooms can be built with surface elements.

In Figur 6 ist ein fertiges Gebäude mit Bepflanzung dargestellt, das sich über 4 Ebenen erstreckt, und das ein fcc- bzw. ein ccp-Gitter aufweist.In figure 6 a completed building is shown with greenery, extending over 4 levels and having an fcc or ccp grid.

Figur 7 stellt eine Aufsicht auf einen Grundriss mit einer sechseckigen Grundfläche dar. Die Bodenfläche und bevorzugt eine Deckenfläche wird dabei bevorzugt aus einem einzelnen sechseckigen und selbstragenden Bodenelement gebildet, um in Schrägrichtung verlaufende Streben in dem Innenraum zu vermeiden. figure 7 shows a top view of a floor plan with a hexagonal base area. The floor area and preferably a ceiling area is preferably formed from a single hexagonal and self-supporting floor element in order to avoid struts running in an inclined direction in the interior.

Figur 8 stellt eine Seitenansicht auf ein erfindungsgemäßes Gebäude dar, wobei die in Schrägrichtung verlaufenden Streben besonders gut zu erkennen sind. Bei einer bevorzugten Strebenlänge von 7 Metern können auf jeder Ebene auch Bäume gepflanzt werden. Es ist ebenfalls möglich größere Bäume in das Gebäude zu integrieren, die sich über mehrere Ebenen erstrecken können. figure 8 represents a side view of a building according to the invention, wherein the Diagonally running struts are particularly easy to recognize. With a preferred strut length of 7 meters, trees can also be planted on each level. It is also possible to integrate larger trees into the building, which can extend over several levels.

Das Flächenmodul, das den Boden bildet, kann ebenfalls entlang der waagerechten gestrichelten Linie teilbar ausgeführt sein. Bei einem Streben Modul mit einer Kantenlänge zwischen 6,5 m und 7,5 m lassen sich so praktikable Deckenhöhen im Bereich von etwa 2,50 m verwirklichen. Ein teilbares Modul kann vorgefertigt und geteilt leicht per LKW zu einer Baustelle transportiert werden. Ein teilbares Modul lässt sich auch leichter auf einer Baustelle handhaben und auch leichter in einem bereits teilweise errichteten Gerüst bewegt werden.The surface module that forms the floor can also be designed to be divisible along the horizontal dashed line. With a strut module with an edge length of between 6.5 m and 7.5 m, practicable ceiling heights of around 2.50 m can be achieved. A divisible module can be prefabricated and divided easily transported by truck to a construction site. A divisible module is also easier to handle on a construction site and also easier to move in scaffolding that is already partially erected.

Figur 9 zeigt einen Tetraeder, der aus 6 Streben und 4 Knoten zusammengesetzt ist. Der Tetraeder der Figur 9 weist mit einer Kante des Dreiecks, das die Grundfläche bildet zum Betrachter. Die durch die vordere Fläche verdeckten Streben sind durch gestrichelte Linien gekennzeichnet. figure 9 shows a tetrahedron composed of 6 struts and 4 nodes. The tetrahedron of figure 9 points to the viewer with one edge of the triangle that forms the base. The struts hidden by the front face are indicated by dashed lines.

Figur 10 zeigt jeweils 4 zusammengefügte Tetraeder. In der untersten Ebene sind 3 Tetraeder zusammengefügt. In der untersten Ebene ist jeder der Tetraeder mit eine jeweiligen Ecke mit einem der anderen Tetraeder verbunden. Die drei Punkte oder Knoten, mit denen die Tetraeder der untersten Ebene verbunden sind, bilden ein Dreieck. Alle Tetraeder sind gleich ausgerichtet. Die Grundfläche der verbundenen Tetraeder stellt wiederum ein Dreieck jedoch mit einer doppelt so großen Kantenlänge dar. Der einzelne Tetraeder der zweiten Ebene ist mit jeder der Ecken seiner Grundfläche jeweils mit einer Spitze der drei Tetraeder der ersten Ebene verbunden. Dies stellt eine Elementarzelle eines FCC- bzw. CCP-Gitters dar. Das Kennzeichen dieses Gitters besteht darin, dass sich die einzelnen Tetraeder wiederum zu größeren Tetraeder zusammenfügen. figure 10 shows 4 joined tetrahedrons. In the lowest level 3 tetrahedrons are joined together. At the lowest level, each of the tetrahedra is connected to a respective vertex of one of the other tetrahedra. The three points or nodes connecting the lowest level tetrahedrons form a triangle. All tetrahedra are oriented in the same way. The base of the connected tetrahedron is again a triangle, but with an edge length that is twice as large. The individual tetrahedron of the second level is connected to each of the corners of its base with a vertex of the three tetrahedrons of the first level. This represents a unit cell of an FCC or CCP lattice. The characteristic of this lattice is that the individual tetrahedrons in turn combine to form larger tetrahedrons.

Figur 11 zeigt das Gitter von Figur 9 in einer Ausführung mit 4 Ebenen. figure 11 shows the grid of figure 9 in a version with 4 levels.

Figur 12 zeigt den Tetraeder von Figur 10 aus einem anderen Blickwinkel. Der Tetraeder der Figur 12 weist mit einer Spitze des Dreiecks, das die Grundfläche bildet zum Betrachter. In dieser Ansicht ist nur die hintere Kante der Grundfläche verdeckt und daher durch eine gestrichelte Linie dargestellt. figure 12 shows the tetrahedron of figure 10 from a different angle. The tetrahedron of figure 12 points to the viewer with a point of the triangle that forms the base. In this view, only the back edge of the base is hidden and is therefore represented by a dashed line.

Figur 13 zeigt jeweils 4 zusammengefügte Tetraeder. In der untersten Ebene sind 3 Tetraeder aus der Figur 9 zusammengefügt. Hier ist jeder Tetraeder der untersten Ebene nur mit einer Ecke mit beiden anderen Tetraedern verbunden. Die äußeren freien Ecken der Grundflächen der Tetraeder bilden ein gleichmäßiges Sechseck. Der einzelne Tetraeder der zweiten Ebene entspricht der Darstellung von Figur 12, und ist mit jeder der Ecken seiner Grundfläche jeweils mit einer Spitze der drei Tetraeder der ersten Ebene verbunden. Die Tetraeder der ersten Ebene sind alle gleich ausgerichtet, der Tetraeder der zweiten Ebene hingegen entgegengesetzt. Bei der untersten Ebene liegen die langen Seiten quer zum Betrachter und bei der zweiten Ebene liegt eine Ecke des Tetraeders zum Betrachter. Im Gegensatz dazu zeigen bei der Figur 9 alle Ecken in Richtung des Betrachters. figure 13 shows 4 joined tetrahedrons. In the lowest level are 3 tetrahedrons from the figure 9 put together. Here each tetrahedron of the lowest level is connected to both other tetrahedrons by only one vertex. The outer free corners of the bases of the tetrahedra form a regular hexagon. The single tetrahedron of the second level corresponds to the representation of figure 12 , and is connected to each of the corners of its base with a vertex of the three tetrahedra of the first level. The tetrahedrons of the first level are all oriented in the same way, while the tetrahedron of the second level is in the opposite direction. At the lowest level, the long sides are transverse to the viewer and at the second level, one corner of the tetrahedron is facing the viewer. In contrast, show at the figure 9 all corners towards the viewer.

Bei der Figur 11 ist klar zu erkennen, dass die obere Spitze des Tetraeders der zweiten Ebne genau über dem Punkt liegt, an dem die drei Tetraeder der ersten Ebene miteinander verbunden sind. Dies stellt eine Elementarzelle eines Gitters einer Hexagonal dichtesten Kugelpackung dar.In the figure 11 it can be clearly seen that the top vertex of the second level tetrahedron lies just above the point where the three first level tetrahedrons connect. This represents a unit cell of a lattice of a hexagonal closest packing.

Figur 14 zeigt das Gitter von Figur 13 in einer Ausführung mit 4 Ebenen an Tetraedern und 5 Ebenen von Knotenpunkten. An der rechten Kante des Gitters ist zu erkennen, dass die Linien nicht fluchten. figure 14 shows the grid of figure 13 in a version with 4 levels of tetrahedrons and 5 levels of nodes. On the right edge of the grid you can see that the lines are not aligned.

Figur 13 zeigt einen Ausschnitt eines Raumgitters mit 6 Ebenen von Tetraedern bzw. 7 Ebenen von Knotenpunkten. Das Raumgitter ist auf der linken Seite als Hexagonal dichteste Kugelpackung und auf der linken Seite als fcc-Gitter ausgeführt. Die Knotenpunkte bilden Ebenen wobei bei einer hexagonal dichtesten Kugelpackung die Knotenpunkte jeder zweiten Ebene von Knotenpunkten direkt übereinander liegen. Bei einem fcc-Gitter hingegen ist die Dritte Ebene von Knotenpunkten gegenüber der ersten Ebene verschoben, und erst die Knotenpunkte der vierten ebene liegen direkt über denen der ersten Ebene. figure 13 shows a section of a spatial lattice with 6 levels of tetrahedrons or 7 levels of nodes. The space lattice is designed as a hexagonal closest packing on the left and as an fcc lattice on the left. The nodes form planes, with the nodes of every second plane of nodes lying directly on top of one another in a hexagonal closest packing of spheres. In an FCC grid, on the other hand, the third level of nodes is shifted from the first level, and only the fourth level nodes are directly above those of the first level.

Bei einer Kombination beider Gitter liegen die Knoten an dem Gitter mit der hexagonal dichtesten Kugelpackung in den Ebenen 1, 3, 5, und 7 direkt übereinander. Bei dem fcc-Gitter liegen die Knoten der (Knoten-) Ebenen 1, 4 und 7 direkt übereinander. Wenn man also bei einem Gebäude beide Gitter kombiniert benötigt man entweder 7 knotenebenen bzw. 6 Tetraederebenen, um beide Gitter in diesen Ebenen nahtlos kombinieren zu können. Diese Konstruktion eignet sich insbesondere für überbauten und Gebäude mit großen luftigen Zwischenräumen. Es ist bei höheren Gebäuden ebenfalls möglich bei 14 Knotenebenen mit mindestens drei mehrere Türmen einen komplett in einem fcc-Gitter, einen komplett in einem hexagonal dichtestem Kugelgitter und einer in einem Mischgitter auszuführen. In diesem Fall ist es möglich die Türme an der obersten Kugelebene wieder mit einer gleichmäßigen Tetraeder oder Kugelebene zu verbinden.In a combination of both lattices, the nodes on the lattice with the hexagonal closest packing of spheres lie directly above one another in planes 1, 3, 5, and 7. In the fcc grid, the nodes of (node) levels 1, 4 and 7 are directly above one another. So if you combine both grids in a building, you need either 7 node levels or 6 tetrahedron levels in order to be able to seamlessly combine both grids in these levels. This construction is particularly suitable for superstructures and buildings with large, airy spaces. It is also possible for taller buildings with 14 node levels with at least three multiple towers, one completely in an fcc grid, one completely in a hexagonal dense ball grid and one in a mixed grid. In this case it is possible to reconnect the towers at the top sphere level with a regular tetrahedron or sphere level.

Claims (13)

Modulares Raumgitter-Bauwerk, umfassend ein Gitterwerk aus Streben und Knotenpunkten und/oder Flächenmodulen, wobei die Streben des Gitterwerks mit den Knotenpunkten verbunden oder verbindbar sind, wobei die Flächenmodule randseitig miteinander oder mit den Streben verbunden oder verbindbar sind. Modular space lattice structure comprising a latticework of struts and nodes and/or area modules, the struts of the latticework being connected or connectable to the nodes, the surface modules being connected or connectable to one another or to the struts at the edges. Modulares Raumgitter -Bauwerk nach Anspruch 1, wobei die Knotenpunkte Verbindungen der Streben in einem Winkel von 60°, 120° und 180° zueinander zulassen.A modular space lattice structure according to claim 1, wherein the nodal points allow connections of the struts at an angle of 60°, 120° and 180° to one another. Modulares Raumgitter-Bauwerk gemäß Anspruch 1 oder 2, wobei das Gitterwerk ein fcc-Gitter umfasst.A modular space lattice structure according to claim 1 or 2, wherein the latticework comprises an fcc lattice. Modulares Raumgitter-Bauwerk gemäß Anspruch 1, 2 oder 3, wobei das Gitterwerk eine hexagonal dichteste Kugelpackung umfasst.The modular space lattice structure of claim 1, 2 or 3, wherein the latticework comprises hexagonal closest packing. Modulares Raumgitter-Bauwerk gemäß einem der vorstehenden Ansprüche, wobei das Bauwerk mindestens ein Flächenmodul umfasst, das als Wand, Boden, Decke, Dach, Weg oder Pflanzelement ausgelegt ist.Modular space lattice structure according to one of the preceding claims, wherein the structure comprises at least one surface module which is designed as a wall, floor, ceiling, roof, path or plant element. Modulares Raumgitter-Bauwerk gemäß einem der vorstehenden Ansprüche, wobei das Raumgitter Tetraeder umfasst.Modular space lattice structure according to one of the preceding claims, wherein the space lattice comprises tetrahedrons. Modulares Raumgitter-Bauwerk gemäß einem der vorstehenden Ansprüche, wobei das Bauwerk Flächenmodule umfasst oder nur Flächenmodule umfasst die eine hexagonale Form, bevorzugt die Form eines regelmäßigen Sechsecks aufweisen.Modular space lattice structure according to one of the preceding claims, wherein the structure comprises area modules or only area modules which have a hexagonal shape, preferably the shape of a regular hexagon. Modulares Raumgitter-Bauwerk gemäß einem der vorstehenden Ansprüche, wobei Bauwerk Flächenmodule umfasst, die eine Rechteckform, eine Quadratform, eine Dreiecksform, die Form eines rechtwinkligen Dreiecks oder die Form eines gleichseitigen Dreiecks aufweisen.Modular space lattice structure according to any one of the preceding claims, wherein the structure comprises area modules having a rectangular shape, a square shape, a triangular shape, the shape of a right triangle or the shape of an equilateral triangle. Modulares Raumgitter-Bauwerk gemäß einem der vorstehenden Ansprüche, wobei Bauwerk als Wohn- oder Arbeitsräume ausgebildet ist.Modular space lattice structure according to one of the preceding claims, wherein the structure is designed as living or working spaces. Modulares Raumgitter-Bauwerk gemäß einem der vorstehenden Ansprüche, wobei Bauwerk eine Brücke bildet oder einen Überbau bildet.A modular space lattice structure according to any one of the preceding claims, wherein the structure forms a bridge or forms a superstructure. Modulares Raumgitter-Bauwerk gemäß Anspruch 9 oder 10, wobei Bauwerk einen Überbau mit Wohn- oder Arbeitsräumen bildet.Modular space lattice structure according to claim 9 or 10, wherein structure forms a superstructure with living or working spaces. Modulares Raumgitter-Bauwerk gemäß einem der vorhergehenden Ansprüche, weiter umfassend mindestens einen Fuß zum Abstützen des Bauwerks, der bevorzugt als Dreibein oder Tetraeder ausgeführt ist.Modular space lattice structure according to one of the preceding claims, further comprising at least one foot for supporting the structure, which is preferably designed as a tripod or tetrahedron. Modulares Raumgitter Bauwerk gemäß einem der vorhergehenden Ansprüche, wobei die Streben, Knotenpunkte bzw. Flächenmodule lösbar miteinander verbunden sind.Modular space lattice structure according to one of the preceding claims, wherein the struts, nodes or surface modules are detachably connected to one another.
EP21189890.3A 2020-09-07 2021-08-05 Modular mesh structure made of of polygonal area modules Withdrawn EP3964659A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202020105137.7U DE202020105137U1 (en) 2020-09-07 2020-09-07 Modular space lattice structure made of polygonal surface modules

Publications (1)

Publication Number Publication Date
EP3964659A1 true EP3964659A1 (en) 2022-03-09

Family

ID=74240044

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21189890.3A Withdrawn EP3964659A1 (en) 2020-09-07 2021-08-05 Modular mesh structure made of of polygonal area modules

Country Status (2)

Country Link
EP (1) EP3964659A1 (en)
DE (1) DE202020105137U1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974600A (en) * 1971-08-30 1976-08-17 Synestructics, Inc. Minimum inventory maximum diversity building system
US20120036795A1 (en) * 2010-06-25 2012-02-16 Miguel Correa Polyhedra Building System with Composite walls
US20150184369A1 (en) * 2012-07-04 2015-07-02 New Building System Pty Ltd Building system and panel for a building system
WO2018068056A1 (en) * 2016-10-07 2018-04-12 Georgia Tech Research Corporation Tensegrity structures and methods of constructing tensegrity structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974600A (en) * 1971-08-30 1976-08-17 Synestructics, Inc. Minimum inventory maximum diversity building system
US20120036795A1 (en) * 2010-06-25 2012-02-16 Miguel Correa Polyhedra Building System with Composite walls
US20150184369A1 (en) * 2012-07-04 2015-07-02 New Building System Pty Ltd Building system and panel for a building system
WO2018068056A1 (en) * 2016-10-07 2018-04-12 Georgia Tech Research Corporation Tensegrity structures and methods of constructing tensegrity structures

Also Published As

Publication number Publication date
DE202020105137U1 (en) 2021-01-12

Similar Documents

Publication Publication Date Title
DE19936247C2 (en) Construction system
EP2222924B1 (en) Modular building
DE2223621A1 (en) Three-dimensional arrangement
DE212019000503U1 (en) Prefabricated steel structure building
EP0038800B1 (en) Skeleton-frame system for the erection of building constructions
US5867948A (en) Arched framework and its assembly method
DE202015000476U1 (en) Polyhedron structure made of polygonal modules
EP0187615B1 (en) Set of elements for composite constructions
EP3964659A1 (en) Modular mesh structure made of of polygonal area modules
EP3051039A1 (en) Building system, in particular for residential and professional purposes
WO2018215670A1 (en) Modular stadium for sporting and cultural events
US4288950A (en) Multiple-building construction system and method of erecting same
DE3004068C2 (en) Three-dimensional framework structure made of bars and nodes for receiving planters for greening streets, squares or the like.
DE9314249U1 (en) Block system
DE19911543C2 (en) dome
CN206941822U (en) Modular house unit and house
DE2423464C3 (en) Three-dimensional framework used to accommodate residential units
Saidani et al. Investigation into a new type of multi-reciprocal grid
WO2021219189A1 (en) Complex construction-supporting structures, and use of said complex construction-supporting structures
DE4302871A1 (en) Prefabricated house
AT513838B1 (en) Geodesic dome stage
DE2226476C3 (en) Space structure with disc structures made of bars and stiffened fields, in particular for the production of wide-span building structures
DE2049687C (en) skyscraper
DE2337268A1 (en) A VARIABLE SPACE CONSTRUCTION
DE1784632C (en) Transportable house

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220910