EP3962879A1 - Pièce en céramique ou cmc à base de silicium et procédé de réalisation d'une telle pièce - Google Patents

Pièce en céramique ou cmc à base de silicium et procédé de réalisation d'une telle pièce

Info

Publication number
EP3962879A1
EP3962879A1 EP20731919.5A EP20731919A EP3962879A1 EP 3962879 A1 EP3962879 A1 EP 3962879A1 EP 20731919 A EP20731919 A EP 20731919A EP 3962879 A1 EP3962879 A1 EP 3962879A1
Authority
EP
European Patent Office
Prior art keywords
layer
silicon
cmc
ceramic
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20731919.5A
Other languages
German (de)
English (en)
Inventor
Amar Saboundji
Hugues Denis Joubert
Philippe Picot
Luc Patrice BIANCHI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran SA
Original Assignee
Safran SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran SA filed Critical Safran SA
Publication of EP3962879A1 publication Critical patent/EP3962879A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0027Ion-implantation, ion-irradiation or ion-injection
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • C04B41/522Multiple coatings, for one of the coatings of which at least one alternative is described
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/455Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application the coating or impregnating process including a chemical conversion or reaction
    • C04B41/4558Coating or impregnating involving the chemical conversion of an already applied layer, e.g. obtaining an oxide layer by oxidising an applied metal layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5024Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5035Silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00982Uses not provided for elsewhere in C04B2111/00 as construction elements for space vehicles or aeroplanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/314Layer deposition by chemical vapour deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/226Carbides
    • F05D2300/2261Carbides of silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]

Definitions

  • the present invention relates to parts made of a silicon-based ceramic material or of a silicon-based ceramic matrix composite (CMC) material.
  • CMC materials are currently widely considered in the aeronautical or space field, in particular for parts of turbomachines which are subjected to high temperatures during operation.
  • one solution consists in increasing the temperature of the gases in the combustion chamber of the turbojets. This induces an improvement in engine efficiency (reduction in kerosene consumption) and allows operation with a lean fuel mixture (reduction of NOx).
  • the materials used in the combustion chamber must be able to withstand higher temperatures.
  • silicon-based ceramics silicon carbide ceramic SiC or ceramic matrix composites (CMC) of SiC type / SiC.
  • the CMC must be protected to avoid evaporation of the protective silica layer. This is particularly the case for CMC materials used in combustion chambers, High Pressure turbines and to a lesser extent engine exhaust components.
  • EBC Environmental Barrier Coatings
  • Such an EBC coating typically comprises, as illustrated in FIG. 1, a bond layer 2 (“bond coat”) of silicon which covers the layer 1 of CMC to be protected and which is topped with a ceramic structure 3 ( s) multifunctional.
  • the multifunctional structure 3 is for example made up of:
  • Multilayer environmental barriers of the Si / Mullite / BSAS (barium strontium aluminosilicate) type or even those comprising a silicon bonding layer and a layer of a rare earth silicate (for example Y2SÎ207) are also known, for example.
  • These experimental barriers can be deposited, in a manner known per se, by thermal spraying processes, physical phase deposition (PVD) or by deposits of slurries (for example "dipcoating” or "spray coating”
  • PVD physical phase deposition
  • deposits of slurries for example "dipcoating” or "spray coating”
  • Such structures nevertheless remain subject to deterioration over time due to inhomogeneities in the formation of silica (dashed line 4a and agglomerates 4b in FIG. 1) between the Si layer and the other layers of the EBC coating.
  • a general aim of the invention is to overcome the drawbacks of structures known in the state of the art.
  • an object of the invention is to provide an EBC coating structure which allows improved service life.
  • the invention provides a part made of silicon-based ceramic or of a silicon-based ceramic matrix composite (CMC) material comprising an environmental protection coating (EBC), said coating comprising a bonding layer deposited on the surface of ceramic or ceramic matrix composite material (CMC), said bonding layer being surmounted by one or more layers together forming a multifunctional protective structure, characterized in that the bonding layer comprises at its interface with the multifunctional structure a polycrystalline silica layer or sublayer.
  • EBC environmental protection coating
  • the polycrystalline silica layer or sub-layer has grain boundaries doped with Hf and / or HfO 2 and / or phosphorus.
  • the part is produced by implementing the following steps:
  • the production is done by implementing the following steps:
  • the invention also proposes an aeronautical or space device, in particular a turbomachine, comprising at least one part of the type proposed.
  • Figure 1 already discussed, illustrates the formation of defects and the degradation of a structure known in the state of the art
  • Figure 2 illustrates an example of a part according to the invention
  • Figures 3a and 3b illustrate an EBC coated stack according to one embodiment of the invention ( Figure 3a);
  • Figure 4 illustrates a possible embodiment of the invention for producing a stack of the type of that of Figure 3a;
  • FIGS 5 and 6 illustrate another possible implementation mode for the method of the invention.
  • the part 5 illustrated in Figure 2 by way of example comprises a blade 5a of a high pressure turbine engine turbine rotor and a blade 5b.
  • Said part 5 is made of a composite material with a CMC ceramic matrix coated with an EBC protective barrier, which is more particularly described below.
  • CMC ceramics for the blades of high pressure turbines of a turbomachine is particularly advantageous insofar as it makes it possible, if necessary, to eliminate on the blades the holes which are conventionally formed therein for the circulation of cooling air. . Removing these holes further increases engine performance.
  • the high pressure turbine engine blades of a turbomachine are only an example of application for the proposed EBC structure: this more generally finds application, in particular in space or aeronautics, for any part subjected in operation to high temperatures (above 1100 ° C): combustion chamber of a turbomachine, exhaust component of a engine, etc.
  • the materials of the CMC structure of part 5 are silicon-based ceramics (silicon carbide ceramic SiC for example) or ceramic matrix composites (CMC).
  • CMC material is meant here and throughout the present text composite materials comprising a set of ceramic fibers incorporated in a also ceramic matrix.
  • the fibers are, for example, carbon (C) and silicon carbide (SiC) fibers.
  • They can also be fibers of aluminum oxide or alumina (A1203), or mixed crystals of alumina and silicon oxide or silica (SiO2) such as mullite (3A1203, 2S102).
  • the matrix is made of silicon carbide SiC or any mixture comprising silicon carbide.
  • SiC-SiC composites with silicon carbide fibers and a silicon carbide matrix are particularly advantageous for aeronautical applications given their high thermal, mechanical and chemical stability and their high strength / weight ratio.
  • These composites can use pyrocarbon (or PyC) or boron nitride (BN) as the interphase material.
  • the parts made of CMC material can be made from a fiber preform with a woven fiber texture.
  • This fiber preform is consolidated and densified by chemical infiltration in the gas phase (CVI or “Chemical Vapor Infiltration” according to the English terminology).
  • the preform may be in fiber strata based on silicon carbide, the fibers of said preform being coated by CVI with a layer of boron nitride surmounted by a layer of carbon or carbide, in particular of silicon carbide.
  • the CMC layer is referenced by 11 and the multifunctional structure of the EBC coating by 13.
  • the tie layer (layer 12) is polycrystalline silica with doped grain boundaries.
  • the dopants implanted in the grain boundaries are for example hafnium (Hf) and / or hafnium oxide (HfO 2) and / or phosphorus dopants.
  • This layer 12 is carried out as follows ( Figure 4):
  • Step 20 deposition of a layer of Si
  • Step 21 thermal oxidation
  • Step 22 introduction of dopants.
  • the structure then obtained for the layer 12 is of the type of that illustrated in FIG. 3b: it comprises large grains of SiO 2 (grains 12a) and doped grain boundaries (boundaries 12b).
  • large grains is meant here whose dimensions are between about ten nm and up to 50 microns.
  • Such a structure is dense (less than 10% porosity) and polycrystalline. It has great homogeneity (difference in porosity of less than 10%), large particle size and tightness to oxygen and high water vapor.
  • the implantation of dopants makes it possible to strengthen the grain boundaries of the SiO2 sublayer and to slow the permeability to oxygen and water vapor in the Si02 layer.
  • the silica layer is stabilized by blocking the grain boundaries with hafnium and / or hafnium oxide and / or phosphorus.
  • the growth kinetics of silica are then blocked or at the very least slowed down.
  • hafnium oxide provides better results than SiO 2 in terms of water permeability.
  • the deposition of the Si layer (step 20) can be carried out by different techniques: plasma spraying, vapor phase deposition by electron beams, etc. , or any combination of these different techniques.
  • Such a layer has for example a thickness between 5 and 30 ⁇ m
  • Thermal oxidation (step 21) is carried out in an oven in the presence of oxygen (dry oxidation).
  • This oxidation is for example carried out under the following conditions: temperature of the heat treatment: 1100 ° C to 1300 ° C; duration: 1 to 50 hours; oxygen rate: 1 l / min at 201 / min
  • step 22 The introduction of dopants (step 22) is then carried out by ion bombardment.
  • the atomic percentage of the dopants in the layer 12 is for example 1 -2% at for Hf and less than 20% at for phosphorus.
  • the multifunctional structure 13 is produced after the layer 12 has been produced. It comprises several layers of ceramics (YbzSiOs , BSAS, etc.) intended to ensure that they are chosen and sized to ensure the various seals desired.
  • ceramics YbzSiOs , BSAS, etc.
  • the bonding layer 12 comprises a sub-layer 121 of silicon and a sub-layer 122 of silica with doped joints.
  • this layer 12 is obtained as follows (FIG. 6):
  • Step 30 deposition of a first layer of silicon
  • Step 31 deposition of a second layer of silicon, said layer being a doped layer;
  • Step 32 thermal oxidation.
  • the deposited layer is typically between 10 and 20 ⁇ m thick.
  • the doped silicon layer is also deposited by CVD technique (step 31).
  • This doped layer is typically between 1 and 5 ⁇ m thick.
  • the silicon doping is carried out beforehand by ion implantation.
  • the doping of the second layer of silicon is an Hf and / or phosphorus doping with an atomic mass concentration of between 1 and 2% of Hf and less than 20% for phosphorus.
  • the tie layer 12 At the end of the oxidation, there is available for the tie layer 12 an underlayer 121 of silicon and a sub-layer 122 of silica with doped joints.
  • the sublayer 122 has a polycrystalline structure with large SiO 2 grains and Hf and / or HfO 2 grain boundaries and / or phosphorus.
  • silica is slower than in the prior art.

Abstract

L'invention concerne une pièce en matériau céramique à base de silicium ou en matériau composite à matrice céramique (CMC) à base de silicium comportant un revêtement de protection environnemental (EBC), ledit revêtement (12, 13) comportant une couche de liaison (12) déposée sur la surface du matériau céramique ou composite à matrice céramique (CMC), ladite couche de liaison (12) étant surmontée d'une ou plusieurs couches formant ensemble une structure de protection multifonctionnelle (13), caractérisée en ce que la couche de liaison (12) comporte à son interface avec la structure multifonctionnelle une couche (12) ou sous-couche (12b) en silice polycristalline.

Description

Pièce en céramique ou CMC à base de silicium et procédé de réalisation d’une telle pièce
DOMAINE TECHNIQUE GÉNÉRAL ET ART ANTÉRIEUR
La présente invention est relative aux pièces en matériau céramique à base de silicium ou en matériau composite à matrice céramique (CMC) à base de silicium.
Les matériaux CMC sont aujourd’hui couramment envisagés dans le domaine aéronautique ou spatial, notamment pour les pièces de turbomachines qui sont soumises à des températures élevées en fonctionnement.
Les contraintes économiques et environnementales poussent en effet les motoristes de l’industrie aéronautique à développer des axes de recherche en vue de réduire les nuisances sonores, la consommation de carburant, les émissions de NOx et de C02.
Pour répondre à ces exigences et notamment aux deux dernières, une solution consiste à augmenter la température des gaz dans la chambre de combustion des turboréacteurs. Ceci induit une amélioration du rendement moteur (réduction de la consommation de kérosène) et permet un fonctionnement avec un mélange pauvre en combustible (réduction des NOx). Il faut cependant que les matériaux utilisés dans la chambre de combustion soient capables de supporter des températures plus élevées.
Actuellement, les matériaux utilisés dans les moteurs aéronautiques pour les pièces soumises à de fortes températures de fonctionnement sont des superalliages. Toutefois, les températures atteintes (de l’ordre de 1 100° C) sont proches de leur limite d’utilisation.
Pour accroître significativement ces températures d’utilisation (jusqu’à 1400° C), il est proposé depuis plusieurs années d’utiliser des céramiques à base de silicium : céramique à carbure de silicium SiC ou composites à matrice céramique (CMC) de type SiC/SiC.
Ces matériaux sont en effet des candidats prometteurs en raison de leurs propriétés mécaniques et thermiques et de leur stabilité à haute température. Également, outre leurs propriétés à haute température, les matériaux CMC à base de carbure de silicium ont l’avantage de présenter une masse volumique plus faible que les matériaux métalliques auxquels ils se substituent. Un grand nombre d’études a porté sur l’introduction de ces matériaux pour des applications extrêmes (haute température, haute pression, atmosphère corrosive, contraintes mécaniques).
Dans ces conditions, une fine couche de silice se forme ce qui permet de limiter la diffusion de l’oxygène au substrat. Cependant, en présence d’eau et à partir de 1200°C, un phénomène de récession de surface apparaît suite à la volatilisation de cette couche sous forme sous forme d’espèces HxSiyOz, telles que Si(OH)4 ou SiO(OH)2.Ce phénomène entraîne une diminution de la vitesse nette de croissance de l’oxyde dont l’épaisseur tend vers une valeur limite et une récession accélérée du SiC présent dans le CMC.
Ainsi, pour une utilisation prolongée et/ou à des températures plus élevées le CMC doit être protégé pour s’affranchir de l’évaporation de la couche de silice protectrice. C’est notamment le cas pour les matériaux CMC utilisés dans les chambres de combustion, les turbines Haute Pression et dans une moindre mesure les composants d’échappement des moteurs.
Classiquement, les matériaux CMC sont protégés par des couches de barrières environnementales (dites EBC ou « Environnemental Barrier Coatings » selon la terminologie anglosaxonne généralement utilisée).
Un tel revêtement EBC comporte typiquement, ainsi qu’illustré sur la figure 1 , une couche 2 de liaison (« bond coat ») en silicium qui recouvre la couche 1 de CMC à protéger et qui est surmontée d’une structure 3 en céramique(s) multifonctionnelle.
La structure 3 multifonctionnelle est par exemple constituée :
- d’une ou plusieurs couches de mullite (destinée à empêcher la diffusion de l’oxygène vers la couche 2 de silicium),
- d’une ou plusieurs couches destinée(s) à protéger la couche 2 d’une diffusion de vapeur d’eau.
On connaît également par exemple des barrières environnementales multicouches du type Si/Mullite/BSAS (aluminosilicate de baryum strontium) ou encore celles comprenant une couche de liaison en silicium et une couche d’un silicate de terre rare (par exemple Y2SÎ207). Ces barrières expérimentales peuvent être déposées, de façon connue en soi, par des procédés de projection thermique, de dépôts physique en phase (PVD) ou par des dépôts de barbotines (par exemple « dipcoating » ou « spray coating » De telles structures restent néanmoins sujettes à détérioration dans le temps du fait d’inhomogénéités dans la formation de silice (ligne tiretée 4a et agglomérats 4b sur la figure 1 ) entre la couche Si et les autres couches du revêtement EBC.
Ces inhomogénéités dans la formation de silice engendre des contraintes résiduelles dans le revêtement EBC.
Elle initie et propage des fissurations dans les couches superposées (fissurations 4c sur la figure 1 ).
Il en résulte un écaillage des couches de céramique, de sorte que les sous- couches CMC sont exposées à un environnement corrosif de vapeur d’eau conduisant à sa récession accélérée limitant la durée de vie du CMC.
Ceci conduit à la dégradation prématurée du système par mécanismes de délamination.
PRÉSENTATION GÉNÉRALE DE L’INVENTION
Un but général de l’invention est de palier les inconvénients des structures connues dans l’état de la technique.
En particulier, un but de l’invention est de proposer une structure de revêtement EBC qui permette une durée de vie améliorée.
Ainsi, l’invention propose une pièce en céramique à base de silicium ou en matériau composite à matrice céramique (CMC) à base de silicium comportant un revêtement de protection environnemental (EBC), ledit revêtement comportant une couche de liaison déposée sur la surface de la céramique ou du matériau composite à matrice céramique (CMC), ladite couche de liaison étant surmontée d’une ou plusieurs couches formant ensemble une structure de protection multifonctionnelle, caractérisée en ce que la couche de liaison comporte à son interface avec la structure multifonctionnelle une couche ou sous-couche en silice polycristalline.
Notamment, la couche ou sous-couche en silice polycristalline est à joints de grains dopés Hf et/ou Hf02 et/ou Phosphore.
Selon un mode de mise en oeuvre, la pièce est réalisée en mettant en oeuvre les étapes suivantes :
- dépôt d’une couche de silicium sur la surface de la céramique ou du matériau composite à matrice céramique,
- oxydation thermique,
- introduction de dopants. En variante, la réalisation se fait en mettant en œuvre les étapes suivantes :
- dépôt d’une première couche de silicium sur la surface de la céramique ou du matériau composite à matrice céramique,
- dépôt d’une deuxième couche de silicium, ladite couche étant une couche dopée,
- oxydation thermique.
L’invention propose également un dispositif aéronautique ou spatial, notamment une turbomachine, comportant au moins une pièce du type proposé.
PRÉSENTATION DES FIGURES
D’autres caractéristiques et avantages de l’invention ressortiront encore de la description qui suit, laquelle est purement illustrative et non limitative, et doit être lue en regard des figures annexées sur lesquelles :
la figure 1 , déjà discutée, illustre la formation de défauts et la dégradation d’une structure connue dans l’état de la technique ;
la figure 2 illustre un exemple de pièce conforme à l’invention ;
les figures 3a et 3b illustrent un empilement à revêtement EBC conforme à un mode de réalisation de l’invention (figure 3a) ;
la figure 4 illustre un mode de mise en œuvre possible de l’invention pour la réalisation d’un empilement du type de celui de la figure 3a ;
les figures 5 et 6 illustrent un autre mode de mise en œuvre possible pour le procédé de l’invention.
DESCRIPTION D’UN OU PLUSIEURS MODES DE MISE EN ŒUVRE ET DE RÉALISATION
La pièce 5 illustrée sur la figure 2 à titre d’exemple comporte une aube 5a de rotor de turbine haute pression de turbomachine et un pied d’aube 5b.
Ladite pièce 5 est en un matériau composite à matrice en céramique CMC revêtu d’une barrière de protection EBC, qui est plus particulièrement décrite ci- après.
On notera que l’utilisation de céramiques CMC pour les aubes de turbines haute pression de turbomachine est particulièrement avantageuse dans la mesure où elle permet le cas échéant de supprimer sur les aubes les trous qui y sont classiquement ménagés pour la circulation d’air de refroidissement. La suppression de ces trous permet d’augmenter encore le rendement du moteur.
Comme on l’aura compris, les aubes de turbines haute pression de turbomachine ne sont qu’un exemple d’application pour la structure EBC proposée : celle-ci trouve de façon plus générale application, notamment dans le spatial ou aéronautique, pour toute pièce soumise en fonctionnement à des températures élevées (au-delà de 1100°C) : chambre de combustion de turbomachine, composant d’échappement d’un moteur, etc.
Réalisation d’une structure CMC
Les matériaux de la structure CMC de la pièce 5 sont des céramiques à base de silicium (céramique à carbure de silicium SiC par exemple) ou des composites à matrice céramique (CMC).
Par matériau CMC, on entend ici et dans tout le présent texte des matériaux composites comportant un ensemble de fibres céramiques incorporées dans une matrice également céramique.
Les fibres sont par exemple des fibres de carbone (C) et de carbure de silicium (SiC).
Elles peuvent également être des fibres d'oxyde d'aluminium ou alumine (A1203), ou des cristaux mixtes d'alumine et d'oxyde de silicium ou silice (Si02) telle que la mullite (3A1203, 2SÎ02).
La matrice est en carbure de silicium SiC ou en tout mélange comportant du carbure de silicium.
Les composites SiC-SiC à fibres à carbure de silicium et matrice de carbure de silicium sont particulièrement intéressants pour les applications aéronautiques compte tenu de leur stabilité thermique, mécanique et chimique élevée et de leur rapport résistance / poids élevé.
Ces composites peuvent utiliser du pyrocarbone (ou PyC) ou du nitrure de bore (BN) comme matériau d’interphase.
Différentes techniques sont envisageables pour la fabrication d’une pièce en matériau composite à matrice en céramique.
Notamment, selon une première technique, les pièces en matériau CMC peuvent être réalisées à partir d’une préforme fibreuses en texture fibreuse tissée. Cette préforme fibreuse est consolidée et densifiée par infiltration chimique en phase gazeuse (CVI ou « Chemical Vapor Infiltration » selon la terminologie anglosaxonne).
En variante encore, la préforme peut être en strates fibreuses à base de carbure de silicium, les fibres de ladite préforme étant revêtue par CVI d’une couche de nitrure de bore surmontée d’une couche de carbone ou de carbure, notamment de carbure de silicium.
Pour des exemples de techniques de fabrication d’une structure CMC SiC/SiC, on pourra par exemple avantageusement se référer aux brevets US9440888, ou encore US8846218.
Structure EBC - Premier mode de réalisation
Dans l’exemple de la figure 3a, la couche CMC est référencée par 11 et la structure multifonctionnelle du revêtement EBC par 13.
La couche de liaison (couche 12) est en silice polycristalline avec des joints de grains dopés.
Les dopants implantés dans les joints de grains sont par exemple des dopants d’hafnium (Hf) et/ou d'oxyde de hafnium (Hf02) et/ou de phosphore.
La réalisation de cette couche 12 s’effectue de la façon suivante (figure 4) :
Etape 20 : dépôt d’une couche de Si,
Etape 21 : oxydation thermique,
Etape 22 : introduction de dopants.
La structure alors obtenue pour la couche 12 est du type de celle illustrée sur la figure 3b : elle comporte des larges grains de Si02 (grains 12a) et des joints de grains dopés (joints 12b). Par grains larges, on entend ici dont les dimensions sont comprises entre une dizaine de nm et jusqu’à 50 microns.
Une telle structure est dense (inférieure à 10 % de porosité) et polycristalline. Elle présente une grande homogénéité (différence de porosité inférieure à 10%), une granulométrie importante et une étanchéité à l’oxygène et à la vapeur d’eau élevée.
Notamment, l’implantation de dopants permet de renforcer les joints de grains de la sous-couche de Si02 et de ralentir la perméabilité à l’oxygène et à la vapeur d’eau dans la couche de Si02.
La couche de silice est stabilisée par blocage des joints de grains par le hafnium et/ou l’oxide d’hafnium et/ou le phosphore.
La cinétique de croissance de la silice est alors bloquée ou à tout le moins ralentie.
On notera en outre que l’oxide d’hafnium permet de meilleurs résultats que le Si02 en termes de perméabilité à l'eau. Le dépôt de la couche de Si (étape 20) peut être réalisé par différentes techniques : projection plasma, déposition en phase vapeur par faisceaux d’électrons, etc. , ou toute combinaison de ces différentes techniques.
Une telle couche a par exemple une épaisseur comprise entre 5 et 30 pm
L’oxydation thermique (étape 21 ) est réalisée dans un four en présence d’oxygène (oxydation sèche).
Cette oxydation est par exemple réalisée sous les conditions suivantes : température du traitement thermique : 1 100° C à 1300° C ; durée : 1 à 50 heures ; taux d’oxygène : 1 l/min à 201/min
L’introduction de dopants (étape 22) est ensuite réalisée par bombardement ionique.
Le pourcentage atomique des dopants dans la couche 12 est par exemple de 1 -2% % at pour Hf et inférieur à 20% at pour le phosphore.
La structure 13 multifonctionnelle est réalisée après réalisation de la couche 12. Elle comporte plusieurs couches de céramiques (YbzSiOs, BSAS, etc. ) destinées à assurer choisies et dimensionnées pour assurer les différentes étanchéités souhaitées.
Structure EBC - Deuxième mode de réalisation
Dans le mode de réalisation illustré sur la figure 5, la couche de liaison 12 comporte une sous-couche 121 en silicium et une sous-couche 122 de silice à joints dopés.
Dans ce deuxième mode de mise en oeuvre, cette couche 12 est obtenue de la façon suivante (figure 6) :
Etape 30 : dépôt d’une première couche de silicium ;
Etape 31 : dépôt d’une deuxième couche de silicium, ladite couche étant une couche dopée ;
Etape 32 : oxydation thermique.
L’oxydation thermique est ensuite suivie par le dépôt des autres couches de la structure EBC (dépôt des couches de la structure multifonctionnelle).
Le dépôt de la couche de silicium (étape 30) se fait par dépôt chimique en phase vapeur (CVD) dans les conditions suivantes : P=100-200 mbar ; T=1020-1050° C avec le flux de gaz et la réaction suivante:
3AICI (g) + (2y) Ni + H2 (g) == > 1 AINiy + AIC13 + HCl
La couche déposée est d’épaisseur typiquement comprise en 10 et 20 pm. La couche de silicium dopée est également déposée par technique CVD (étape 31 ).
Cette couche dopée est d’épaisseur typiquement comprise entre 1 et 5 pm.
Le dopage du silicium est préalablement réalisé par implantation ionique. Le dopage de la deuxième couche de silicium est un dopage Hf et/ou phosphore avec une concentration en masse atomique comprise entre 1 et 2 % de Hf et inférieure à 20% pour le phosphore.
A l’issue de l’oxydation, on dispose pour la couche de liaison 12 d’une sous- couche 121 en silicium et d’une sous-couche 122 de silice à joints dopés.
La sous-couche 122 est à structure polycristalline à grains de Si02 larges et à joints de grains Hf et/ou Hf02 et/ou phosphore.
Elle présente une étanchéité à l’oxygène et à la vapeur d’eau élevée.
Elle assure une épaisseur relativement homogène à l’interface silice entre la couche de silicium et la structure multifonctionnelle 13.
La croissance de la silice est plus lente que dans l’art antérieur.
Il en résulte une durée de vie améliorée pour la structure EBC.

Claims

REVENDICATIONS
1 . Pièce en matériau céramique à base de silicium ou en matériau composite à matrice céramique (CMC) à base de silicium comportant un revêtement de protection environnemental (EBC), ledit revêtement (12, 13) comportant une couche de liaison (12) déposée sur la surface du matériau céramique ou composite à matrice céramique (CMC), ladite couche de liaison (12) étant surmontée d’une ou plusieurs couches formant ensemble une structure de protection multifonctionnelle (13), caractérisée en ce que la couche de liaison (12) comporte à son interface avec la structure multifonctionnelle une couche (12) ou sous-couche en silice polycristalline.
2. Pièce selon la revendication 1 , caractérisée en ce que la couche ou sous- couche en silice polycristalline est à joints de grains dopés Hf et/ou Hf02 et/ou Phosphore.
3. Procédé de réalisation d’une pièce selon l’une des revendications précédentes, caractérisé en ce qu’on met en oeuvre les étapes suivantes :
- dépôt d’une couche de silicium sur la surface de la céramique ou du matériau composite à matrice céramique (étape 20),
- oxydation thermique (étape 21 )
- introduction de dopants (étape 22).
4. Procédé de réalisation d’une pièce selon l’une des revendications 1 ou 2, caractérisé en ce qu’on met en oeuvre les étapes suivantes :
- dépôt d’une première couche de silicium (étape 30) sur la surface de la céramique ou du matériau composite à matrice céramique,
- dépôt d’une deuxième couche de silicium, ladite couche étant une couche dopée (étape 31 ),
- oxydation thermique (étape 32).
5. Procédé selon la revendication 3 ou selon la revendication 4, caractérisé en ce que l’oxydation thermique est une oxydation sèche en présence d’oxygène.
6. Procédé selon la revendication 3 ou selon la revendication 4, caractérisé en ce que les dopants sont des dopants Hf et/ou Hf02 et/ou Phosphore.
7. Procédé selon la revendication 3, caractérisé en ce que l’étape d’introduction de dopants met en oeuvre une implantation ionique.
8. Dispositif aéronautique ou spatial (5) comportant au moins une pièce selon l’une des revendications 1 ou 2.
9. Turbomachine (5) comportant au moins une pièce selon l’une des revendications 1 ou 2.
EP20731919.5A 2019-05-03 2020-04-30 Pièce en céramique ou cmc à base de silicium et procédé de réalisation d'une telle pièce Pending EP3962879A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1904633A FR3095645B1 (fr) 2019-05-03 2019-05-03 Pièce en céramique ou CMC à base de silicium et procédé de réalisation d'une telle pièce
PCT/FR2020/050734 WO2020225508A1 (fr) 2019-05-03 2020-04-30 Pièce en céramique ou cmc à base de silicium et procédé de réalisation d'une telle pièce

Publications (1)

Publication Number Publication Date
EP3962879A1 true EP3962879A1 (fr) 2022-03-09

Family

ID=68654550

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20731919.5A Pending EP3962879A1 (fr) 2019-05-03 2020-04-30 Pièce en céramique ou cmc à base de silicium et procédé de réalisation d'une telle pièce

Country Status (5)

Country Link
US (1) US20220204415A1 (fr)
EP (1) EP3962879A1 (fr)
CN (1) CN113784938A (fr)
FR (1) FR3095645B1 (fr)
WO (1) WO2020225508A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3129394A1 (fr) * 2021-11-24 2023-05-26 Safran Ceramics Procédé de revêtement
CN115215668B (zh) * 2022-08-29 2023-05-12 广东省科学院新材料研究所 一种三明治结构抗高温水氧腐蚀纤维复合涂层及其制备方法与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442444B2 (en) * 2005-06-13 2008-10-28 General Electric Company Bond coat for silicon-containing substrate for EBC and processes for preparing same
US20070065672A1 (en) * 2005-09-19 2007-03-22 United Technologies Corporation Silicon based substrate with hafnium containing barrier layer
FR2944010B1 (fr) 2009-04-02 2012-07-06 Snecma Propulsion Solide Procede pour le lissage de la surface d'une piece en materiau cmc
FR2983193B1 (fr) 2011-11-30 2014-05-09 Snecma Propulsion Solide Procede de fabrication de piece en materiau cmc
US20140050930A1 (en) * 2012-08-16 2014-02-20 General Electric Company Creep-resistant environmental barrier coatings
CN109336647B (zh) * 2018-11-06 2020-12-29 航天特种材料及工艺技术研究所 一种用于陶瓷基复合材料的热/环境障涂层及其制备方法

Also Published As

Publication number Publication date
FR3095645A1 (fr) 2020-11-06
FR3095645B1 (fr) 2023-03-24
US20220204415A1 (en) 2022-06-30
WO2020225508A1 (fr) 2020-11-12
CN113784938A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
EP2104656B1 (fr) Piece en materiau composite a matrice ceramique contenant du silicium, protegee contre la corrosion
EP2002031B1 (fr) Piece en materiau composite a matrice ceramique contenant du silicium, protegee contre la corrosion
CA2913974C (fr) Barriere environnementale pour substrat refractaire contenant du silicium
EP3692011B1 (fr) Pièce protégée par une barrière environnementale
WO2020225508A1 (fr) Pièce en céramique ou cmc à base de silicium et procédé de réalisation d'une telle pièce
WO2018229406A1 (fr) Pièce de turbomachine revêtue et procédé de fabrication associé
EP3565796B1 (fr) Piece comprenant un substrat et une barriere environnementale
EP2882551B1 (fr) Revetement en materiau abradable a faible rugosite de surface
EP4115000B1 (fr) Procédé de revêtement d'une pièce en matériau composite à matrice céramique par une barrière environnementale
EP3701061B1 (fr) Piece comportant un revetement de protection a composition graduelle
FR3132107A1 (fr) Revêtements barrière environnementale.
FR3075692A1 (fr) Piece revetue d'une composition de protection contre les cmas a fissuration controlee, et procede de traitement correspondant
WO2023180672A1 (fr) Pièce en matériau cmc à barrière environnementale pré-fissurée pour l'accommodation thermomécanique.
EP4367084A1 (fr) Barriere environnementale pour un substrat comprenant du silicium libre
WO2023079230A1 (fr) Procede de depot d'une barriere environnementale sur une piece en materiau composite a matrice ceramique
WO2023094757A1 (fr) Procede de revetement
WO2024084163A1 (fr) Infiltration d'une structure fibreuse comprenant une couche anti-mouillante au silicium liquide
FR3139567A1 (fr) Procédé de fabrication d’une éprouvette de caractérisation
FR3133861A1 (fr) Particule coeur-écorce à fonction duale anti-corrosion et anti-CMAS
FR3141167A1 (fr) Procédé de fabrication d’une pièce en matériau composite à matrice céramique
FR3141171A1 (fr) Procédé de fabrication d’une pièce en matériau composite à matrice céramique
FR3070400A1 (fr) Couche protectrice resistante aux materiaux du type cmas
FR3009314A1 (fr) Revetement anti-cmas pour barriere thermique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211028

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)