WO2023180672A1 - Pièce en matériau cmc à barrière environnementale pré-fissurée pour l'accommodation thermomécanique. - Google Patents

Pièce en matériau cmc à barrière environnementale pré-fissurée pour l'accommodation thermomécanique. Download PDF

Info

Publication number
WO2023180672A1
WO2023180672A1 PCT/FR2023/050418 FR2023050418W WO2023180672A1 WO 2023180672 A1 WO2023180672 A1 WO 2023180672A1 FR 2023050418 W FR2023050418 W FR 2023050418W WO 2023180672 A1 WO2023180672 A1 WO 2023180672A1
Authority
WO
WIPO (PCT)
Prior art keywords
environmental barrier
layer
barrier layer
cracks
region
Prior art date
Application number
PCT/FR2023/050418
Other languages
English (en)
Inventor
Eric Bouillon
Benjamin COSSOU
Simon ARNAL
Lisa PIN
Arthur DERRIEN
Sylvain Lucien JACQUES
Original Assignee
Safran Ceramics
Centre National De La Recherche Scientifique
Universite de Bordeaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Ceramics, Centre National De La Recherche Scientifique, Universite de Bordeaux filed Critical Safran Ceramics
Publication of WO2023180672A1 publication Critical patent/WO2023180672A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/286Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced

Definitions

  • a particular field of application of the invention is the protection of composite materials with at least partially ceramic matrix ("CMC materials") forming hot parts of gas turbines, such as combustion chamber walls, or rings.
  • CMC materials ceramic matrix
  • CMC materials are known to possess both good mechanical properties allowing their use for structural elements and the ability to maintain these properties at high temperatures. Due to their better resistance to high temperatures, CMC materials require less cooling. This cooling traditionally comes from a sample in the compressor which impacts the efficiency of the turbomachine, CMC materials therefore make it possible to improve engine efficiency which reduces fuel consumption. Furthermore, their use contributes to optimizing the performance of turbomachines, in particular by reducing the overall mass of the turbomachine, which further contributes to a reduction in fuel consumption and therefore to a significant reduction in polluting emissions.
  • CMC materials can include a fibrous reinforcement made of refractory fibers, typically carbon or ceramic, which is densified by a ceramic matrix, for example silicon carbide.
  • CMC materials are sensitive to the phenomenon of corrosion. Corrosion of CMC results from the oxidation of silicon carbide to silica which, in the presence of water vapor, volatilizes in the form of silicon hydroxides Si(OH) 4 . Corrosion phenomena cause a recession of the CMC and affect its lifespan. In order to limit this degradation in operation, it was envisaged to form environmental barriers (“Environmental Barrier Coating”; “EBC”) on the surface of the CMC materials.
  • EBC Environmental Barrier Coating
  • the environmental barriers may include a silicon bond layer as well as a rare earth silicate layer positioned over the bond layer.
  • the bonding layer makes it possible, on the one hand, to improve the adhesion of the rare earth silicate layer and, on the other hand, to form a protective silica layer, whose low permeability to oxygen contributes to protection of the CMC against oxidation.
  • the rare earth silicate layer makes it possible to limit the diffusion of water vapor towards the silica layer formed by oxidation of the silicon and consequently to limit the recession of the latter.
  • the invention relates to a coated part intended to be mounted in a turbomachine, comprising:
  • an environmental barrier on the substrate comprising: (i) an adhesion layer comprising silicon present on a surface of the substrate, and (ii) an environmental barrier layer covering the adhesion layer, said environmental barrier layer comprising an internal barrier region to uncracked oxidizing and corrosive species and located on the side of the bonding layer, and an external region, opposite the bonding layer and covering the internal region, presenting a network of thermomechanical adaptation cracks having a distance between adjacent cracks of between 10 pm and 50 pm and the cracks of which extend over a depth of between 50% and 95% of a thickness of said environmental barrier layer.
  • the inventors have noted that the environmental barriers of the prior art can exhibit uncontrolled cracking during operation which can be explained by the fact that the barrier is initially, from its manufacture, in compression. This compressive stress relaxes through creep when subjected to the high temperatures encountered in operation, which then results in cracking upon cooling due to a return to a tensile field. This cracking can reach the bonding layer, which leads to uncontrolled growth of the protective silica layer which can lead to flaking of the environmental barrier by increasing localized stresses at the interface of the bonding layer with the environmental barrier layer.
  • thermomechanical adaptation crack network makes it possible to avoid uncontrolled cracking of the barrier by dissipation of energy via the pre-existing crack network, while maintaining an uncracked internal region conferring the desired seal to oxidizing and corrosive species in order to to control the growth of the protective silica layer and avoid flaking.
  • the distance between adjacent cracks of the thermomechanical adaptation crack network is between 15 pm and 30 pm.
  • Such a characteristic contributes to further improving the accommodation of thermomechanical constraints in operation.
  • the cracks of the thermomechanical adaptation crack network extend over a depth of between 75% and 90% of the thickness of said environmental barrier layer. Such a characteristic contributes to further improving the accommodation of thermomechanical constraints in operation, while conferring optimal sealing against oxidizing and corrosive species, ensured by the internal region.
  • the environmental barrier layer comprises a silicate of at least one rare earth, in particular the environmental barrier layer may comprise a yttrium disilicate, an ytterbium disilicate, or a mixture of these two compounds. .
  • the environmental barrier layer comprises mullite.
  • the part further comprises an additional coating located on the external region of the environmental barrier layer, said additional coating being a thermal barrier with a thickness greater than or equal to 100 ⁇ m, or a protective layer against calcium and magnesium aluminosilicates with a thickness greater than or equal to 50 pm.
  • Such a characteristic advantageously makes it possible to further functionalize the protective coating and thus improve the protection conferred.
  • the internal region and the external region of the environmental barrier layer are made of the same material.
  • Such a characteristic advantageously makes it possible to optimize the thermomechanical compatibility between the two regions and therefore to optimize the control of the pre-cracking of the environmental barrier.
  • the internal region and the external region of the environmental barrier layer may be made of yttrium disilicate, ytterbium disilicate, or a mixture of these two compounds.
  • Figure 1 represents, schematically and partially, an example of a coated part according to the invention.
  • Figure 2 represents, schematically and partially, a precursor deposit of the environmental barrier layer of the part of Figure 1.
  • Figure 3 represents, schematically and partially, the effect of a thermal cracking treatment on the precursor deposit of Figure 2.
  • Figure 4 is a snapshot of an example of an environmental barrier layer usable in the context of the invention obtained after cracking treatment of a precursor deposit.
  • Figure 1 shows an example of part 1 comprising a 3 CMC material provided with an environmental barrier 12.
  • the 3 CMC material may comprise a fibrous reinforcement which may be made of carbon fibers (C) or of ceramic fibers, for example fibers of silicon carbide (SiC) or formed essentially of SiC, including fibers made of Si-C-0 or Si-CON, that is to say also containing oxygen and possibly nitrogen.
  • Such fibers are produced by the company NGS under the reference “Nicalon” or “Hi-Nicalon” or “Hi-Nicalon Type-S”, or by the company Ube Industries under the reference “Tyranno-ZMI”.
  • Ceramic fibers can be coated with a thin interphase layer of pyrolytic carbon (PyC), boron nitride (BN) or boron-doped carbon (BC, with 5 at.% to 20 at.% of B, the complement being C).
  • the fibrous reinforcement is densified by a matrix that is at least partially ceramic, for example predominantly ceramic in volume.
  • the ceramic matrix may comprise silicon carbide or a ternary Si-BC system, for example.
  • the matrix can be at least partly formed by CVI in a manner known per se.
  • the matrix can be at least partly formed by liquid means (impregnation with a precursor resin of the matrix and transformation by crosslinking and pyrolysis, the process being able to be repeated) or by infiltration of silicon in the molten state (process of “Melt-Infiltration”).
  • a powder is introduced into the possibly partially densified fibrous reinforcement, this powder possibly being a carbon or ceramic powder, for example silicon carbide, or a mixture of such powders, and a metallic composition based on silicon. in the molten state is then infiltrated to form a SiC-Si type matrix.
  • the fibrous reinforcement can be woven or not, we do not depart from the scope of the invention when the fibrous reinforcement is in the form of fibers short particles dispersed in the material 3.
  • particulate reinforcement may be used in the form of grains dispersed in the material 3.
  • the environmental barrier 12 can be formed on the entire external surface S of the material 3 CMC or on only part of this surface S, for example when only part of the surface S must be protected.
  • the environmental barrier 12 comprises an attachment layer 5 and an environmental barrier layer 7 covering the attachment layer 5.
  • the attachment layer 5 is present in contact with the surface S of the composite material 3
  • layer 7 is in contact with bonding layer 5.
  • the bonding layer 5 can, in a manner known per se, form in operation a protective silica layer against oxidation (so-called “TGO” layer for “Thermally Grown Oxide”).
  • the bonding layer 5 can be made of silicon.
  • Layer 7 provides protection against oxidation and corrosion at high temperatures by limiting in particular the diffusion of water vapor and oxygen towards the bonding layer 5 and the CMC material 3.
  • Layer 7 may comprise a rare earth silicate, for example a rare earth monosilicate and/or a rare earth disilicate.
  • Layer 7 may include at least one rare earth element chosen from yttrium Y, scandium Sc and lanthanides.
  • the rare earth element can be chosen from yttrium Y and ytterbium Yb. It will be noted that we do not depart from the scope of the invention if layer 7 comprises several rare earth elements, for example yttrium and ytterbium.
  • Figure 1 represents an environmental barrier layer 7 which comprises an internal region 73 which is not cracked and located on the side of the bonding layer 5.
  • the internal region 73 provides impermeability to oxidizing and corrosive species. Region 73 may be located in contact with the bonding layer 5.
  • Layer 7 further comprises an external region 71, opposite the bonding layer 5, and presenting a network of cracks 75 for thermomechanical adaptation. Region 73 and region 71 can be made of the same material, for example yttrium disilicate, ytterbium disilicate, or a mixture of these two compounds. Details relating to the formation of environmental barrier 12 will be described below.
  • the external region 71 covers the internal region 73.
  • the cracks 75 extend over the entire thickness of region 71 up to region 73 which is not cracked.
  • the network of cracks 75 can extend over the entire surface of the region 71.
  • the network of cracks 75 has a controlled distance d between adjacent cracks of between 10 pm and 50 pm, preferably between 15 pm and 30 pm.
  • the average distance between adjacent cracks 75 is between 10 pm and 50 pm, preferably between 15 pm and 30 pm.
  • the distance d between adjacent cracks can be regular on layer 7 and correspond to a cracking step.
  • this distance d can be variable between different pairs of adjacent cracks while always being between 10 pm and 50 pm, preferably between 15 pm and 30 pm, for all of the cracks 75 present.
  • all of the distances d between adjacent cracks can be between m/2 and 2m, where m designates the average distance between adjacent cracks 75.
  • the cracks 75 can each extend over a depth p75 of between 50% and 95%, preferably between 75% and 90%, of the thickness e7 of the environmental barrier layer 7.
  • the cracks 75 do not reach the bonding layer 5 and make it possible to preserve the internal sealing region 73 in order to control the growth of the protective silica layer in operation, and avoid flaking.
  • the thickness e 7 of layer 7 may be greater than or equal to 50 pm, for example greater than or equal to 200 pm, for example greater than or equal to 250 pm.
  • This thickness e 7 can be between 50 pm and 1000 pm, for example between 200 pm and 1000 pm or between 250 pm and 1000 pm, for example between 200 pm and 700 pm or between 250 pm and 700 pm.
  • the thickness e73 of the internal sealing region 73 can be between 1 pm and 10 pm, for example between 2 pm and 5 pm.
  • an additional coating for thermal barrier or protection against CMAS can be deposited on region 71, in a manner known per se, or region 71 can define an external surface of the coated part 1.
  • the bonding layer 5 can be formed by chemical vapor deposition from a precursor comprising silicon comprising for example a silane, a monochlorosilane, a dichlorosilane, and/or a trichlorosilane. Two examples of formation of the bonding layer 5 by chemical vapor deposition are described below.
  • the temperature imposed during the deposition of the bonding layer 5 can be between 900°C and 1150°C, for example between 1100°C and 1150°C, and the pressure imposed during this deposition can be between 15.3 kPa and 20 kPa, for example between 16.7 kPa and 18 kPa.
  • the precursor comprising silicon can be introduced into the reaction chamber in which the material 3 CMC is present with a flow rate of between 0.05 gram/minute and 0.3 gram/minute, for example between 0.1 gram /minute and 0.2 grams/minute.
  • the bonding layer 5 obtained has a crystalline microstructure.
  • the bonding layer 5 can be made of silicon, this bonding layer 5 comprising for example columnar grains of crystalline silicon.
  • the bonding layer 5 can be made of silicon alloy, for example of a eutectic silicon alloy or of silicide.
  • the bonding layer 5 comprises an amorphous silicon phase having grains of crystalline silicon distributed inside, these grains being able to have an average size of between 0.03 pm and 3 pm.
  • the amorphous silicon phase may be formed from pure silicon or silicon with boron, oxygen and/or nitrogen dispersed therein.
  • the bonding layer 5 can be formed at a deposition temperature which prevents the crystallization of the deposited silicon, followed by a heat treatment of the bonding layer at a treatment temperature higher than the temperature imposed during of the deposition in order to form the crystalline silicon grains distributed in the amorphous silicon phase.
  • the temperature imposed during deposition can be between 300°C and 700°C or between 700°C and 1000°C, and the pressure imposed during deposition can be between 1.2 kPa and 1013 hPa.
  • the operating conditions are chosen depending on the precursor used.
  • the treatment temperature can be between 1000°C and 1400°C, for example between 1200°C and 1350°C.
  • the precursor comprising silicon can be introduced into the reaction chamber in which the material 3 CMC is present with a flow rate of between 0.1 gram/minute and 2 gram/minute.
  • the bonding layer 5 can be formed by other techniques.
  • the environmental barrier layer 7 can be formed by implementing the following steps:
  • step (b) cracking treatment of the precursor layer deposited in step (a) by subjecting it to a temperature of between 1250°C and 1350°C for a period of between 5 hours and 50 hours, for example between 10 hours and 50 hours .
  • the deposit of the precursor layer produced during step (a) may comprise a silicate of at least one rare earth and is formed at least from an alkoxysilane silicon oxide precursor and a rare earth oxide precursor rare earth beta-diketonate in the presence of a gaseous source providing oxygen.
  • the silicon oxide precursor may be di-t-butoxydiacetoxysilane and the rare earth oxide precursor RE(thd) 3 , where RE designates a rare earth element and the group (thd) designates 2, 2,6,6-tetramethyl-3,5-heptanedionate, the rare earth oxide precursor being for example Y(thd) 3 (CAS no. 15632-39-0).
  • the gaseous source providing oxygen may comprise at least one of the following gases: O 2 , N 2 O, H 2 O, CO 2 , O 3 .
  • the temperature imposed during step (a) can be between 1000°C and 1250°C.
  • the cracking treatment of step (b) can be carried out under an oxidizing atmosphere, for example under air.
  • Figures 2 and 3 represent, schematically, the deposit obtained after steps (a) and (b) respectively.
  • the deposit 700 has a growth cone microstructure with a first portion 701 located on the side of the bonding layer 5 formed by first contiguous growth cones having a first average size, and a second portion 702 formed by second growth cones having a second average size, greater than the first average size, and having a lower compactness than the first cones of growth.
  • step (b) we obtain the structure illustrated in Figure 3 with preferential cracking at the junctions of the growth cones 702 while guaranteeing the sealing of the coating at the interface with the bonding layer 5 by the presence of the uncracked internal region 73 obtained from the cones 701.
  • the heat treatment of step (b) can cause sintering of the coating, which leads to the coalescence of the growth cones 701 of smaller size but more large number in the area close to the interface with the bonding layer 5, thus leading to the formation of a sealed region 73.
  • step (b) can also cause volume contraction, for example of the made of a transition between the alpha phase and the beta phase of yttrium disilicate in the case where it is used, which results in preferential cracking at the junctions of the growth cones 702.
  • the part 1 thus manufactured can be a part for aeronautical or aerospace application.
  • Part 1 may be a hot part part of a gas turbine of an aeronautical or aerospace engine or of an industrial turbine.
  • Part 1 can be a turbomachine part.
  • Part 1 may constitute at least part of a distributor, at least part of a nozzle or a thermal protection coating, a wall of a combustion chamber, a turbine ring sector or a blade of turbomachine.
  • part 1 is mounted and assembled with the other elements of the turbomachine with a view to being used at high temperature, greater than or equal to 800°C, in an oxidizing and corrosive atmosphere. It can, in particular, be used at a temperature between 800°C and 1500°C, or even between 800°C and 1300°C. Part 1 can, in particular, be used in humid air.
  • a precursor deposition was carried out in a chemical vapor deposition reactor of organometallic compound(s) by direct liquid injection (“DLI-MOCVD”) with hot walls, from a solution of di-t- butoxydiacetoxy silane (DADBS) and tris(2,2,6,6-tetramethyl-3,5-heptanedionato) yttrium (Y(thd) 3 ), diluted in toluene.
  • the precursors are injected and vaporized using a thermostatically controlled direct liquid injection system marketed under the reference Vapbox 300 by the company KEMSTREAM, using car engine type injectors to form an aerosol.
  • the precursor deposit was heat treated for 5 hours at 1350°C in air. During this heat treatment, the deposit moved from the alpha phase in the precursor deposit to the beta phase, causing regular microcracking of the upper part of the coating. Details of the development conditions are provided below:
  • the coating obtained successfully passed 1500 hours of corrosion testing, without degradation.
  • the interface with the bonding layer did not change during the corrosion test. This result confirms that the small thickness of the waterproof part of the environmental barrier is sufficient to ensure resistance to chipping. Furthermore, the pre-cracking network is quite well repeatable.
  • - evaporation temperature of the precursors 170°C to 250°C, - potentially also applicable in a reactor in cold wall configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

La présente invention concerne une pièce (1) revêtue destinée à être montée dans une turbomachine, comprenant : - un substrat (3) en matériau composite à matrice au moins partiellement en céramique, et - une barrière environnementale (12) sur le substrat et comprenant : (i) une couche (5) d'accrochage comprenant du silicium présente sur une surface du substrat, et (ii) une couche (7) de barrière environnementale recouvrant la couche d'accrochage, ladite couche de barrière environnementale comprenant une région interne (73) de barrière aux espèces oxydantes et corrosives non fissurée et située du côté de la couche d'accrochage, et une région externe (71), opposée à la couche d'accrochage et recouvrant la région interne, présentant un réseau de fissures (75) d'adaptation thermomécanique ayant une distance (d) entre fissures adjacentes comprise entre 10 µm et 50 µm et dont les fissures s'étendent sur une profondeur (p75) comprise entre 50% et 95% d'une épaisseur (e7) de ladite couche de barrière environnementale.

Description

Description Titre de l'invention : Pièce en matériau CMC à barrière environnementale pré-fissurée pour l'accommodation thermomécanique
Domaine Technique
Un domaine particulier d'application de l'invention est la protection de matériaux composites à matrice au moins partiellement en céramique (« matériaux CMC ») formant des parties chaudes de turbines à gaz, telles que des parois de chambre de combustion, ou des anneaux de turbine, des distributeurs de turbine ou des aubes de turbines, pour des moteurs aéronautiques ou des turbines industrielles.
Technique antérieure
L'amélioration du rendement et la réduction des émissions polluantes conduit à envisager des températures toujours plus élevées dans turbines à gaz.
Il a donc été proposé de remplacer les matériaux métalliques par des matériaux CMC, notamment pour des parois de chambres de combustion ou anneaux de turbine. En effet, les matériaux CMC sont connus pour posséder à la fois de bonnes propriétés mécaniques permettant leur utilisation pour des éléments de structure et la capacité de conserver ces propriétés à des températures élevées. De par leur meilleure résistance aux hautes températures, les matériaux CMC nécessitent moins de refroidissement. Ce refroidissement étant traditionnellement issu d'un prélèvement dans le compresseur qui impacte le rendement de la turbomachine, les matériaux CMC permettent donc d'améliorer le rendement moteur ce qui réduit la consommation de carburant. Par ailleurs, leur utilisation contribue à optimiser les performances des turbomachines notamment par la baisse de la masse globale de la turbomachine qui contribue encore à une diminution de la consommation carburant et donc à la réduction significative des émissions polluantes.
Les matériaux CMC peuvent comporter un renfort fibreux en fibres réfractaires, typiquement en carbone ou en céramique, qui est densifié par une matrice céramique, par exemple en carbure de silicium. Dans les conditions de fonctionnement des turbines aéronautiques, c'est-à-dire à haute température sous atmosphère oxydante et humide, les matériaux CMC sont sensibles au phénomène de corrosion. La corrosion du CMC résulte de l'oxydation du carbure de silicium en silice qui, en présence de vapeur de d'eau, se volatilise sous forme d'hydroxydes de silicium Si(OH)4. Les phénomènes de corrosion entraînent une récession du CMC et affectent la durée de vie de ce dernier. Afin de limiter cette dégradation en fonctionnement, il a été envisagé de former à la surface des matériaux CMC des barrières environnementales (« Environmental Barrier Coating » ; « EBC »). Les barrières environnementales peuvent comporter une couche de liaison en silicium ainsi qu'une couche de silicate de terre rare positionnée sur la couche de liaison. La couche de liaison permet, d'une part, d'améliorer l'accroche de la couche de silicate de terre rare et, d'autre part, de former une couche de silice protectrice, dont la faible perméabilité à l'oxygène participe à la protection du CMC contre l'oxydation. La couche de silicate de terre rare permet, quant à elle, de limiter la diffusion de la vapeur d'eau vers la couche de silice formée par oxydation du silicium et par conséquent de limiter la récession de celle-ci.
Il reste néanmoins souhaitable d'améliorer encore la protection des matériaux CMC en milieu oxydant et corrosif à haute température, notamment supérieure ou égale à 800°C.
Exposé de l'invention
L'invention concerne une pièce revêtue destinée à être montée dans une turbomachine, comprenant :
- un substrat en matériau composite à matrice au moins partiellement en céramique, et
- une barrière environnementale sur le substrat et comprenant : (i) une couche d'accrochage comprenant du silicium présente sur une surface du substrat, et (ii) une couche de barrière environnementale recouvrant la couche d'accrochage, ladite couche de barrière environnementale comprenant une région interne de barrière aux espèces oxydantes et corrosives non fissurée et située du côté de la couche d'accrochage, et une région externe, opposée à la couche d'accrochage et recouvrant la région interne, présentant un réseau de fissures d'adaptation thermomécanique ayant une distance entre fissures adjacentes comprise entre 10 pm et 50 pm et dont les fissures s'étendent sur une profondeur comprise entre 50% et 95% d'une épaisseur de ladite couche de barrière environnementale.
Les inventeurs ont constaté que les barrières environnementales de l'art antérieur peuvent présenter une fissuration non contrôlée lors du fonctionnement qui s'explique par le fait que la barrière est initialement, dès sa fabrication, en compression. Cette contrainte de compression relaxe par fluage lors de la soumission aux hautes températures rencontrées en fonctionnement, ce qui aboutit ensuite à une fissuration lors du refroidissement du fait d'un retour vers un champ de traction. Cette fissuration peut atteindre la couche d'accrochage, ce qui conduit à une croissance non maîtrisée de la couche de silice protectrice qui peut aboutir à un écaillage de la barrière environnementale par accroissement de contraintes localisées à l'interface de la couche d'accrochage avec la couche de barrière environnementale. De manière remarquable, les inventeurs ont constaté que l'emploi d'une barrière environnementale, pré-fissurée de manière contrôlée avant sa première utilisation avec une distance maîtrisée entre fissures adjacentes et une profondeur contrôlée de fissuration, permet d'accommoder favorablement les contraintes thermomécaniques en fonctionnement. Le réseau de fissures d'adaptation thermomécanique permet d'éviter une fissuration non maîtrisée de la barrière par dissipation d'énergie via le réseau de fissures préexistant, tout en conservant une région interne non fissurée conférant l'étanchéité souhaitée aux espèces oxydantes et corrosives afin de maîtriser la croissance de la couche de silice protectrice et éviter l'écaillage.
Dans un exemple de réalisation, la distance entre fissures adjacentes du réseau de fissures d'adaptation thermomécanique est comprise entre 15 pm et 30 pm.
Une telle caractéristique participe à améliorer davantage encore l'accommodation des contraintes thermomécaniques en fonctionnement.
Dans un exemple de réalisation, les fissures du réseau de fissures d'adaptation thermomécanique s'étendent sur une profondeur comprise entre 75% et 90% de l'épaisseur de ladite couche de barrière environnementale. Une telle caractéristique participe à améliorer davantage encore l'accommodation des contraintes thermomécaniques en fonctionnement, tout en conférant une étanchéité aux espèces oxydantes et corrosives optimales, assurée par la région interne.
Dans un exemple de réalisation, la couche de barrière environnementale comprend un silicate d'au moins une terre rare, en particulier la couche de barrière environnementale peut comprendre un disilicate d'yttrium, un disilicate d'ytterbium, ou un mélange de ces deux composés. Selon une variante, la couche de barrière environnementale comprend de la mullite.
Dans un exemple de réalisation, la pièce comprend en outre un revêtement supplémentaire située sur la région externe de la couche de barrière environnementale, ledit revêtement supplémentaire étant une barrière thermique d'épaisseur supérieure ou égale à 100 pm, ou une couche de protection contre les aluminosilicates de calcium et de magnésium d'épaisseur supérieure ou égale à 50 pm.
Une telle caractéristique permet avantageusement de fonctionnaliser davantage le revêtement protecteur et améliorer ainsi la protection conférée.
Dans un exemple de réalisation, la région interne et la région externe de la couche de barrière environnementale sont en un même matériau.
Une telle caractéristique permet avantageusement d'optimiser la compatibilité thermomécanique entre les deux régions et donc d'optimiser le contrôle de la préfissuration de la barrière environnementale.
En particulier, la région interne et la région externe de la couche de barrière environnementale peuvent être en disilicate d'yttrium, en disilicate d'ytterbium, ou en un mélange de ces deux composés.
Brève description des dessins
[Fig. 1] La figure 1 représente, de manière schématique et partielle, un exemple de pièce revêtue selon l'invention.
[Fig. 2] La figure 2 représente, de manière schématique et partielle, un dépôt précurseur de la couche de barrière environnementale de la pièce de la figure 1. [Fig. 3] La figure 3 représente, de manière schématique et partielle, l'effet d'un traitement thermique de fissuration sur le dépôt précurseur de la figure 2.
[Fig. 4] La figure 4 est un cliché d'un exemple de couche de barrière environnementale utilisable dans le cadre de l'invention obtenue après traitement de fissuration d'un dépôt précurseur.
Description des modes de réalisation
La figure 1 montre un exemple de pièce 1 comprenant un matériau 3 CMC muni d'une barrière environnementale 12. Le matériau 3 CMC peut comprendre un renfort fibreux qui peut être en fibres de carbone (C) ou en fibres céramiques, par exemple en fibres de carbure de silicium (SiC) ou formées essentiellement de SiC, incluant des fibres en Si-C-0 ou Si-C-O-N, c'est-à-dire contenant aussi de l'oxygène et éventuellement de l'azote. De telles fibres sont produites par la société NGS sous la référence « Nicalon » ou « Hi-Nicalon » ou « Hi-Nicalon Type-S », ou par la société Ube Industries sous la référence « Tyranno-ZMI ». Les fibres céramiques peuvent être revêtues d'une mince couche d'interphase en carbone pyrolytique (PyC), en nitrure de bore (BN) ou en carbone dopé au bore (BC, avec 5%at. à 20%at. de B, le complément étant C). Le renfort fibreux est densifié par une matrice au moins partiellement céramique, par exemple majoritairement en volume en céramique. La matrice céramique peut comprendre du carbure de silicium ou un système ternaire Si-B-C, par exemple. La matrice peut être au moins en partie formée par CVI de manière connue en soi. En variante, la matrice peut être au moins en partie formée par voie liquide (imprégnation par une résine précurseur de la matrice et transformation par réticulation et pyrolyse, le processus pouvant être répété) ou par infiltration de silicium à l'état fondu (procédé de « Melt-Infiltration »). Dans ce dernier cas, une poudre est introduite dans le renfort fibreux éventuellement partiellement densifié, cette poudre pouvant être une poudre de carbone, de céramique par exemple de carbure de silicium, ou un mélange de telles poudres, et une composition métallique à base de silicium à l'état fondu est ensuite infiltrée pour former une matrice de type SiC-Si. Le renfort fibreux peut être tissé ou non, on ne sort pas du cadre de l'invention lorsque le renfort fibreux est sous la forme de fibres courtes dispersées dans le matériau 3. On peut en variante utiliser un renfort particulaire sous la forme de grains dispersés dans le matériau 3.
La barrière environnementale 12 peut être formée sur toute la surface externe S du matériau 3 CMC ou sur une partie seulement de cette surface S, par exemple lorsque seulement une partie de la surface S doit être protégée. La barrière environnementale 12 comprend une couche d'accrochage 5 et une couche 7 de barrière environnementale recouvrant la couche d'accrochage 5. Dans l'exemple illustré, la couche 5 d'accrochage est présente au contact de la surface S du matériau composite 3. En outre, dans cet exemple, la couche 7 est au contact de la couche 5 d'accrochage. La couche 5 d'accrochage peut de manière connue en soi former en fonctionnement une couche de silice protectrice contre l'oxydation (couche dite de « TGO » pour « Thermally Grown Oxide »). La couche 5 d'accrochage peut être en silicium.
La couche 7 apporte une protection contre l'oxydation et la corrosion à haute température en limitant notamment la diffusion de la vapeur d'eau et de l'oxygène vers la couche 5 d'accrochage et le matériau 3 CMC. La couche 7 peut comporter un silicate de terre rare par exemple un monosilicate de terre rare et/ou un disilicate de terre rare. La couche 7 peut comporter au moins un élément terre rare choisi parmi l'yttrium Y, le scandium Sc et les lanthanides. En particulier, l'élément terre rare peut être choisi parmi l'yttrium Y et l'ytterbium Yb. On notera que l'on ne sort pas du cadre de l'invention si la couche 7 comprend plusieurs éléments terres rares, par exemple de l'yttrium et de l'ytterbium.
La figure 1 représente une couche 7 de barrière environnementale qui comprend une région interne 73 non fissurée et située du côté de la couche d'accrochage 5. La région interne 73 confère une étanchéité aux espèces oxydantes et corrosives. La région 73 peut être située au contact de la couche d'accrochage 5. La couche 7 comprend en outre une région externe 71, opposée à la couche d'accrochage 5, et présentant un réseau de fissures 75 d'adaptation thermomécanique. La région 73 et la région 71 peuvent être en un même matériau, par exemple en disilicate d'yttrium, en disilicate d'ytterbium, ou en un mélange de ces deux composés. Des détails relatifs à la formation de la barrière environnementale 12 seront décrits dans la suite. La région externe 71 recouvre la région interne 73. Les fissures 75 s'étendent sur toute l'épaisseur de la région 71 jusqu'à la région 73 qui elle n'est pas fissurée. Le réseau de fissures 75 peut s'étendre sur toute la superficie de la région 71. Le réseau de fissures 75 présente une distance d maîtrisée entre fissures adjacentes comprise entre 10 pm et 50 pm, de préférence entre 15 pm et 30 pm. En particulier, la distance moyenne entre fissures 75 adjacentes est comprise entre 10 pm et 50 pm, de préférence entre 15 pm et 30 pm. D'une manière générale, la distance d entre fissures adjacentes peut être régulière sur la couche 7 et correspondre à un pas de fissuration. En variante, cette distance d peut être variable entre différents couples de fissures adjacentes en étant toujours comprise entre 10 pm et 50 pm, de préférence entre 15 pm et 30 pm, pour l'ensemble des fissures 75 présentes. Selon un exemple, l'ensemble des distances d entre fissures adjacentes peut être compris entre m/2 et 2m, où m désigne la distance moyenne entre fissures 75 adjacentes. Les fissures 75 peuvent s'étendre chacune sur une profondeur p75 comprise entre 50% et 95%, de préférence entre 75% et 90%, de l'épaisseur e7 de la couche 7 de barrière environnementale. Les fissures 75 n'atteignent pas la couche d'accrochage 5 et permettent de conserver la région interne 73 d'étanchéité afin de maîtriser la croissance de la couche de silice protectrice en fonctionnement, et éviter l'écaillage. L'épaisseur e7 de la couche 7 peut être supérieure ou égale à 50 pm, par exemple supérieure ou égale à 200 pm, par exemple supérieure ou égale à 250 pm. Cette épaisseur e7 peut être comprise entre 50 pm et 1000 pm, par exemple entre 200 pm et 1000 pm ou entre 250 pm et 1000 pm, par exemple entre 200 pm et 700 pm ou entre 250 pm et 700 pm. D'une manière générale, l'épaisseur e73 de la région interne 73 d'étanchéité peut être comprise entre 1 pm et 10 pm, par exemple entre 2 pm et 5 pm. Si cela est souhaité, on peut déposer, sur la région 71, un revêtement supplémentaire de barrière thermique ou de protection contre les CMAS, de manière connue en soi, ou la région 71 peut définir une surface externe de la pièce 1 revêtue.
On va maintenant décrire des détails relatifs à la fabrication du revêtement sur le matériau 3 CMC, en particulier concernant la formation de la couche 5 d'accrochage et de la couche 7 de barrière environnementale. La couche 5 d'accrochage peut être formée par dépôt chimique en phase vapeur à partir d'un précurseur comprenant du silicium comprenant par exemple un silane, un monochlorosilane, un dichlorosilane, et/ou un trichlorosilane. Deux exemples de formation de la couche 5 d'accrochage par dépôt chimique en phase vapeur sont décrits ci-dessous.
Selon un premier exemple, la température imposée durant le dépôt de la couche 5 d'accrochage peut être comprise entre 900°C et 1150°C, par exemple entre 1100°C et 1150°C, et la pression imposée lors de ce dépôt peut être comprise entre 15,3 kPa et 20 kPa, par exemple entre 16,7 kPa et 18 kPa. Lors du dépôt, le précurseur comprenant du silicium peut être introduit dans la chambre réactionnelle dans laquelle le matériau 3 CMC est présent avec un débit compris entre 0,05 gramme/minute et 0,3 gramme/minute, par exemple entre 0,1 gramme/minute et 0,2 gramme/minute. Selon ce premier exemple, la couche 5 d'accrochage obtenue a une microstructure cristalline. En particulier, la couche 5 d'accrochage peut être en silicium, cette couche 5 d'accrochage comprenant par exemple des grains colonnaires de silicium cristallin. En variante, la couche 5 d'accrochage peut être en alliage de silicium, par exemple en alliage eutectique de silicium ou en siliciure. Selon un deuxième exemple, la couche 5 d'accrochage comprend une phase de silicium amorphe ayant des grains de silicium cristallin distribués à l'intérieur, ces grains pouvant avoir une taille moyenne comprise entre 0,03 pm et 3 pm. La phase de silicium amorphe peut être formée de silicium pur ou de silicium avec du bore, de l'oxygène et/ou de l'azote dispersés à l'intérieur. Selon ce deuxième exemple, la couche 5 d'accrochage peut être formée à une température de dépôt qui empêche la cristallisation du silicium déposé, suivi d'un traitement thermique de la couche d'accrochage à une température de traitement supérieure à la température imposée lors du dépôt afin de former les grains de silicium cristallin distribués dans la phase de silicium amorphe. La température imposée lors du dépôt peut être comprise entre 300°C et 700°C ou entre 700°C et 1000°C, et la pression imposée lors du dépôt peut être comprise entre 1,2 kPa et 1 013 hPa. Les conditions opératoires sont choisies en fonction du précurseur utilisé. La température de traitement peut être comprise entre 1000°C et 1400°C, par exemple entre 1200°C et 1350°C. Lors du dépôt, le précurseur comprenant du silicium peut être introduit dans la chambre réactionnelle dans laquelle le matériau 3 CMC est présent avec un débit compris entre 0,1 gramme/minute et 2 gramme/minute. L'homme du métier reconnaîtra que la couche 5 d'accrochage peut être formée par d'autres techniques.
D'une manière générale, la couche 7 de barrière environnementale peut être formée par mise en oeuvre des étapes suivantes :
(a) dépôt d'une couche précurseur par dépôt chimique en phase vapeur de composé(s) organométallique(s) (« Metal Organic Chemical Vapor Deposition » ; « MOCVD »), éventuellement par dépôt chimique en phase vapeur de composé(s) organométallique(s) par injection directe liquide (« DLI-MOCVD »), puis
(b) traitement de fissuration de la couche précurseur déposée à l'étape (a) par soumission à température comprise entre 1250°C et 1350°C pendant une durée comprise entre 5 heures et 50 heures, par exemple entre 10 heures et 50 heures. Selon un exemple, le dépôt de la couche précurseur réalisé lors de l'étape (a) peut comprendre un silicate d'au moins une terre rare et est formé au moins à partir d'un précurseur d'oxyde de silicium alcoxysilane et d'un précurseur d'oxyde de terre rare béta-dicétonate de terre rare en présence d'une source gazeuse apporteuse d'oxygène. En particulier, le précurseur d'oxyde de silicium peut être le di-t- butoxydiacétoxysilane et le précurseur d'oxyde de terre rare RE(thd)3, où RE désigne un élément terre rare et le groupement (thd) désigne le 2,2,6,6-tetraméthyl-3,5- heptanedionate, le précurseur d'oxyde de terre rare étant par exemple Y(thd)3 (CAS n° 15632-39-0). La source gazeuse apporteuse d'oxygène peut comporter l'un au moins des gaz suivants : O2, N2O, H2O, CO2, O3. La température imposée lors de l'étape (a) peut être comprise entre 1000°C et 1250°C. Le traitement de fissuration de l'étape (b) peut être effectué sous atmosphère oxydante, par exemple sous air. Les figures 2 et 3 représentent, de manière schématique, le dépôt obtenu après les étapes (a) et (b) respectivement. Après l'étape (a), le dépôt 700 présente une microstructure à cônes de croissance avec une première portion 701 située du côté de la couche 5 d'accrochage formée par des premiers cônes de croissance jointifs ayant une première taille moyenne, et une deuxième portion 702 formée par des deuxièmes cônes de croissance ayant une deuxième taille moyenne, supérieure à la première taille moyenne, et ayant une compacité plus faible que les premiers cônes de croissance. Selon un exemple, on peut obtenir lors de l'étape (a) un dépôt 700 d'une phase alpha du disilicate d'yttrium. Lors de l'étape (b), on obtient la structure illustrée à la figure 3 avec une fissuration préférentielle aux jonctions des cônes de croissance 702 tout en garantissant l'étanchéité du revêtement à l'interface avec la couche d'accrochage 5 par la présence de la région interne 73 non fissurée obtenue à partir des cônes 701. Le traitement thermique de l'étape (b) peut provoquer un frittage du revêtement, ce qui conduit à la coalescence des cônes de croissance 701 de plus petite taille mais de plus grand nombre dans la zone proche de l'interface avec la couche 5 d'accrochage, conduisant ainsi à la formation d'une région étanche 73. Le traitement thermique de l'étape (b) peut également provoquer une contraction volumique, par exemple du fait d'une transition entre la phase alpha et la phase beta du disilicate d'yttrium dans le cas où il est mis en oeuvre, qui aboutit à la fissuration préférentielle aux jonctions des cônes de croissance 702.
La pièce 1 ainsi fabriquée peut être une pièce pour application aéronautique ou aérospatiale. La pièce 1 peut être une pièce de partie chaude d'une turbine à gaz d'un moteur aéronautique ou aérospatial ou d'une turbine industrielle. La pièce 1 peut être une pièce de turbomachine. La pièce 1 peut constituer une partie au moins d'un distributeur, une partie au moins d'une tuyère ou d'un revêtement de protection thermique, une paroi d'une chambre de combustion, un secteur d'anneau de turbine ou une aube de turbomachine.
Une fois obtenue, la pièce 1 est montée et assemblée aux autres éléments de la turbomachine en vue d'être utilisée à haute température, supérieure ou égale à 800°C, dans une atmosphère oxydante et corrosive. On peut, en particulier, l'utiliser à une température comprise entre 800°C et 1500°C, voire entre 800°C et 1300°C. La pièce 1 peut, en particulier, être utilisée sous air humide.
Exemple
Un dépôt précurseur a été réalisé dans un réacteur de dépôt chimique en phase vapeur de composé(s) organométallique(s) par injection directe liquide (« DLI- MOCVD ») à parois chaudes, à partir d'une solution de di-t-butoxydiacetoxy silane (DADBS) et de tris(2,2,6,6-tetramethyl-3,5-heptanedionato) yttrium (Y(thd)3), dilués dans du toluène. Les précurseurs sont injectés et vaporisés grâce à un système d'injection liquide direct thermostaté commercialisé sous la référence Vapbox 300 par la société KEMSTREAM, utilisant des injecteurs type moteur de voiture pour former un aérosol. Après élaboration, le dépôt précurseur a été traité thermiquement pendant 5 heures à 1350°C sous air. Lors de ce traitement thermique, le dépôt est passé de la phase alpha dans le dépôt précurseur à la phase bêta, provoquant la microfissuration régulière de la partie supérieure du revêtement. Les détails des conditions d'élaboration sont fournis ci-dessous:
- température de dépôt : 1030°C,
- pression de dépôt : 5 mbar,
- concentration de DADBS : 0,1 mol/L,
- concentration de Y(thd)3 : 0,15 mol/L,
- débit de solution de précurseurs : 0,1 g/minute,
- débit O2 : 54 centimètre cube standard par minute (« standard cubic centimeter per minute » ; « seem »),
- débit N2 : 200 centimètre cube standard par minute,
- fréquence des injecteurs : 2 Hz,
- température d'évaporation des précurseurs : 210°C.
Le dépôt obtenu après le traitement thermique de fissuration est illustré à la figure 4.
Le revêtement obtenu a passé avec succès 1500 heures d'essai de corrosion, sans dégradation. L'interface avec la couche d'accrochage n'a pas évolué lors de l'essai de corrosion. Ce résultat confirme que la faible épaisseur de la partie étanche de la barrière environnementale est suffisante pour assurer la tenue à l'écaillage. En outre, le réseau de pré-fissuration est assez bien répétitif.
Plus généralement, les plages de conditions suivantes peuvent être utilisées pour le dépôt de la couche précurseur :
- température de dépôt : 1000°C à 1250°C,
- pression de dépôt : 5 mbar,
- concentration de DADBS : 0,01 mol/L à 0,1 mol/L,
- concentration de Y(thd)3 : 0,015 mol/L à 0,15 mol/L,
- débit de solution de précurseurs : 0,1 g/minute à 2 g/minute, - débit O2 : 25 à 200 centimètre cube standard par minute,
- débit N2 : 100 à 400 centimètre cube standard par minute,
- fréquence des injecteurs : 0,5 Hz à 3 Hz,
- température d'évaporation des précurseurs : 170°C à 250°C, - potentiellement applicable également dans un réacteur en configuration parois froides.
L'expression « compris(e) entre ... et ... » doit se comprendre comme incluant les bornes.

Claims

Revendications
[Revendication 1] Pièce (1) revêtue destinée à être montée dans une turbomachine, comprenant :
- un substrat (3) en matériau composite à matrice au moins partiellement en céramique, et
- une barrière environnementale (12) sur le substrat et comprenant : (i) une couche (5) d'accrochage comprenant du silicium présente sur une surface du substrat, et (ii) une couche (7) de barrière environnementale recouvrant la couche d'accrochage, ladite couche de barrière environnementale comprenant une région interne (73) de barrière aux espèces oxydantes et corrosives non fissurée et située du côté de la couche d'accrochage, et une région externe (71), opposée à la couche d'accrochage et recouvrant la région interne, présentant un réseau de fissures (75) d'adaptation thermomécanique ayant une distance (d) entre fissures adjacentes comprise entre 10 pm et 50 pm et dont les fissures s'étendent sur une profondeur (p75) comprise entre 50% et 95% d'une épaisseur (e7) de ladite couche de barrière environnementale.
[Revendication 2] Pièce (1) selon la revendication 1, dans laquelle la distance (d) entre fissures (75) adjacentes du réseau de fissures d'adaptation thermomécanique est comprise entre 15 pm et 30 pm.
[Revendication 3] Pièce (1) selon la revendication 1 ou 2, dans laquelle les fissures (75) du réseau de fissures d'adaptation thermomécanique s'étendent sur une profondeur (p75) comprise entre 75% et 90% de l'épaisseur (e7) de ladite couche de barrière environnementale.
[Revendication 4] Pièce (1) selon l'une quelconque des revendications 1 à 3, dans laquelle la couche (7) de barrière environnementale comprend un silicate d'au moins une terre rare.
[Revendication 5] Pièce (1) selon la revendication 4, dans laquelle la couche (7) de barrière environnementale comprend un disilicate d'yttrium, un disilicate d'ytterbium, ou un mélange de ces deux composés.
[Revendication 6] Pièce selon l'une quelconque des revendications 1 à 5, dans laquelle la pièce comprend en outre un revêtement supplémentaire située sur la région externe de la couche de barrière environnementale, ledit revêtement supplémentaire étant une barrière thermique d'épaisseur supérieure ou égale à 100 pm, ou une couche de protection contre les aluminosilicates de calcium et de magnésium d'épaisseur supérieure ou égale à 50 pm.
[Revendication 7] Pièce selon l'une quelconque des revendications 1 à 6, dans laquelle la région interne (73) et la région externe (71) de la couche (7) de barrière environnementale sont en un même matériau.
[Revendication 8] Pièce selon la revendication 7, dans laquelle la région interne (73) et la région externe (71) de la couche (7) de barrière environnementale sont en disilicate d'yttrium, en disilicate d'ytterbium, ou en un mélange de ces deux composés.
PCT/FR2023/050418 2022-03-25 2023-03-23 Pièce en matériau cmc à barrière environnementale pré-fissurée pour l'accommodation thermomécanique. WO2023180672A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2202685 2022-03-25
FR2202685A FR3133853B1 (fr) 2022-03-25 2022-03-25 Pièce en matériau CMC à barrière environnementale pré-fissurée pour l’accommodation thermomécanique

Publications (1)

Publication Number Publication Date
WO2023180672A1 true WO2023180672A1 (fr) 2023-09-28

Family

ID=82482551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/050418 WO2023180672A1 (fr) 2022-03-25 2023-03-23 Pièce en matériau cmc à barrière environnementale pré-fissurée pour l'accommodation thermomécanique.

Country Status (2)

Country Link
FR (1) FR3133853B1 (fr)
WO (1) WO2023180672A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011012818A1 (fr) * 2009-07-30 2011-02-03 Snecma Pièce comportant un substrat portant une couche de revêtement céramique
US20210331983A1 (en) * 2018-12-18 2021-10-28 Oerlikon Metco (Us) Inc. Coating for protecting ebc and cmc layers and thermal spray coating method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011012818A1 (fr) * 2009-07-30 2011-02-03 Snecma Pièce comportant un substrat portant une couche de revêtement céramique
US20210331983A1 (en) * 2018-12-18 2021-10-28 Oerlikon Metco (Us) Inc. Coating for protecting ebc and cmc layers and thermal spray coating method thereof

Also Published As

Publication number Publication date
FR3133853B1 (fr) 2024-04-19
FR3133853A1 (fr) 2023-09-29

Similar Documents

Publication Publication Date Title
EP3692011B1 (fr) Pièce protégée par une barrière environnementale
EP2379471B1 (fr) Barriere environnementale pour substrat refractaire contenant du silicium
EP2104656B1 (fr) Piece en materiau composite a matrice ceramique contenant du silicium, protegee contre la corrosion
EP3008033B1 (fr) Barrière environnementale pour substrat réfractaire contenant du silicium
EP3565794B1 (fr) Piece comprenant un substrat et une barriere environnementale
FR2899226A1 (fr) Piece en materiau composite a matrice ceramique contenant du silicium, protegee contre la corrosion.
EP3565796B1 (fr) Piece comprenant un substrat et une barriere environnementale
FR3067392A1 (fr) Revetement anti-cmas a double reactivite
WO2020225508A1 (fr) Pièce en céramique ou cmc à base de silicium et procédé de réalisation d'une telle pièce
EP4115000A1 (fr) Procédé de revêtement d'une pièce en matériau composite à matrice céramique par une barrière environnementale
WO2023180672A1 (fr) Pièce en matériau cmc à barrière environnementale pré-fissurée pour l'accommodation thermomécanique.
FR3132107A1 (fr) Revêtements barrière environnementale.
EP4222130A1 (fr) Procede de fabrication d'une barriere environnementale
FR3139567A1 (fr) Procédé de fabrication d’une éprouvette de caractérisation
WO2024084153A1 (fr) Procede de fabrication d'une piece en materiau composite a matrice ceramique
FR3133861A1 (fr) Particule coeur-écorce à fonction duale anti-corrosion et anti-CMAS
WO2023094757A1 (fr) Procede de revetement
EP4367084A1 (fr) Barriere environnementale pour un substrat comprenant du silicium libre
FR3141171A1 (fr) Procédé de fabrication d’une pièce en matériau composite à matrice céramique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23718658

Country of ref document: EP

Kind code of ref document: A1