EP3945533A1 - Dispositif de filtrage inductif a limitation d'echauffement - Google Patents

Dispositif de filtrage inductif a limitation d'echauffement Download PDF

Info

Publication number
EP3945533A1
EP3945533A1 EP21187083.7A EP21187083A EP3945533A1 EP 3945533 A1 EP3945533 A1 EP 3945533A1 EP 21187083 A EP21187083 A EP 21187083A EP 3945533 A1 EP3945533 A1 EP 3945533A1
Authority
EP
European Patent Office
Prior art keywords
magnetic core
screen
cable
around
inductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21187083.7A
Other languages
German (de)
English (en)
Inventor
Eric Ravindranath Dubois
Hocine KHERBOUCHI
Stéphane Guguen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3945533A1 publication Critical patent/EP3945533A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/045Fixed inductances of the signal type  with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/288Shielding
    • H01F27/2885Shielding with shields or electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F2017/065Core mounted around conductor to absorb noise, e.g. EMI filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents

Definitions

  • the invention relates to an inductive filtering device.
  • This type of filtering is commonly used in order to reduce any disturbances present on a signal conveyed on an electric cable.
  • the device is then placed in series on the cable.
  • the invention finds particular utility in the aeronautical field where the current trend is to increase the number of electrical equipment items and therefore the number of filtering devices associated with the equipment items. In this field, on-board mass reduction is a recurring problem that arises.
  • the invention proposes to reduce the mass of the filtering devices.
  • a filtering device can be formed by an inductance connected in series on an electrical conductor.
  • the value of the impedance of an inductor is proportional to the frequency of the current flowing through it.
  • An inductor is therefore well suited to filtering the high frequency components of the current flowing in the electrical conductor.
  • the inductor can be made by means of an electrical conductor wound around a magnetic core making it possible to channel the magnetic flux induced by the current flowing in the electrical conductor. In order to optimize the circulation of the magnetic flux, it is possible to implement a closed magnetic core without air gap.
  • This type of core is called by many manufacturers: "ring core". It is formed around a central recess.
  • the torus qualification for the magnetic core goes far beyond the mathematical definition of a torus.
  • the inductance is made by winding an electrical conductor around the magnetic core by crossing the central recess in order to form one or more turns.
  • the harmonics and more generally the high frequency components, being superimposed on the fundamental component of the current generate significant induced electric currents in the magnetic core.
  • the materials of the magnetic cores are chosen for their magnetic properties, in particular for their permeability, they are also conductors of electricity. This electrical property allows the generation of induced currents. The higher the frequency of the current flowing in the conductor, the higher the induced current.
  • the evacuation of the heat produced in the magnetic core can be done by increasing the volume of the magnetic core in order to increase its contact surface with the ambient air. It is also possible to provide a heat sink fixed to the core. Whatever the solution chosen to evacuate the heat, cala leads to an increase in mass and volume of the inductance.
  • a first object of the invention is to reduce the mass and the volume of an inductor implementing a magnetic core. This object is achieved by limiting the appearance of high frequency current in the magnetic core around which the conductor of the inductor is surrounded.
  • a conductive screen is arranged between the conductor of the inductance and the magnetic core.
  • This screen has the function of moving the generation of looped induced currents from the magnetic core to the screen.
  • the induced currents are opposite to those flowing in the conductor.
  • the magnetic core is subjected to two opposing currents, which tends to reduce the magnetic flux and therefore the induced currents that can circulate in the magnetic core.
  • the presence of the screen makes it possible to very clearly reduce the appearance of induced currents in the magnetic core and therefore its heating.
  • the electric cable extends along an axis and the screen is arranged around the electric cable in a coaxial manner.
  • the magnetic core can be of cylindrical shape extending around an axis, the screen advantageously protrudes from the magnetic core beyond the turn or turns formed around the magnetic core.
  • the protrusion is advantageously at least equal to a characteristic external dimension of the magnetic core.
  • the cable can be wound several times around the magnetic core by forming several turns around the magnetic core.
  • the screen is arranged on at least one face of the magnetic core.
  • the screen can comprise several parts, each part being arranged so as to cover one of the faces of the magnetic core.
  • the screen can comprise two shells fitting one inside the other.
  • the magnetic core may have a central recess and the electrical cable may be wound around the magnetic core passing through the central recess.
  • the figure 1 shows an inductive filtering device 10 comprising a magnetic core 12 and an electric cable 14.
  • the inductive filtering device 10 forms an inductance.
  • the magnetic core 12 is formed around a central recess 16.
  • the magnetic core 12 is tubular in shape extending around an axis 18.
  • the central recess 16 develops around the axis 18.
  • the magnetic core 12 is closed and for example without air gap.
  • the magnetic core 12 has a circular cross-section perpendicular to the axis 18. Other cross-sections are possible within the scope of the invention, for example a rectangular, triangular cross-section, etc.
  • the circular cross-section is well suited to the passage of an electric cable 14 also of circular cross-section passing through the central recess only once.
  • the cable 14 extends along an axis 19.
  • the axes, 18 of the magnetic core 12 and 19 of the cable 14, are substantially coincident except for functional play between the cable 14 and the central recess 16.
  • the electric cable 14 can pass through the central recess 16 several times. It may then be advantageous to arrange the various passages in the central recess 16 to occupy a section different from a circular section.
  • the shape of magnetic core 12 may also be guided by the environment of device 10. It may be easier to store a device 10 whose magnetic core 12 is rectangular in section.
  • This type of closed magnetic core without an air gap is usually called "toroidal" by many manufacturers. This qualifier goes far beyond the shape of a torus as defined mathematically. There are in particular so-called toroidal magnetic cores with a circular or rectangular section, etc. The absence of an air gap makes it possible to keep the magnetic field developing in the magnetic core 12 only in the material of the magnetic core without being disturbed by an air gap.
  • the device 10 comprises an electrically conductive screen 20, arranged between the magnetic core 12 and the electric cable 14.
  • the screen 20 is electrically insulated from the electric cable 14 and from the magnetic core 12.
  • the screen 20 is arranged around the electrical cable 14.
  • the screen 20 is coaxial with the cable 14.
  • An electrical insulator 22 is arranged between the cable 14 and the screen 20.
  • the insulator 22 may be an outer sheath of cable 14.
  • Another electrical insulator 24 is disposed between screen 20 and magnetic core 12. In the embodiment shown in figure 1 , the insulator 24 covers the screen 20.
  • the insulator 24 can cover the magnetic core 12 and in particular the internal face of the central recess 16.
  • the arrangement of the screen 20 between the cable 14 and the magnetic core 12 allows the circulation of currents in the screen 20. These currents are generated by electromagnetic induction formed by the current circulating in the cable 14.
  • Device 10 allows inductive filtering of a current flowing in cable 14. This current can be noisy. More precisely, the current circulating in the cable 14 comprises a fundamental frequency and higher frequencies whose amplitude it is sought to reduce by means of the device 10. In the case of a direct current circulating in the cable 14, the fundamental frequency is zero. The higher frequencies are formed of any alternating components superimposed on the direct current component or on the alternating fundamental component in the case of an alternating current flowing in the cable 14. These alternating frequency components higher than the fundamental frequency can be due to the production of direct current by means of a rectifier. Indeed, we find, superimposed on the direct current, traces of frequencies present upstream of the rectifier.
  • the undesirable alternating components can also be due to current rejections emitted by the loads supplied by the cable 14 or to electromagnetic disturbances which the cable 14 can undergo.
  • the screen 20 one is mainly interested in the generation of currents induced by the undesirable alternating components of the current flowing in the cable 14.
  • the screen 20 has a finite length L along the axis 19 of the cable 14, advantageously greater than the length I of the magnetic core 12 along its axis 18.
  • the fact that the length L of the screen 20 is finished makes it possible to avoid the circulation in the screen 20 of current in a direction parallel to the axis 19 of the cable 14. Such currents are not desirable because they would oppose the passage of the fundamental frequency in the cable 14 forming a transformer.
  • the passage of the cable 14 through the central recess 16 is assimilated to a turn surrounding the magnetic core 2. More precisely, when a current flows in the cable 14, the latter forms a closed circuit with at least a generator and a load.
  • This closed circuit forms a turn around a section of the magnetic core 12, a section formed in a plane containing the axis 18. Furthermore, the circulation of a current in the screen 20 parallel to the axis 19 of the cable 14 would form in the same way another turn around a section of the magnetic core 12. The turn of the cable 12 and that of the screen would then form the transformer mentioned above, a transformer which it is desirable to avoid.
  • screen 20 can be electrically insulated from its environment, ie screen 20 has no electrical connection.
  • the potential of screen 20 is left floating. Internal tests have shown that this complete electrical isolation allows the screen to fulfill its main function of limiting the heating of the magnetic core 12. In other words, when the device is in operation, the screen 20 is electrically connected neither to the magnetic core 12, nor to the cable 14, nor to any source of potential of the equipment to which the device belongs.
  • the presence of the screen 20 in which rotating currents induced by the undesirable AC components flowing in the cable 14 develop makes it possible to attenuate the rotating currents in the magnetic core 12.
  • the magnetic core is subjected by induction to rotating currents in the cable 14 and to opposite currents rotating in the screen 20. This opposition of the currents rotating in the cable 14 and in the screen 20 makes it possible to limit the generation of currents induced in the magnetic core 12, which makes it possible to limit its heating by Joule effect.
  • the picture 2 represents a variant of the embodiment of the device 10 represented in the figure 1 .
  • the picture 2 represents an inductive filtering device 30, also forming an inductor and in which we find the magnetic core 12, the cable 14 and the screen 20.
  • the cable 14 of the device 30 passes through the recess twice central 16 by forming a second turn 32 around the magnetic core 12.
  • the axis 19 of the cable 14 follows the shape of the turn 32 and the screen 20 here remains coaxial with the cable 14.
  • the screen 20 follows the axis 19 of the cable 14.
  • the axes 18 and 19 are not confused.
  • the screen 20 of the device 30 does not form a turn around the magnetic core 12.
  • the electrical insulator 24 is of interest here to avoid short circuits between the turns formed by the screen 20 around the magnetic core. Indeed, such short-circuits would cause rotating currents parallel to the current circulating in the cable 14.
  • the screen 20 has a length L defined along the axis 19 of the cable 14.
  • the screen 20 protrudes from the magnetic core 12 on either side of the passage of the cable 14 through the central recess 16. internal tests have shown that to obtain optimal filtering efficiency, it is advantageous for the screen 20 to protrude on each side of the magnetic core 12 along the axis 18.
  • An optimal protrusion is at least equal to a characteristic external dimension of the magnetic core 12 perpendicular to its axis 18.
  • the overhang is at least equal to the outer diameter ⁇ of the magnetic core 12, as shown in the figure 1 . With such an overrun, there is virtually no induction between the cable 14 and the magnetic core 12.
  • the characteristic dimension is for example the diagonal of the section square or rectangular. More generally, an optimum overshoot is at least equal to a characteristic largest outer dimension of the magnetic core.
  • the potential of the screen 20 can be fixed by connecting it electrically, for example to an electrical ground of the equipment in which the device 30 is installed. This connection is made at a single point of the screen 20 in order to avoid creation by the screen 20 of a coil around the magnetic core 12.
  • the screen 20 can be made by means of a strip or a metal braid, for example of copper or aluminum alloy surrounding the cable 14. Any other electrically conductive material can of course be implemented. It is possible to implement a metallized plastic film. The actual plastic film fulfills the function of the insulator 24 and the metallization that of the screen 20.
  • the picture 3 represents a second embodiment of an inductive filtering device 40 in accordance with the invention.
  • the magnetic core 12 as well as the cable 14 and its insulator 22.
  • the cable 14 forms a turn 32 around the magnetic core 12.
  • the second embodiment can be implemented with as many turns 32 as necessary or even without coil 32 as in the variant of the figure 1 .
  • the device 40 comprises a screen 42 arranged between the magnetic core 12 and the cable 14. Unlike the devices 10 and 30, the screen 42 is not arranged around the electric cable 14 in a coaxial manner.
  • the screen 42 is arranged on at least one face of the magnetic core 12.
  • An electrical insulator 43 is interposed between the screen 42 and the magnetic core 12.
  • the electrical insulator 43 fulfills the function of the electrical insulator 24 present in the first embodiment.
  • the screen 42 and the insulator 43 can be made using a metallized plastic film.
  • the screen 42 comprises two parts 42a and 42b.
  • Part 42a is placed on an internal face 44a of magnetic core 12 and part 42b is placed on an external face 44b of magnetic core 12.
  • insulator 43 comprises two parts 43a and 43b.
  • Part 43a is placed on the inner face 44a of the magnetic core 12 and part 43b is placed on the outer face 44b of the magnetic core 12. More precisely, the faces 44a and 44b are concentric with the central recess 16.
  • the faces 44a and 44b have cylindrical sections about axis 18. Face 44a forms an inner wall of the tubular shape of magnetic core 12 and face 44b forms an outer wall of the tubular shape of magnetic core 12.
  • the part 42a arranged on the internal face 42a is sufficient and it is not necessary to produce a part 42b on the external face 44b to arrange the screen between the cable 14 and the magnetic core 12.
  • the part 42b is advantageous to complete the arrangement of the screen 42 between the cable 14 and the magnetic core 12.
  • the magnetic core 12 comprises two faces 46 and 48 perpendicular to the axis 18. It is possible to complete the screen 42 and the insulator 43 by covering one of the faces 46 and 48 or even both. By covering one of the faces 46 or 48 the screen 42 can ensure electrical continuity between the parts 42a and 42b. If the two faces 46 and 48 are covered by the screen 42, it is important to break the electrical continuity of the screen 42 so as to avoid any possibility of current rotating in the screen 42 parallel to the turn(s) made by the cable 14 passing through the central recess 16.
  • the screen 42 can be made in the form of a metal braid arranged on the relevant faces of the magnetic core 12.
  • Fixing the potential of the screen 42 is not useful. It is therefore possible to keep the screen 42, whether it is made in a single part or in several parts 42a and 42b, to keep the screen 42 or even its various parts completely electrically isolated from their environment.
  • the figure 4 represents a variant of a screen adapted to the second embodiment.
  • the screen is formed of two shells 50 and 52 fitting one inside the other.
  • the shell 50 includes a flat face 50a in contact with the face 46 of the magnetic core 12.
  • the shell 50 also includes two cylindrical faces 50b and 50c extending along the axis 18 of the magnetic core 12.
  • the cylindrical face 50b is in contact with the internal face 44a of the magnetic core 12 and the cylindrical face 50c is in contact with the external face 44b of the magnetic core 12.
  • the shell 52 comprises a planar face 52a in contact with the face 48 of the magnetic core 12.
  • the shell 52 also comprises two cylindrical faces 52b and 52c extending along axis 18 of magnetic core 12.
  • Cylindrical face 52b is in contact with cylindrical face 50b of shell 50 and cylindrical face 52c is in contact with cylindrical 50c of the shell 50.
  • the shells are for example made of machined or molded metal.
  • For each shell 50 and 52 its flat face and its cylindrical faces are electrically continuous.
  • the shells 50 and 52 are covered with an electrical insulator at least between their faces in contact with the magnetic core 12 itself.
  • the electrical insulator also provides insulation between the two shells 50 and 52 in order to avoid the formation of a turn around the magnetic core 12 as mentioned above.
  • the electrical insulation can be formed from a plastic film completely or partially covering each of the shells 50 and 52.
  • the two half-shells can be completely electrically isolated from their environment.
  • the figures 5 and 6 show the invention adapted to another form of magnetic core. More specifically, on the figures 5 and 6 , the magnetic core 60 has an elongated shape surrounded by the cable 14. In the example shown, the magnetic core 60 has no recess passing through it. Alternatively, it is possible to implement a magnetic core having one or more recesses, and to wind the cable 14 around this magnetic core without crossing the recess or recesses.
  • the magnetic core 60 has a cylindrical shape with a solid and circular section extending along an axis 62. Any other cylindrical shape of magnetic core is possible, for example having a section perpendicular to the axis 62 of square or rectangular shape.
  • the magnetic core 60 can be pierced right through along the axis 62.
  • the cable 14 of the figures 1 and 2 surrounded by the first insulator 22, the screen 20 and the second insulator 24.
  • the cable 14 is wound around the magnetic core 60.
  • the axis 62 forms the winding axis of the cable 14.
  • the cable 14 is wound on two turns. It is of course possible to implement the invention regardless of the number of turns of the cable 14 around the magnetic core 60.
  • the screen 20 reduces the appearance of high frequency currents in the magnetic core 60 induced by high frequency components present in the signal conveyed by the cable 14.
  • the screen 20 is arranged around the cable 14 coaxially all along the part of the cable 14 wound around the magnetic core 60.
  • the screen 20 is advantageous for the screen 20 to be extended beyond the winding of the cable 14 around the magnetic core 60.
  • the excess of the screen beyond the winding is advantageously at least equal to the diameter ⁇ of the magnetic core 60.
  • the minimum excess is shown on the figure 5 .
  • the magnetic core 60 it is possible to make a screen as described in the picture 3 , that is to say, disposed on at least one of the faces of the magnetic core 60.
  • the figure 6 describes a screen 66 surrounding the cylindrical face 64 of the magnetic core 60.
  • the cable 14 is not shown. It is rolled up as on the figure 5 .
  • the latter is interrupted substantially along a generatrix of the cylindrical shape of the magnetic core 60.
  • the interruption can be made according to another shape, for example in a helix around the axis 62 of the magnetic core 60 or even by following a broken line. It is advantageous for the screen 66 to overlap beyond one revolution at the level of its interruption.
  • the screen 66 can be made by means of a conductive film covered on both sides with an electrical insulator. On one of the faces, the insulator ensures the insulation of the screen 66 vis-à-vis the magnetic core and on the other face vis-à-vis the screen itself at the level of the recovery and possibly vis-à-vis -cable screw 14.
  • the screen 66 and the electrical insulation covering it can be made in the form of a continuous film.
  • the cable 14 is shown with a single electrical conductor passing through the magnetic core 12. It is entirely possible to implement the invention with a cable 14 comprising several electrical conductors insulated from one another. The conductors are then intended to carry different electrical voltages, for example the positive voltage and the negative voltage of the output of a DC power supply or the phase and the neutral of a single-phase AC power supply. It is also possible to provide more than two electrical conductors grouped together in the same cable, for example to filter the different output phases of a polyphase AC power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Filters And Equalizers (AREA)

Abstract

L'invention concerne un dispositif de filtrage inductif comprenant :
- un noyau magnétique (12)
- au moins un câble électrique (14) enroulé autour du noyau magnétique (12) en formant au moins une spire, le câble électrique (14) étant destiné à véhiculer un signal électrique possédant au moins une composante alternative indésirable se superposant à une fréquence fondamentale du signal électrique et
- un écran (20) électriquement conducteur, isolé électriquement du câble électrique (14) et du noyau magnétique (12),
l'écran (20) étant disposé entre le noyau magnétique (12) et le câble électrique (14) de façon à permettre la génération dans l'écran (20), par induction électromagnétique, d'un courant dont la fréquence est supérieure à la fréquence fondamentale,
l'écran (20) étant configuré de façon à ne pas permettre le circulation d'un courant dans une direction parallèle à celle de la ou des spires formées par l'enroulement du câble électrique (14) autour du noyau magnétique.

Description

  • L'invention concerne un dispositif de filtrage inductif. Ce type de filtrage est communément utilisé afin de réduire d'éventuelles perturbations présentes sur un signal véhiculé sur un câble électrique. Le dispositif est alors placé en série sur le câble. L'invention trouve une utilité particulière dans le domaine aéronautique où la tendance actuelle est d'augmenter le nombre d'équipements électriques et donc le nombre dispositifs de filtrage associés aux équipements. Dans ce domaine, la réduction de masse embarquée est un problème récurrent qui se pose. L'invention propose de réduire la masse des dispositifs de filtrage.
  • De façon classique un dispositif de filtrage peut être formé par une inductance raccordée en série sur un conducteur électrique. La valeur de l'impédance d'une inductance est proportionnelle à la fréquence du courant qui la traverse. Une inductance est donc bien adaptée à filtrer les composantes à haute fréquence du courant circulant dans le conducteur électrique.
  • L'inductance peut être réalisée au moyen d'un conducteur électrique enroulé autour d'un noyau magnétique permettant de canaliser le flux magnétique induit par le courant circulant dans le conducteur électrique. Afin d'optimiser la circulation du flux magnétique, il est possible de mettre en œuvre un noyau magnétique fermé sans entrefer. Ce type de noyau est appelé par de nombreux fabricant : « noyau torique ». Il est formé autour d'un évidement central. La qualification de torique pour le noyau magnétique va bien au-delà de la définition mathématique d'un tore. On trouve notamment des noyaux magnétiques dits toriques à section circulaire, rectangulaire... L'inductance est réalisée en enroulant un conducteur électrique autour du noyau magnétique en traversant l'évidement central afin de former une ou plusieurs spires.
  • La demanderesse a constaté que lors du filtrage d'harmoniques d'un courant dont la composante fondamentale est à basse fréquence, les harmoniques et plus généralement les composantes à haute fréquence, se superposant à la composante fondamentale du courant, génèrent des courants électriques induits importants dans le noyau magnétique. En effet, bien que les matériaux des noyaux magnétiques soient choisis pour leurs propriétés magnétiques, notamment pour leur perméabilité, ils sont également conducteurs de l'électricité. Cette propriété électrique permet la génération de courants induits. Plus la fréquence du courant circulant dans le conducteur est élevée, plus le courant induit est élevé.
  • Ces courants importants circulent exclusivement dans le noyau magnétique sans en sortir et génère un échauffement par effet Joule. Or, plus la température d'un noyau augmente, plus la perméabilité magnétique du matériau du noyau diminue ce qui entraine une baisse de la valeur de l'inductance et en conséquence une augmentation du courant circulant dans le conducteur, notamment pour ses composantes à haute fréquence. Cette augmentation du courant génère un courant induit plus fort et donc un échauffement plus important. La demanderesse a même observé dans certains cas un emballement thermique pouvant entrainer la destruction du noyau magnétique.
  • Pour limiter l'échauffement des circuits magnétiques, il serait possible de mettre en œuvre des noyaux magnétiques réalisés à partir de matériaux possédant une plus forte résistivité électrique. Cependant leurs caractéristiques magnétiques sont bien moins bonnes que celles des noyaux magnétiques classiques.
  • L'évacuation de la chaleur produite dans le noyau magnétique peut se faire en augmentant le volume du noyau magnétique afin d'augmenter sa surface de contact avec l'air ambiant. Il est également possible de prévoir dissipateur thermique fixé au noyau. Quelle que soit la solution retenue pour évacuer la chaleur, cala entraine une augmentation de masse et de volume de l'inductance.
  • Un premier but de l'invention est de réduire la masse et le volume d'une inductance mettant en œuvre un noyau magnétique. Ce but est atteint en limitant l'apparition de courant à haute fréquence dans le noyau magnétique autour duquel est entouré le conducteur de l'inductance.
  • Pour limiter l'apparition de courant à haute fréquence dans le noyau magnétique, un écran conducteur est disposé entre le conducteur de l'inductance et le noyau magnétique. Cet écran a pour fonction de déplacer la génération de courants induits bouclés du noyau magnétique vers l'écran. Les courants induits sont opposés à ceux circulant dans le conducteur. Ainsi le noyau magnétique est soumis à deux courants opposés, ce qui tend à réduire le flux magnétique et donc les courants induits pouvant circuler dans le noyau magnétique. Autrement dit, la présence de l'écran permet de réduire très nettement l'apparition de courants induits dans le noyau magnétique et donc son échauffement.
  • Plus précisément, l'invention a pour objet un dispositif de filtrage inductif comprenant :
    • un noyau magnétique
    • au moins un câble électrique enroulé autour du noyau magnétique en formant au moins une spire, le câble électrique étant destiné à véhiculer un signal électrique possédant au moins une composante alternative indésirable se superposant à une fréquence fondamentale du signal électrique et
    • un écran électriquement conducteur, isolé électriquement de son environnement, l'écran étant disposé entre le noyau magnétique et le câble électrique de façon à permettre la génération dans l'écran, par induction électromagnétique, d'un courant dont la fréquence est supérieure à la fréquence fondamentale,
      l'écran étant configuré de façon à ne pas permettre le circulation d'un courant dans une direction parallèle à celle de la ou des spires formées par l'enroulement du câble électrique autour du noyau magnétique.
  • Lorsque le dispositif est destiné à filtrer une fréquence donnée, l'écran possède avantageusement une épaisseur au moins égale à δ = (p/π.f.µ)1/2 avec ρ : la résistivité, et µ : la perméabilité magnétique absolue du matériau choisi pour réaliser l'écran.
  • Dans un premier mode de réalisation d'un dispositif de filtrage inductif selon l'invention, le câble électrique s'étend selon un axe et l'écran est disposé autour du câble électrique de façon coaxiale.
  • Dans ce premier mode, le noyau magnétique peut être de forme cylindrique en s'étendant autour d'un axe, l'écran dépasse avantageusement du noyau magnétique au-delà de la ou des spires formées autour du noyau magnétique. Le dépassement est avantageusement au moins égal à une dimension extérieure caractéristique du noyau magnétique.
  • Le câble peut être enroulé plusieurs fois autour du noyau magnétique en formant plusieurs spires autour du noyau magnétique.
  • Dans un second mode de réalisation d'un dispositif de filtrage inductif selon l'invention, l'écran est disposé sur au moins une face du noyau magnétique.
  • Dans le second mode, l'écran peut comprendre plusieurs parties, chaque partie étant disposée de façon à recouvrir une des faces du noyau magnétique.
  • Dans le second mode, l'écran peut comprendre deux coquilles s'emboitant l'une dans l'autre.
  • Le noyau magnétique peut posséder un évidement central et le câble électrique peut être enroulé autour du noyau magnétique en traversant l'évidement central.
  • L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée de plusieurs modes de réalisation donnés à titre d'exemple, description illustrée par le dessin joint dans lequel :
    • [Fig. 1] la figure 1 représente une première variante d'enroulement d'un câble d'un premier mode de réalisation de l'invention ;
    • [Fig. 2] la figure 2 représente une seconde variante d'enroulement du câble du premier mode de réalisation de l'invention ;
    • [Fig. 3] la figure 3 représente un second mode de réalisation de l'invention ;
    • [Fig. 4] la figure 4 représente un noyau magnétique et un écran mis en œuvre dans une variante du second mode de réalisation de l'invention ;
    • [Fig. 5] la figure 5 représente le premier mode de réalisation adapté à une variante de noyau magnétique ;
    • [Fig. 6] la figure 6 représente le second mode de réalisation adapté à la variante de noyau magnétique de la figure 5.
  • Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures.
  • La figure 1 représente un dispositif 10 de filtrage inductif comprenant un noyau magnétique 12 et un câble électrique 14. Autrement dit, le dispositif 10 de filtrage inductif forme une inductance. Le noyau magnétique 12 est formé autour d'un évidement central 16. Le noyau magnétique 12 est de forme tubulaire s'étendant autour d'un axe 18. L'évidement central 16 se développe autour de l'axe 18. Le noyau magnétique 12 est fermé et par exemple sans entrefer. Sur la figure 1, le noyau magnétique 12 possède une section circulaire perpendiculairement à l'axe 18. D'autres sections sont possibles dans le cadre de l'invention, par exemple une section rectangulaire, triangulaire... La section circulaire est bien adaptée au passage d'un câble électrique 14 également à section circulaire ne traversant qu'une seule fois l'évidement central. Le câble 14 s'étend selon un axe 19. Dans le cas d'un seul passage, les axes, 18 du noyau magnétique 12 et 19 du câble 14, sont sensiblement confondus au jeu fonctionnel près entre le câble 14 et l'évidement central 16. Comme on le verra plus loin, le câble électrique 14 peut traverser plusieurs fois l'évidement central 16. Il peut alors être avantageux de ranger les différents passages dans l'évidement central 16 pour occuper une section différente d'une section circulaire. La forme du noyau magnétique 12 peut également être guidée par l'environnement du dispositif 10. Il peut être plus facile de ranger un dispositif 10 dont le noyau magnétique 12 est à section rectangulaire.
  • Ce type de noyau magnétique fermé sans entrefer est habituellement appelé « torique » chez de nombreux fabricants. Ce qualificatif va bien au-delà de la forme d'un tore telle que définie mathématiquement. On trouve notamment des noyaux magnétiques dits toriques à section circulaire, rectangulaire... L'absence d'entrefer permet de conserver le champ magnétique se développant dans le noyau magnétique 12 uniquement dans le matériau du noyau magnétique sans être perturbé par un entrefer.
  • Selon l'invention, le dispositif 10 comprend un écran 20 électriquement conducteur, disposé entre le noyau magnétique 12 et le câble électrique 14. L'écran 20 est isolé électriquement du câble électrique 14 et du noyau magnétique 12. Dans le mode de réalisation représenté sur la figure 1, l'écran 20 est disposé autour du câble électrique 14. L'écran 20 est coaxial avec le câble 14. Un isolant électrique 22 est disposé entre le câble 14 et l'écran 20. L'isolant électrique 22 peut être une gaine extérieure du câble 14. Un autre isolant électrique 24 est disposé entre l'écran 20 et le noyau magnétique 12. Dans le mode de réalisation représenté sur la figure 1, l'isolant 24 recouvre l'écran 20. Alternativement, l'isolant 24 peut recouvrir le noyau magnétique 12 et notamment la face interne de l'évidement central 16.
  • La disposition de l'écran 20 entre le câble 14 et le noyau magnétique 12 permet la circulation de courants dans l'écran 20. Ces courants sont générés par induction électromagnétique formée par le courant circulant dans le câble 14.
  • Le dispositif 10 permet un filtrage inductif d'un courant circulant dans le câble 14. Ce courant peut être bruité. Plus précisément, le courant circulant dans le câble 14 comprend une fréquence fondamentale et des fréquences plus élevées dont on cherche à réduire l'amplitude au moyen du dispositif 10. Dans le cas d'un courant continu circulant dans le câble 14, la fréquence fondamentale est nulle. Les fréquences plus élevées sont formées de toutes composantes alternatives se superposant à la composante continue du courant ou à la composante fondamentale alternative dans le cas d'un courant alternatif circulant dans le câble 14. Ces composantes alternatives de fréquence supérieures à la fréquence fondamentale peuvent être dues à la production du courant continu au moyen d'un redresseur. En effet, on retrouve, se superposant au courant continu, des traces de fréquences présentes en amont du redresseur. Les composantes alternatives indésirables peuvent également être dues à des réjections de courant émises par des charges alimentées par le câble 14 ou à des perturbations électromagnétiques que peut subir le câble 14. Dans l'écran 20, on s'intéresse principalement à la génération de courants induits par les composantes alternatives indésirables du courant circulant dans le câble 14.
  • Il est possible d'adapter l'épaisseur de l'écran 20 aux fréquences que l'on souhaite filtrer. Ces fréquences peuvent être bien au-delà de la fréquence fondamentale. De façon générale, dans un conducteur massif, les courants à haute fréquence circulent essentiellement dans la peau du conducteur. De ce fait, pour filtrer de façon efficace une fréquence donnée et les fréquences supérieures, l'épaisseur δ de l'écran 20 doit avoir au moins l'épaisseur de la peau dans laquelle circule le courant à la fréquence donnée. En deçà de cette épaisseur, le filtrage de la fréquence donnée demeure, mais avec moins d'efficacité. Il est possible de prendre une marge de sécurité dans la détermination de l'épaisseur δ de l'écran 20 en choisissant une épaisseur au moins égale à deux ou trois fois l'épaisseur de la peau dans laquelle circule le courant à la fréquence donnée. L'épaisseur de peau est donnée par la formule suivante : δ = ρ / π . f . µ 1 / 2
    Figure imgb0001
  • avec ρ : la résistivité, et µ la perméabilité magnétique absolue du matériau choisi pour réaliser l'écran 20.
  • Selon l'axe 19 du câble 14, l'écran 20 possède une longueur finie L selon l'axe 19 du câble 14, avantageusement supérieure à la longueur I du noyau magnétique 12 selon son axe 18. Le fait que la longueur L de l'écran 20 soit finie permet d'éviter la circulation dans l'écran 20 de courant dans une direction parallèle à l'axe 19 du câble 14. De tels courants ne sont pas souhaitables car ils s'opposeraient au passage de la fréquence fondamentale dans le câble 14 en formant un transformateur. En pratique, le passage du câble 14 au travers de l'évidement central 16 est assimilé à une spire entourant le noyau magnétique 2. Plus précisément, lorsqu'un courant circule dans le câble 14, celui-ci forme un circuit fermé avec au moins un générateur et une charge. Ce circuit fermé forme une spire autour d'une section du noyau magnétique 12, section formée dans un plan contenant l'axe 18. Par ailleurs, la circulation d'un courant dans l'écran 20 parallèlement à l'axe 19 du câble 14 formerait de la même façon une autre spire autour d'une section du noyau magnétique 12. La spire du câble 12 et celle de l'écran formerait alors le transformateur évoqué plus haut, transformateur qu'il est souhaitable d'éviter.
  • Il est possible de fixer le potentiel de l'écran 20 en le raccordant électriquement par exemple à une masse électrique de l'équipement dans lequel est installé le dispositif 10. Ce raccordement doit se faire en un seul point de l'écran 20 afin d'éviter la création par l'écran 20 d'une spire autour du noyau magnétique. Alternativement, pour simplifier la réalisation du dispositif 10, l'écran 20 peut être isolé électriquement de son environnement, c'est-à-dire que l'écran 20 ne possède aucun raccordement électrique. Le potentiel de l'écran 20 est laissé flottant. Des essais en interne ont montré que cette isolation électrique complète permettait à l'écran de remplir sa fonction principale de limitation de l'échauffement du noyau magnétique 12. Autrement dit, lorsque le dispositif est en fonctionnement, l'écran 20 n'est raccordé électriquement ni au noyau magnétique 12, ni au câble 14, ni à aucune source de potentiel de l'équipement auquel le dispositif appartient.
  • L'écran 20 entourant le câble 14, des courants tournant autour de l'axe du câble peuvent s'y développer. De tels courants sont notamment induits par les composantes alternatives indésirables du courant circulant dans le câble 14.
  • Le matériau formant le noyau magnétique 12 ayant des propriétés de conductions électriques, en l'absence d'écran 20, les composantes alternatives indésirables induisent, dans le noyau magnétique 12, des courants tournant autour de l'évidement central 16. La présence de l'écran 20 dans lequel se développent des courants tournants induits par les composantes alternatives indésirables circulant dans le câble 14 permet d'atténuer les courants tournants dans le noyau magnétique 12. En effet, le noyau magnétique est soumis par induction à des courants tournants dans le câble 14 et à des courants opposés tournant dans l'écran 20. Cette opposition des courants tournant dans le câble 14 et dans l'écran 20 permet de limiter la génération de courants induits dans le noyau magnétique 12, ce qui permet de limiter son échauffement par effet Joule.
  • La figure 2 représente une variante du mode de réalisation du dispositif 10 représenté sur la figure 1. La figure 2 représente un dispositif 30 de filtrage inductif, formant également une inductance et dans lequel on retrouve le noyau magnétique 12, le câble 14 et l'écran 20. A la différence du dispositif 10, le câble 14 du dispositif 30 traverse deux fois l'évidement central 16 en formant une seconde spire 32 autour du noyau magnétique 12. Dans le cadre de l'invention, il est bien entendu possible de réaliser autant de spires 32 que nécessaire pour assurer le filtrage souhaité. L'axe 19 du câble 14 suit la forme de la spire 32 et l'écran 20 reste ici coaxial du câble 14. Autrement dit, l'écran 20 suit l'axe 19 du câble 14. Les axes 18 et 19 ne sont pas confondus. Comme dans la variante de la figure 1, l'écran 20 du dispositif 30 ne forme pas de spire autour du noyau magnétique 12. L'isolant électrique 24 présente ici un intérêt pour éviter des courts-circuits entre les spires formées par l'écran 20 autour du noyau magnétique. En effet, de tels courts-circuits entraineraient des courants tournants parallèlement au courant circulant dans le câble 14.
  • L'écran 20 possède une longueur L définie le long de l'axe 19 du câble 14. L'écran 20 dépasse du noyau magnétique 12 de part et d'autre du passage du câble 14 au travers de l'évidement central 16. Des essais en interne ont montré que pour obtenir une efficacité optimale du filtrage, il est avantageux que l'écran 20 dépasse de chaque côté noyau magnétique 12 selon l'axe 18. Un dépassement optimal est au moins égal à une dimension extérieure caractéristique du noyau magnétique 12 perpendiculairement à son axe 18. Par exemple pour un noyau magnétique 12 cylindrique, le dépassement est au moins égal au diamètre extérieur φ du noyau magnétique 12, comme représenté sur la figure 1. Avec un tel dépassement, il n'y a quasiment plus d'induction entre le câble 14 et le noyau magnétique 12. Avec un noyau magnétique de forme tubulaire et à section carrée ou rectangulaire, la dimension caractéristique est par exemple la diagonale de la section carrée ou rectangulaire. Plus généralement, un dépassement optimal est au moins égal à une plus grande dimension extérieure caractéristique du noyau magnétique.
  • Comme précédemment, dans la variante de la figure 2, le potentiel de l'écran 20 peut être fixé en le raccordant électriquement par exemple à une masse électrique de l'équipement dans lequel est installé le dispositif 30. Ce raccordement se fait en un seul point de l'écran 20 afin d'éviter la création par l'écran 20 d'une spire autour du noyau magnétique 12.
  • L'écran 20 peut être réalisé au moyen d'un feuillard ou d'une tresse métallique par exemple en alliage de cuivre ou d'aluminium entourant le câble 14. Tout autre matériau conducteur de l'électricité peut bien entendu être mis en œuvre. Il est possible de mettre en œuvre un film plastique métallisé. Le film plastique proprement dit remplit la fonction de l'isolant 24 et la métallisation celle de l'écran 20.
  • La figure 3 représente un second mode de réalisation d'un dispositif 40 de filtrage inductif conforme à l'invention. Dans ce mode de réalisation on retrouve le noyau magnétique 12 ainsi que le câble 14 et son isolant 22. Sur la figure 3, le câble 14 forme une spire 32 autour du noyau magnétique 12. Le second mode de réalisation peut être mis en œuvre avec autant de spires 32 que nécessaire ou même sans spire 32 comme dans la variante de la figure 1. Le dispositif 40 comporte un écran 42 disposé entre le noyau magnétique 12 et le câble 14. A la différence des dispositifs 10 et 30, l'écran 42 n'est pas disposé autour du câble électrique 14 de façon coaxiale. L'écran 42 est disposé sur au moins une face du noyau magnétique 12. Un isolant électrique 43 est interposé entre l'écran 42 et le noyau magnétique 12. L'isolant électrique 43 remplit la fonction de l'isolant électrique 24 présent dans le premier mode de réalisation. L'écran 42 et l'isolant 43 peuvent être réalisés au moyen d'un film plastique métallisé.
  • Dans le mode de réalisation de la figure 3, l'écran 42 comprend deux parties 42a et 42b. La partie 42a est disposée sur une face interne 44a du noyau magnétique 12 et la partie 42b est disposée sur une face externe 44b du noyau magnétique 12. De même, l'isolant 43 comprend deux parties 43a et 43b. La partie 43a est disposée sur la face interne 44a du noyau magnétique 12 et la partie 43b est disposée sur la face externe 44b du noyau magnétique 12. Plus précisément, les faces 44a et 44b sont concentriques de l'évidement central 16. Les faces 44a et 44b possèdent des sections cylindriques autour de l'axe 18. La face 44a forme une paroi interne de la forme tubulaire du noyau magnétique 12 et la face 44b forme une paroi externe de la forme tubulaire du noyau magnétique 12. Lorsque le câble 14 ne traverse qu'une seule fois l'évidement central 16, comme dans la variante de la figure 1, la partie 42a disposée sur la face interne 42a suffit et il n'est pas nécessaire de réaliser une partie 42b sur la face externe 44b pour disposer l'écran entre le câble 14 et le noyau magnétique 12. Par contre lorsque le câble 14 traverse plusieurs fois l'évidement central 16 pour former une ou plusieurs spires 32, la partie 42b est avantageuse pour compléter la disposition de l'écran 42 entre le câble 14 et le noyau magnétique 12.
  • Le noyau magnétique 12 comprend deux faces 46 et 48 perpendiculaires à l'axe 18. Il est possible de compléter l'écran 42 et l'isolant 43 en recouvrant l'une des faces 46 et 48 voire les deux. En recouvrant l'une des faces 46 ou 48 l'écran 42 peut assurer une continuité électrique entre les parties 42a et 42b. En cas de recouvrement des deux faces 46 et 48 par l'écran 42, il est important de rompre la continuité électrique de l'écran 42 de façon à éviter toute possibilité de courant tournant dans l'écran 42 parallèlement à la ou aux spires réalisées par le câble 14 traversant l'évidement central 16.
  • L'écran 42 peut être réalisé sous forme d'une tresse métallique disposée sur les faces concernées du noyau magnétique 12.
  • La fixation du potentiel de l'écran 42 n'est pas utile. Il est donc possible de conserver l'écran 42, qu'il soit réalisé en une seule partie ou en plusieurs parties 42a et 42b de conserver l'écran 42 ou même ses différentes parties complètement isolées électriquement de leur environnement.
  • La figure 4 représente une variante d'un écran adapté au second mode de réalisation. Pour ne pas surcharger la figure 4, seul le noyau magnétique 12 et l'écran sont représentés. L'écran est formé de deux coquilles 50 et 52 s'emboitant l'une dans l'autre. La coquille 50 comprend une face plane 50a en contact avec la face 46 du noyau magnétique 12. La coquille 50 comprend aussi deux faces cylindriques 50b et 50c s'étendant selon l'axe 18 du noyau magnétique 12. La face cylindrique 50b est en contact avec la face interne 44a du noyau magnétique 12 et la face cylindrique 50c est en contact avec la face externe 44b du noyau magnétique 12. De même, la coquille 52 comprend une face plane 52a en contact avec la face 48 du noyau magnétique 12. La coquille 52 comprend aussi deux faces cylindriques 52b et 52c s'étendant selon l'axe 18 du noyau magnétique 12. La face cylindrique 52b est en contact avec la face cylindrique 50b de la coquille 50 et la face cylindrique 52c est en contact avec la face cylindrique 50c de la coquille 50. Les coquilles sont par exemple réalisées en métal usiné ou moulé. Pour chaque coquille 50 et 52, sa face plane et ses faces cylindriques sont continues électriquement. Les coquilles 50 et 52 sont recouvertes d'un isolant électrique au moins entre leurs faces en contact avec le noyau magnétique 12 luimême. L'isolant électrique assure aussi une isolation entre les deux coquilles 50 et 52 afin d'éviter la formation d'une spire autour du noyau magnétique 12 comme évoqué plus haut. L'isolant électrique peut être formé d'un film plastique recouvrant complètement ou partiellement chacune des coquilles 50 et 52.
  • Comme précédemment, les deux demi-coquilles peuvent être complètement isolées électriquement de leur environnement.
  • Les figures 5 et 6 représentent l'invention adaptée à une autre forme de noyau magnétique. Plus précisément, sur les figures 5 et 6, le noyau magnétique 60 possède une forme longiligne entourée pas le câble 14. Dans l'exemple représenté, le noyau magnétique 60 ne possède pas d'évidement le traversant. Alternativement, il est possible de mettre en œuvre un noyau magnétique possédant un ou plusieurs évidements, et d'enrouler le câble 14 autour de ce noyau magnétique sans traverser le ou les évidements. Le noyau magnétique 60 possède une forme cylindrique à section pleine et circulaire s'étendant selon un axe 62. Toute autre forme cylindrique de noyau magnétique est possible, par exemple possédant une section perpendiculaire à l'axe 62 de forme carrée ou rectangulaire. Le noyau magnétique 60 peut être percé de part en part selon l'axe 62.
  • Sur la figure 5, on retrouve le câble 14 des figures 1 et 2 entouré du premier isolant 22, de l'écran 20 et du second isolant 24. Le câble 14 est enroulé autour du noyau magnétique 60. L'axe 62 forme l'axe d'enroulement du câble 14. Sur la figure 5, le câble 14 est enroulé sur deux tours. Il est bien entendu possible de mettre en œuvre l'invention quel que soit le nombre de tours du câble 14 autour du noyau magnétique 60. Dans cette configuration, l'écran 20 réduit l'apparition de courants haute fréquence dans le noyau magnétique 60 induits par des composantes haute fréquence présentes dans le signal véhiculé par le câble 14. Dans l'exemple représenté sur la figure 5, l'écran 20 est disposé autour du câble 14 de façon coaxiale tout au long de la partie du câble 14 enroulée autour du noyau magnétique 60. Comme précédemment, il est avantageux que l'écran 20 soit prolongé au-delà de l'enroulement du câble 14 autour du noyau magnétique 60. Dans ce mode de réalisation le dépassement de l'écran au-delà de l'enroulement est avantageusement au moins égal au diamètre φ du noyau magnétique 60. Le dépassement minimum est représenté sur la figure 5.
  • Avec le noyau magnétique 60, il est possible de réaliser un écran comme décrit sur la figure 3, c'est-à-dire, disposé sur au moins une des faces du noyau magnétique 60. La figure 6 décrit un écran 66 entourant la face cylindrique 64 du noyau magnétique 60. Pour ne pas surcharger la figure, le câble 14 n'est pas représenté. Il est enroulé comme sur la figure 5. Pour éviter de générer des courants induits dans l'écran 66, celui-ci est interrompu sensiblement le long d'une génératrice de la forme cylindrique du noyau magnétique 60. L'interruption peut être réalisée selon une autre forme, par exemple en hélice autour de l'axe 62 du noyau magnétique 60 ou même en suivant une ligne brisée. Il est avantageux que l'écran 66 se recouvre au-delà d'un tour au niveau de son interruption. Un tel recouvrement 68 est visible sur la figure 6. Pour assurer un recouvrement sans contact électrique entre les extrémités de l'écran au niveau de son interruption, l'écran 66 peut être réalisé au moyen d'un film conducteur recouvert sur ses deux faces d'un isolant électrique. Sur une des faces, l'isolant assure l'isolation de l'écran 66 vis-à-vis du noyau magnétique et sur l'autre face vis-à-vis de l'écran luimême au niveau du recouvrement et éventuellement vis-à-vis du câble 14. Ici encore, il est inutile de raccorder électriquement l'écran 66 et l'isolant électrique le recouvrant peut être réalisé sous forme d'un film continu.
  • Dans les différents modes de réalisation, le câble 14 est représenté avec un seul conducteur électrique traversant le noyau magnétique 12. Il est tout à fait possible de mettre en œuvre l'invention avec un câble 14 comprenant plusieurs conducteurs électriques isolés entre eux. Les conducteurs sont alors destinés à porter des tensions électriques différentes, par exemple la tension positive et la tension négative de la sortie d'une alimentation en courant continue ou la phase et le neutre d'une alimentation alternative monophasée. Il est également possible de prévoir plus de deux conducteurs électriques regroupés dans un même câble, par exemple pour filtrer les différentes phases de sortie d'une alimentation alternative polyphasée.

Claims (9)

  1. Dispositif de filtrage inductif comprenant :
    - un noyau magnétique (12 ; 60)
    - au moins un câble électrique (14) enroulé autour du noyau magnétique (12 ; 60) en formant au moins une spire (32), le câble électrique (14) étant destiné à véhiculer un signal électrique possédant au moins une composante alternative indésirable se superposant à une fréquence fondamentale du signal électrique et
    - un écran (20 ; 42 ; 50, 52 ; 66) électriquement conducteur, isolé électriquement de son environnement,
    l'écran (20 ; 42 ; 50, 52 ; 66) étant disposé entre le noyau magnétique (12 ; 60) et le câble électrique (14) de façon à permettre la génération dans l'écran (20 ; 42 ; 50, 52 ; 66), par induction électromagnétique, d'un courant dont la fréquence est supérieure à la fréquence fondamentale,
    l'écran (20 ; 42 ; 50, 52 ; 66) étant configuré de façon à ne pas permettre le circulation d'un courant dans une direction parallèle à celle de la ou des spires (32) formées par l'enroulement du câble électrique (14) autour du noyau magnétique.
  2. Dispositif de filtrage inductif selon la revendication 1, le dispositif étant destiné à filtrer une fréquence donnée, dans lequel l'écran (20 ; 42 ; 50, 52 ; 66) a une épaisseur au moins égale à δ = (p/π.f.µ)1/2 avec ρ : la résistivité, et µ : la perméabilité magnétique absolue du matériau choisi pour réaliser l'écran (20 ; 42 ; 50, 52 ; 66).
  3. Dispositif de filtrage inductif selon la revendication 1, dans lequel le câble électrique (14) s'étend selon un axe (19) et dans lequel l'écran (20) est disposé autour du câble électrique (14) de façon coaxiale.
  4. Dispositif de filtrage inductif selon la revendication 3, dans lequel le noyau magnétique (12) est de forme cylindrique s'étendant autour d'un axe (18), dans lequel l'écran (20) dépasse du noyau magnétique (12) au-delà de la ou des spires formées autour du noyau magnétique (12 ; 60), le dépassement étant au moins égal à une dimension extérieure caractéristique du noyau magnétique (12).
  5. Dispositif de filtrage inductif selon l'une des revendications précédentes, dans lequel le câble (14) est enroulé plusieurs fois autour du noyau magnétique (12 ; 60) en formant plusieurs spires (32) autour du noyau magnétique (12 ; 60).
  6. Dispositif de filtrage inductif selon l'une des revendications précédentes, dans lequel l'écran (42 ; 66) est disposé sur au moins une face (44a, 44b, 46, 48 ; 64) du noyau magnétique (12 ; 60).
  7. Dispositif de filtrage inductif selon la revendication 6, dans lequel l'écran (42) comprend plusieurs parties (42a, 42b), chaque partie étant disposée de façon à recouvrir une des faces (44a, 44b, 46, 48) du noyau magnétique (12).
  8. Dispositif de filtrage inductif selon la revendication 6, dans lequel l'écran comprend deux coquilles (50, 52) s'emboitant l'une dans l'autre.
  9. Dispositif de filtrage inductif selon l'une des revendications précédentes, dans lequel le noyau magnétique (12) possède un évidement central (16), et dans lequel le câble électrique (14) est enroulé autour du noyau magnétique (12) en traversant l'évidement central (16).
EP21187083.7A 2020-07-27 2021-07-22 Dispositif de filtrage inductif a limitation d'echauffement Pending EP3945533A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2007872A FR3112913B1 (fr) 2020-07-27 2020-07-27 Dispositif de filtrage inductif à limitation d’échauffement

Publications (1)

Publication Number Publication Date
EP3945533A1 true EP3945533A1 (fr) 2022-02-02

Family

ID=74045525

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21187083.7A Pending EP3945533A1 (fr) 2020-07-27 2021-07-22 Dispositif de filtrage inductif a limitation d'echauffement

Country Status (3)

Country Link
US (1) US20220028594A1 (fr)
EP (1) EP3945533A1 (fr)
FR (1) FR3112913B1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010050605A1 (en) * 2000-06-12 2001-12-13 Maspro Denkoh Co., Ltd. Noise elimination device and method for installing the same
US20160365192A1 (en) * 2015-06-12 2016-12-15 Nec Tokin Corporation Noise filter, multistage-connection lc filter, and medical instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010050605A1 (en) * 2000-06-12 2001-12-13 Maspro Denkoh Co., Ltd. Noise elimination device and method for installing the same
US20160365192A1 (en) * 2015-06-12 2016-12-15 Nec Tokin Corporation Noise filter, multistage-connection lc filter, and medical instrument

Also Published As

Publication number Publication date
FR3112913B1 (fr) 2023-01-27
FR3112913A1 (fr) 2022-01-28
US20220028594A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
EP0991950B1 (fr) Capteur de courant
CA2881004C (fr) Dispositif de puissance bobine comportant un enroulement d'un premier bobinage et un enroulement d'un deuxieme bobinage qui enveloppent une meme portion d'une jambe de noyau magnetique
EP3945533A1 (fr) Dispositif de filtrage inductif a limitation d'echauffement
EP0355145A1 (fr) Dispositif d'injection d'un signal electromagnetique dans un conducteur electrique
CA1158700A (fr) Rotor a ecran amortisseur pour alternateur a poles saillants
CA2285806C (fr) Transformateur sec de puissance ou de distribution de l'energie electrique
EP0258362A1 (fr) Transformateur haute tension
CH497073A (fr) Installation comprenant un générateur de haute tension
FR2691591A1 (fr) Limiteur de courant hybride supraconducteur pour réseau alternatif haute tension.
FR3009885A3 (fr)
FR2944164A1 (fr) Moteur electrique ameliore.
FR2511207A1 (fr) Bobine d'enroulement statorique pour alternateur a haute tension
EP3257062B1 (fr) Dispositif d'induction electromagnetique
WO1993008669A1 (fr) Inducteur de chauffage par induction de bandes metalliques
EP0221921B1 (fr) Aimant solenoidal sans fer
FR2545293A1 (fr) Machine electromagnetique a induction lineaire
FR2731295A1 (fr) Bobine d'allumage a aimant de polarisation et a couplage optimise
FR3116646A1 (fr) Câble de puissance à filtre intégré
FR3038488A1 (fr) Refroidissement d'un troncon de ligne coaxiale et d'un dispositif de production de plasma
FR3069695A1 (fr) Bobine electromagnetique a dissipation thermique amelioree
FR2709861A1 (fr) Limiteur de courant inductif.
WO2021116599A1 (fr) Dispositif électrotechnique pour un aéronef comprenant des composants bobinés basse fréquence
WO2021116632A1 (fr) Dispositif électrotechnique pour un aéronef
WO2023135159A1 (fr) Utilisation d'un fil de litz pour limiter des surtensions dans une chaîne électromécanique
FR2647253A1 (fr) Transformateur d'impulsions de haute tension

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220729

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240126

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GUGUEN, STEPHANE

Inventor name: KHERBOUCHI, HOCINE

Inventor name: DUBOIS, ERIC RAVINDRANATH

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED