EP3943801A1 - Systeme et procede de chauffage d'une cuve de stockage pour gaz liquefie - Google Patents

Systeme et procede de chauffage d'une cuve de stockage pour gaz liquefie Download PDF

Info

Publication number
EP3943801A1
EP3943801A1 EP21187549.7A EP21187549A EP3943801A1 EP 3943801 A1 EP3943801 A1 EP 3943801A1 EP 21187549 A EP21187549 A EP 21187549A EP 3943801 A1 EP3943801 A1 EP 3943801A1
Authority
EP
European Patent Office
Prior art keywords
heating
ballast
ship
tank
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21187549.7A
Other languages
German (de)
English (en)
Inventor
Frédéric LORMIER
Laurent Spittael
Paul BEIRNAERT
Marc Bonnissel
Damien BRENAC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP3943801A1 publication Critical patent/EP3943801A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/02Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking
    • B63B43/04Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability
    • B63B43/06Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability using ballast tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • B63J2/14Heating; Cooling of liquid-freight-carrying tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/12Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0304Heat exchange with the fluid by heating using an electric heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0376Localisation of heat exchange in or on a vessel in wall contact
    • F17C2227/0383Localisation of heat exchange in or on a vessel in wall contact outside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0491Parameters measured at or inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0631Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/032Avoiding freezing or defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of storage facilities for liquefied gas comprising a sealed and thermally insulating tank.
  • the invention relates to the field of sealed and thermally insulating tanks for the storage and/or transport of liquefied gas at very low temperature, such as tanks for the transport of ethane (at approximately -90° C.) , ethylene (approximately -104°C) and Liquefied Petroleum Gas (also called LPG) having for example a temperature between - 50°C and 0°C, or for the transport of Liquefied Natural Gas (LNG) at around -162°C at atmospheric pressure or even liquefied gases such as ammonia (at around -30°C).
  • LPG Liquefied Petroleum Gas
  • the tank can be intended for the transport and storage of liquefied gas or to receive liquefied gas serving as fuel for the propulsion of the floating structure (vessel).
  • the document FR2991430 filed in the name of the applicant, describes an example of a storage facility for liquefied gas comprising a sealed and thermally insulating tank integrated into a supporting structure consisting of the double hull of a ship.
  • Each wall of the vessel comprises a secondary thermally insulating barrier, a secondary sealing membrane, a primary thermally insulating barrier and a primary sealing membrane, these various elements constituting the main structure of the liquefied gas storage vessel.
  • the outside air temperature can easily reach -50°C while the highly salty sea water is around -2°C.
  • the insulating blocks of the tank are conventionally bonded to the load-bearing structure using a filled polymer resin referred to as mastic.
  • This putty for bonding the tank integrated or installed in the supporting structure often consists of epoxy resins in the form of two components.
  • Such sealants are certified to withstand down to -25°C, that is to say that their physico-chemical properties must not deteriorate significantly until this temperature is reached.
  • the temperature of the sealant can drop below -25°C.
  • the tank containing LPG, LNG or other ethane or ethylene or ammonia type products is full or almost full, the ballast tanks are generally empty or almost empty because the ship's draft is suitable in such a situation to the maneuvers and direction of the ship.
  • the applicant has discovered, after multiple tests and analyses, that in such a configuration in which the ballasts are filled with air, and not with sea water, these present at least for the part of the ballasts as well as the other areas surrounding the tank, located above sea level, at a temperature identical to or very close to that of the outside or surrounding air, which risks bringing this sealant, necessary for maintaining and fixing the tank at such a low temperature that it can be altered.
  • the paint used on the inner wall of the ship's load-bearing structure is also susceptible to damage or degradation. However, this paint has technical functions including chemical insulation so that this wall does not oxidize.
  • the present invention relates to a method for heating a storage installation for liquefied gas installed in a support structure of a ship comprising a sealed and thermally insulating tank arranged in the support structure, the ship comprising at least one ballast suitable and intended to be filled with a liquid, advantageously consisting of sea water, and an inter-deck space arranged adjacent or contiguous to the tank, respectively laterally and under the said tank for the ballast and above the tank for the inter-deck space, the sealed and thermally insulating tank comprising a main structure formed by a plurality of walls of the tank connected to each other and fixed to the support structure, the main structure defining an internal storage space for the liquefied gas, the main structure comprising at at least one sealing membrane and at least one thermally insulating barrier, the thermally insulating barrier being placed between the sealing membrane and the supporting structure; a plurality of beads of mastic being arranged between the supporting structure and the main structure of the tank.
  • the invention is characterized in that the heating method comprises a step of heating the ballast when said ballast is at least essentially empty of liquid, the step of heating the ballast being carried out using means for heating the internal space of said ballast, and/or in that the heating method comprises a step of heating the inter-bridge space, the step of heating the inter-bridge space being carried out using a heating means arranged at the level of the inter-deck space.
  • the applicant proposes a simple, effective and inexpensive system to avoid any risk of damage to the mastic and/or the paint placed and fixed on the internal face of the supporting structure of the ship.
  • ballast tanks are traditionally equipped with a means of heating the sea water that they can contain and advantageously modifies some of their characteristics as regards their structure and/or their position in order to to adapt them to a new function, namely to heat the air present in these ballast tanks, so that the mastic and the paint on the other side of the wall - the ballast tanks being adjacent or contiguous to the sealed tank and thermally insulating - do not drop to too low a temperature, typically below - 25°C.
  • the invention starts from the aforementioned observation and from the modifications applied in the ballasts to make modifications to the existing heating or to add such heating to the other zones conventionally surrounding an integrated tank containing a liquefied gas, it being understood that certain zones such as the cofferdams n do not have to be modified because they are so-called “hot” zones, that is to say such a zone is heated to a temperature at least equal to 0° C., or even much higher.
  • ballast means any tank, cistern or the like fitted to certain ships, including those storing and/or transporting liquefied gas, intended, by filling or emptying, to correct the heel or trim of the ship to increase the sinking of a light ship, in particular so that the propeller is sufficiently submerged and also to reduce the windage, to avoid excessive efforts on the ship (distribution of weight over the length) or to improve stability by modifying the position of the general center of gravity.
  • the present invention is illustrated with a ship of the LNGC type or designated more generally by the term "LNG carrier", without obviously being limited to such a ship, it should be noted that these "ballasts" can be replaced on other types of ship by rooms or areas not presenting the traditional functions of a ballast, namely in particular that they are not intended to be filled at least in part with a liquid such as sea water.
  • the present invention which applies in particular when these "ballasts" are essentially empty, is applicable even if these parts or these areas located at the current locations of the ballasts, namely laterally and under the tank (or its supporting structure), cannot be designated by the term "ballast", a structural and/or functional point of view.
  • inter-deck space is understood to mean the volume, conventionally defined by a single part, located above the tank housing the liquefied gas, the lower wall of which consists of the lower deck and the upper wall consists of the upper deck, the latter being conventionally designated as the deck on which anyone moves to evolve on the ship while being outside.
  • strings of putty means any product, conventionally consisting of a polymer matrix containing fillers, intended to ensure the fixing and maintenance of the main structure of the tank against the internal surface of the load-bearing structure of the vessel. , it being understood that other elements, such as studs, are used to mechanically fix the integrated tank to the supporting structure.
  • substantially empty in connection with the ballast(s) means that the ballast(s) are filled with liquid, conventionally sea water, up to a maximum of twenty percent (20%) of the total volume of the ballast(s). Generally, when a ballast is emptied, a residual quantity of sea water is present but this residual quantity does not exceed five percent (5%) of the total volume of the ballast.
  • the present invention is illustrated with a vessel for storing and transporting liquefied gas of the LNGC (“Liquefied Natural Gas Carrier”) type.
  • LNGC Liquefied Natural Gas Carrier
  • the measurement step indicated above is carried out prior to the said comparison step, that is to say that these two steps, as stated, are consecutive to each other even if the elapsed time period is advantageously minimum, i.e. of the order of a few milliseconds, in particular if one is in the case of automatic management of the heating of the ballast and/or of the inter-deck space .
  • predetermined threshold temperatures so as to prevent cooling of the load-bearing structure, and therefore of the mastic or the paint, by modulating the heating of the ballast zone and/or of the intermediate zone. bridges.
  • three predetermined threshold temperatures can be provided, the first being higher than the second which itself is higher than the third.
  • the heating by the heating means can represent 50% of its maximum heating capacity while when the second and the third (and last) threshold temperature are reached, then the heating by the heating means may be 75% and at least 95% of the maximum heating capacity of the heating means, respectively.
  • the predetermined character of the threshold temperature is of course liable to change, in the sense that this temperature can be adjusted at any time manually or automatically, for example according to the local atmospheric pressure and the temperature of the external/surrounding air, present or future (i.e. predicted by meteorological means).
  • the heating of the ballast and/or of the inter-deck space is triggered automatically as soon as the measured temperature is equal to or lower than the predetermined threshold temperature.
  • an automatic control means in connection with the heating of the ballast and/or the inter-deck space the fact that the triggering of this heating occurs as soon as a predetermined threshold temperature is reached, without no action by an operator or the like.
  • an automatic control means is used and conventionally consists in electronic and thermomechanical means for regulating the heating system or even in at least one computer using a computer program intended to manage the temperature information recorded and the heating operations, partial or total for the various heating means, as well than their stops.
  • the predetermined threshold temperature is between -15°C and 0°C at atmospheric pressure, preferably equal to -10°C.
  • the heating of the ballast uses the steam generation and distribution system of the ship.
  • Such a system for generating and distributing the ship's water vapor is conventionally provided on ships of a certain size, in particular to make it possible to de-ice and clean such and such parts of the upper deck, to maintain the temperature of the fuel tanks ( “fuel oil”), or for the operation of certain devices and equipment such as, for example, pumps, heaters or vaporizers.
  • the heating system according to the invention does not create the need for any additional infrastructure, equipment or ducts to create and manage the heating means or means according to the invention.
  • the applicant analyzed the energy requirements of the heating system according to the invention and concluded that the energy requirements are between 0.7 MegaWatt (MW) and 2 MW, preferably around 1.1 MW for a ship of the conventional LNGC type, or having a transport capacity of between around 160,000m 3 and 180,000m 3 .
  • the current energy expenditure necessary for heating the seawater in the ballast tanks, in particular to avoid icing is at least 8 MW, considering that an LNGC type vessel usually generates at least 40 MW for its steam circuit.
  • the energy expenditure necessary to the implementation of the invention can be absorbed without difficulty with the current energy production in such a ship, without any modification or adaptation of the installations.
  • ballasts are arranged adjacent or contiguous to the tank and comprise a heating means, advantageously all or almost all of the ballasts adjacent or contiguous to the tank comprise a heating means.
  • ballasts means that at least seventy percent (70%) of the ballasts are concerned.
  • a ship of type LNGC which conventionally comprises four LNG tanks, there are eight ballasts - i.e. two ballasts surrounding each tank - and therefore almost all of the ballasts means that at least six of the eight ballasts have a heating means according to the invention .
  • ballast tanks there are conventionally on an LNGC-type ship other ballast tanks not contiguous or adjacent to the tanks containing a liquefied gas, in this case at the front and at the rear of the ship.
  • the liquid coming to occupy the internal space of the ballast(s) when the latter(s) is/are filled or almost filled is heated by the (same) heating means used to heat said one or more ballasts at least substantially empty. It is understood here that it is also possible to keep two separate heating systems, one dedicated to heating the ballast when it is filled with seawater and the other, according to the invention, dedicated to heating the ballast when essentially empty.
  • the heating means of the invention makes it possible, through its slight modifications, to heat the liquid in the ballasts at least as efficiently, and therefore to reduce the energy expenditure for this operation.
  • the expression “almost full” in connection with the filling level of a ballast in liquid means the fact that this ballast is considered almost full when at least eighty percent (80%) of the internal ballast volume is occupied by liquid, typically seawater.
  • the present invention also relates to a system for heating a storage installation for liquefied gas installed in a supporting structure of a ship comprising a sealed and thermally insulating tank arranged in the supporting structure, the ship comprising at least one ballast suitable and intended to be filled with a liquid, advantageously consisting of sea water, and an inter-deck space arranged adjacent or contiguous to the tank, respectively laterally and under the said tank for the ballast and above the tank for the inter-deck space, the sealed and thermally insulating tank comprising a main structure formed by a plurality of walls of the tank connected to each other and fixed to the support structure, the main structure defining an internal storage space for the liquefied gas, the main structure comprising at least one waterproofing membrane and at least one thermally insulating barrier, the thermally insulating barrier being placed between the sealing membrane and the load-bearing structure; a plurality of beads of mastic being arranged between the supporting structure and the main structure of the tank.
  • Such a heating system can in particular be used for implementing the method described above.
  • control means may consist of an automatic system managed by at least one computer/computer program, or else an electrical/electronic actuation system requiring manual activation by an operator.
  • the present invention provides that only a ballast or only the inter-deck space can be provided with a heating means, if it can of course make it possible to solve the drawbacks observed with a excessive cooling of the putty and/or paint present on the internal walls of the load-bearing structure. Therefore, one can in particular consider an embodiment in which only one ballast, or even the two ballasts conventionally surrounding an LNG tank of an LNGC-type ship, is provided with a heating means, without it there may also be a need to provide a means of heating at the level of the inter-deck space, even if the latter solution is particularly advantageous.
  • control means is connected to at least one temperature sensor intended to measure the temperature (of the internal space) of the ballast and/or of the inter-axle space so as to trigger, via the control means, the heating of the ballast and/or the inter-deck space when the temperature (of the internal space) of the ballast and/or the inter-deck space is detected as less than or equal to a predetermined threshold temperature.
  • the heating means consists of a heat exchanger using a fluid circulating in said heat exchanger, advantageously the fluid consisting of water vapor coming from the water vapor generation and distribution circuit of the ship.
  • the heating means comprises a coil intended for heat exchange, using a heat transfer fluid, with a length of between 250 and 500 meters and a section of external diameter between 60 and 75 millimeters, preferably with a length of at least 300 meters.
  • the length expressed, between 250 and 500 meters consists of the sum of the lengths of the heat exchanger coils in the case where there are several coils or the like within a ballast or an interspace. bridges.
  • external diameter is understood to mean in connection with the coil of the heating means the diameter of this pipe considered to be the largest, as opposed to the smaller internal diameter of the pipe in which the heat transfer fluid circulates.
  • the heating means can also consist of a heat exchanger in which a mixture of water and glycol or oil is circulated.
  • a mixture of water and glycol it may be advantageously possible to connect the network of the means for heating the ballast and/or the inter-deck space to that of the heating system equipping the areas of cofferdam, currently using a mixture of water and glycol, so as to have only one and the same heat exchange network for all the zones to be (re)heated around a LNG tank.
  • These devices can be of the fin type and be optimized for exchange with air while maintaining compatibility with regular stays in seawater.
  • the present invention is not limited in its application to the use of a single type of heating means for all of the ballast tanks and the inter-deck spaces.
  • the heating means is arranged against or close to the wall of the ballast located adjacent or contiguous to the tank.
  • the expression "against or close to the wall” means the fact that the heating means is fixed directly to this wall or even at least partly fixed to another wall but that the heating means extends close from the wall adjacent or contiguous to the tank, in other words at a distance of at most fifty centimeters, preferably at most twenty centimeters, from the latter.
  • the heating system comprises a plurality of temperature sensors present in the ballast and/or in the inter-deck space, advantageously at least three temperature sensors for the ballast and/or the inter-deck space.
  • the three temperature sensors are arranged linearly, advantageously spaced from each other in height in the ballast and advantageously spaced from each other longitudinally in the inter-deck space.
  • the spacing between each of the three temperature sensors is a function of the length (longitudinal) of the inter-deck space for their placements in the area of the latter and the conventionally emerged height - the draft of a ship type LNGC varies by more or less two meters depending on its level of loading and filling of its ballasts - for their placements in the ballast zone.
  • two adjacent temperature sensors are separated from each other by at least five meters for a ballast and at least ten meters for the inter-deck space.
  • ballast tanks are present laterally on either side of the tank and an inter-deck space is present above the tank.
  • the invention relates more particularly to a ship for the transport of a cold liquid product, the ship comprising a double hull, an internal deck as well as an external deck and a storage installation for liquefied gas installed in a supporting structure of the vessel comprising a watertight and thermally insulating tank arranged in the load-bearing structure, the structure comprising at least one ballast suitable and intended to be filled with a liquid, advantageously consisting of sea water, and/or an inter-deck space arranged adjacent or contiguous to the tank, respectively laterally and under the said tank for the ballast and above the tank for the inter-deck space, characterized in that the ship comprises a heating system for the said installation as briefly presented above arranged in the double hull.
  • the invention also relates to a transfer system for a cold liquid product, the system comprising a ship as described above, insulated pipes arranged so as to connect the tank installed in the hull of the ship to an external floating storage installation or land and a pump to drive a flow of cold liquid product through the insulated pipes from or to the external floating or land storage installation to or from the tank of the ship.
  • the present invention relates to a method for loading or unloading a ship as described above, in which a cold liquid product is conveyed through insulated pipes from or to an external floating or terrestrial storage installation towards or from the vessel's tank.
  • vertical here means extending in the direction of the earth's gravity field.
  • horizontal herein means extending in a direction perpendicular to the vertical direction.
  • the present invention is illustrated with a vessel 70 of the LNGC (“Liquid Natural Gas Carrier”) type conventionally comprising four sealed and thermally insulating tanks 71 .
  • LNGC Liquid Natural Gas Carrier
  • the characteristics of the present invention to another type of ship transporting/storing a liquefied gas, or even to a structure of a different nature, such as for example a structure of the terrestrial or maritime tank type (known as "GBS” meaning "Gravity Based Storage”) provided that the problem and/or the need is similar.
  • the LNGC-type ship 70 shown in the appended figures has four tanks 71, three tanks 71 of identical dimensions and a tank 71' having a different length and width, that 71' located at the front of the ship 70.
  • the length is considered in the longitudinal direction of the ship 70 while the width is considered in the transverse direction, ie perpendicular to the longitudinal axis of the ship, it being understood that all the above dimensions are expressed in meters.
  • the dimensions of the tanks 71, 71' which are given here are those of a ship 70 of the classic LNGC type and such a ship 70 has a capacity - i.e. the sum of the internal volumes of the four tanks 71, 71' - of one hundred seventy-four thousand cubic meters (174,000 m 3 ).
  • the installation storage comprises at least one tank 71 sealed and thermally insulating.
  • the load-bearing structure 10 comprises a plurality of walls connected to each other and in particular an upper load-bearing wall 3 which is located, as can be seen in the figure 4 , at the top of the storage facility.
  • the supporting structure 10 is formed by the double hull of the ship.
  • the upper load-bearing wall 3 is thus called the internal deck 3 of the ship 70 while there is also an external deck 13, also visible on the figure 4 .
  • the tank 71 comprises a main structure formed of a bottom wall 4, a ceiling wall 5, two side walls 6 connecting the bottom wall 4 to the ceiling wall 5 and optionally two to four bevel walls 7 connecting the walls sides 6 to the bottom wall 4 or to the ceiling wall 5.
  • the walls 4, 5, 6, 7 of the tank 71 are thus connected to each other so as to form a polyhedral structure and to delimit an internal space of storage, in particular intended to receive a liquefied gas.
  • the storage installation comprises a loading/unloading opening, also designated by the expression “liquid dome” 46, as well as an opening dedicated to the release of gas, also designated by the expression “gas dome” 47, visible on the figure 8 , locally interrupting the ceiling wall 5 of the tank 71 so as to allow in particular the loading/unloading pipes, not shown in the appended figures, to reach the bottom of the tank 71 by crossing this opening 46.
  • the tank 71, 71 ' is a membrane tank for storing liquefied gas for which mastic is used, not shown in the appended figures, traditionally applied in the form cords intended to fix the main structure of the tank 71 to the supporting structure 10 of the vessel 70, it being understood that other mechanical elements - conventionally studs - also have the function of fixing and maintaining the main structure of the tank 71 in the load-bearing structure 10 of the ship 70.
  • Such beads of mastic are well known and are described in particular in the document EN 2909356 , filed on behalf of the plaintiff.
  • the main structure of the tank 71 comprises a multilayer structure, not shown in the appended figures, comprising for example, from the outside of the tank 71, 71' inwards, a secondary thermally insulating barrier comprising insulating elements, resting against the load-bearing structure 10, a secondary sealing membrane resting against the secondary thermally insulating barrier, a primary thermally insulating barrier comprising insulating elements, resting against the secondary sealing membrane and a primary sealing membrane intended to be in contact with the liquefied gas, in liquid or gaseous form, contained in the tank 71.
  • the main structure of the tank 71 can be made according to the NO ® technology which is described in particular in the document FR2691520 or the MARK ® technology which is described in particular in the document FR2724623 . Nevertheless, it is understood that the present invention is in no way limited to this type of tank, nor even generally to tanks of a different nature called independent according to the definitions of the IGC code. "International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk", 2016 edition .
  • the machines 30, or engine room intended to manage the whole of the ship 70, from the propulsion to all the circuits for generating and supplying the various equipment of the ship 70.
  • the machines 30 is the castle 31 which conventionally consists of a tower or the like where the accommodations of the crew and the command post of the ship are located.
  • ballast tanks 20 and cofferdams 21 are laterally surrounded by ballast tanks 20 and cofferdams 21, the latter 21 being inter-tank spaces 71 or arranged between a tank 71 and a room 30 or other for the tanks 71, 71' located at both ends of the vessel 70.
  • the ballasts 20 conventionally extend beyond the side walls 6, 7 of the tank 71 as far as the bottom wall 4 of the tank 71; the two ballast tanks 20 being conventionally separated by a watertight bulkhead 40 extending longitudinally (in the fore-aft direction of the vessel 70).
  • the present invention intends to apply in particular to the submerged zone of the ship 70, as opposed to the submerged part 41 of the ship 70 also defining the draft.
  • sea water is at a temperature of at least 0°C, or slightly lower - around minus two or three degrees Celsius in the Arctic Sea - due to its high salinity, there is no need to heat this submerged zone 41 of the ship 70 because the sealant and the paint fixed or arranged on the internal face of the load-bearing structure 10 of the ship 70 are approved or certified not to degrade, or not significantly, at a temperature close to zero degrees Celsius.
  • the tanks 71, 71' are also adjacent or contiguous to the inter-deck space 23, located above the tank 71, 71' defined in the broad sense by the volume or the space between the lower deck 3 and the deck 13 of the vessel 70.
  • a compartment 24 for the circulation of operators and passages for cables and other pipes conventionally designated by the expression "passage way” .
  • Such circulation compartments 24 are therefore usually provided on either side of the inter-deck space 23.
  • the present invention intends to rationalize as well as possible the heating of the adjacent or contiguous wall of a tank 71, 71' or of the supporting structure 10, thus in its broadest acceptance, the invention provides for equipping at least one ballast 20 , advantageously the two ballast tanks 20 surrounding a tank 71, or at least the inter-deck space 23 which are zones or spaces in which no heating is provided - case of space inter-bridges 23 - or no heating when they are empty or almost empty of liquid (case of ballasts 20).
  • These communication compartments/passages 24, unlike the ballast tanks 20 and the inter-deck space 23, are areas where the crew circulates regularly.
  • heating means 26 are common or usual from the moment when the ship 70 is likely to pass through cold regions, it being understood that the primary function of this heating means 26 in such zones 24 is to provide an appropriate environment for the humans who circulate there. This is why such heaters, when they are present in these circulation compartments/passages 24, are generally located on or near the outer wall 25 so as to thermally insulate said compartments/passages 24 from the external environment at the vessel 70.
  • heating means 26 present in the compartment or circulation passage 24 are advantageously moved to be located against the wall adjacent or contiguous to the tank 71 or to the supporting structure 10 of this last 71.
  • the two adjacent or contiguous ballast tanks 20 as well as the inter-deck space 23 are equipped with a heating means 26 and one can use all of these heating means 26 simultaneously or only part of these heating means 26 to heat in particular the mastic and the paints arranged on the internal face of the supporting structure 10.
  • the emerged part - that is to say located above sea level - of the tanks 71 of liquefied gas is advantageously continuously surrounded by a heating means 26, that is a heating means 26 in both contiguous ballasts 20, a heating means 26 in the inter-deck space 23 and a heating means 26 in the two compartments or passages 24 of contiguous communication.
  • the heating means 26 is of the type identical or similar to that currently fitted to the ballasts 20 to heat them when filled with liquid, in particular to defrost certain parts of the ballasts 20 (“anti-icing” function) and exhibit a bactericidal and/or fungicidal effect or more generally to combat the development of living organisms.
  • the nature of the heating means 26 is not limited within the scope of the present invention and may consist of various devices adapted to a corrosive environment which may be at least partly submerged by water. of sea, as regards the ballasts 20.
  • Such a heating means 26 advantageously uses the ship's water vapor generation and distribution system 70.
  • a steam generation and distribution system comprises a steam generator 32, conventionally located in the engine room 30, and a steam distribution circuit 33.
  • This steam distribution circuit steam 33 is in no way modified in the context of the present invention compared to the state of the art but simply adapted so that the heating means 26 located in the ballast tanks 20 and the inter-deck space 23 , or even in the circulation compartment 24, are connected to said water vapor distribution circuit 33, with conventionally an inlet and an outlet for this water vapor acting as a heat transfer fluid.
  • such a steam distribution circuit 33 comprises a steam distribution circuit on the starboard side 33' and a steam distribution circuit on the port side 33", each having independently a path of the water vapor in a closed circuit from and to the water vapor generator 32.
  • each ballast 20 has an input connection 37 and an output connection 38 to the water vapor circuit 33 , 33', respectively for the introduction of steam and its evacuation in the direction of the generator 32.
  • the heating means 26 located in the compartment or the circulation passage 24 consists of a heat exchanger conventionally operating with oil and not steam.
  • this heat exchanger 26 can also use the steam distribution circuit 33, like the means 26 for heating the ballast tanks 20 and the inter-deck space 23.
  • the system of the invention is implemented in all of the spaces located around the tank 71, considering the emerged part of the ship 70, using a single system for the generation and distribution 32, 33 of the same heat transfer fluid.
  • the figures 6 to 8 illustrate an embodiment of a heating means 26 positioned and fixed on the adjacent or contiguous wall respectively of a ballast 20 ( figure 6 ), of the circulation compartment or passage 24 ( figure 7 ) and the inter-deck space 23 ( figure 8 ).
  • the heating means 26 consists of a coil, that is to say a coiled pipe in turns, in the form of long straight lines taking into account the dimensions in length, width and height, in which circulates a liquid or a gas consisting of a heat transfer fluid.
  • the heating means 26 is affixed and fixed there without the need for any particular arrangement concerning its path or its installation, conventionally the so-called secondary stiffening of the walls or partitions is used to make the fixings of the heating means.
  • the heating means 26 in the context of the present invention is simply modified with regard to two advantageous characteristics, namely on the one hand the length or the heat exchange surface because the heat exchange in or with a gas, and not in or with a liquid, requires a larger exchange area to be effective and on the other hand the placement or position of the heating means 26 which must be located against or in the immediate vicinity of the wall contiguous or adjacent to the load-bearing structure 10 and therefore to the tank 71, 71' in the space considered, namely in the ballast tanks 20, the inter-deck space 23 or even the communication passages 24.
  • the attachment of the heating means 26 is conventional or known to those skilled in the art and may consist of an attachment identical to that of the heating means present in the ballasts 20 of the state of the art.
  • the applicant has determined , after several tests and analyses, that it is particularly advantageous to produce an exchange surface of at least fifty square meters (50 m 2 ) for a ballast 20 as for the inter-deck space 23, preferably of at least seventy square meters (70 m 2 ) for the two spaces 20 and 23, it being considered that the pipe for the heat exchanger consists of a pipe having an external diameter of seventy-three (73) millimeters.
  • the heat exchange surface covered by a heating means 26, when it is positioned in a ballast 20, a space inter-decks 23 or one circulation compartment/passage 24, represents at least five percent (5%) of the surface of this adjacent or contiguous wall located in one of these locations 20, 23 or 24.
  • the inter-deck space 23 thus has a coil forming the heating means 26 with a length of approximately three hundred and twenty (320) meters and a ballast 20 has such a pipe forming the heating means 26 (of the emerged part) with a length of approximately three hundred and fifty (350) meters.
  • Temperature sensors 35 are advantageously arranged or fixed in each zone 20, 23 and/or 24 where a heating means 26 is provided so that when a predetermined threshold temperature is raised, a control means or an operator, not shown in the appended figures, triggers the heating of at least one heating means 26, advantageously of all the heating means 26 in the different zones 20, 23 and 24.
  • These temperature sensors 35 are advantageously spaced apart from each other. others, within each of the zones 20, 23 and 24, so as to reliably detect the temperature in all of the emerged parts surrounding a tank 71.
  • these temperature sensors 35 are placed or positioned in the ballasts 20 in a stepped manner, linearly along a vertical axis.
  • a temperature sensor 35 is advantageously positioned approximately every five meters, i.e. a temperature sensor 35 located at sea surface level, a temperature sensor 35 temperature sensor 35 located five meters above sea level and finally a last temperature sensor 35 located close to the ceiling of the ballast 20, i.e. about ten meters above sea level.
  • the figure 9 represents an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipeline 76 and an installation on land 77.
  • the loading and unloading station 75 is a fixed offshore installation comprising a mobile arm 74 and a tower 78 which supports the mobile arm 74.
  • the mobile arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading/unloading pipes 73.
  • the orientable mobile arm 74 adapts to all sizes of LNG carriers.
  • a connecting pipe, not shown, extends inside tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG tanker 70 from or to the onshore installation 77.
  • the latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the pipe under -marine 76 at the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a long distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
  • pumps on board the ship 70 and/or pumps fitted to the shore installation 77 and/or pumps fitted to the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne un système et un procédé de chauffage d'une cuve (71) de stockage pour gaz liquéfié dans lequel on prévoit une étape de chauffage d'au moins un ballast (20) lorsque ledit ballast (20) est au moins essentiellement vide d'eau de mer et/ou de chauffage de l'espace inter-ponts (23) situé au-dessus de la cuve.

Description

  • L'invention se rapporte au domaine des installations de stockage pour gaz liquéfié comprenant une cuve étanche et thermiquement isolante. En particulier, l'invention se rapporte au domaine des cuves étanches et thermiquement isolantes pour le stockage et/ou le transport de gaz liquéfié à très basse température, telles que des cuves pour le transport d'éthane (à environ -90°C), d'éthylène (environ -104°C) et de Gaz de Pétrole Liquéfié (aussi appelé GPL) présentant par exemple une température comprise entre - 50°C et 0°C, ou pour le transport de Gaz Naturel Liquéfié (GNL) à environ -162°C à pression atmosphérique ou encore des gaz liquéfiés tels que l'ammoniac (à environ -30°C). La cuve peut être destinée au transport et au stockage de gaz liquéfié ou à recevoir du gaz liquéfié servant de carburant pour la propulsion de l'ouvrage flottant (navire).
  • Le document FR2991430 , déposé au nom de la demanderesse, décrit un exemple d'une installation de stockage pour gaz liquéfié comprenant une cuve étanche et thermiquement isolante intégrée à une structure porteuse constituée par la double coque d'un navire. Chaque paroi de la cuve comprend une barrière thermiquement isolante secondaire, une membrane d'étanchéité secondaire, une barrière thermiquement isolante primaire et une membrane d'étanchéité primaire, ces différents éléments constituant la structure principale de la cuve de stockage de gaz liquéfié.
  • Lorsque les conditions extérieures ou d'environnement du navire sont particulièrement froides, dans des zones géographiques telles que l'arctique et l'antarctique, la demanderesse a constaté une incidence technique susceptible d'avoir des répercussions dommageables pour la cuve étanche et thermiquement isolante.
  • Dans de telles zones du globe, la température de l'air extérieure peut facilement atteindre -50°C tandis que l'eau de mer, fortement salée, est à environ -2°C. Or, les blocs isolants de la cuve sont classiquement collés sur la structure porteuse grâce à une résine polymère chargée désigné sous le terme de mastic. Ce mastic pour le collage de la cuve intégrée ou installée dans la structure porteuse consiste souvent en des résines époxy se présentant sous forme de bicomposants. De tels mastic sont certifiés pour tenir jusqu'à - 25°C, c'est-à-dire que leurs propriétés physico-chimiques ne doivent pas se détériorer significativement jusqu'à atteindre cette température.
  • Néanmoins, lorsque les conditions extérieures sont telles qu'énoncées ci-dessus, soit avec une température de l'air de l'ordre de -50°C, la température du mastic peut descendre en-deçà de ces -25°C. En effet, lorsque la cuve contenant le GPL, le GNL ou d'autres produits du type éthane ou éthylène ou ammoniac, est pleine ou quasi-pleine, les ballasts sont généralement vides ou quasi-vides car le tirant d'eau du navire convient dans une telle situation aux manœuvres et à la direction du navire.
  • Or, la demanderesse a découvert, après de multiples tests et analyses, que dans une telle configuration dans laquelle les ballasts sont remplis d'air, et non avec de l'eau de mer, ceux-ci présentent au moins pour la partie des ballasts ainsi que les autres zones entourant la cuve, située au-dessus du niveau de la mer, à une température identique ou très proche de celle de l'air extérieur ou environnant, ce qui risque d'amener ce mastic, nécessaire au maintien et à la fixation de la cuve à une température si basse que celui-ci peut être altéré. Outre le mastic, la peinture utilisée sur la paroi interne de la structure porteuse du navire est également susceptible d'être endommagée ou dégradée. Or, cette peinture présente des fonctions techniques dont l'isolation chimique afin que cette paroi ne s'oxyde pas.
  • A l'heure actuelle, il n'existe aucun moyen de prévenir le risque de dégradations du mastic et de la peinture disposés et fixés sur les faces internes de la structure porteuse de la cuve intégrée ou installée dans une structure porteuse d'un navire.
  • Ainsi, la présente invention concerne un procédé de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse d'un navire comprenant une cuve étanche et thermiquement isolante agencée dans la structure porteuse,
    le navire comportant au moins un ballast apte et destiné être rempli d'un liquide, avantageusement consistant en de l'eau de mer, et un espace inter-ponts disposé adjacent ou contigu à la cuve, respectivement latéralement et sous la ladite cuve pour le ballast et au-dessus de la cuve pour l'espace inter-ponts,
    la cuve étanche et thermiquement isolante comportant une structure principale formée par une pluralité de parois de la cuve reliées les unes aux autres et fixées à la structure porteuse, la structure principale définissant un espace interne de stockage pour le gaz liquéfié, la structure principale comprenant au moins une membrane d'étanchéité et au moins une barrière thermiquement isolante, la barrière thermiquement isolante étant placée entre la membrane d'étanchéité et la structure porteuse ;
    une pluralité de cordons de mastic étant disposés entre la structure porteuse et la structure principale de la cuve.
    L'invention se caractérise en ce que le procédé de chauffage comprend une étape de chauffage du ballast lorsque ledit ballast est au moins essentiellement vide de liquide, l'étape de chauffage du ballast étant réalisée à l'aide d'un moyen de chauffage de l'espace interne dudit ballast, et/ou
    en ce que le procédé de chauffage comprend une étape de chauffage de l'espace inter-ponts, l'étape de chauffage de l'espace inter-ponts étant réalisée à l'aide d'un moyen de chauffage disposé au niveau de l'espace inter-ponts.
  • Ainsi, la demanderesse propose un système simple, efficace et peu couteux pour éviter tout risque de dégradations du mastic et/ou de la peinture disposés et fixés sur la face interne de la structure porteuse du navire.
  • En effet, la demanderesse a cherché un système modifiant le moins possible la structure actuelle d'un navire de stockage et de transport de gaz liquéfié disposant de telles cuves intégrées. C'est pourquoi, la demanderesse part du constat que les ballasts sont traditionnellement équipés d'un moyen de chauffage de l'eau de mer qu'ils peuvent contenir et modifie avantageusement certaines de leurs caractéristiques quant à leur structure et/ou leur position afin de les adapter à une nouvelle fonction, à savoir réchauffer l'air présent dans ces ballasts, de manière à ce que le mastic et la peinture de l'autre côté de la paroi - les ballasts étant adjacents ou contigus à la cuve étanche et thermiquement isolante - ne descendent pas à une température trop basse, typiquement inférieure à - 25°C.
  • L'invention part du constat susmentionné et des modifications appliquées dans les ballasts pour réaliser des modifications quant au chauffage existant ou ajouter un tel chauffage aux autres zones entourant classiquement une cuve intégrée contenant un gaz liquéfié, étant entendu que certaines zones telles que les cofferdams n'ont pas à être modifiées car ce sont des zones dites « chaudes », c'est-à-dire qu'une telle zone est chauffée à une température au moins égale à 0°C, voire bien supérieure.
  • On entend par le terme de « ballast » tout réservoir, citerne ou analogue équipant certains navires, dont ceux stockant et/ou transportant du gaz liquéfié, destiné, par remplissage ou vidange, à corriger la gîte ou l'assiette du navire à accroître l'enfoncement d'un navire léger notamment afin que l'hélice soit suffisamment immergée et également pour diminuer le fardage, à éviter les efforts trop importants au navire (répartition des poids sur la longueur) ou encore à améliorer la stabilité en modifiant la position du centre de gravité général.
  • Etant donné que la présente invention est illustrée avec un navire de type LNGC ou désigné plus généralement par le terme de « méthanier », sans évidemment être limité à un tel navire, il doit être noté que ces « ballasts » peuvent être remplacés sur d'autres types de navire par des pièces ou zones ne présentant pas les fonctions classiques d'un ballast, à savoir en particulier qu'elles ne sont pas destinées à être remplies au moins en partie par un liquide tel que l'eau de mer. Pour autant, la présente invention, qui s'applique en particulier quand ces « ballasts » sont essentiellement vides, trouve à s'appliquer même si ces pièces ou ces zones situées aux emplacement actuels des ballasts, à savoir latéralement et sous la cuve (ou sa structure porteuse), ne peuvent être désignées par le terme de « ballast », d'un point de vue structurel et/ou fonctionnel. Ainsi, dès l'instant où de telles pièces ou zones sont chauffés, alors qu'elles sont remplies essentiellement d'air ou d'un gaz ou mélange gazeux quelconque, le procédé et le système de chauffage selon l'invention sont mis en oeuvre de sorte que le terme de « ballast » n'est pas strictement limité à son sens structurel et/ou fonctionnel. Néanmoins, l'application de la présente invention aux « ballasts » actuels, tels que considéré ci-dessus avec leurs caractéristiques structurelles et/ou fonctionnelles, est particulièrement avantageuse.
  • On entend par l'expression « espace inter-ponts » le volume, classiquement défini par une pièce unique, situé au-dessus de la cuve logeant le gaz liquéfié dont la paroi inférieure est constituée par le pont inférieur et la paroi supérieure est constituée par le pont supérieur, ce dernier étant désigné classiquement comme le pont sur lequel toute personne se déplace pour évoluer sur le navire tout en étant à l'extérieur.
  • On entend par l'expression de «cordons de mastic» tout produit, consistant classiquement en une matrice polymère contenant des charges, destiné à assurer la fixation et le maintien de la structure principale de la cuve contre la surface interne de la structure porteuse du navire, étant entendu que d'autres éléments, tels que des goujons, sont utilisés pour fixer mécaniquement la cuve intégrée à la structure porteuse.
  • On entend par l'expression de « essentiellement vide » en lien avec le ou les ballasts le fait que le ou les ballasts sont remplis de liquide, classiquement de l'eau de mer, jusqu'à au plus vingt pourcent (20%) du volume total du ou des ballasts. De manière générale, lorsqu'un ballast est vidé, une quantité résiduel d'eau de mer est présente mais cette quantité résiduelle n'excède pas cinq pourcent (5%) du volume total du ballast.
  • Dans la suite, la présente invention est illustrée avec un navire de stockage et de transport de gaz liquéfié du type LNGC (« Liquefied Natural Gas Carrier »).
  • D'autres caractéristiques avantageuses de l'invention sont présentées succinctement ci-dessous :
  • Avantageusement, le procédé de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse d'un navire comprend :
    • une étape de mesure de la température (de l'espace interne) du ballast et/ou de l'espace inter-ponts, et
    • une étape de comparaison de la température mesurée avec une température de seuil prédéterminée de sorte que le chauffage du ballast et/ou de l'espace inter-ponts est déclenché lorsque la température mesurée est égale ou inférieure à la température de seuil prédéterminée.
  • Bien entendu, l'étape de mesure indiquée ci-dessus est réalisée préalablement à la ladite étape de comparaison, c'est-à-dire que ces deux étapes, telles qu'énoncées, sont consécutives l'une à l'autre même si le laps de temps de temps écoulé est avantageusement minimum, soit de l'ordre de quelques millisecondes, en particulier si l'on se trouve dans le cas d'une gestion automatique du chauffage du ballast et/ou de l'espace inter-ponts.
  • Par ailleurs, il est possible de prévoir plusieurs températures de seuil prédéterminée de sorte à prévenir le refroidissement de la structure porteuse, et donc du mastic ou de la peinture, en modulant le chauffage de la zone de ballast et/ou de la zone inter-ponts. Par exemple, on peut prévoir trois températures de seuil prédéterminée, la première étant supérieure à la deuxième qui elle-même est supérieure à la troisième. Ainsi, lorsque la première température de seuil est atteinte, le chauffage par le moyen de chauffage peut représenter 50% de sa capacité de chauffage maximale tandis que lorsque la deuxième et la troisième (et dernière) température de seuil sont atteintes, alors le chauffage par le moyen de chauffage peut représenter 75% et au moins 95% de la capacité de chauffage maximale du moyen de chauffage, respectivement.
  • Par ailleurs, le caractère prédéterminé de la température de seuil est bien entendu susceptible d'évolution, dans le sens où cette température peut être réglée à tout instant manuellement ou automatiquement, par exemple en fonction de la pression atmosphérique locale et de la température de l'air extérieur/environnant, présente ou future (c'est-à-dire prévue par un moyen météorologique).
  • Selon un mode de réalisation préféré de l'invention, le chauffage du ballast et/ou de l'espace inter-ponts est déclenché de manière automatique dès que la température mesurée est égale ou inférieure à la température de seuil prédéterminée.
  • On entend par l'expression « de manière automatique » en lien avec le chauffage du ballast et/ou de l'espace inter-ponts le fait que le déclenchement de ce chauffage se produit dès qu'une température de seuil prédéterminée est atteinte, sans aucune action d'un opérateur ou analogue. Bien entendu, dans cette hypothèse de réalisation avantageuse, un moyen de commande automatique est utilisé et consiste classiquement en des moyens électroniques et thermomécaniques pour réguler le système de chauffage ou encore en au moins un ordinateur utilisant un programme d'ordinateur destiné à gérer les informations de températures relevées et les actionnements de chauffage, partiel ou total pour les différents moyens de chauffage, ainsi que leurs arrêts.
  • Avantageusement, la température de seuil prédéterminée est comprise entre -15°C et 0°C à pression atmosphérique, de préférence égale à -10°C.
  • Avantageusement, le chauffage du ballast utilise le système de génération et de distribution de vapeur d'eau du navire.
  • Un tel système de génération et de distribution de vapeur d'eau du navire est classiquement prévu sur des navires d'une certaine taille, notamment pour permettre de dégivrer et nettoyer telles ou telles parties du pont supérieur, maintenir à température les caisses à combustibles (« fuel oil »), ou pour le fonctionnement de certains appareils et équipements tels que par exemple des pompes, des réchauffeurs ou vaporisateurs. En utilisant ce système préexistant sur le navire, le système de chauffage selon l'invention n'engendre la nécessité d'aucune infrastructure, équipements ou conduits supplémentaires pour créer et gérer le ou les moyens de chauffage selon l'invention.
  • De ce point de vue, la demanderesse a analysé les besoins énergétiques du système de chauffage selon l'invention et a conclu que les besoins énergétiques sont compris entre 0,7 MégaWatt (MW) et 2 MW, de préférence d'environ 1,1 MW pour un navire de type LNGC classique, soit présentant une capacité de transport comprise entre environ 160000m3 et 180000m3. Il doit être noté que la dépense énergétique actuelle nécessaire au chauffage de l'eau de mer des ballasts, en particulier pour éviter le givrage, est d'au moins 8 MW, étant considéré qu'un navire de type LNGC génère habituellement au moins 40 MW pour son circuit de vapeur d'eau. Ainsi, considérant le fait que le système de chauffage s'utilise ou s'opère en particulier lorsque les ballasts sont vides, autrement dit qu'il n'y a pas lieu de chauffer le liquide s'y trouvant, la dépense énergétique nécessaire à la mise en œuvre de l'invention est absorbable sans difficulté avec la production d'énergie actuelle dans un tel navire, sans aucune modification ou adaptation des installations.
  • De préférence, une pluralité de ballasts sont disposés adjacents ou contigus à la cuve et comportent un moyen de chauffage, avantageusement la totalité ou la quasi-totalité des ballasts adjacents ou contigus à la cuve comportent un moyen de chauffage.
  • On entend par l'expression de « quasi-totalité des ballasts » le fait qu'au moins soixante-dix pourcent (70%) des ballasts sont concernés. Ainsi, dans un navire de type LNGC qui comporte classiquement quatre cuves de GNL, il y a huit ballasts - soit deux ballasts entourant chaque cuve - et donc la quasi-totalité des ballasts signifie qu'au moins six des huit ballasts disposent d'un moyen de chauffage selon l'invention. On peut noter ici qu'il existe classiquement sur un navire de type LNGC d'autres ballasts non contigus ou adjacents aux cuves contenant un gaz liquéfié, en l'espèce à l'avant et à l'arrière du navire.
  • Avantageusement, le liquide venant occuper l'espace interne du ou des ballasts lorsque ce(s) dernier(s) est/sont rempli(s) ou quasi-rempli(s) est chauffé par le (même) moyen de chauffage utilisé pour chauffer ledit ou lesdits ballasts au moins essentiellement vide. Il est entendu ici qu'il est également possible de conserver deux systèmes de chauffage distincts, l'un dédié à chauffer le ballast lorsqu'il est rempli d'eau de mer et l'autre, selon l'invention, dédié à chauffer le ballast lorsqu'il est essentiellement vide.
  • En effet, grâce aux modifications simples du système de chauffage classiquement présent dans les ballasts pour la mise en œuvre du procédé de chauffage selon l'invention, il n'y a pas lieu d'avoir deux moyens de chauffage distincts, l'un pour chauffage du liquide dans les ballasts et l'autre pour le chauffage de l'air dans les ballasts lorsque ceux-ci sont vides ou quasi-vides. Le moyen de chauffage de l'invention permet, de par ses légères modifications, de réaliser un chauffage du liquide dans les ballasts au moins tout aussi efficace, et donc de réduire la dépense énergétique pour cette opération.
  • Par analogie avec l'expression de « essentiellement vide », l'expression de « quasi-rempli » en lien avec le niveau de remplissage d'un ballast en liquide signifie le fait que ce ballast est considéré comme quasi-rempli lorsqu'au moins quatre-vingt pourcent (80%) du volume interne du ballast est occupé par le liquide, classiquement l'eau de mer.
  • La présente invention concerne également un système de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse d'un navire comprenant une cuve étanche et thermiquement isolante agencée dans la structure porteuse,
    le navire comportant au moins un ballast apte et destiné être rempli d'un liquide, avantageusement consistant en de l'eau de mer, et un espace inter-ponts disposé adjacent ou contigu à la cuve, respectivement latéralement et sous la ladite cuve pour le ballast et au-dessus de la cuve pour l'espace inter-ponts,
    la cuve étanche et thermiquement isolante comportant une structure principale formée par une pluralité de parois de la cuve reliées les unes aux autres et fixées à la structure porteuse, la structure principale définissant un espace interne de stockage pour le gaz liquéfié, la structure principale comprenant au moins une membrane d'étanchéité et au moins une barrière thermiquement isolante, la barrière thermiquement isolante étant placée entre la membrane d'étanchéité et la structure porteuse ;
    une pluralité de cordons de mastic étant disposés entre la structure porteuse et la structure principale de la cuve.
  • L'invention se caractérise en ce que le système de chauffage comporte :
    • un moyen de chauffage de l'espace interne d'au moins l'un des ballasts et/ou un moyen de chauffage de l'espace inter-ponts,
    • un moyen de commande pour l'actionnement et l'arrêt du moyen de chauffage du ballast lorsque ledit ballast est au moins essentiellement vide de liquide et/ou un moyen de commande pour l'actionnement et l'arrêt du moyen de chauffage de l'espace inter-ponts.
  • Un tel système de chauffage peut notamment être utilisé pour la mise en œuvre du procédé décrit ci-dessus.
  • Ici, on peut remarquer que la présence d'un moyen de chauffage de l'espace inter-ponts est bien noté comme optionnelle, bien qu'avantageuse, car un tel agencement n'existe pas dans l'état de la technique alors qu'il existe des ballasts disposant d'un moyen de chauffage, même si ces derniers n'ont pas la même fonction que celle prévue dans le cadre de la présente invention.
  • Par ailleurs, le moyen de commande peut consister en un système automatique géré par au moins un ordinateur / programme d'ordinateur, ou bien un système d'actionnement électrique / électronique nécessitant une activation réalisée manuellement par un opérateur.
  • Par ailleurs, dans son acceptation la plus large, la présente invention prévoit que seul un ballast ou seul l'espace inter-ponts puisse être doté d'un moyen de chauffage, s'il peut bien entendu permettre de résoudre les inconvénients constatés avec un refroidissement trop important du mastic et/ou de la peinture présent(s) sur les parois internes de la structure porteuse. De ce fait, on peut notamment envisager un mode de réalisation dans lequel seul un ballast, ou même les deux ballasts entourant classiquement une cuve de GNL d'un navire du type LNGC, est doté d'un moyen de chauffage, sans qu'il y ait besoin de prévoir également un moyen de chauffage au niveau de l'espace inter-ponts, même si cette dernière solution est particulièrement avantageuse.
  • De préférence, le moyen de commande est relié à au moins un capteur de température destiné à mesurer la température (de l'espace interne) du ballast et/ou de l'espace inter-ponts de manière à déclencher, via le moyen de commande, le chauffage du ballast et/ou de l'espace inter-ponts lorsque la température (de l'espace interne) du ballast et/ou de l'espace inter-ponts est détectée comme inférieure ou égale à une température de seuil prédéterminée.
  • Avantageusement, le moyen de chauffage consiste en un échangeur de chaleur utilisant un fluide circulant dans ledit échangeur de chaleur, avantageusement le fluide consistant en de la vapeur d'eau provenant du circuit de génération et de distribution de vapeur d'eau du navire.
  • Dans ce mode de réalisation avantageux, le moyen de chauffage comporte un serpentin destiné à l'échange de chaleur, à l'aide d'un fluide caloporteur, d'une longueur comprise entre 250 et 500 mètres et d'une section de diamètre externe compris entre 60 et 75 millimètres, de préférence d'une longueur d'au moins 300 mètres. Il est entendu ici que la longueur exprimée, comprise entre 250 et 500 mètres, consiste en la somme des longueurs des serpentins échangeurs de chaleur dans le cas où il existe plusieurs serpentins ou analogues au sein d'un ballast ou d'un espace inter-ponts. A titre d'exemple, on peut prévoir plusieurs serpentins, ou boucles, distincts d'échanges de chaleur dans un ballast, chacune mesurant une longueur de cent mètres.
  • On entend par l'expression de « diamètre externe » en lien avec le serpentin du moyen de chauffage le diamètre de ce tuyau considéré comme le plus grand, par opposition au diamètre interne plus petit du tuyau dans lequel le fluide caloporteur circule.
  • Selon une variante d'exécution de l'invention, le moyen de chauffage peut également consister en un échangeur de chaleur dans lequel on fait circuler un mélange d'eau et de glycol ou de l'huile. Dans l'hypothèse où un mélange d'eau et de glycol est envisagé, il peut être avantageusement possible de connecter le réseau du moyen de chauffage du ballast et/ou de l'espace inter-ponts à celui du système de chauffage équipant les zones de cofferdam, utilisant à l'heure actuelle un mélange d'eau et de glycol, de manière à ne disposer qu'un seul et même réseau d'échanges de chaleur pour l'ensemble des zones à (ré)chauffer autour d'une cuve de GNL.
  • Selon une autre possibilité offerte par l'invention, on peut également prévoir que le moyen de chauffage consiste en un moyen de chauffage électrique. On peut également prévoir que le moyen de chauffage consiste en un système autolimitant apte à s'affranchir de la mesure de température pour la régulation. Dans une telle configuration, le système est, par construction, fait pour limiter la puissance thermique délivrée en fonction d'une température connue à la fabrication.
  • Selon une autre possibilité offerte par l'invention, on peut également prévoir d'installer sur toute ou partie du serpentin échangeur de chaleur des dispositifs permettant d'augmenter l'échange thermique de ce dernier avec l'air. Ces dispositifs peuvent être de type ailettes et être optimisés pour l'échange avec l'air tout en conservant une compatibilité avec des séjours réguliers dans de l'eau de mer.
  • Bien entendu, la présente invention n'est pas limitée dans son application à l'utilisation d'un unique type de moyen de chauffage pour l'ensemble des ballasts et des espaces inter-ponts. Ainsi, on peut par exemple envisager d'utiliser un moyen de chauffage du type échangeur à vapeurs d'eau pour un ou l'ensemble des ballasts et un chauffage du type électrique pour un ou tous les espaces inter-ponts.
  • Avantageusement, le moyen de chauffage est disposé contre ou à proximité de la paroi du ballast située adjacente ou contiguë à la cuve.
  • On entend par l'expression « contre ou à proximité de la paroi » le fait que le moyen de chauffage est fixé directement sur cette paroi ou encore au moins en partie fixé sur une autre paroi mais que le moyen de chauffage s'étend à proximité de la paroi adjacente ou contiguë à la cuve, autrement dit à une distance d'au plus cinquante centimètres, de préférence d'au plus vingt centimètres, de cette dernière.
  • De préférence, le système de chauffage comprend une pluralité de capteurs de température présents dans le ballast et/ou dans l'espace inter-ponts, avantageusement au moins trois capteurs de température pour le ballast et/ou l'espace inter-ponts.
  • Avantageusement, les trois capteurs de température sont disposés linéairement, avantageusement espacés les uns des autres en hauteur dans le ballast et avantageusement espacés les uns des autres longitudinalement dans l'espace inter-ponts. L'espacement entre chacun des trois capteurs de températures est fonction de la longueur (longitudinale) de l'espace inter-ponts pour leurs placements dans la zone de ce dernier et de la hauteur classiquement émergée - le tirant d'eau d'un navire de type LNGC varie de plus ou moins deux mètres en fonction de son niveau de chargement et de remplissage de ses ballasts - pour leurs placements dans la zone des ballasts. Dans l'hypothèse où l'on dispose de trois capteurs de température pour un ballast et un espace inter-ponts, deux capteurs de températures adjacents sont distants l'un de l'autre d'au moins cinq mètres pour un ballast et d'au moins dix mètres pour l'espace inter-ponts.
  • Dans un mode de réalisation classique pour un navire de type LNGC, deux ballasts sont présents latéralement de part et d'autre de la cuve et un espace inter-ponts est présent au-dessus de la cuve.
  • On peut noter ici que les caractéristiques présentées ci-dessus en lien avec le système de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse d'un navire s'adaptent ou conviennent au procédé de chauffage de cette même installation, et inversement.
  • L'invention se rapporte plus particulièrement à un navire pour le transport d'un produit liquide froid, le navire comportant une double coque, un pont interne ainsi qu'un pont externe et une installation de stockage pour gaz liquéfié installée dans une structure porteuse du navire comprenant une cuve étanche et thermiquement isolante agencée dans la structure porteuse, la structure comportant au moins un ballast apte et destiné être rempli d'un liquide, avantageusement consistant en de l'eau de mer, et/ou un espace inter-ponts disposé adjacent ou contigu à la cuve, respectivement latéralement et sous la ladite cuve pour le ballast et au-dessus de la cuve pour l'espace inter-ponts, caractérisé en ce que le navire comprend un système de chauffage de ladite installation tel que succinctement présenté ci-dessus disposé dans la double coque.
  • L'invention concerne également un système de transfert pour un produit liquide froid, le système comportant un navire tel que décrit ci-dessus, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation externe de stockage flottante ou terrestre et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation externe de stockage flottante ou terrestre vers ou depuis la cuve du navire.
  • Enfin, la présente invention se rapporte à un procédé de chargement ou déchargement d'un navire tel que décrit ci-dessus, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation externe de stockage flottante ou terrestre vers ou depuis la cuve du navire.
  • L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
    • [fig.1] La figure 1 est une vue schématique en coupe d'un navire de type LNGC, vue de dessus, disposant classiquement de quatre cuves étanches et thermiquement isolantes destinées à être remplies de GNL.
    • [fig.2] La figure 2 est une figure équivalente à la figure 1 sur laquelle est visible un système de génération de vapeur d'eau et son circuit de distribution associé dans le navire.
    • [fig.3] La figure 3 illustre schématiquement une vue latérale du navire LNGC représenté sur les figures 1 et 2.
    • [fig.4] La figure 4 est une vue schématique en coupe transversale d'une moitié du navire LNGC visible sur les figures 1 à 3.
    • [fig.5] La figure 5 est une figure équivalente à la figure 4 sur laquelle est visible, en coupe, les moyens de chauffage disposés tout autour de la cuve ou de la structure porteuse du navire dans laquelle est logée ladite cuve.
    • [fig.6] La figure 6 illustre schématiquement, vue de face, un mode de réalisation d'un moyen de chauffage appliqué sur la paroi d'un ballast adjacente ou contiguë à la cuve étanche et thermiquement isolante contenant un gaz liquéfié.
    • [fig.7] La figure 7 illustre schématiquement, vue de face, un mode de réalisation d'un moyen de chauffage appliqué sur la paroi d'un compartiment ou passage de circulation également adjacente ou contiguë à la cuve étanche et thermiquement isolante contenant un gaz liquéfié.
    • [fig.8] La figure 8 illustre schématiquement, vue de face, un mode de réalisation d'un moyen de chauffage appliqué sur la paroi d'un espace inter-ponts adjacente ou contiguë à la cuve étanche et thermiquement isolante contenant un gaz liquéfié.
    • [fig.9] La figure 9 est une représentation schématique écorchée d'une installation de stockage de navire méthanier de type LNGC et d'un terminal de chargement/déchargement de cette cuve.
  • Le terme « vertical » signifie ici s'étendant dans la direction du champ de gravité terrestre. Le terme « horizontal » signifie ici s'étendant dans une direction perpendiculaire à la direction verticale.
  • Dans la suite, la présente invention est illustrée avec un navire 70 de type LNGC (« Liquide Natural Gas Carrier ») comportant classiquement quatre cuves 71 étanches et thermiquement isolantes. En effet, c'est sur ce type de structures logeant une installation de stockage selon l'état de la technique que la demanderesse a pu mettre à jour de potentiels dysfonctionnements et ainsi les résoudre grâce à la présente invention. Néanmoins, on peut envisager d'appliquer les caractéristiques de la présente invention sur un autre type de navire transportant/stockant un gaz liquéfié, voire même sur une structure de nature différente, telle que par exemple une structure de type réservoir terrestre ou maritime (dit « GBS » signifiant « Gravity Based Storage ») pour autant que la problématique et/ou le besoin soit similaire.
  • Plus précisément, le navire 70 de type LNGC représenté sur les figures annexées présente quatre cuves 71, trois cuves 71 de dimensions identiques et une cuve 71' présentant une longueur et une largeur différentes, celle 71' située à l'avant du navire 70.
  • Les dimensions des cuves du navire de type LNGC sont les suivantes :
    • Pour une cuve 71, sa longueur est de 47,065 mètres (m), sa largeur de 20,303 m et sa hauteur (verticale) de 30,405 m.
    • Pour une cuve 71', sa longueur est de 31,765 m, sa largeur de 17,923 m et sa hauteur (verticale) de 30,405 m.
  • La longueur est considérée dans le sens longitudinal du navire 70 tandis que la largeur est considérée dans le sens transverse, soit perpendiculairement à l'axe longitudinal du navire, étant entendu que toutes les dimensions ci-dessus sont exprimées en mètre. Les dimensions des cuves 71, 71' qui sont reprises ici sont celles d'un navire 70 de type LNGC classique et un tel navire 70 dispose d'une contenance - soit la somme des volumes internes des quatre cuves 71, 71' - de cent soixante-quatorze mille mètre cubes (174 000 m3).
  • Sur les figures 1 à 5, on a représenté de manière schématique une installation de stockage, ou une portion de celle-ci, installée ou intégrée dans une structure porteuse 10 d'un navire 70. Autrement dit, à l'intérieur de la structure porteuse 10, l'installation de stockage comprend au moins une cuve 71 étanche et thermiquement isolante.
  • La structure porteuse 10 comporte une pluralité de parois reliées les unes aux autres et notamment une paroi porteuse supérieure 3 qui est située, comme on peut le voir sur la figure 4, en haut de l'installation de stockage. Lorsque l'installation de stockage est positionnée sur un navire 70 tel qu'un navire LNGC, la structure porteuse 10 est formée par la double coque du navire. La paroi porteuse supérieure 3 est ainsi appelée le pont interne 3 du navire 70 tandis qu'il existe également un pont externe 13, également visible sur la figure 4.
  • La cuve 71 comporte une structure principale formée d'une paroi de fond 4, une paroi de plafond 5, deux parois latérales 6 reliant la paroi de fond 4 à la paroi de plafond 5 et optionnellement deux à quatre parois de chanfrein 7 reliant les parois latérales 6 à la paroi de fond 4 ou à la paroi de plafond 5. Les parois 4, 5, 6, 7 de la cuve 71 sont ainsi reliées les unes aux autres de façon à former une structure polyédrique et à délimiter un espace interne de stockage, en particulier destiné à recevoir un gaz liquéfié.
  • Afin de charger et décharger la cuve 71 en gaz liquéfié, l'installation de stockage comporte une ouverture de chargement/déchargement, également désignée par l'expression de « dôme liquide » 46, ainsi qu'une ouverture dédiée à la libération de gaz, également désignée par l'expression de « dôme gaz » 47, visibles sur la figure 8, interrompant localement la paroi de plafond 5 de la cuve 71 de manière à permettre notamment à des conduites de chargement/déchargement, non représentées sur les figures annexées, d'atteindre le fond de la cuve 71 en traversant cette ouverture 46.
  • Bien que la présente invention ne soit pas limitée à ce type de cuves, la cuve 71, 71' est une cuve à membranes permettant de stocker du gaz liquéfié pour lesquelles on utilise du mastic, non représenté sur les figures annexées, appliqué traditionnellement sous forme de cordons destinés à venir fixer la structure principale de la cuve 71 à la structure porteuse 10 du navire 70, étant entendu que d'autres éléments mécaniques - classiquement des goujons - ont également pour fonction de fixer et maintenir la structure principale de la cuve 71 dans la structure porteuse 10 du navire 70. De tels cordons de mastic sont bien connus et sont notamment décrits dans le document FR 2909356 , déposé au nom de la demanderesse. La structure principale de la cuve 71 comprend une structure multicouche, non représentée sur les figures annexées, comportant par exemple, depuis l'extérieur de la cuve 71, 71' vers l'intérieur, une barrière thermiquement isolante secondaire comportant des éléments isolants, reposant contre la structure porteuse 10, une membrane d'étanchéité secondaire reposant contre la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire comportant des éléments isolants, reposant contre la membrane d'étanchéité secondaire et une membrane d'étanchéité primaire destinée à être en contact avec le gaz liquéfié, sous forme liquide ou gazeuse, contenu dans la cuve 71.
  • Selon un mode de réalisation, la structure principale de la cuve 71 peut être réalisée selon la technologie NO® qui est notamment décrite dans le document FR2691520 ou la technologie MARK® qui est notamment décrite dans le document FR2724623 . Néanmoins, il est bien entendu que la présente invention n'est en aucun cas limitée à ce type de cuves, ni même de manière générale à des cuves de nature différente dites indépendantes selon les définitions du code IGC « Recueil international de règles relatives à la construction et à l'équipement des navires transportant des gaz liquéfiés en vrac », édition 2016.
  • Sur les figures 1 et 2, on peut voir la distribution des quatre cuves 71 de GNL classiquement présentes dans un navire 70 méthanier du type LNGC. Ainsi, comme on l'a vu précédemment, trois des quatre cuves 71 présentent les mêmes dimensions tandis qu'une dernière, celle 71' située à l'avant du navire 70, présente des dimensions plus réduite de manière en particulier à ce que les ballasts 20, disposés latéralement et sous les cuves 71, présentent des dimensions bien supérieures aux autres ballasts 20, situés autour des trois autres cuves 71, afin de rééquilibrer plus facilement l'assiette du navire 70, compte tenu du fait que l'essentiel du poids du navire 70 est situé à l'arrière de ce dernier lorsque les cuves 71 sont vides.
  • A l'arrière du navire 70 se trouve classiquement les machines 30, ou salle des machines, destinées à gérer l'ensemble du navire 70, depuis la propulsion jusqu'à l'ensemble des circuits de génération et d'alimentation des différents équipements du navire 70. Par ailleurs, au-dessus des machines 30 se trouve le château 31 qui consiste classiquement en une tour ou analogue où sont situés notamment les logements de l'équipage et le poste de commandement du navire.
  • Toutes les cuves 71 de gaz liquéfié sont entourées latéralement de ballasts 20 et de cofferdam 21, ces derniers 21 étant des espaces inter-cuves 71 ou disposés entre une cuve 71 et une salle 30 ou autre pour les cuves 71, 71' situées aux deux extrémités du navire 70. Comme on peut le voir sur les figures 4 et 5, les ballasts 20 s'étendent classiquement au-delà des parois latérales 6, 7 de la cuve 71 jusqu'à la paroi inférieure 4 de la cuve 71 ; les deux ballasts 20 étant classiquement séparés par une cloison étanche 40 s'étendant longitudinalement (dans la direction avant-arrière du navire 70). Toutefois, la présente invention entend s'appliquer en particulier à la zone émergée du navire 70, par opposition à la partie immergée 41 du navire 70 définissant également le tirant d'eau.
  • En effet, compte tenu que l'eau de mer est à une température d'au moins 0°C, ou légèrement inférieure - de l'ordre de moins deux ou trois degrés Celsius dans la mer arctique - du fait de sa forte salinité, il n'y pas lieu de réaliser un chauffage de cette zone immergée 41 du navire 70 car le mastic et la peinture fixés ou disposés sur la face interne de la structure porteuse 10 du navire 70 sont homologués ou certifiés pour ne pas se dégrader, ou pas significativement, à une température proche de zéro degrés Celsius.
  • Les cuves 71, 71' sont également adjacentes ou contiguës à l'espace inter-ponts 23, situé au-dessus de la cuve 71, 71' défini au sens large par le volume ou l'espace entre le pont inférieur 3 et le pont supérieur 13 du navire 70. Enfin, entre l'espace inter-ponts 23 et les ballasts 20 se trouvent classiquement un compartiment 24 de circulation des opérateurs et de passages de câbles et autres tuyauteries, désigné classiquement par l'expression de « passage way ». De tels compartiments 24 de circulation sont donc prévus habituellement de part et d'autre de l'espace inter-ponts 23.
  • La présente invention entend rationaliser au mieux le chauffage de la paroi adjacente ou contiguë d'une cuve 71, 71' ou de la structure porteuse 10, ainsi dans son acceptation la plus large, l'invention prévoit d'équiper au moins un ballast 20, avantageusement les deux ballasts 20 entourant une cuve 71, ou au moins l'espace inter-ponts 23 qui sont des zones ou des espaces dans lesquels on ne prévoit pas de chauffage - cas de l'espace inter-ponts 23 - ou pas de chauffage lorsqu'ils sont vides ou quasi-vides de liquide (cas des ballasts 20). Ces compartiments/passages 24 de communication, à la différence des ballasts 20 et de l'espace inter-ponts 23, sont des zones où l'équipage circule régulièrement. Ainsi, le fait d'y trouver un moyen de chauffage 26 est commun ou usuel dès l'instant où le navire 70 est susceptible de transiter dans des régions froides, étant entendu que la fonction première de ce moyen de chauffage 26 dans de tels zones 24 est d'offrir un environnement approprié aux humains qui y circulent. C'est pourquoi de tels chauffages, lorsqu'ils sont présents dans ces compartiments/passages 24 de circulation, sont généralement situés sur ou à proximité de la paroi extérieure 25 de manière à isoler thermiquement lesdits compartiments/passages 24 de l'environnement extérieur au navire 70. Dans le cadre de la présente invention, de tels moyens de chauffage 26 présents dans le compartiment ou passage de circulation 24 sont avantageusement déplacés pour être situés contre la paroi adjacente ou contiguë à la cuve 71 ou à la structure porteuse 10 de cette dernière 71.
  • En conséquence de ce qui précède, selon un mode d'exécution avantageux, les deux ballasts 20 adjacents ou contigus ainsi que l'espace inter-ponts 23 sont équipés d'un moyen de chauffage 26 et l'on peut utiliser l'ensemble de ces moyens de chauffage 26 de manière simultanée ou seulement une partie de ces moyens de chauffage 26 pour réchauffer en particulier le mastic et les peintures disposés sur la face interne de la structure porteuse 10. Par ailleurs, même si la présente invention n'est pas dirigée spécifiquement vers cette possibilité, on peut également envisager d'équiper le ou les deux compartiments/passages 24 de circulation d'un moyen de chauffage 26, lorsque ceux-ci 24 n'en sont pas dotés, à l'identique de ce qui est pratiqué pour le(s) ballast(s) 20 et/ou l'espace inter-ponts 23 et/ou disposés ce moyen de chauffage 26 dans le compartiment ou passage de circulation 24 contre la paroi adjacente à la structure porteuse 10 ou à la cuve 71, 71', le cas échéant. Ce faisant, si l'on considère une section transversale du navire 70, comme illustré sur la figure 5, la partie émergée - c'est-à-dire située au-dessus du niveau de la mer - des cuves 71 de gaz liquéfié se trouve avantageusement continument entourée d'un moyen de chauffage 26, soit un moyen de chauffage 26 dans les deux ballasts 20 contigus, un moyen de chauffage 26 dans l'espace inter-ponts 23 et un moyen de chauffage 26 dans les deux compartiments ou passages 24 de communication contigus.
  • Sur les figures 6 à 8 sont visibles le réseau de l'échangeur de chaleur 26 selon un mode d'exécution de l'invention dans lequel le moyen de chauffage 26 est du type identique ou similaire à celui équipant à l'heure actuelle les ballasts 20 pour chauffer ceux-ci lorsqu'ils sont remplis de liquide, en particulier pour dégivrer certaines parties des ballasts 20 (fonction « anti-icing ») et présenter un effet bactéricide et/ou fongicide ou plus généralement pour combattre le développement d'organismes vivants. Bien entendu, comme évoqué précédemment, la nature du moyen de chauffage 26 n'est pas limitée dans le cadre de la présente invention et peut consister en divers appareils adaptés à un environnement corrosif qui peut se trouver au moins en partie immergée par l'eau de mer, pour ce qui est des ballasts 20.
  • Un tel moyen de chauffage 26 utilise avantageusement le système de génération et de distribution de vapeur d'eau du navire 70. Ainsi, comme on peut le voir sur la figure 2, un tel système de génération et de distribution de vapeur d'eau comprend un générateur de vapeur d'eau 32, classiquement situé dans la salle des machines 30, et un circuit de distribution de vapeur d'eau 33. Ce circuit de distribution de vapeur d'eau 33 n'est en rien modifié dans le cadre de la présente invention par rapport à l'état de la technique mais simplement adapté afin que les moyens de chauffage 26 situés dans les ballasts 20 et l'espace inter-ponts 23, voire dans le compartiment de circulation 24, soient raccordés audit circuit de distribution de vapeur d'eau 33, avec de façon classique une entrée et une sortie pour cette vapeur d'eau agissant comme un fluide caloporteur. De façon classique, un tel circuit de distribution de vapeur d'eau 33 comprend un circuit de distribution de vapeur à tribord 33' et un circuit de distribution de vapeur d'eau à bâbord 33", chacun disposant indépendamment d'un parcours de la vapeur d'eau en circuit fermé depuis et vers le générateur de vapeur d'eau 32. Ainsi, à titre d'exemple, chaque ballast 20 présente un raccordement en entrée 37 et un raccordement en sortie 38 au circuit de vapeur d'eau 33, 33', respectivement pour l'introduction de la vapeur d'eau et son évacuation en direction du générateur 32.
  • On note ici que le moyen de chauffage 26 situé dans le compartiment ou le passage de circulation 24 consiste en un échangeur de chaleur fonctionnant classiquement avec de l'huile et non de la vapeur d'eau. Bien entendu, cet échangeur de chaleur 26 peut également utiliser le circuit de distribution de vapeur d'eau 33, à l'instar des moyens de chauffage 26 des ballasts 20 et de l'espace inter-ponts 23. Ce faisant, le système de l'invention est implémenté dans l'ensemble des espaces situés autour de la cuve 71, considérant la partie émergée du navire 70, à l'aide d'un système unique de génération et de distribution 32, 33 d'un même fluide caloporteur.
  • Ainsi, les figures 6 à 8 illustrent un mode de réalisation d'un moyen de chauffage 26 positionné et fixé sur la paroi adjacente ou contiguë respectivement d'un ballast 20 (figure 6), du compartiment ou passage de circulation 24 (figure 7) et de l'espace inter-ponts 23 (figure 8). Dans ce mode de réalisation similaire pour ces trois espaces ou volumes 20, 23 et 24, le moyen de chauffage 26 consiste en un serpentin, c'est-à-dire un tuyau enroulé en spires, sous forme de grandes lignes droites compte tenu des dimensions en longueur, largeur et hauteur, dans lequel circule un liquide ou un gaz consistant en un fluide caloporteur.
  • Etant donné que les parois adjacentes ou contiguës situées dans les ballasts 20 et le compartiment ou passage de circulation 24 ne présentent a priori aucun obstacle ou éléments protubérants, le moyen de chauffage 26 y est apposé et fixé sans nécessité aucun agencement particulier concernant son parcours ou son installation, classiquement le raidissage dit secondaire des parois ou cloisons est mis à contribution pour réaliser les fixations du moyen de chauffage. Concernant le moyen de chauffage 26 situé sur ou contre la paroi adjacente ou contiguë à la cuve 71 dans l'espace inter-ponts 23, ce moyen de chauffage 26 doit adapter son parcours et son installation à la présence du dôme liquide 46 et du dôme gaz 47, sans que cela n'ait aucun impact significatif sur l'efficacité du moyen de chauffage 26.
  • Le moyen de chauffage 26 dans le cadre de la présente invention est simplement modifié au regard de deux caractéristiques avantageuses, à savoir d'une part la longueur ou la surface d'échange de chaleur car l'échange de chaleur dans ou avec un gaz, et non dans ou avec un liquide, requiert une plus grande zone d'échange pour être efficace et d'autre part le placement ou la position du moyen de chauffage 26 qui doit être situé contre ou à proximité immédiate de la paroi contiguë ou adjacente à la structure porteuse 10 et donc à la cuve 71, 71' dans l'espace considéré, à savoir dans les ballasts 20, l'espace inter-ponts 23 voire les passages de communication 24.
  • Par ailleurs, la fixation du moyen de chauffage 26 est classique ou connue de l'homme du métier et peut consister en une fixation identique à celle des moyens de chauffage présents dans les ballasts 20 de l'état de la technique.
  • Si l'on considère la zone d'échange de chaleur pour les ballasts 20 et l'espace inter-ponts 23, soit les dimensions des cuves d'un navire 70 de type LNGC classique telles que notés ci-dessus, la demanderesse a déterminé, après plusieurs essais et analyses, qu'il est particulièrement avantageux de réaliser une surface d'échange d'au moins cinquante mètre carré (50 m2) pour un ballast 20 comme pour l'espace inter-ponts 23, de préférence d'au moins soixante-dix mètre carré (70 m2) pour les deux espaces 20 et 23, étant considéré que le tuyau pour l'échangeur de chaleur consiste en un tuyau présentant un diamètre externe de soixante-treize (73) millimètres.
  • Autrement dit, si l'on considère la surface des parois adjacentes ou contiguës de la cuve 71, 71', la surface d'échange de chaleur couverte par un moyen de chauffage 26, lorsqu'il est positionné dans un ballast 20, un espace inter-ponts 23 ou un compartiment/passage de circulation 24, représente au moins cinq pourcent (5%) de la surface de cette paroi adjacente ou contiguë située dans l'un de ces emplacements 20, 23 ou 24.
  • Ainsi, à titre d'exemple non limitatif, si l'on considère les dimensions classiques des cuves d'un navire 70 de type LNGC et celle du diamètre externe d'un tuyau d'échange de chaleur habituellement utilisé pour chauffer l'eau de mer des ballasts 20, soit soixante-treize millimètres, l'espace inter-ponts 23 présente ainsi un serpentin formant le moyen de chauffage 26 d'une longueur d'environ trois cent vingt (320) mètres et un ballast 20 présente une telle tuyauterie formant le moyen de chauffage 26 (de la partie émergée) d'une longueur d'environ trois cent cinquante (350) mètres.
  • Des capteurs de température 35 sont avantageusement disposés ou fixés dans chaque zone 20, 23 et/ou 24 où un moyen de chauffage 26 est prévu de sorte que lorsqu'une température de seuil prédéterminée est relevée, un moyen de commande ou un opérateur, non représenté sur les figures annexées, déclenche le chauffage d'au moins un moyen de chauffage 26, avantageusement de l'ensemble des moyens de chauffage 26 dans les différentes zones 20, 23 et 24. Ces capteurs de température 35 sont avantageusement espacés les uns des autres, au sein de chacune des zones 20, 23 et 24, de manière à détecter de façon fiable la température dans l'ensemble des parties émergés entourant une cuve 71. En particulier, ces capteurs de température 35 sont placés ou positionnés dans les ballasts 20 de manière étagée, linéairement suivant un axe vertical. Ainsi, si la partie émergée dans un ballast 20 présente classiquement une hauteur de dix mètres, on positionne avantageusement un capteur de température 35 approximativement tous les cinq mètres, soit un capteur de température 35 situé au niveau de la surface de la mer, un capteur de température 35 situé cinq mètres au-dessus du niveau de la mer et enfin un dernier capteur de température 35 situé proche du plafond du ballast 20, soit à environ dix mètres au-dessus du niveau de la mer.
  • La figure 9 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78.
  • Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
  • Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
  • Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
  • L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication.
  • Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims (17)

  1. Procédé de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse (10) d'un navire (70) comprenant une cuve (71) étanche et thermiquement isolante agencée dans la structure porteuse (10),
    le navire (70) comportant au moins un ballast (20) apte et destiné être rempli d'un liquide, avantageusement consistant en de l'eau de mer, et un espace inter-ponts (23) disposé adjacent ou contigu à la cuve (71), respectivement latéralement et sous la ladite cuve (71) pour le ballast (20) et au-dessus de la cuve (71) pour l'espace inter-ponts (23),
    la cuve (71) étanche et thermiquement isolante comportant une structure principale formée par une pluralité de parois de la cuve (71) reliées les unes aux autres et fixées à la structure porteuse (10), la structure principale définissant un espace interne de stockage pour le gaz liquéfié, la structure principale comprenant au moins une membrane d'étanchéité et au moins une barrière thermiquement isolante, la barrière thermiquement isolante étant placée entre la membrane d'étanchéité et la structure porteuse (10) ;
    une pluralité de cordons de mastic étant disposés entre la structure porteuse (10) et la structure principale de la cuve (71) ;
    caractérisé en ce que le procédé de chauffage comprend une étape de chauffage du ballast (20) lorsque ledit ballast (20) est au moins essentiellement vide de liquide, l'étape de chauffage du ballast étant réalisée à l'aide d'un moyen de chauffage (26) de l'espace interne dudit ballast (20), et/ou
    en ce que le procédé de chauffage comprend une étape de chauffage de l'espace inter-ponts (23), l'étape de chauffage de l'espace inter-ponts (23) étant réalisée à l'aide d'un moyen de chauffage disposé au niveau de l'espace inter-ponts (23).
  2. Procédé de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse (10) d'un navire (70) selon la revendication 1, dans lequel le procédé comprend :
    - une étape de mesure de la température du ballast (20) et/ou de l'espace inter-ponts (23), et
    - une étape de comparaison de la température mesurée avec une température de seuil prédéterminée de sorte que le chauffage du ballast (20) et/ou de l'espace inter-ponts (23) est déclenché lorsque la température mesurée est égale ou inférieure à la température de seuil prédéterminée.
  3. Procédé de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse (10) d'un navire (70) selon la revendication 2, dans lequel le chauffage du ballast (20) et/ou de l'espace inter-ponts (23) est déclenché de manière automatique dès que la température mesurée est égale ou inférieure à la température de seuil prédéterminée.
  4. Procédé de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse (10) d'un navire (70) selon la revendication 2 ou 3, dans lequel la température de seuil prédéterminée est comprise entre -15°C et 0°C à pression atmosphérique, de préférence égale à -10°C.
  5. Procédé de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse (10) d'un navire (70) selon l'une quelconque des revendications précédentes, dans lequel le chauffage du ballast (20) utilise le système de génération et de distribution (32, 33) de vapeur d'eau du navire.
  6. Procédé de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse (10) d'un navire (70) selon l'une quelconque des revendications précédentes, dans lequel une pluralité de ballasts (20) sont disposés adjacents ou contigus à la cuve (71) et comportent un moyen de chauffage (26), avantageusement la totalité ou la quasi-totalité des ballasts (20) adjacents ou contigus à la cuve (71) comportent un moyen de chauffage.
  7. Procédé de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse (10) d'un navire (70) selon l'une quelconque des revendications précédentes, dans lequel le liquide venant occuper l'espace interne du ou des ballasts (20) lorsque ce(s) dernier(s) est/sont rempli(s) ou quasi-rempli(s) est chauffé par le moyen de chauffage (26) utilisé pour chauffer ledit ou lesdits ballasts (20) au moins essentiellement vide.
  8. Système de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse (10) d'un navire (70) comprenant une cuve (71) étanche et thermiquement isolante agencée dans la structure porteuse (10),
    le navire (70) comportant au moins un ballast (20) apte et destiné être rempli d'un liquide, avantageusement consistant en de l'eau de mer, et un espace inter-ponts (23) disposé adjacent ou contigu à la cuve (71), respectivement latéralement et sous la ladite cuve (71) pour le ballast (20) et au-dessus de la cuve (71) pour l'espace inter-ponts (23),
    la cuve (71) étanche et thermiquement isolante comportant une structure principale formée par une pluralité de parois de la cuve (71) reliées les unes aux autres et fixées à la structure porteuse (10), la structure principale définissant un espace interne de stockage pour le gaz liquéfié, la structure principale comprenant au moins une membrane d'étanchéité et au moins une barrière thermiquement isolante, la barrière thermiquement isolante étant placée entre la membrane d'étanchéité et la structure porteuse (10) ;
    une pluralité de cordons de mastic étant disposés entre la structure porteuse (10) et la structure principale de la cuve (71) ;
    caractérisé en ce que le système de chauffage comporte :
    - un moyen de chauffage (26) de l'espace interne d'au moins l'un des ballasts (20) et/ou un moyen de chauffage (26) de l'espace inter-ponts (23),
    - un moyen de commande pour l'actionnement et l'arrêt du moyen de chauffage (26) du ballast (20) lorsque ledit ballast (20) est au moins essentiellement vide de liquide et/ou un moyen de commande pour l'actionnement et l'arrêt du moyen de chauffage (26) de l'espace inter-ponts (23).
  9. Système de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse (10) d'un navire (70) selon la revendication 8, dans lequel le moyen de commande est relié à au moins un capteur de température (35) destiné à mesurer la température du ballast (20) et/ou de l'espace inter-ponts (23) de manière à déclencher, via le moyen de commande, le chauffage du ballast (20) et/ou de l'espace inter-ponts (23) lorsque la température du ballast (20) et/ou de l'espace inter-ponts (23) est détectée comme inférieure ou égale à une température de seuil prédéterminée.
  10. Système de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse (10) d'un navire (70) selon la revendication 8 ou 9, dans lequel le moyen de chauffage (26) consiste en un échangeur de chaleur utilisant un fluide circulant dans ledit échangeur de chaleur, avantageusement le fluide consistant en de la vapeur d'eau provenant du circuit de génération et de distribution (32, 33) de vapeur d'eau du navire (70).
  11. Système de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse (10) d'un navire (70) selon la revendication 10, dans lequel le moyen de chauffage (26) comporte un serpentin destiné à l'échange de chaleur, à l'aide d'un fluide caloporteur, d'une longueur comprise entre 250 et 500 mètres et d'une section de diamètre externe compris entre 60 et 75 millimètres, de préférence d'une longueur d'au moins 300 mètres.
  12. Système de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse (10) d'un navire (70) selon l'une quelconque des revendications 8 à 11, dans lequel le moyen de chauffage (26) est disposé contre ou à proximité de la paroi du ballast (20) située adjacente ou contiguë à la cuve (71).
  13. Système de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse (10) d'un navire (70) selon l'une quelconque des revendications 8 à 12, dans lequel le système de chauffage comprend une pluralité de capteurs de température (35) présents dans le ballast (20) et/ou dans l'espace inter-ponts (23), avantageusement au moins trois capteurs de température (35) pour le ballast (20) et/ou l'espace inter-ponts (23).
  14. Système de chauffage d'une installation de stockage pour gaz liquéfié installée dans une structure porteuse (10) d'un navire (70) selon la revendication 13, dans lequel les trois capteurs de température (35) sont disposés linéairement, avantageusement espacés les uns des autres en hauteur dans le ballast (20) et avantageusement espacés les uns (35) des autres (35) longitudinalement dans l'espace inter-ponts (23).
  15. Navire (70) pour le transport d'un produit liquide froid, le navire comportant une double coque (72), un pont interne (3) ainsi qu'un pont externe (13) et une installation de stockage pour gaz liquéfié installée dans une structure porteuse (10) du navire (70) comprenant une cuve (71) étanche et thermiquement isolante agencée dans la structure porteuse (10), la structure comportant au moins un ballast (20) apte et destiné être rempli d'un liquide, avantageusement consistant en de l'eau de mer, et/ou un espace inter-ponts (23) disposé adjacent ou contigu à la cuve (71), respectivement latéralement et sous ladite cuve (71) pour le ballast (20) et au-dessus de la cuve (71) pour l'espace inter-ponts (23), caractérisé en ce que le navire (70) comprend un système de chauffage de ladite installation de stockage selon l'une des revendications 8 à 14 disposé dans la double coque.
  16. Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication 15, des canalisations isolées (73, 79, 76, 81) agencées de manière à relier la cuve (71) installée dans la coque du navire (70) à une installation externe de stockage flottante ou terrestre (77) et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation externe de stockage flottante ou terrestre vers ou depuis la cuve du navire.
  17. Procédé de chargement ou déchargement d'un navire (70) selon la revendication 15, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81) depuis ou vers une installation externe de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71).
EP21187549.7A 2020-07-24 2021-07-23 Systeme et procede de chauffage d'une cuve de stockage pour gaz liquefie Pending EP3943801A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2007829A FR3112838B1 (fr) 2020-07-24 2020-07-24 Système et procédé de chauffage d’une cuve de stockage pour gaz liquéfié

Publications (1)

Publication Number Publication Date
EP3943801A1 true EP3943801A1 (fr) 2022-01-26

Family

ID=73401658

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21187549.7A Pending EP3943801A1 (fr) 2020-07-24 2021-07-23 Systeme et procede de chauffage d'une cuve de stockage pour gaz liquefie

Country Status (5)

Country Link
EP (1) EP3943801A1 (fr)
KR (1) KR20220013535A (fr)
CN (1) CN113968313A (fr)
CA (1) CA3125829A1 (fr)
FR (1) FR3112838B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO348068B1 (en) 2023-02-24 2024-07-15 Ammonia As Safety hose for hazardous fluids, connector, assembly and method of use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691520A1 (fr) 1992-05-20 1993-11-26 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
FR2724623A1 (fr) 1994-09-20 1996-03-22 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante perfectionnee integree dans une structure porteuse
FR2909356A1 (fr) 2006-11-30 2008-06-06 Gaztransp Et Technigaz Soc Par Fixation par collage de blocs isolants pour cuve de transport de gaz liquefies a l'aide de cordons ondules
KR20120119697A (ko) * 2011-04-22 2012-10-31 삼성중공업 주식회사 히팅장치가 구비된 선박
FR2991430A1 (fr) 2012-05-31 2013-12-06 Gaztransp Et Technigaz Procede d'etancheification d'une barriere d'etancheite secondaire d'une cuve etanche et thermiquement isolante
WO2015132307A1 (fr) * 2014-03-04 2015-09-11 Gaztransport Et Technigaz Traitement de diffusion forcee d'une piece isolante en mousse synthetique expansee
US20160159438A1 (en) * 2013-07-22 2016-06-09 Daewoo Shipbuilding & Marine Engineering Co.,Ltd. Insulation system for floating marine structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691520A1 (fr) 1992-05-20 1993-11-26 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
FR2724623A1 (fr) 1994-09-20 1996-03-22 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante perfectionnee integree dans une structure porteuse
FR2909356A1 (fr) 2006-11-30 2008-06-06 Gaztransp Et Technigaz Soc Par Fixation par collage de blocs isolants pour cuve de transport de gaz liquefies a l'aide de cordons ondules
KR20120119697A (ko) * 2011-04-22 2012-10-31 삼성중공업 주식회사 히팅장치가 구비된 선박
FR2991430A1 (fr) 2012-05-31 2013-12-06 Gaztransp Et Technigaz Procede d'etancheification d'une barriere d'etancheite secondaire d'une cuve etanche et thermiquement isolante
US20160159438A1 (en) * 2013-07-22 2016-06-09 Daewoo Shipbuilding & Marine Engineering Co.,Ltd. Insulation system for floating marine structure
WO2015132307A1 (fr) * 2014-03-04 2015-09-11 Gaztransport Et Technigaz Traitement de diffusion forcee d'une piece isolante en mousse synthetique expansee

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Recueil international de règles relatives à la construction et à l'équipement des navires transportant des gaz liquéfiés en vrac", 2016

Also Published As

Publication number Publication date
CN113968313A (zh) 2022-01-25
FR3112838B1 (fr) 2022-07-22
CA3125829A1 (fr) 2022-01-24
KR20220013535A (ko) 2022-02-04
FR3112838A1 (fr) 2022-01-28

Similar Documents

Publication Publication Date Title
EP3250849B1 (fr) Installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire
EP2768592B1 (fr) Dispositif de collecte et de separation de liquides aqueux et/ou huileux et de liquide cryogenique
EP2758302B1 (fr) Support installe en mer equipe de reservoirs externes
WO2019211537A1 (fr) Cuve de stockage et/ou de transport d'une cargaison d'un gaz liquide destinée à un navire
EP1224113B1 (fr) Barge de stockage de gaz liquefie a structure flottante en beton
BE589567A (fr)
WO2017174938A1 (fr) Cuve étanche et thermiquement isolante
EP3943801A1 (fr) Systeme et procede de chauffage d'une cuve de stockage pour gaz liquefie
WO2019211551A1 (fr) Cuve etanche et thermiquement isolante equipee d'une tour de chargement/dechargement
FR2862272A1 (fr) Procede de construction d'un terminal pour gaz naturel liquifie ou gaz de petrole liquifie
EP4269863A1 (fr) Paroi de cuve comportant une conduite traversante
WO2022090341A1 (fr) Cuve étanche et thermiquement isolante
FR3078135A1 (fr) Installation de stockage et de transport d'un fluide cryogenique embarquee sur un navire
CA2811161C (fr) Procede et dispositif de stockage d'un fluide cryogenique adaptes aux sols comprenant du pergelisol
FR3111411A1 (fr) Dôme liquide d’une cuve de stockage pour gaz liquéfié
EP3678928B1 (fr) Ouvrage flottant comprenant une cuve apte a contenir du gaz combustible liquéfié
WO2019122577A1 (fr) Navire propulse au gaz liquefie
EP4182597A1 (fr) Cuve étanche et thermiquement isolante
WO2021099424A1 (fr) Installation pour le stockage d'un gaz liquéfié
WO2022122982A1 (fr) Procédés de mise sous gaz et d'essais gaz dans une installation de stockage de gaz liquéfié
FR3135126A1 (fr) Paroi de cuve traversée par une conduite étanche d’évacuation de fluide
WO2014188096A1 (fr) Installation de stockage portuaire de combustible liquide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR