EP3938349A1 - 3-(2-alkoxy-6-alkyl-4-propinylphényl)-3-pyrroline-2-ones à substitution spéciale et leur utilisation comme herbicides - Google Patents

3-(2-alkoxy-6-alkyl-4-propinylphényl)-3-pyrroline-2-ones à substitution spéciale et leur utilisation comme herbicides

Info

Publication number
EP3938349A1
EP3938349A1 EP20707681.1A EP20707681A EP3938349A1 EP 3938349 A1 EP3938349 A1 EP 3938349A1 EP 20707681 A EP20707681 A EP 20707681A EP 3938349 A1 EP3938349 A1 EP 3938349A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
plants
alkoxy
methyl
haloalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20707681.1A
Other languages
German (de)
English (en)
Inventor
Alfred Angermann
Guido Bojack
Estella Buscato Arsequell
Hartmut Ahrens
Elisabeth ASMUS
Elmar Gatzweiler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP3938349A1 publication Critical patent/EP3938349A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/54Spiro-condensed
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • A01N43/38Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P13/00Herbicides; Algicides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/96Spiro-condensed ring systems

Definitions

  • the present invention relates to new herbicidally active 3-phenylpyrrolin-2-ones according to the general formula ( I) or agrochemically acceptable salts thereof, and their use for controlling weeds and grass weeds in crops of useful plants.
  • the class of compounds of the 3-arylpyrrolidine-2,4-diones and their preparation and use as herbicides are well known from the prior art.
  • 96/82395, WO 98/05638, WO 01/74770, WO 15/032702, WO 15/040114 or WO 17/060203 are known.
  • the effectiveness of these herbicides against harmful plants depends on numerous parameters, for example on the application rate used, the preparation form (formulation), the harmful plants to be controlled, the range of harmful plants, the climatic and soil conditions and the duration of the action or the rate of degradation of the herbicide.
  • the object of the present invention is therefore to provide new compounds which do not have the disadvantages mentioned.
  • the present invention therefore relates to new substituted 3-phenylpyrrolin-2-ones of the general formula (I),
  • X is C 1 -C 6 alkoxy or C 1 -C 6 haloalkoxy
  • Y is C 1 -C 6 -alkyl, C 1 -C 6 -haloalkyl or C 3 -C 6 -cycloalkyl
  • R 1 C 3 -C 6 -alkoxy, C 1 -C 4 -alkoxy-C 1 -C 4 -alkyl, C 3 -C 6 -cycloalkyl, C 1 -C 6 -haloalkyl, C 2 -C 6 -alkenyloxy or Is C 2 -C 6 haloalkenyloxy,
  • R 2 is hydrogen, C 1 -C 6 -alkyl, C 1 -C 4 -alkoxy-C 2 -C 4 -alkyl, C 1 -C 6 -haloalkyl, C 3 -C 6 -cycloalkyl, C 2 -C 6 - Is alkenyl, C 2 -C 6 alkynyl, C 1 -C 6 alkoxy or C 1 -C 6 haloalkoxy,
  • G is hydrogen, a leaving group L or a cation E, where
  • R 3 is C 1 -C 4 -alkyl or C 1 -C 3 -alkoxy-C 1 -C 4 -alkyl
  • R 4 is C 1 -C 4 alkyl
  • R 5 C 1 -C 4 alkyl, an unsubstituted phenyl or one or more times with halogen, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 4 alkoxy, C 1 -C 4 -Halogenalkoxy, nitro or cyano substituted phenyl,
  • R 6 , R 6 ' are independently methoxy or ethoxy
  • R 7, R 8 are each independently methyl, ethyl, phenyl, or together form a saturated 5-, 6- or 7-membered ring, where a ring carbon atom can optionally be replaced by an oxygen or sulfur atom, E an alkali metal ion An ion equivalent of an alkaline earth metal, an ion equivalent of aluminum, an ion equivalent of a transition metal, a magnesium-halogen cation or an ammonium ion, in which one, two, three or all four hydrogen atoms are optionally replaced by identical or different radicals from the groups C 1 -C 10 -alkyl or C 3 -C 7 -cycloalkyl, which, independently of one another, can each be substituted one or more times with fluorine, chlorine, bromine, cyano, hydroxy or interrupted by one or more oxygen or sulfur atoms, 3
  • a cyclic secondary or tertiary aliphatic or heteroaliphatic ammonium ion for example morpholinium, thiomorpholinium, piperidinium, pyrrolidinium or in each case protonated 1,4-diazabicyclo [1.1.2] octane (DABCO) or 1,5-diazabicyclo [4.3.0] undec-7 -en (DBU), is a heteroaromatic ammonium cation, for example in each case protonated pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,4-dimethylpyridine, 2,5-dimethylpyridine, 2,6-dimethylpyridine, 5- Ethyl-2-methylpyridine, collidine, pyrrole, imidazole, quinoline, quinoxaline, 1,2-dimethylimidazole, 1,3-dimethylimidazolium methyl sulfate or, furthermore, also represents a trimethylsulfonium i
  • Alkyl means saturated, straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms, for example C 1 -C 6 -alkyl such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1 -Dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl , 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl , 2-
  • Haloalkyl denotes straight-chain or branched alkyl groups, some or all of the hydrogen atoms in these groups being replaced by halogen atoms, for example C 1 -C 2 -haloalkyl such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl , 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro, 2-difluoroethyl, 2.2 -Dichlor-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl and 1,1,
  • Alkenyl means unsaturated, straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms and a double bond in any position, e.g. C 2 -C 6 -alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3- Pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl- 2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-propeny
  • Cycloalkyl means a carbocyclic, saturated ring system with preferably 3-8 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • cyclic systems with substituents are included, with substituents with a double bond on the cycloalkyl radical, e.g. B. an alkylidene group such as methylidene are included.
  • Alkoxy denotes saturated, straight-chain or branched alkoxy radicals as indicated in each case
  • C 1 -C 6 alkoxy such as methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1,1-dimethylethoxy, pentoxy, 1-methylbutoxy, 2-methylbutoxy , 3-methylbutoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1,1 -Dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1,1,2-trimethylpropoxy, 1 , 2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy and 1-ethyl-2-methylpropoxy.
  • Alkoxy substituted by halogen means straight-chain or branched alkoxy radicals with the specified number of carbon atoms, it being possible for some or all of the hydrogen atoms in these groups to be replaced by halogen atoms as mentioned above, for example C 1 -C 2 -haloalkoxy such as chloromethoxy, bromomethoxy, dichloromethoxy, Trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 1-chloroethoxy, 1-bromoethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro 2-fluoroethoxy, 2-chloro-1,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloro
  • the compounds of the formula (I) can be present as geometric and / or optical isomers or isomer mixtures in various compositions.
  • substituent R 1 is not hydrogen
  • both enantiomers and cis / trans isomers can occur, depending on the linkage of the substituent R 1 .
  • the latter are defined as follows:
  • the present invention relates to both the pure isomers or tautomers and the tautomer and isomer mixtures, their preparation and use, and agents containing them.
  • the following text always refers to compounds of the formula (I), although both the pure compounds and, if appropriate, mixtures with different proportions of isomeric and tautomeric compounds are meant.
  • the compounds according to the invention are generally defined by the formula (I). Preferred substituents or ranges of the radicals listed in the formulas mentioned above and below are explained below: Preferred are compounds of the general formula (I) in which
  • X is C 1 -C 4 alkoxy or C 1 -C 4 haloalkoxy
  • Y isC 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl or C 3 -C 6 -cycloalkyl
  • R 1 C 3 -C 6 -alkoxy, C 1 -C 4 -alkoxy-C 1 -C 2 -alkyl, cyclopropyl, C 1 -C 6 -haloalkyl, C 3 -C 6 -alkenyloxy or C 3 -C 6 - Is haloalkenyloxy
  • R 2 is hydrogen, C 1 -C 6 -alkyl, C 1 -C 2 -haloalkyl, cyclopropyl, C 2 -C 4 -alkenyl, C 2 -C 4 -alkynyl,
  • G is hydrogen, a leaving group L or a cation E, where
  • R 3 is C 1 -C 4 -alkyl or C1-C3-alkoxy-C 1 -C 4 -alkyl
  • R 4 is C 1 -C 4 -alkyl
  • R 5 is C 1 -C 4 -alkyl, an unsubstituted phenyl or a phenyl which is mono- or polysubstituted by halogen, C 1 -C 4 -alkyl or C 1 -C 4 -haloalkyl
  • E is an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent of aluminum, an ion equivalent of a transition metal, a magnesium halogen -Cation or an ammonium ion in which one, two, three or all four hydrogen atoms are optionally replaced by identical or different radicals from the groups C1-C10-alkyl or C3-C7-cycloalkyl, which are each independently or several times with Fluorine, chlorine,
  • X is C 1 -C 4 alkoxy or C 1 -C 4 -haloalkoxy
  • Y is C 1 -C 4 alkyl, C 1 -C 4 haloalkyl or cyclopropyl
  • R 1 C 3 -C 6 alkoxy, C 1 -C 4 alkoxy, C 1 -C 2 alkyl, cyclopropyl, C 3 -C 6 haloalkyl, C 3 -C 4 alkenyloxy or C 3 -C 4 haloalkenyloxy
  • R 2 is hydrogen, C 1 -C 6 alkyl, C 1 -C 2 haloalkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, C 1 -C 2 alkoxy or C 1 -C 4 -Haloalkoxy
  • G is hydrogen, a leaving group L or a cation E, where L is one of the following radicals
  • R 3 is C 1 -C 4 -alkyl or C1-C3-alkoxy-C 1 -C 4 -alkyl
  • R 4 is C 1 -C 4 -alkyl
  • E is an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent of aluminum, an ion equivalent of a transition metal, a magnesium-halogen cation or a Is ammonium ion in which one, two, three or all four hydrogen atoms have optionally been replaced by identical or different radicals from the groups C1-C10-alkyl or C3-C7-cycloalkyl.
  • R 3 is methyl, ethyl, i-propyl or t-butyl
  • R 4 is methyl or ethyl
  • E is a sodium ion or a potassium ion.
  • R 1 , R 2 , X, and Y have the meanings given above, and R 9 is alkyl, preferably methyl or ethyl, optionally in the presence of a suitable solution or
  • R 1 , R 2 , X and Y have the meanings given above, for example with a compound of the general formula (III), Hal-L (III) in which L has the meaning given above and Hal is a halogen, preferably chlorine or bromine or a sulfonic acid group, optionally in the presence of a suitable solvent or diluent and a suitable base, to react.
  • Hal-L (III) in which L has the meaning given above and Hal is a halogen, preferably chlorine or bromine or a sulfonic acid group, optionally in the presence of a suitable solvent or diluent and a suitable base, to react.
  • the precursors of the general formula (II) can be prepared in analogy to known processes, for example by reacting an amino acid ester of the general formula (IV) with a phenylacetic acid of the general formula (V) in which X and Y have the meaning described above, optionally by addition a dehydrating agent and optionally in the presence of a suitable solvent or diluent.
  • Amino esters of the general formula (IV) are known from the literature, for example from WO 2006/000355.
  • Phenylacetic acids of the general formula (V) are also known, inter alia, from WO 2015/040114 or can be prepared in analogy to processes known from the literature.
  • the compounds of the formula (I) according to the invention (and / or their salts), hereinafter referred to collectively as “compounds according to the invention”, have excellent herbicidal activity against a broad spectrum of economically important monocotyledonous and dicotyledonous annual harmful plants.
  • the present invention therefore also provides a method for controlling undesired plants or for regulating the growth of plants, preferably in
  • Plant crops in which one or more compound (s) according to the invention are applied to the plants e.g.
  • Harmful plants such as monocotyledon or dicotyledon weeds or undesired crop plants), the seeds (e.g. grains, seeds or vegetative reproductive organs such as tubers or sprouts with buds) or the area on which the plants grow (e.g. the cultivated area).
  • the compounds according to the invention can e.g. in the pre-sowing (if necessary also by incorporation into the
  • the compounds according to the invention are applied to the surface of the earth before germination, either the emergence of the weed seedlings is completely prevented or the weeds grow to the cotyledon stage, but then stop growing.
  • the active ingredients are applied to the green parts of the plant using the post-emergence method, growth arrests after the treatment and the harmful plants remain in the growth stage present at the time of application or die completely after a certain time, so that in this way competition from weeds that is harmful to the crop plants is very early and is permanently eliminated.
  • the compounds according to the invention can have selectivities in useful crops and can also be used as non-selective herbicides.
  • the active compounds can also be used for combating harmful plants in crops of known or still to be developed genetically modified plants.
  • the transgenic plants are generally distinguished by particularly advantageous properties, for example by
  • Plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties concern e.g. the crop in terms of quantity, quality, shelf life, composition and special ingredients.
  • transgenic plants with an increased starch content or a changed quality of the starch or those with a different fatty acid composition of the harvested material are known.
  • Other special properties are tolerance or resistance to abiotic stressors e.g. Heat, cold, drought, salt and ultraviolet radiation.
  • the use of the compounds of the formula (I) according to the invention or their salts in economically important transgenic crops of useful and ornamental plants is preferred,
  • the compounds of the formula (I) can be used as herbicides in crops of useful plants which are resistant or have been made resistant by genetic engineering to the phytotoxic effects of the herbicides.
  • Plants have modified properties, exist for example in classical
  • EP 0221044 EP 0131624
  • genetic modifications of crop plants for the purpose of modifying the starch synthesized in the plants e.g. WO 92/011376 A, WO 92/014827 A, WO 91/019806 A
  • transgenic crop plants which are resistant to certain herbicides of the glufosinate type See, for example, EP 0242236 A, EP 0242246 A) or glyphosate (WO 92/000377 A) or the sulfonylureas (EP 0257993 A, US 5,013,659) or are resistant to combinations or mixtures of these herbicides by “gene stacking”, such as transgenic crops e.g. . B. corn or soy with the trade name or designation
  • Optimum TM GAT TM (Glyphosate ALS Tolerant).
  • Bt toxins thuringiensis toxins
  • nucleic acid molecules can be introduced into plasmids which allow mutagenesis or a sequence change by recombining DNA sequences. With the help of standard procedures, e.g. Base exchanges carried out, partial sequences removed or natural or synthetic sequences added.
  • adapters or linkers can be attached to the fragments, see e.g. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2.
  • DNA molecules can be used that comprise the entire coding sequence of a gene product including any flanking sequences that may be present, as well as DNA molecules that only comprise parts of the coding sequence, these parts being long must be enough to produce an antisense effect in the cells. It is also possible to use DNA sequences that have a high degree of homology to the coding
  • the synthesized protein can be localized in any desired compartment of the plant cell.
  • the coding region can be made with DNA sequences
  • the expression of the nucleic acid molecules can also take place in the organelles of the plant cells.
  • the transgenic plant cells can be regenerated into whole plants using known techniques. In principle, the transgenic plants can be any plant
  • the compounds (I) according to the invention can preferably be used in transgenic crops which are resistant to growth substances such as e.g. 2,4-D, dicamba or against herbicides, the essential plant enzymes, e.g.
  • Acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydoxyphenylpyruvate dioxygenases (HPPD) inhibit or are resistant to herbicides from the group of sulfonylureas, glyphosates, glufosinates or benzoylisoxazoles and analogous active ingredients, or to any combination of these active ingredients.
  • the compounds according to the invention can particularly preferably be used in transgenic crop plants which are resistant to a combination of glyphosates and glufosinates, glyphosates and
  • Sulfonylureas or imidazolinones are resistant.
  • the compounds according to the invention can very particularly preferably be used in transgenic crop plants such as. B. corn or soy with the
  • OptimumTM GATTM Glyphosate ALS Tolerant
  • active ingredients according to the invention are used in transgenic crops, in addition to the effects on harmful plants observed in other crops, effects that are specific to the application in the respective transgenic crop, for example a modified or specially expanded weed spectrum that can be controlled, often occur
  • Application rates which can be used for the application preferably good compatibility with the herbicides to which the transgenic culture is resistant, and influencing the growth and yield of the transgenic crop plants.
  • the invention therefore also relates to the use of the compounds of the formula (I) according to the invention as herbicides for controlling harmful plants in transgenic crop plants.
  • the compounds according to the invention can be emulsifiable in the form of wettable powders
  • the invention therefore also relates to herbicidal and plant growth regulating agents which contain the compounds according to the invention.
  • the compounds according to the invention can be formulated in various ways, depending on which biological and / or chemico-physical parameters are given. Possible formulation options include, for example: wettable powders (WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions , Suspension concentrates (SC), oil- or water-based dispersions, oil-miscible solutions, capsule suspensions (CS), dusts (DP), dressings, granules for litter and soil application, granules (GR) in
  • Tank mixes are, for example, known active ingredients which are based on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I. , Photosystem II or protoporphyrinogen oxidase based, can be used, such as out
  • herbicidal mixture partners are: Acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim-sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-5-fluoro-6- ( 7-fluoro-1H- indol-6-yl) pyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor-potassium, aminocyclopyrachlor-methyl, aminopyralid, amitrole, ammoniumsulfamate, anilofamidos, asulam, atrazine, azafenidin, beazubolin, benflutazolin, -ethyl, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone
  • fenoxaprop fenoxaprop-P, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fenquinotrione, fentrazamide, flamprop, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, florpyrauxifen, florpyrauxifazif-benzopyl, fluazifazif-benzopyl, P, fluazifop-butyl, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flurenolethyl-butylammolium,
  • plant growth regulators as possible mixing partners are: acibenzolar, acibenzolar-S-methyl, 5-aminolevulinic acid, ancymidol, 6-benzylaminopurine, brassinolide, catechin, chlormequat chloride, cloprop, cyclanilide, 3- (cycloprop-1-enyl) propionic acid, dazomet, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal-dipotassium, -disodium, and mono (N, N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurprimidol, forchlorfenuron, gibberellic, acid, indol-3-acetic acid (IAA), 4-indol-3-ylbutyric acid, isoprothiolane, probenazole, jasmonic acid, jasmonic acid
  • Safeners which are used in combination with the compounds of the formula (I) according to the invention and optionally in combinations with other active ingredients such as e.g. Insecticides, acaricides, herbicides, fungicides as listed above, are preferably selected from the group consisting of: S1) compounds of the formula (S1),
  • n A is a natural number from 0 to 5, preferably 0 to 3; R 1
  • A is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, nitro or (C 1 -C 4 ) haloalkyl;
  • WA is an unsubstituted or substituted divalent heterocyclic radical from the group of partially unsaturated or aromatic five-membered ring heterocycles with 1 to 3 hetero ring atoms from the group N and O, with at least one N atom and at most one O atom in the ring, preferably one Remainder from the group (W 1
  • n A is 0 or 1; R 2
  • A is OR 3
  • A is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably with a total of 1 to 18 carbon atoms;
  • A is hydrogen, (C 1 -C 6 ) alkyl, (C 1 -C 6 ) alkoxy or substituted or unsubstituted phenyl; R 5
  • A is H, (C 1 -C 8 ) alkyl, (C 1 -C 8 ) haloalkyl, (C 1 -C 4 ) alkoxy (C 1 -C 8 ) alkyl, cyano, or COOR 9
  • A is hydrogen, (C 1 -C 8 ) alkyl, (C 1 -C 8 ) haloalkyl, (C 1 -C 4 ) alkoxy- (C 1 -C 4 ) alkyl, (C 1 -C 6 ) hydroxyalkyl, (C 3 -C 12 ) cycloalkyl or tri- (C 1 -C 4 ) alkyl-silyl; R 6
  • A are identically or differently hydrogen, (C1-C8) alkyl, (C1-C8) haloalkyl, (C3-C12) cycloalkyl or substituted or unsubstituted phenyl; preferably: a) compounds of the dichlorophenylpyrazoline-3-carboxylic acid type (S1 a ), preferably compounds such as 1- (2,4-dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazoline-3-carboxylic acid, 1 - (2,4-Dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazoline-3-carboxylic acid ethyl ester (S1-1) ("Mefenpyr-diethyl”), and related compounds, as described in WO-A -91/07874 are described; b) Derivatives of dichlorophenylpyrazole carboxylic acid (S1 b ),
  • n B is a natural number from 0 to 5, preferably 0 to 3;
  • B or a saturated or unsaturated 3 to 7-membered heterocycle with at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected to the carbonyl group in (S2) via the N atom and is unsubstituted or is substituted by radicals from the group (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy or optionally substituted phenyl, preferably a radical of the formula OR 3
  • B is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably with a total of 1 to 18 carbon atoms;
  • B is hydrogen, (C 1 -C 6 ) alkyl, (C 1 -C 6 ) alkoxy or substituted or unsubstituted phenyl;
  • TB is a (C1 or C2) -alkanediyl chain which is unsubstituted or substituted by one or two (C1-C4) alkyl radicals or by [(C1-C3) -alkoxy] -carbonyl; preferably: a) compounds of the 8-quinolinoxyacetic acid type (S2 a ), preferably (5-chloro-8-quinolinoxy) acetic acid (1-methylhexyl) ester ("Cloquintocet-mexyl") (S2-1), 25 (5 -Chlor-8-quinolinoxy) acetic acid- (1,3-dimethyl-but-1-yl) ester (S2-2),
  • C is (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) haloalkenyl, (C 3 -C 7 ) cycloalkyl, preferably dichloromethyl;
  • R 2 is (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) haloalkenyl, (C 3 -C 7 ) cycloalkyl, preferably dichloromethyl;
  • R 2 is (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) haloalkenyl, (C 3 -C 7 ) cycloalkyl,
  • C are identical or different hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, (C 1 -C 4 ) haloalkyl, (C 2 -C 4 ) haloalkenyl, (C 1 -C 4) alkylcarbamoyl (C 1 -C 4) alkyl, (C 2 - C 4) Alkenylcarbamoyl- (C 1 -C 4) alkyl, (C 1 -C 4) alkoxy- (C 1 -C 4 ) alkyl, dioxolanyl- (C 1 -C 4 ) alkyl, thiazolyl, furyl, furylalkyl, thienyl, piperidyl, substituted or unsubstituted phenyl, or R 2
  • C together form a substituted or unsubstituted heterocyclic ring, preferably an oxazolidine, thiazolidine, piperidine, morpholine, hexahydropyrimidine or benzoxazine ring; preferably:
  • AD is SO 2 -NR 3
  • D is halogen, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) haloalkoxy, nitro, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) alkylsulfonyl , (C 1 -C 4 ) alkoxycarbonyl or (C 1 -C 4 ) alkylcarbonyl; R 3
  • D is hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 4 ) alkenyl or (C 2 -C 4 ) alkynyl; R 4
  • D is halogen, nitro, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) haloalkoxy, (C 3 -C 6 ) cycloalkyl, phenyl, (C 1 -C 4 ) Alkoxy, cyano, (C 1 -C 4 ) alkylthio, (C 1 -C 4 ) alkylsulfinyl, (C 1 -C 4 ) alkylsulfonyl, (C 1 -
  • D is hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 6 ) alkynyl, (C 5 -C 6 ) cycloalkenyl, phenyl or 3- to 6-membered heterocyclyl containing vD heteroatoms from the group nitrogen, oxygen and sulfur, the last seven radicals being replaced by vD substituents from the group halogen, (C 1 -C 6 ) alkoxy, (C 1 -C 6 ) haloalkoxy , (C 1 -C 2 ) alkylsulfinyl, (C 1 -C 2 ) alkylsulfonyl, (C 3 -C 6 ) cycloalkyl, (C 1 -C 4 ) alkoxycarbonyl, (C 1 -C 4 ) alkylcarbonyl and phenyl and in
  • D is hydrogen, (C 1 -C 6 ) alkyl, (C 2 -C 6 ) alkenyl or (C 2 -C 6 ) alkynyl, the last three radicals mentioned by vD radicals from the group halogen, hydroxy, (C 1 - C 4 ) alkyl, (C 1 -C 4 ) alkoxy and (C 1 -C 4 ) alkylthio are substituted, or R 5
  • D is hydrogen, (C 1 -C 4 ) alkylamino, di- (C 1 -C 4 ) alkylamino, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, the last two radicals mentioned by vD substituents from the group halogen, (C 1 -C 4 ) alkoxy, (C 1 -C 6 ) haloalkoxy and (C 1 -C 4 ) alkylthio and in the case of cyclic radicals also (C 1 -C 4 ) alkyl and (C 1 - C 4 ) haloalkyl are substituted; n D is 0, 1 or 2; m D is 1 or 2; v D is 0, 1, 2 or 3; Preferred of these are compounds of the N-acylsulfonamide type, for example of the following formula (S4 a ), which z. B. are known from WO-A-97/45016
  • acylsulfamoylbenzoic acid amides for example of the following formula (S4 b ), which are known, for example from WO-A-99/16744,
  • R D and R D independently of one another are hydrogen, (C 1 -C 8 ) alkyl, (C 3 -C 8 ) cycloalkyl, (C 3 -C 6 ) alkenyl, (C 3 -C 6 ) alkynyl, R 4
  • D is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3 m D is 1 or 2;
  • D is hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 6 ) alkynyl, (C 5 -C 6 ) cycloalkenyl.
  • R E are independently halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) alkylamino, di- (C 1 -C 4 ) alkylamino, nitro;
  • a 3 is independently halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) alkylamino, di- (C 1 -C 4 ) alkylamino, nitro;
  • E are independently hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 4 ) alkynyl, cyanoalkyl, (C 1 -C 4 ) haloalkyl, phenyl, nitrophenyl, benzyl, Halobenzyl, pyridinylalkyl and alkylammonium, n 1
  • E is 0 or 1 n 2
  • E are independently 0, 1 or 2, preferably:
  • F is hydrogen, (C1-C8) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, or aryl, where each of the aforementioned C-containing radicals is unsubstituted or by one or more, preferably up to three identical or different radicals from the group consisting of halogen and alkoxy is substituted; or their salts, preferably compounds in which X F is CH, n F is an integer from 0 to 2, R 1
  • F is hydrogen or (C 1 -C 4 ) alkyl
  • F is hydrogen, (C 1 -C 8 ) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, or aryl, where each of the aforementioned C-containing radicals is unsubstituted or by one or more, preferably up to to three identical or different radicals from the group consisting of halogen and alkoxy is substituted, or their salts.
  • n G is an integer from 0 to 4, R 2
  • G is hydrogen or (C 1 -C 6 ) alkyl.
  • Oxabetrinil ((Z) -1,3-Dioxolan-2-ylmethoxyimino (phenyl) acetonitrile) (S11-1), which is known as a seed dressing safener for millet against damage from metolachlor, "Fluxofenim” (1- (4 -Chlorophenyl) -2,2,2-trifluoro-1-ethanon-O- (1,3-dioxolan-2-ylmethyl) -oxime) (S11-2), which is known as a seed dressing safener for millet against damage from metolachlor and "Cyometrinil” or “CGA-43089” ((Z) -Cyanomethoxyimino (phenyl) acetonitrile) (S11-3) which is known as a seed dressing safener for millet against damage from metolachlor.
  • S12 Active ingredients from the class of isothiochromanones (S12), such as e.g. Methyl - [(3-oxo-1H-2- benzothiopyran-4 (3H) -ylidene) methoxy] acetate (CAS reg. No. 205121-04-6) (S12-1) and related compounds from WO-A- 1998/13361.
  • S12 isothiochromanones
  • S13 One or more compounds from group (S13): “Naphthalic anhydride” (1,8-naphthalenedicarboxylic acid anhydride) (S13-1), which is known as a seed dressing safener for maize against damage from thiocarbamate herbicides, "Fenclorim” (4.6 -Dichlor-2-phenylpyrimidine) (S13-2), which acts as a safener for pretilachlor in sown
  • MG 191 (CAS reg. No. 96420-72-3) (2-dichloromethyl-2-methyl-1,3-dioxolane) (S13-5) from Nitrokemia, which is known as a safener for maize, " MG 838 "(CAS reg. No.
  • H is a (C 1 -C 6 ) haloalkyl radical and R 2
  • H is hydrogen or halogen
  • H independently of one another hydrogen, (C 1 -C 16 ) alkyl, (C 2 -C 16 ) alkenyl or (C2-C16) alkynyl, each of the last-mentioned 3 radicals being unsubstituted or substituted by one or more radicals from the group consisting of halogen, hydroxy, Cyano, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy, (C 1 -C 4 ) alkylthio, (C 1 -C 4 ) alkylamino, di [(C 1 -C 4 ) alkyl] - amino, [(C 1 -C 4 ) alkoxy] carbonyl, [(C 1 -C 4 ) haloalkoxy] carbonyl, (C 3 -C 6 ) cycloalkyl which is unsubstituted or substituted, phenyl which is unsubstituted or substituted , and hetero
  • H is (C 1 -C 4 ) -alkoxy, (C 2 -C 4 ) alkenyloxy, (C 2 -C 6 ) alkynyloxy or (C 2 -C 4 ) haloalkoxy and R 4
  • H is hydrogen or (C 1 -C 4 ) -alkyl or R 3
  • N atom H together with the directly bonded N atom forms a four- to eight-membered heterocyclic ring which, in addition to the N atom, can also contain further hetero ring atoms, preferably up to two further hetero ring atoms from the group N, O and S and which is unsubstituted or by one or several radicals from the group halogen, cyano, nitro, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy and (C 1 -C 4 ) alkylthio is substituted.
  • Dicamba 3,6-dichloro-2-methoxybenzoic acid
  • 1- (ethoxycarbonyl) ethyl-3,6-dichloro-2-methoxybenzoate lactidichloro-ethyl
  • Particularly preferred safeners are Mefenpyr-diethyl, Cyprosulfamid, Isoxadifen-ethyl, Cloquintocet-Mexyl, Dichlormid and Metcamifen.
  • Wettable powders are preparations that are uniformly dispersible in water which, in addition to the active ingredient, besides a diluent or inert substance, also tensides of an ionic and / or nonionic type (wetting agents, dispersants), e.g.
  • polyoxyethylated alkylphenols polyoxethylated fatty alcohols, polyoxethylated fatty amines, fatty alcohol polyglycol ether sulfates, alkane sulfonates, alkylbenzenesulfonates, sodium lignosulfonic acid, 2,2'-dinaphthylmethane-6,6'-disulfonic acid sodium, dibutylnaphthalene-sulfonic acid sodium or also contain sodium dibutylnaphthalene sulfonic acid sodium.
  • the herbicidally active ingredients are finely ground, for example, in customary apparatus such as hammer mills, blower mills and air jet mills, and simultaneously or subsequently mixed with the formulation auxiliaries.
  • Emulsifiable concentrates are made by dissolving the active ingredient in an organic solvent
  • Solvents e.g. Butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling ones
  • emulsifiers examples include: alkylarylsulfonic acid calcium salts such as calcium dodecylbenzenesulfonate or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters such as e.g. Sorbitan fatty acid esters or polyoxethylene sorbitan esters such as e.g. Polyoxyethylene sorbitan fatty acid ester. Dusts are obtained by grinding the active ingredient with finely divided solid substances, e.g.
  • Talc natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates can be water or oil based. For example, you can go through
  • Emulsions e.g. Oil-in-water emulsions (EW) can be prepared, for example, by means of stirrers, colloid mills and / or static mixers using aqueous organic solvent
  • Granules can either be produced by spraying the active ingredient onto adsorptive, granulated inert material or by applying active ingredient concentrates using adhesives, e.g. polyvinyl alcohol, sodium polyacrylate or mineral oils, to the surface of carrier materials such as sand, kaolinite or granulated inert material.
  • adhesives e.g. polyvinyl alcohol, sodium polyacrylate or mineral oils
  • Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules - if desired as a mixture with fertilizers.
  • Water-dispersible granules are generally produced by the customary processes such as spray drying, fluidized bed granulation, plate granulation, mixing with high-speed mixers and extrusion without solid inert material.
  • spray drying fluidized bed granulation
  • plate granulation mixing with high-speed mixers and extrusion without solid inert material.
  • the agrochemical preparations generally contain 0.1 to 99% by weight, in particular 0.1 to 95% by weight, of compounds according to the invention.
  • the active ingredient concentration is e.g. about 10 to 90% by weight, the remainder to 100% by weight consists of the usual
  • Formulation ingredients In the case of emulsifiable concentrates, the active ingredient concentration can be about 1 to 90, preferably 5 to 80% by weight. Dust-like formulations contain 1 to 30
  • sprayable solutions contain about 0.05 to 80, preferably 2 to 50% by weight of active ingredient.
  • the active ingredient content depends in part on whether the active compound is liquid or solid and which granulating aids, fillers, etc. are used.
  • the content of active ingredient is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active ingredient formulations mentioned may contain the usual adhesive, wetting, dispersing, emulsifying, penetration, preservation, antifreeze and solvents,
  • Fillers carriers and dyes, defoamers, evaporation inhibitors and agents that influence the pH value and viscosity.
  • combinations with other pesticidally active substances such as insecticides, acaricides, herbicides, fungicides, and with safeners, fertilizers and / or growth regulators, for example in the form of a finished formulation or as a tank mix, can also be produced.
  • the formulations which are available in commercially available form are, if appropriate, diluted in the customary manner, for example with wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules using water. Dust-like preparations, soil or
  • Scatter granules and sprayable solutions are usually no longer diluted with other inert substances before use. With the external conditions such as temperature, humidity, the type of herbicide used, etc.
  • Carrier means a natural or synthetic, organic or inorganic substance with which the active ingredients for better applicability, especially for application to plants or parts of plants or seeds, mixed or combined.
  • the carrier which can be solid or liquid, is generally inert and should be agriculturally useful. Possible solid or liquid carriers are: e.g.
  • Ammonium salts and natural rock flour such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock flour, such as highly dispersed silica, aluminum oxide and natural or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, in particular Butanol, organic solvents, mineral and vegetable oils and derivatives thereof.
  • Solid carriers for granulates are: e.g. broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granulates made from inorganic and organic
  • Flours and granulates made from organic material such as sawdust, coconut shells, corn on the cob and tobacco stalks.
  • Liquefied gaseous extenders or carriers are liquids which are gaseous at normal temperature and under normal pressure, for example aerosol propellants such as halogenated hydrocarbons, as well as butane, propane, nitrogen and carbon dioxide.
  • Adhesives such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, and also natural phospholipids such as cephalins and lecithins and synthetic phospholipids can be used in the formulations.
  • Further additives can be mineral and vegetable oils. If water is used as an extender, it is also possible, for example, to use organic solvents as auxiliary solvents.
  • the main liquid solvents that can be used are:
  • Aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chlorethylene or dichloromethane, aliphatic hydrocarbons such as cyclohexane or paraffins, e.g. Petroleum fractions, mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • the agents according to the invention can additionally contain further components, such as e.g.
  • surface-active substances As surface-active substances emulsifiers and / or foam-generating agents, dispersants or wetting agents with ionic or non-ionic ones come
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
  • the agents and formulations according to the invention contain between 0.05 and 99% by weight, 0.01 and 98% by weight, preferably between 0.1 and 95% by weight, particularly preferably between 0.5 and 90% Active ingredient, very particularly preferably between 10 and 70
  • the active ingredients or agents according to the invention can be used as such or in
  • Granules water-soluble granules or tablets, water-soluble powders for seed treatment, wettable powders, active ingredient-impregnated natural and synthetic substances as well as fine encapsulation in polymeric substances and in coating compounds for seeds, as well as ULV cold and warm mist formulations can be used.
  • Said formulations can be prepared in a manner known per se, e.g. by
  • the agents according to the invention not only include formulations which are already ready to use and can be applied to the plant or the seed with a suitable apparatus, but also commercial concentrates which have to be diluted with water before use.
  • the active compounds according to the invention can be used as such or in their (commercially available) formulations and in the use forms prepared from these formulations as a mixture with other (known) active compounds, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides , Fertilizers, safeners or semiochemicals are present.
  • the treatment according to the invention of the plants and plant parts with the active ingredients or agents is carried out directly or by acting on their surroundings, living space or storage room using the customary treatment methods, for example by dipping, spraying, spraying, sprinkling, evaporating, Atomization, misting, scattering, foaming, brushing, spreading, watering (drenching), drip irrigation and, in the case of propagation material, especially in the case of seeds, also by dry dressing, wet dressing, slurry dressing, encrusting, single or multilayer coating, etc. It it is also possible to apply the active ingredients by the ultra-low-volume method or to inject the active ingredient preparation or the active ingredient itself into the soil. As also described further below, the treatment of transgenic seeds with the active ingredients or agents according to the invention is of particular importance. This concerns the seeds of
  • the heterologous gene in transgenic seeds can e.g. originate from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • This heterologous gene is preferably derived from Bacillus sp., The gene product having an effect against the European corn borer and / or Western corn rootworm.
  • the heterologous gene is particularly preferably derived from Bacillus thuringiensis.
  • the agent according to the invention is applied to the seed alone or in a suitable formulation.
  • the seed is preferably treated in a state in which it is so stable that no damage occurs during the treatment. In general, the seed can be treated at any point in time between harvest and sowing.
  • seeds are used that have been separated from the plant and freed from cobs, peels, stems, husks, wool or pulp.
  • seeds can be used that have been harvested, cleaned and dried to a moisture content of less than 15% by weight.
  • seeds can also be used which, after drying, e.g. treated with water and then dried again.
  • care must be taken to ensure that the amount of the agent according to the invention and / or further additives applied to the seed is selected so that the germination of the seed is not impaired or the resulting plant is not damaged. This is especially important for active ingredients that are used in certain
  • Application rates can show phytotoxic effects.
  • the agents according to the invention can be applied immediately, that is to say without containing further components and without having been diluted.
  • suitable Formulations and methods for seed treatment are known to the person skilled in the art and are described, for example, in the following documents: US 4,272,417 A, US 4,245,432 A, US 4,808,430, US 5,876,739, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2 .
  • the active compounds according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seeds, and also ULV formulations.
  • These formulations are prepared in a known manner by mixing the active ingredients with customary additives, such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also Water.
  • customary additives such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also Water.
  • Suitable dyes which can be contained in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both in
  • Water-sparingly soluble pigments as well as water-soluble dyes can be used. Examples are those under the names Rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red
  • Suitable wetting agents which can be contained in the seed dressing formulations which can be used according to the invention are all substances which are customary for the formulation of agrochemical active ingredients and which promote wetting.
  • Alkylnaphthalene sulfonates such as diisopropyl or diisobutyl naphthalene sulfonates, can preferably be used.
  • dispersants and / or emulsifiers which can be contained in the seed dressing formulations which can be used according to the invention, all of the formulations used are agrochemical
  • Nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants can preferably be used.
  • Suitable nonionic dispersants are, in particular, ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are, in particular, lignin sulfonates, polyacrylic acid salts and aryl sulfonate-formaldehyde condensates.
  • the seed dressing formulations which can be used according to the invention can contain all foam-inhibiting substances customary for the formulation of agrochemical active ingredients as defoamers.
  • Silicone defoamers and magnesium stearate can preferably be used.
  • All substances which can be used in agrochemical compositions for such purposes can be present as preservatives in the seed dressing formulations which can be used according to the invention.
  • Examples include dichlorophene and benzyl alcohol hemiformal.
  • Secondary thickeners which can be contained in the seed dressing formulations which can be used according to the invention are all substances which can be used in agrochemical compositions for such purposes. Cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and highly disperse silicic acid are preferred.
  • Suitable adhesives which can be contained in the seed dressing formulations which can be used according to the invention are all conventional binders which can be used in seed dressings. Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and Tylose may be mentioned as preferred.
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seeds of the most varied of types, including
  • Plant organs to increase crop yields, improve the quality of the crop. They can preferably be used as crop protection agents. They are effective against normally sensitive and resistant species and against all or individual stages of development.
  • the following main crops may be mentioned as plants which can be treated according to the invention: maize, soybean, cotton, Brassica oil seeds such as Brassica napus (e.g. canola), Brassica rapa, B. juncea (e.g. (field) mustard) and Brassica carinata, rice, wheat
  • Peaches and berries such as strawberries
  • Ribesioidae sp. Juglandaceae sp.
  • Betulaceae sp. Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (e.g. banana trees and plantations), Rubiaceae sp. (e.g. coffee), Theaceae sp., Sterculiceae sp., Rutaceae sp. (for example lemons, organs and
  • Solanaceae sp. for example tomatoes, potatoes, pepper, eggplant
  • Liliaceae sp. Compositae sp.
  • Umbelliferae sp. e.g., carrot, parsley, celery and celeriac
  • Cucurbitaceae sp. e.g. cucumber - including
  • plants and their parts can be treated according to the invention.
  • plant species and plant cultivars occurring in the wild or obtained by conventional biological breeding methods such as crossing or protoplast fusion, as well as their parts are treated.
  • transgenic plants and plant cultivars obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetically modified organisms), and their parts are treated.
  • the term “parts” or “parts of plants” or “plant parts” has been explained above.
  • Plant varieties in use are treated. Plant cultivars are understood to be plants with new properties (“traits”) that have been bred by conventional breeding, by mutagenesis or by recombinant DNA techniques. This can be varieties, races, organic and
  • the treatment method according to the invention can be used for the treatment of genetically modified
  • Organisms e.g. B. plants or seeds can be used.
  • Genetically modified plants are plants in which a heterologous gene has been stably integrated into the genome.
  • heterologous gene means essentially a gene which is provided or assembled outside the plant and which, when introduced into the nucleus genome, the chloroplast genome or the mitochondrial genome of the transformed plant, gives new or improved agronomic or other properties that it gives an interesting protein
  • Genes that are present in the plant are downregulated or switched off (for example using antisense technology, cosuppression technology or RNAi technology [RNA interference]).
  • a heterologous gene that is present in the genome is also called a transgene.
  • a transgene that is defined by its specific presence in the plant genome is called a transformation or transgenic event. Depending on the plant species or plant varieties, their location and theirs
  • the treatment according to the invention can also lead to superadditive (“synergistic”) effects for growth conditions (soils, climate, vegetation period, diet). So are the
  • Plants and plant cultivars which are preferably treated according to the invention include all plants which have genetic material which gives these plants particularly advantageous, useful characteristics (regardless of whether this was achieved by breeding and / or biotechnology).
  • Examples of nematode-resistant plants are e.g.
  • Such plants are typically produced by crossing an inbred male sterile parent line (the female cross partner) with another inbred male fertile parent line (the male cross partner).
  • the hybrid seeds are typically harvested from the male-sterile plants and sold to propagators.
  • Male-sterile plants can sometimes (e.g. in maize) by detasseling (i.e.
  • male sterility is based on genetic determinants in the
  • Plant genome In this case, especially if the desired product, since one wants to harvest from the hybrid plants, is the seeds, it is usually beneficial to ensure that the pollen fertility in hybrid plants that contain the genetic determinants responsible for male sterility , will be completely restored. This can be achieved by ensuring that the male mating partners have appropriate fertility restorer genes capable of restoring male fertility in hybrid plants that contain the genetic determinants responsible for male sterility.
  • CMS cytoplasmic male sterility
  • genetic determinants for male sterility can also be located in the nucleus genome.
  • Male-sterile plants can also be obtained using methods of plant biotechnology, such as genetic engineering.
  • a particularly favorable means for producing male-sterile plants is in WO
  • ribonuclease such as a barnase selectively in the
  • Tapetum cells is expressed in the stamens. Fertility can then be restored by expressing a ribonuclease inhibitor such as barstar in the tapetum cells.
  • Plants or plant cultivars which are obtained using methods of plant biotechnology, such as genetic engineering) which can be treated according to the invention are herbicide-tolerant plants;
  • Plants that have been made tolerant to one or more specified herbicides can be obtained either through genetic transformation or through selection of
  • Herbicide tolerant plants are, for example, glyphosate tolerant plants; H. Plants that have been made tolerant to the herbicide glyphosate or its salts. Plants can be made tolerant to glyphosate using various methods. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene which codes for the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium
  • Glyphosate-tolerant plants can also be obtained by expressing a gene which codes for a glyphosate oxidoreductase enzyme. Glyphosate-tolerant plants can also be obtained by having a gene
  • Plants expressing EPSPS genes that confer glyphosate tolerance are described. Plants that confer other genes that confer glyphosate tolerance, e.g. Decarboxylase genes are described.
  • Other herbicide-resistant plants are, for example, plants which have been made tolerant to herbicides which inhibit the enzyme glutamine synthase, such as bialaphos, phosphinotricin or glufosinate. Such plants can be obtained by expressing an enzyme that detoxifies the herbicide or a mutant of the enzyme glutamine synthase that is resistant to inhibition. Such an effective detoxifying enzyme is, for example
  • Enzyme that codes for a phosphinotricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinotricin acetyltransferase have been described. Other herbicide-tolerant plants are also plants that are resistant to the herbicides that use the enzyme
  • HPPD hydroxyphenylpyruvate dioxygenase
  • Hydroxyphenylpyruvate dioxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is converted to homogenate.
  • Plants that are tolerant of HPPD inhibitors can be transformed with a gene encoding a naturally occurring resistant HPPD enzyme or a gene encoding a mutated or chimeric HPPD enzyme, as in WO 96/38567 , WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387 or US 6,768,044.
  • Tolerance to HPPD inhibitors can also be achieved by transforming plants with genes which code for certain enzymes that enable the formation of homogenate despite the inhibition of the native HPPD enzyme by the HPPD inhibitor. Such plants are in WO
  • the tolerance of plants to HPPD inhibitors can also be improved by transforming plants, in addition to a gene that codes for an HPPD-tolerant enzyme, with a gene that codes for a prephenate dehydrogenase enzyme, as in WO 2004/024928 is described. In addition, plants can be even more tolerant of
  • HPPD inhibitors can be made by inserting into their genome a gene which codes for an enzyme that metabolizes or degrades HPPD inhibitors, such as B. CYP450 enzymes (see WO 2011/001100, a gene which codes for an enzyme that metabolizes or degrades HPPD inhibitors, such as B. CYP450 enzymes (see WO 2011/001100, a gene which codes for an enzyme that metabolizes or degrades HPPD inhibitors, such as B. CYP450 enzymes (see WO
  • ALS inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy (thio) benzoates and / or sulfonylaminocarbonyltriazolinone herbicides. It is known that various mutations in the
  • Enzyme ALS also known as acetohydroxy acid synthase, AHAS
  • AHAS acetohydroxy acid synthase
  • Plants and imidazolinone tolerant plants are described. Other sulfonylurea and imidazolinone tolerant plants are also described. Other plants that are tolerant of imidazolinones and / or sulfonylureas can be induced by mutagenesis, selection in cell cultures in the presence of the herbicide or by
  • Plants or plant varieties (which were obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are tolerant of abiotic stress factors. Such plants can be obtained by genetic transformation or by selection of plants which contain a mutation which confers such stress resistance. Particularly useful plants with stress tolerance include the following: a.
  • PARP poly (ADP-ribose) polymerase
  • nicotinamidase nicotinate phosphoribosyl transferase
  • nicotinic acid mononucleotide adenyl transferase or nicotinamide adenine phosphide dinucleotide synthase.
  • Plants or plant varieties (which were obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, have a changed quantity, quality and / or shelf life of the harvested product and / or changed properties of certain components of the harvested product, such as: 1) Transgenic plants that synthesize a modified starch, the chemical-physical properties, in particular the amylose content or the amylose / amylopectin ratio, the degree of branching, the average chain length, the distribution of the side chains, the viscosity behavior , the gel strength, the starch grain size and / or Starch grain morphology is changed in comparison with the synthesized starch in wild-type plant cells or plants, so that this modified starch is better suited for certain applications.
  • the chemical-physical properties in particular the amylose content or the amylose / amylopectin ratio, the degree of branching, the average chain length, the distribution of the side chains, the viscosity behavior , the gel strength, the starch grain size and / or
  • Transgenic plants that synthesize non-starch carbohydrate polymers or non-starch carbohydrate polymers whose properties are changed compared to wild-type plants without genetic modification. Examples are plants that produce polyfructose, especially of the inulin and levan types, plants that produce alpha-1,4-glucans, plants that produce alpha-1,6-branched alpha-1,4-glucans and plants that produce Produce alternan. 3) Transgenic Plants That Produce Hyaluronan. 4) Transgenic plants or hybrid plants such as onions with certain properties such as “high soluble solids content”, low pungency (LP) and / or long storage life (“long storage”, LS ).
  • LP low pungency
  • long storage life long storage
  • Plants or plant cultivars are plants such as cotton plants with modified fiber properties. Such plants can be obtained by genetic transformation or by selection of plants which contain a mutation which confers such altered fiber properties; these include: a) plants such as cotton plants which contain a modified form of cellulose synthase genes, b) plants such as cotton plants which contain a modified form of rsw2- or rsw3-homologous nucleic acids, such as cotton plants with an increased expression of sucrose phosphate synthase; c) Plants such as cotton plants with an increased expression of sucrose synthase; d) Plants such as cotton plants in which the timing of the flow control of the plasmodesmata is changed at the base of the fiber cell, e.g.
  • Plants such as cotton plants with fibers with modified reactivity, e.g. B. by expression of the N-acetylglucosamine transferase gene, including nodC, and of chitin synthase genes.
  • Plants or plant cultivars which were obtained by methods of plant biotechnology, such as genetic engineering) which can likewise be treated according to the invention are plants such as rapeseed or related Brassica plants with modified properties of the
  • Oil composition Such plants can be obtained by genetic transformation or by selection of plants which contain a mutation which confers such altered oil properties; these include: a) Plants such as rape plants that produce oil with a high oleic acid content; b) Plants, such as rape plants, that produce oil with a low linolenic acid content. c) Plants such as rape plants that produce oil with a low content of saturated fat. Plants or plant varieties (which can be obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are plants such as potatoes, which are virus-resistant, e.g.
  • Plants or plant cultivars obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are plants such as oilseed rape or related Brassica plants with changed properties in the case of seed shattering.
  • Such plants can, by genetic transformation or by selection of plants that contain a mutation, confer such altered properties and include plants such as oilseed rape with delayed or reduced seed loss.
  • Particularly useful transgenic plants that can be treated according to the invention are plants with transformation events or combinations of transformation events which are the subject of petitions issued or pending in the USA at the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) are for the non-regulated status. Information on this is available at any time from APHIS (4700 River Road Riverdale, MD 20737, USA), for example via the website http://www.aphis.usda.gov/brs/not_reg.html.
  • APHIS 700 River Road Riverdale, MD 20737, USA
  • - Extension of a petition reference to a previous petition for which an extension or extension is requested.
  • Institution Name of the person submitting the petition.
  • Regulated article the plant species concerned.
  • Transgenic phenotype the trait given to the plant by the transformation event.
  • Transformation event or line the name of the event or events (sometimes referred to as line (s)) for which non-regulated status is requested.
  • APHIS documents various documents that are published by APHIS regarding the petition or can be obtained from APHIS on request.
  • transgenic plants which can be treated according to the invention are plants with one or more genes which code for one or more toxins, are the transgenic plants which are sold under the following trade names: YIELD GARD ® (for example maize, cotton, Soybeans), KnockOut® (for example corn), BiteGard® (for example corn), BT-Xtra®
  • YIELD GARD ® for example maize, cotton, Soybeans
  • KnockOut® for example corn
  • BiteGard® for example corn
  • Herbicide-tolerant plants to be mentioned are, for example, maize varieties, cotton varieties and soybean varieties, which are sold under the following trade names: Roundup Ready®
  • Example D1 4-Hydroxy-3- [2-methoxy-6-methyl-4- (prop-1-yn-1-yl) phenyl] -7-propoxy-1-azaspiro [4.5] dec-3-en- 2-on
  • reaction solution was then concentrated to dryness, twice more with 50 ml of dichloromethane each time and again concentrated in order finally to be taken up in 30 ml of dichloromethane (solution 1). 3.46 g (27.4 mmol) of 1- (methoxycarbonyl) -3-propoxycyclohexanaminium chloride and 8 ml of triethylamine were placed in 80 ml of dichloromethane and solution 1 was introduced within 20 minutes.
  • a dusting agent is obtained by mixing 10 parts by weight of a compound of the formula (I) and / or its salts and 90 parts by weight of talc as an inert substance and comminuting it in a hammer mill.
  • a wettable powder which is easily dispersible in water is obtained by adding 25 parts by weight of a compound of the formula (I) and / or its salts, 64 parts by weight of kaolin-containing quartz as an inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of sodium oleoylmethyltaurinate as a wetting agent and dispersant and grinds in a pin mill.
  • a dispersion concentrate which is easily dispersible in water is obtained by adding 20 wt.
  • alkylphenol polyglycol ether ® Triton X 207
  • isotridecanol polyglycol ether 8 EO
  • paraffinic mineral oil oil
  • ground in an attrition ball mill to a fineness of less than 5 microns.
  • An emulsifiable concentrate is obtained from 15 parts by weight of a compound of the formula (I) and / or its salts, 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier.
  • a water-dispersible granulate is obtained by adding 75 parts by weight of a compound of the formula (I) and / or its salts, 10 parts by weight of calcium lignosulfonate, 5 parts by weight of sodium lauryl sulfate, 3 parts by weight of polyvinyl alcohol and 7 parts by weight.
  • a water-dispersible granulate is also obtained by adding 25 parts by weight of a compound of the formula (I) and / or its salts, 5 parts by weight of 2,2 'dinaphthylmethane 6,6' sodium disulphonic acid,
  • the compounds each show an 80-100% activity against, among others, Alopecurus myosuroides, Avena fatua, Digitaria sanguinalis, Echinochloa crus-galli, Lolium rigidum, Setaria viridis , Amaranthus retroflexus, Matricaria inodora, Stellaria medi, Viola tricolor, Veronica persica and Hordeum murinum.
  • the compounds according to the invention are therefore suitable in
  • Table 2 Pre-emergence effectiveness at 80 g ai / ha 2. Herbicidal effect or crop plant tolerance in post-emergence. Seeds of monocotyledonous or dicotyledonous weed and crop plants are placed in wood fiber pots in
  • Table 3 Post-emergence activity at 80 g ai / ha As the results from Table 3 show, the compounds according to the invention have good herbicidal post-emergence activity against a broad spectrum of grass weeds and weeds.
  • the examples listed show an 80-100% effect against, among others, Alopecurus myosuroides, Avena fatua, Digitaria sanguinalis, Echinochloa crus-galli, Lolium rigidum, Setaria viridis and Hordeum murinum.
  • the compounds according to the invention are therefore suitable for combating undesirable vegetation by the post-emergence method.

Abstract

La présente invention concerne de nouvelles 3-phénylpyrroline-2-ones à action herbicide représentées par la formule générale (I) ou des sels agrochimiquement acceptables de celles-ci, ainsi que leur utilisation dans la lutte contre les plantes adventices et les mauvaises herbes dans des cultures de plantes utiles.
EP20707681.1A 2019-03-15 2020-03-09 3-(2-alkoxy-6-alkyl-4-propinylphényl)-3-pyrroline-2-ones à substitution spéciale et leur utilisation comme herbicides Withdrawn EP3938349A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19163144 2019-03-15
PCT/EP2020/056206 WO2020187628A1 (fr) 2019-03-15 2020-03-09 3-(2-alkoxy-6-alkyl-4-propinylphényl)-3-pyrroline-2-ones à substitution spéciale et leur utilisation comme herbicides

Publications (1)

Publication Number Publication Date
EP3938349A1 true EP3938349A1 (fr) 2022-01-19

Family

ID=65817910

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20707681.1A Withdrawn EP3938349A1 (fr) 2019-03-15 2020-03-09 3-(2-alkoxy-6-alkyl-4-propinylphényl)-3-pyrroline-2-ones à substitution spéciale et leur utilisation comme herbicides

Country Status (11)

Country Link
US (1) US20220177428A1 (fr)
EP (1) EP3938349A1 (fr)
JP (1) JP2022525174A (fr)
CN (1) CN113557232A (fr)
AR (1) AR118345A1 (fr)
AU (1) AU2020244063A1 (fr)
BR (1) BR112021011965A2 (fr)
CA (1) CA3133190A1 (fr)
EA (1) EA202192468A1 (fr)
IL (1) IL286325A (fr)
WO (1) WO2020187628A1 (fr)

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
ATE103902T1 (de) 1982-05-07 1994-04-15 Ciba Geigy Ag Verwendung von chinolinderivaten zum schuetzen von kulturpflanzen.
EP0131624B1 (fr) 1983-01-17 1992-09-16 Monsanto Company Plasmides de transformation de cellules vegetales
BR8404834A (pt) 1983-09-26 1985-08-13 Agrigenetics Res Ass Metodo para modificar geneticamente uma celula vegetal
JPS6087254A (ja) 1983-10-19 1985-05-16 Japan Carlit Co Ltd:The 新規尿素化合物及びそれを含有する除草剤
DE3525205A1 (de) 1984-09-11 1986-03-20 Hoechst Ag, 6230 Frankfurt Pflanzenschuetzende mittel auf basis von 1,2,4-triazolderivaten sowie neue derivate des 1,2,4-triazols
BR8600161A (pt) 1985-01-18 1986-09-23 Plant Genetic Systems Nv Gene quimerico,vetores de plasmidio hibrido,intermediario,processo para controlar insetos em agricultura ou horticultura,composicao inseticida,processo para transformar celulas de plantas para expressar uma toxina de polipeptideo produzida por bacillus thuringiensis,planta,semente de planta,cultura de celulas e plasmidio
EP0191736B1 (fr) 1985-02-14 1991-07-17 Ciba-Geigy Ag Utilisation de dérivés de la quinoléine pour la protection de plantes cultivables
ATE80182T1 (de) 1985-10-25 1992-09-15 Monsanto Co Pflanzenvektoren.
ES2018274T5 (es) 1986-03-11 1996-12-16 Plant Genetic Systems Nv Celulas vegetales resistentes a los inhibidores de glutamina sintetasa, preparadas por ingenieria genetica.
DE3773384D1 (de) 1986-05-01 1991-10-31 Honeywell Inc Verbindungsanordnung fuer mehrere integrierte schaltungen.
IL83348A (en) 1986-08-26 1995-12-08 Du Pont Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
DE3633840A1 (de) 1986-10-04 1988-04-14 Hoechst Ag Phenylpyrazolcarbonsaeurederivate, ihre herstellung und verwendung als pflanzenwachstumsregulatoren und safener
ES2037739T3 (es) 1986-10-22 1993-07-01 Ciba-Geigy Ag Derivados del acido 1,5-difenilpirazol-3-carboxilico para la proteccion de plantas de cultivo.
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
DE3733017A1 (de) 1987-09-30 1989-04-13 Bayer Ag Stilbensynthase-gen
DE3808896A1 (de) 1988-03-17 1989-09-28 Hoechst Ag Pflanzenschuetzende mittel auf basis von pyrazolcarbonsaeurederivaten
GB8810120D0 (en) 1988-04-28 1988-06-02 Plant Genetic Systems Nv Transgenic nuclear male sterile plants
DE3817192A1 (de) 1988-05-20 1989-11-30 Hoechst Ag 1,2,4-triazolderivate enthaltende pflanzenschuetzende mittel sowie neue derivate des 1,2,4-triazols
US4985063A (en) 1988-08-20 1991-01-15 Bayer Aktiengesellschaft 3-aryl-pyrrolidine-2,4-diones
US5084082A (en) 1988-09-22 1992-01-28 E. I. Du Pont De Nemours And Company Soybean plants with dominant selectable trait for herbicide resistance
DE58903221D1 (en) 1988-10-20 1993-02-18 Ciba Geigy Ag Sulfamoylphenylharnstoffe.
DE58907411D1 (de) 1989-01-07 1994-05-11 Bayer Ag 3-Aryl-pyrrolidin-2,4-dion-Derivate.
DE3929087A1 (de) 1989-09-01 1991-03-07 Bayer Ag 3-aryl-pyrrolidin-2,4-dion-derivate
DE3939010A1 (de) 1989-11-25 1991-05-29 Hoechst Ag Isoxazoline, verfahren zu ihrer herstellung und ihre verwendung als pflanzenschuetzende mittel
DE3939503A1 (de) 1989-11-30 1991-06-06 Hoechst Ag Neue pyrazoline zum schutz von kulturpflanzen gegenueber herbiziden
DE4004496A1 (de) 1990-02-14 1991-08-22 Bayer Ag 3-aryl-pyrrolidin-2,4-dion-derivate
ATE241007T1 (de) 1990-03-16 2003-06-15 Calgene Llc Dnas, die für pflanzliche desaturasen kodieren und deren anwendungen
US5198599A (en) 1990-06-05 1993-03-30 Idaho Resarch Foundation, Inc. Sulfonylurea herbicide resistance in plants
JP3325022B2 (ja) 1990-06-18 2002-09-17 モンサント カンパニー 植物中の増加された澱粉含量
AU655197B2 (en) 1990-06-25 1994-12-08 Monsanto Technology Llc Glyphosate tolerant plants
DE4107396A1 (de) 1990-06-29 1992-01-02 Bayer Ag Stilbensynthase-gene aus weinrebe
DE59108636D1 (de) 1990-12-21 1997-04-30 Hoechst Schering Agrevo Gmbh Neue 5-Chlorchinolin-8-oxyalkancarbonsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Antidots von Herbiziden
SE467358B (sv) 1990-12-21 1992-07-06 Amylogene Hb Genteknisk foeraendring av potatis foer bildning av staerkelse av amylopektintyp
DE4104782B4 (de) 1991-02-13 2006-05-11 Bayer Cropscience Gmbh Neue Plasmide, enthaltend DNA-Sequenzen, die Veränderungen der Karbohydratkonzentration und Karbohydratzusammensetzung in Pflanzen hervorrufen, sowie Pflanzen und Pflanzenzellen enthaltend dieses Plasmide
TW259690B (fr) 1992-08-01 1995-10-11 Hoechst Ag
DE4331448A1 (de) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituierte Isoxazoline, Verfahren zu deren Herstellung, diese enthaltende Mittel und deren Verwendung als Safener
DE4440594A1 (de) * 1994-04-05 1995-12-07 Bayer Ag Alkoxy-alkyl-substituierte 1-H-3-Aryl-pyrrolidin-2,4-dione
FR2734842B1 (fr) 1995-06-02 1998-02-27 Rhone Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides
US5773704A (en) 1996-04-29 1998-06-30 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
DE19621522A1 (de) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Neue N-Acylsulfonamide, neue Mischungen aus Herbiziden und Antidots und deren Verwendung
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
DK0915846T3 (da) 1996-08-05 2003-08-11 Bayer Cropscience Ag 2- og 2,5-substituerede phenylketoenoler
AR009811A1 (es) 1996-09-26 2000-05-03 Novartis Ag Compuestos herbicidas, proceso para su produccion, proceso para la produccion de intermediarios, compuestos intermediarios para su exclusivo usoen dicho proceso, composicion que tiene actividad herbicida selectiva y proceso para el control selectivo de malas hierbas y gramineas en cultivos de planta
DE19652961A1 (de) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh Neue 2-Fluoracrylsäurederivate, neue Mischungen aus Herbiziden und Antidots und deren Verwendung
US6071856A (en) 1997-03-04 2000-06-06 Zeneca Limited Herbicidal compositions for acetochlor in rice
DE19727410A1 (de) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3-(5-Tetrazolylcarbonyl)-2-chinolone und diese enthaltende nutzpflanzenschützende Mittel
DE19742951A1 (de) 1997-09-29 1999-04-15 Hoechst Schering Agrevo Gmbh Acylsulfamoylbenzoesäureamide, diese enthaltende nutzpflanzenschützende Mittel und Verfahren zu ihrer Herstellung
FR2770854B1 (fr) 1997-11-07 2001-11-30 Rhone Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un tel gene, tolerantes aux herbicides
FR2772789B1 (fr) 1997-12-24 2000-11-24 Rhone Poulenc Agrochimie Procede de preparation enzymatique d'homogentisate
DE19821614A1 (de) 1998-05-14 1999-11-18 Hoechst Schering Agrevo Gmbh Sulfonylharnstoff-tolerante Zuckerrübenmutanten
JP2000053670A (ja) 1998-08-10 2000-02-22 Ube Ind Ltd アルコキシメチルフラノン誘導体及び有害生物防除剤
US6503904B2 (en) 1998-11-16 2003-01-07 Syngenta Crop Protection, Inc. Pesticidal composition for seed treatment
CA2401093A1 (fr) 2000-03-09 2001-09-13 Monsanto Technology Llc Procedes permettant de rendre des plantes tolerantes au glyphosate et compositions associees
EP2266390A3 (fr) 2000-03-09 2011-04-20 E. I. du Pont de Nemours and Company Tournesols tolérants à la sulfonylurée
DE10016544A1 (de) 2000-04-03 2001-10-11 Bayer Ag C2-phenylsubstituierte Ketoenole
US6768044B1 (en) 2000-05-10 2004-07-27 Bayer Cropscience Sa Chimeric hydroxyl-phenyl pyruvate dioxygenase, DNA sequence and method for obtaining plants containing such a gene, with herbicide tolerance
US6660690B2 (en) 2000-10-06 2003-12-09 Monsanto Technology, L.L.C. Seed treatment with combinations of insecticides
AR031027A1 (es) 2000-10-23 2003-09-03 Syngenta Participations Ag Composiciones agroquimicas
FR2815969B1 (fr) 2000-10-30 2004-12-10 Aventis Cropscience Sa Plantes tolerantes aux herbicides par contournement de voie metabolique
CA2427787C (fr) 2000-12-07 2012-07-17 Syngenta Limited Plantes resistant aux herbicideses
US20020134012A1 (en) 2001-03-21 2002-09-26 Monsanto Technology, L.L.C. Method of controlling the release of agricultural active ingredients from treated plant seeds
FR2844142B1 (fr) 2002-09-11 2007-08-17 Bayer Cropscience Sa Plantes transformees a biosynthese de prenylquinones amelioree
AU2004224813B2 (en) 2003-03-26 2010-11-25 Bayer Cropscience Ag Use of aromatic hydroxy compounds as safeners
DE10335726A1 (de) 2003-08-05 2005-03-03 Bayer Cropscience Gmbh Verwendung von Hydroxyaromaten als Safener
DE10335725A1 (de) 2003-08-05 2005-03-03 Bayer Cropscience Gmbh Safener auf Basis aromatisch-aliphatischer Carbonsäuredarivate
DE102004023332A1 (de) 2004-05-12 2006-01-19 Bayer Cropscience Gmbh Chinoxalin-2-on-derivate, diese enthaltende nutzpflanzenschützende Mittel und Verfahren zu ihrer Herstellung und deren Verwendung
DE102004030753A1 (de) 2004-06-25 2006-01-19 Bayer Cropscience Ag 3'-Alkoxy spirocyclische Tetram- und Tretronsäuren
WO2007023719A1 (fr) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent servant à réduire l'attaque chimique et composition herbicide produisant une attaque chimique réduite
WO2007023764A1 (fr) 2005-08-26 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent servant à réduire les effets nocifs d’un herbicide et composition d’herbicide ayant des effets nocifs réduits
US20070214515A1 (en) 2006-03-09 2007-09-13 E.I.Du Pont De Nemours And Company Polynucleotide encoding a maize herbicide resistance gene and methods for use
EP1987717A1 (fr) 2007-04-30 2008-11-05 Bayer CropScience AG Pyridinecarboxamide, agent phytoprotecteur la comportant, son procédé de fabrication et son utilisation
EP1987718A1 (fr) 2007-04-30 2008-11-05 Bayer CropScience AG Utilisation de pyridine-2-oxy-3-carbonamides en tant que phytoprotecteur
CN101998988A (zh) 2007-05-30 2011-03-30 先正达参股股份有限公司 赋予除草剂抗性的细胞色素p450基因
CA2724670C (fr) 2008-04-14 2017-01-31 Bayer Bioscience N.V. Nouvelle hydroxyphenylpyruvate disoxygenase mutee, sequence d'adn et isolement de plantes qui sont tolerantes a des herbicides inhibiteurs de hppd
CN101838227A (zh) 2010-04-30 2010-09-22 孙德群 一种苯甲酰胺类除草剂的安全剂
WO2015032702A1 (fr) 2013-09-06 2015-03-12 Syngenta Limited Dérivés de 2-halogéno-4-alcynylphénylpyrazolidinedione ou de pyrrolidinedione à activité herbicide
EP3046907A1 (fr) 2013-09-20 2016-07-27 Syngenta Limited Dérivés de 2-halogéno-4-alcynylphénylpyrazolidinedione ou de pyrrolidinedione ayant une activité herbicide
BR112018006999A2 (pt) * 2015-10-06 2018-10-16 Bayer Cropscience Aktiengesellschaft novas 3-fenilpirrolidina-2,4-dionas subistituídas por alquinila e uso das mesmas como herbicidas

Also Published As

Publication number Publication date
AU2020244063A1 (en) 2021-10-07
CA3133190A1 (fr) 2020-09-24
BR112021011965A2 (pt) 2021-09-21
AR118345A1 (es) 2021-09-29
CN113557232A (zh) 2021-10-26
IL286325A (en) 2021-10-31
JP2022525174A (ja) 2022-05-11
US20220177428A1 (en) 2022-06-09
WO2020187628A1 (fr) 2020-09-24
EA202192468A1 (ru) 2022-02-16

Similar Documents

Publication Publication Date Title
EP3638665A1 (fr) 3-phénylisoxazoline-5-carboxamides d'acides carboxyliques et d'esters de tétrahydro- et dihydrofurane à effet herbicide
EP3793977A1 (fr) Pyrrolin-2-ones à substitution 2-bromo-6-alcoxyphényle et leur utilisation comme herbicides
WO2020245044A1 (fr) Acides 1-phényl-5-azinylpyrazolyl-3-oxyalkyliques et leur utilisation pour lutter contre la croissance de plantes adventices
WO2019219584A1 (fr) Nouvelles spirocyclohexylpyrrolin-2-ones et leur utilisation comme herbicides
EP3853219B1 (fr) Phénylpyrimidinhydrazides substituées à action herbicide
EP3580216A1 (fr) Esters d'acide benzyl-4-aminopicolinique et esters d'acide pyrimidine-4-carboxylique substitués, leur procédé de production et leur utilisation comme herbicides et régulateurs de croissance végétale
WO2020187627A1 (fr) Nouvelles 3-(2-brome-4-alkinyl-6-alkoxyphényl)-3-pyrroline-2-ones et leur utilisation comme herbicides
WO2021204884A1 (fr) 3-(4-alcényl-phényl)-3-pyrrolin-2-ones et leur utilisation comme herbicides
WO2019228787A1 (fr) 2-alkyle-6-alcoxyphényle-pyrroline-2-ones à substitution spéciale et leur utilisation comme herbicides
WO2019228788A1 (fr) Pyrorroline-2-ones à substitution 2-bromo-6-alcoxyphényle et leur utilisation comme herbicides
EP3938349A1 (fr) 3-(2-alkoxy-6-alkyl-4-propinylphényl)-3-pyrroline-2-ones à substitution spéciale et leur utilisation comme herbicides
WO2020187623A1 (fr) 3-(2-halogène-6-alkyl-4-propinylphényl)-3-pyrroline-2-ones à substitution spéciale et leur utilisation comme herbicides
WO2020187629A1 (fr) 5-spirocyclohexyl-3-pyrroline-2-ones à substitution 3-(2-brome-4-alkinyl-6-alcoxyphényl) et leur utilisation comme herbicides
EP3938347A1 (fr) 3-phényl-5-spirocyclopentyl-3-pyrrolin-2-ones à substitution spécifique et leur utilisation en tant qu'herbicides
WO2023274869A1 (fr) 3-(4-alcényl-phényl)-3-pyrrolino-2-ones et leur utilisation comme herbicides
WO2019219588A1 (fr) Nouvelles 2-alkyl-6-alcoxyphényl-3-pyrroliin-2-ones à substitution spéciale et leur utilisation comme herbicides
WO2019219585A1 (fr) Nouvelles 3-(4-alcinyl-6-alcoxy-2-chlorophényl)-3-pyrrolin-2-ones et leur utilisation comme herbicides
WO2022253700A1 (fr) Pyrroline-2-ones spécifiquement substituées et leur utilisation en tant qu'herbicides
WO2023280772A1 (fr) N-(1,3,4-oxadiazol-2-yl)phénylcarboxamide en tant qu'herbicides
WO2021239673A1 (fr) Pyrroline-2-ones substituées et leur utilisation en tant qu'herbicides
WO2021209486A1 (fr) Pyrroline-2-ones à substitution spécifique et leur utilisation en tant qu'herbicides
WO2019233862A1 (fr) Phénylpyrimidines substituées à action herbicide
EP3360417A1 (fr) Utilisation de sulfonylindole en tant que herbicide
EP3360872A1 (fr) Ester d'acide de benzyl-4-aminopicolinic et d'acide carboxylique de pyrimidin, procédé pour leur preparation et leur usage comme herbicides et regulateurs de pousse des plants

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230329

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230809