EP3931055A1 - Pilotage d'un groupe moto-propulseur de vehicule automobile lors d'une deceleration sous controle assiste - Google Patents

Pilotage d'un groupe moto-propulseur de vehicule automobile lors d'une deceleration sous controle assiste

Info

Publication number
EP3931055A1
EP3931055A1 EP19848811.6A EP19848811A EP3931055A1 EP 3931055 A1 EP3931055 A1 EP 3931055A1 EP 19848811 A EP19848811 A EP 19848811A EP 3931055 A1 EP3931055 A1 EP 3931055A1
Authority
EP
European Patent Office
Prior art keywords
gmp
power train
supervisor
torque
delivered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19848811.6A
Other languages
German (de)
English (en)
Inventor
Valentina CIARLA
Stephane TOUZAIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stellantis Auto SAS
Original Assignee
PSA Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PSA Automobiles SA filed Critical PSA Automobiles SA
Publication of EP3931055A1 publication Critical patent/EP3931055A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18063Creeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/18081With torque flow from driveshaft to engine, i.e. engine being driven by vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0026Lookup tables or parameter maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0027Minimum/maximum value selectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • B60W2710/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/30Wheel torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to the field of the management of the power train of a motor vehicle in situations where a driving assistance function defines commands in addition to the possible action of the driver during a movement at low speed.
  • the invention aims in particular to adapt the command addressed, for deceleration, to the powertrain by the driving assistance function, to the presence of pre-existing creeping behavior on the vehicle.
  • creeping is a behavior of the powertrain by which a positive torque is transmitted to a drive wheel set while the vehicle is moving at very low speed, the engine is running at low speed and the driver is not pressing on throttle control.
  • an electric traction motor which may be a vehicle whose power train does not include a heat engine (battery electric vehicle, or even a fuel cell), or a vehicle with thermal hybrid motorization and electric, automatic control of the electric motor is provided to create the creep, which is then artificial.
  • ramping allows the driver to maneuver the vehicle, controlling the movement using only the brake pedal.
  • the ramping stabilization speed is between 5 and 12 km / h.
  • This creeping function has thus existed for many years, and the new driving assistance functions, by which the vehicle determines certain commands for the driver in the form of a driving delegation, have just been implemented in a context where rampage is present on vehicles and appreciated by drivers.
  • the two types of function coexist in particular when moving at low speed. Thus, they coexist in a context of concertina driving in traffic jams, where the automatic cruise control function, operating a first form of assisted control, is activated. They still coexist in a context of maneuvering for the parking lot, of the slot or parallel parking type, where a parking assistance function, operating a second form of assisted control, is again activated.
  • the driving assistance supervisor preferably exploits the negative torque range that can be achieved by the powertrain, from 0 Nm to an extreme negative value, and when this is necessary, complete its action by an action on the hydraulic brake system.
  • the driving assistance supervisor evaluates the minimum torque value (maximum absolute value of negative torque, corresponding to a maximum braking) that can be provided by the powertrain, taking into account the sum losses of the heat engine if such an engine is present in the traction chain and minimum torques of electrical machines of the power train. These values vary depending on the current state of charge of the batteries, their energy recovery capabilities and the coupling states of the powertrain.
  • the driving assistance supervisor adapts the instruction he sends to the powertrain supervisor.
  • Document FR3002904 discloses adapting the ramping torque to the presence of an obstacle in front of the car. However, there are no plans to coordinate the creeping function of the power train with the driving assistance functions.
  • a method for controlling a motor vehicle during deceleration under assisted control comprising determining a maximum braking torque value that can be delivered by the powertrain, then , taking into account said maximum value, a preparation of commands to be delivered to the power train and to the hydraulic brake system for deceleration under assisted control.
  • said maximum braking torque value is determined, if a power train ramping function is active, as a function of a current torque value of said ramping function.
  • the automatic piloting system (or driving assistance system) is informed in real time of the presence or not (activation or not) of a ramping and the value of its torque.
  • the braking devices can be dimensioned exactly as needed, thanks to innovation.
  • a range of braking torque values that can be delivered to the wheels by the power train is determined and then sent to a driving assistance supervisor, who uses it to adapt the instructions of braking that it then addresses to the powertrain supervisor and the hydraulic brake system supervisor;
  • a range of braking torque values that can be delivered to the wheels by the power train is determined and then sent to a driving assistance supervisor, who uses it to adapt a setpoint that it then sends it to the powertrain supervisor who takes it into account for the preparation of said order;
  • the correction of the extreme value of braking torque is fed back to the driving assistance supervisor, which is an organ often separate from the powertrain supervisor, which can carry out complex calculations with a computing power. important, on specific hardware components;
  • the commands are determined taking into account a deceleration setpoint determined by an adaptive cruise control function, or by an assisted parking function;
  • the commands are determined taking into account a current distance with another vehicle, an obstacle detection, or a reference speed requested by the driver, taken into account for example by an assistance supervisor the driving ;
  • the command to be delivered to the powertrain is modified according to the current wishes expressed by the driver on the acceleration control, or according to a current will expressed by the driver on the brake control;
  • the command to be delivered to the powertrain is modified according to an energy recovery instruction by an electrical machine of the powertrain transmitted by a supervisor of the hydraulic brake system of the vehicle, for example to a supervisor of the group motor-propellant.
  • the invention also consists of a motor vehicle comprising means for determining a maximum value of braking torque that can be delivered by a power train of the vehicle, as well as means for determining, taking into account said maximum value, of commands to be delivered to the powertrain and to a hydraulic brake system of the vehicle for a deceleration under assisted control.
  • said maximum braking torque value is determined, if a ramping function of the power train is active, as a function of a current torque value of said ramping function.
  • the power train comprises an electric motor / generator (reversible electric machine) coupled to a wheel set of the vehicle, providing said crawling function;
  • the power train comprises a thermal traction engine and a reversible electric machine, said thermal engine and said electric machine being able to be coupled to one another or decoupled from one another, by controlling the machine, to produce electrical energy or maximize torque transmission to the wheels;
  • the means for determining a command to be delivered to the power train and for applying said command to said power train comprise a driving assistance supervisor integrated into the supervisor of the hydraulic brake system, or external to that here, said maximum braking torque value that can be delivered by the power train being transmitted to said driving assistance supervisor, who uses it to adapt a setpoint taken into account for the preparation of said command.
  • Figure 1 shows the architecture of a motor vehicle in which the invention can be implemented.
  • Figure 2 shows all of the control functions implemented in one embodiment of the invention.
  • FIG. 3A Figure 3A shows some aspects of the functions shown in Figure 2 as implemented in the prior art.
  • FIG. 3B Figure 3B shows these functions as implemented according to one embodiment of the invention.
  • FIG. 4A shows an evolution of a motor vehicle according to Figure 1 according to the prior art, in a certain scenario.
  • FIG. 4B Figure 4B shows the same evolution in the same scenario but with the implementation of the invention.
  • FIG. 1 there is shown a motor vehicle 1 for implementing the invention.
  • the motor vehicle 1 comprises a power unit GMP as well as a front drive wheel set TRMAY and a rear drive wheel set TRMAR. He understands also a hydraulic brake system F and a driver assistance supervisor 10, a powertrain supervisor 20 and a hydraulic brake system supervisor 30.
  • the GMP powertrain comprises a thermal engine MTH coupled to the front drive wheels set TRM AV by, successively, a front clutch EMBAV, for example with slip and synchronization, a controlled electric machine before MELAV, a gearbox with discrete ratios BV, for example with torque converter, and a front differential DIF1.
  • the GMP powertrain also includes a MELAR rear electric machine coupled to the TRMAR rear drive wheels by successively a Red reduction gear, an EMBAR rear clutch which can take the form of a single dog clutch and a DIF2 rear differential.
  • the GMP powertrain comprises, to supply the MELAV front electric machine and the MELAR driven rear electric machine, a so-called "low voltage" electric network operating in direct current at a voltage of around 200 to 300 volts, for example.
  • the front electric machine and the rear electric machine MELAV and MELAR are alternating current electric machines and they receive an alternating current thanks to the presence of inverters OND1 and OND2 which convert the direct current of the "low voltage" network into alternating current.
  • Inverters in particular, can allow the control of the associated electrical machine.
  • a very low voltage electrical network around 12 volts and operating with direct current, is also present in the vehicle.
  • the battery of the so-called "low voltage” network is called the LV traction battery, while the battery of the very low voltage electrical network is noted BTBT.
  • the two power grids are interconnected using a CCC direct current to direct current converter.
  • the on-board network RdB to which various consumers of the motor vehicle 1 are connected is supplied by the very low voltage network.
  • the powertrain also includes an AD alternator-starter controlled and supplied by the very low voltage electrical network and coupled to the MTH heat engine by a CAD alternator-starter belt on the accessory panel of the MTH heat engine , so that the energy supplied by the MTH heat engine can be used to supply the very low voltage electrical network and recharge the very low voltage battery BTBT, or that, conversely, the energy from this network can be used to set in motion or brake (take torque from) the thermal engine MTH via the alternator-starter AD.
  • AD alternator-starter controlled and supplied by the very low voltage electrical network and coupled to the MTH heat engine by a CAD alternator-starter belt on the accessory panel of the MTH heat engine , so that the energy supplied by the MTH heat engine can be used to supply the very low voltage electrical network and recharge the very low voltage battery BTBT, or that, conversely, the energy from this network can be used to set in motion or brake (take torque from) the thermal engine MTH via the alternator-starter AD.
  • the architecture shown above is just one example.
  • the invention applies in particular to architectures allowing an electric crawling function, which is the case of the motor vehicle of FIG. 1.
  • this architecture has the MELAV front electric machine which, coupled to the front drive wheel set TRMAV by a gear ratio of the BV gearbox and coupled or decoupled from the thermal engine MTH by opening the front clutch EMBAV, allows to produce the ramping function in a controlled manner.
  • this architecture has the AD alternator starter which, coupled to the front drive wheel set TRMAV by a gear ratio of the BV gearbox and the thermal engine MTH, makes it possible to produce the ramping function, in a controlled manner.
  • the ramping torque is qualified as artificial and can be controlled by external control functions and it can be activated or deactivated depending on the life case.
  • the driving assistance supervisor 10 responds to a desire of the driver expressed by means of man-machine interfaces.
  • the driver thus sets the adaptive adaptive cruise control to a target speed value, or requests that the car park in parallel or in a row.
  • the GMP powertrain is also shown in the figure.
  • the power train supervisor 20 forms means for determining a maximum value of braking torque that can be delivered by the power train GMP. As will be mentioned later in the text, it takes into account the torque ranges transmissible by various MTH, BV, EMB, MEL components (MTH heat engine, BV gearboxes, EMB clutches and MEL electric machines). of the GMP powertrain. And in general, the driving assistance supervisor 10 and the powertrain supervisor 20 form means for determining a command 301 to be delivered to the GMP powertrain and applying said command 301 to said command. GMP powertrain.
  • the driving assistance supervisor 10 implements a step E1 of calculating the dynamics of the vehicle as a function of environmental constraints, such as the distance from surrounding vehicles or the presence of obstacles. It takes into account the driver's initial instructions defined by the man-machine interface of the adaptive cruise control or the automatic parking function, in particular a reference speed, or target speed.
  • the driving assistance supervisor 10 has a deceleration setpoint 100 which is used during a step E2 for distributing the deceleration setpoint between the motor unit. thruster and hydraulic brake system. To effect this distribution, the driving assistance supervisor 10 has a range of torque values that the GMP powertrain could apply to the drive wheels. The driving assistance supervisor 10 deduces from this what he can ask of the GMP powertrain, the ends of the communicated torque range of which must not be exceeded, the action of which is privileged, and what must be requested from the brake system F.
  • the driving assistance supervisor 10 has a deceleration instruction 101 to be sent to the supervisor of the powertrain 20 and a deceleration instruction 102 to be sent to the supervisor of the hydraulic brake system. Obtaining these instructions constitutes the preparation of orders 301 and 302 which will be sent to the GMP powertrain and the hydraulic brake system F.
  • a maximum torque value that the powertrain can provide for braking which is a limit of a range of braking torque values that can be delivered to the wheels by the GMP powertrain transmitted to the driving assistance supervisor 10, the latter uses it to adapt, during state E2, braking instructions 102 and 103 which it then sends to the powertrain supervisor 20 and to the system supervisor hydraulic brake 30.
  • the deceleration instruction sent to the power train 101 is, before being sent to the supervisor of the power train 20, the subject of a transformation into torque setpoint during a step E3 for calculating a torque setpoint for the powertrain, also implemented by the driving assistance supervisor 10.
  • a torque instruction sent by the driving assistance 103 is sent from the driving assistance supervisor 10 to the powertrain supervisor 20.
  • the supervisor of the power train 20 takes into account, during a step E4 of taking into account for the torque setpoint of the power train, said torque setpoint emitted by driving assistance 103 and current states of the powertrain.
  • This taking into account comprises a correction of the torque setpoint 103 received from the driving assistance supervisor 10 according to the information available within the powertrain supervisor 20, in particular the current states of the various components of the GMP powertrain, as well as a transmission, to the driving assistance supervisor 10, of information making it possible to better prepare the torque setpoint emitted by the driving assistance 103.
  • the supervisor of the power train 20 thus has a part of a corrected torque setpoint 105 which is then taken into account for the setpoint.
  • powertrain torque of the driver's will, and on the other hand a range of torque values accessible by the powertrain 104, which is addressed to the driving assistance supervisor 10.
  • the supervisor of the powertrain 20 for its part performs a step of taking into account E5 of the corrected torque setpoint 105 to adapt the acceleration setpoint transmitted, to the powertrain, by the driver 200.
  • the supervisor of the power train 20 has a coordinated torque setpoint 106. It takes into account both the elements transmitted by the driving assistance functions. , based on algorithms and measurements made by the car's sensors, and the driver's demand expressed on the accelerator pedal.
  • the driving assistance supervisor 10 transmits, to the hydraulic brake system supervisor 30, the deceleration instruction sent to the hydraulic braking system 102.
  • step E6 of taking into account for the braking instruction of the will of the driver carried out by the supervisor of the hydraulic brake system 30, the instruction of braking expressed by the driver 201 by pressing the brake pedal is used to modify the deceleration setpoint sent to the hydraulic braking system 102 into a coordinated braking setpoint 107.
  • the coordinated braking setpoint 107 is then used during a step of distributing the braking setpoint between hydraulic brakes and regenerative braking by the power train, to express on the one hand a hydraulic brake setpoint 302 which is transmitted. the hydraulic brake system F and on the other hand, an energy recovery instruction by the power train 108 which is sent to the power train supervisor 20.
  • the powertrain supervisor 20 takes into account the energy recovery instruction 108 during a step E8 of defining the instructions for the components of the power train, based on the instruction coordinate torque 106.
  • Step E8 of defining the setpoints for the components of the power train is therefore carried out taking into account the coordinated torque setpoint 106 and the setpoint for energy recovery by the power train 108 and results in the expression of a command to the power train 301.
  • This command to the power train 301 is transmitted to the power train GMP, which comprises the thermal engine MTH, the gearboxes BV, the clutches EMB and the electric machines MEL . Torque and gear ratio instructions are sent to them, as well as when the clutch opens or closes.
  • step E8 of defining the setpoints for the components of the power train the maximum energy recovery value achievable per power train 109 is also established, which is sent to the brake system supervisor.
  • FIG. 3A there is shown in more detail the internal operation of the supervisor of the power train 20 according to the prior art.
  • the coordinated torque setpoint 106 presented in the previous figure is calculated in two stages, with use of a step for introducing the activation of the ramping function E5 'which acts on a Coordinated torque setpoint 106a produced during step E5 of taking into account for the power train torque setpoint of the driver's wishes.
  • the supervisor of the power train 20 defines a torque setpoint coordinated with the ramping 106b which is used during the step E8, previously mentioned, of defining the instructions for the components of the power train.
  • Figure 3 also shows when the powertrain supervisor 20 obtains instantaneous ranges 350 of torque transmissible by the various components of the powertrain. These ranges 350 are obtained from the GMP powertrain. These ranges 350 are used, within the powertrain supervisor 20, during a step E20 of synthesis of the torque production capacities of the powertrain for the purposes of defining a single instantaneous range of torque transmissible by the engine. powertrain 120.
  • This instantaneous torque range 120 is taken into account during step E4 for taking into account the torque setpoint of the powertrain of the driving assistance setpoint.
  • an embodiment of which is shown in FIG. 3B it is no longer an instantaneous torque range 120 which is transmitted for the purposes of performing step E4, but on the one hand, an instantaneous maximum value of torque transmissible by the power train 121 and, on the other hand, a minimum instantaneous value of torque transmissible by the power train 122.
  • the maximum and minimum instantaneous values 121 and 122 constitute the limits of the instantaneous range 120 used previously.
  • the maximum instantaneous value 121 is directly taken into account during step E4 for taking into account for the torque setpoint of the powertrain of the driving assistance setpoint.
  • the minimum instantaneous value 122 is modified during a step E21 of taking into account the creeping in order to constitute an instantaneous minimum value of torque transmissible by the power train group corrected to take account of the creeping 123. If the creeping function is not activated, the corrected minimum instantaneous value 123 which results from this step is unchanged from the minimum instantaneous value 122, and if the ramping function is activated, the value is corrected according to the current instantaneous torque value of the ramping function.
  • the correction is for example the fact of replacing the minimum instantaneous value 122 by the lowest absolute value of said minimum instantaneous value 122 and the instantaneous torque value of the ramping function.
  • the value thus corrected is the corrected minimum value 123.
  • the torque value of the creeping function is introduced into the minimum torque value that can be implemented by the powertrain. If the ramping function is not activated, the torque value is left unchanged (the value 123 is equal to the value 122).
  • the torque range 104 which is transmitted to the driving assistance supervisor is defined by the corrected instantaneous minimum value 123 and the instantaneous maximum value 121.
  • Curve C1 represents the speed of the vehicle in km / h.
  • Curve C2 represents the activation (1) or deactivation (0) of the piloting request by the GMP powertrain.
  • Curve C3 indicates the activation (1) or deactivation (0) of the piloting request by the hydraulic brake system, for example by the ESP function (electronic trajectory corrector).
  • Cut C4 represents torque values in Nm, negative in the range between 0 and -4000 Nm.
  • the horizontal speed of the vehicle is positive and a torque produced at the negative wheel causes deceleration.
  • the ramping function does not influence the torque at the wheel because the absolute value of the torque produced at the wheel 40 is less than the value of the torque of the ramping function 42.
  • the torque setpoint transmitted to the supervisor of the powertrain 41 is produced with success and reliability in the form of the torque produced at the wheel 40. It is further noted that these values 40 and 41 are lower in absolute value than the minimum torque 43 (negative value, absolute value maximum) that the powertrain can produce.
  • the torque setpoint transmitted to the power train 41 increases in absolute value and crosses the torque value of the ramping function 42 at an instant t1. From this moment, the torque produced at the wheel 40 follows the ramping torque value 42 which exceeds the torque setpoint transmitted to the powertrain 41, which no longer wants to be the subject of faithful realization. We are talking about saturation.
  • the driving assistance supervisor 10 decides to compensate for the insufficient achievement of the torque by means of a deceleration setpoint by the hydraulic brake system F as can be seen on curve C3 .
  • the vehicle is then braked harder and faster. There is no longer any braking control by the GMP powertrain, as can be seen on curve C2.
  • the passengers and the driver have an unsatisfactory experience, and the brakes are applied beyond what would have been desirable.
  • Curve Cl presents the speed, while curves C2’ and C3 ’represent, as before, the activation or deactivation of piloting by the powertrain or piloting by the hydraulic brake system F.
  • Curve C4 represents the torque values in Nm.
  • Curve 50 represents the torque produced at the wheel, while curve 51 represents the torque setpoint transmitted to the supervisor of the power train 20 and curve 52 represents the torque value of the ramping function.
  • Curve 53 represents quant to it the minimum torque that can be produced by the GMP powertrain, as known to the driving assistance supervisor 10.
  • the torque value of the creep function (curve 52) is coordinated with the minimum torque value that can be provided by the GMP powertrain (curve 53).
  • the result is that ramping does not influence the faithful achievement of the braking torque setpoint, because the torque setpoint transmitted to the GMP power train does not cross the torque value of the ramping function and remains constantly lower. to this in absolute value.
  • the driving assistance supervisor 10 is separate from the hydraulic brake system supervisor 30, external to it. It then has specific computer equipment, which can have high computing power.
  • the motor vehicle can be equipped with a hybrid motorization of the full-hybrid type (parallel hybridization with two traction motors, one thermal and the other electric) , or mild-hybrid (light hybrid, with a thermal traction engine assisted by an electric assistance motor / generator, power too modest to allow the vehicle itself to be pulled).
  • the vehicle's power battery (LV “low voltage” battery visible in figure 1) can be rechargeable on an external network using a wired or induction connection, or not be rechargeable other than by the regeneration obtained via the electric motor / generator.
  • the vehicle can also be an electric vehicle with a battery or a fuel cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

Procédé de pilotage d'un groupe moto-propulseur (GMP) de véhicule automobile lors d'une décélération sous contrôle assisté, comprenant une détermination (E21) d'une valeur maximale de couple de freinage (123) pouvant être délivrée par le groupe moto-propulseur, puis, en tenant compte de ladite valeur maximale (123), une détermination (E8) d'une commande (301) à délivrer au groupe moto-propulseur (GMP) et une application de ladite commande (301) audit groupe moto-propulseur, ladite valeur maximale de couple de freinage (123) étant déterminée en fonction de la valeur courante de couple de rampage du groupe moto-propulseur (GMP).

Description

DESCRIPTION
TITRE DE L’INVENTION : PILOTAGE D’UN GROUPE MOTO- PROPULSEUR DE VEHICULE AUTOMOBILE LORS D’UNE
DECELERATION SOUS CONTROLE ASSISTE
L’invention s’inscrit dans le domaine de la gestion du groupe moto-propulseur d’un véhicule automobile dans des situations où une fonction d’assistance à la conduite définit des commandes en complément de l’éventuelle action du conducteur pendant un déplacement à basse vitesse.
L’invention vise en particulier à adapter la commande adressée, pour une décélération, au groupe moto-propulseur par la fonction d’assistance à la conduite, à la présence d’un comportement de rampage préexistant sur le véhicule.
On rappelle que le rampage est un comportement du groupe moto-propulseur par lequel un couple positif est transmis à un train de roues motrices alors que le véhicule avance à très faible vitesse, le moteur tourne à bas régime et le conducteur n’appuie pas sur la commande d’accélération.
Ainsi, sur un véhicule doté d’un groupe moto-propulseur thermique avec une boîte de vitesses automatique à convertisseur de couple, le rampage est une résultante du fonctionnement du convertisseur de couple qui transmet partiellement la rotation du moteur vers les roues.
Sur un véhicule doté d’un moteur de traction électrique, qui peut être un véhicule dont le groupe moto-propulseur ne comprend pas de moteur thermique (véhicule électrique à batterie, ou encore à pile à combustible), ou un véhicule à motorisation hybride thermique et électrique, un pilotage automatique du moteur électrique est prévu pour créer le rampage, qui est alors artificiel.
Dans ces différents cas, le rampage permet au conducteur de manœuvrer le véhicule, en maîtrisant le déplacement à l’aide uniquement de la pédale de frein. La vitesse de stabilisation du rampage est comprise entre 5 et 12 km/h.
Cette fonction de rampage existe ainsi depuis de nombreuses années, et les nouvelles fonctions d’assistance à la conduite, par lesquelles le véhicule détermine certaines commandes à la place du conducteur sous la forme d’une délégation de conduite, viennent être mises en place dans un contexte où le rampage est présent sur les véhicules et apprécié des conducteurs. Les deux types de fonction cohabitent en particulier lors d’évolution à basse vitesse. Ainsi, elles cohabitent dans un contexte de conduite en accordéon dans les embouteillages, où la fonction de régulateur automatique de vitesse, opérant une première forme de contrôle assisté, est activée. Elles cohabitent encore dans un contexte de manœuvre pour le parking, de type créneau ou parking en bataille, où une fonction d’aide au parking, opérant une deuxième forme de contrôle assisté, est, là encore, activée.
Actuellement, en phase de décélération par freinage sous contrôle assisté, le superviseur d’assistance à la conduite exploite de préférence la plage de couple négatif qui peut être réalisé par le groupe moto-propulseur, de 0 Nm à une valeur extrême négative, et quand cela est nécessaire, complète son action par une action sur le système de frein hydraulique.
Or dans les systèmes existants, le superviseur d’assistance à la conduite évalue la valeur minimale de couple (valeur absolue maximale de couple négatif, correspondant à un maximum de freinage) pouvant être fournie par le groupe moto-propulseur en prenant en compte la somme des pertes du moteur thermique si un tel moteur est présent dans la chaîne de traction et des couples minimums de machines électriques du groupe moto-propulseur. Ces valeurs varient en fonction des états de charge courants des batteries, de leurs capacités de récupération d’énergie et des états de couplage du groupe moto-propulseur.
Une fois connue cette borne de couple de freinage pouvant être fourni par le groupe moto- propulseur, le superviseur d’assistance à la conduite adapte la consigne qu’il envoie au superviseur du groupe moto-propulseur.
Il a été constaté que la fonction de rampage tend pourtant à mettre en échec la bonne mise en œuvre d’une consigne de couple de freinage adressée au groupe moto-propulseur par le superviseur d’assistance à la conduite, quand celui-ci veut obtenir un freinage moteur pour un couple d’une valeur absolue supérieure à celle du couple de rampage. En effet, dans cette situation, le groupe moto-propulseur ne prend pas en compte la demande de couple de freinage supérieure, en valeur absolue, à la valeur absolue de couple de rampage. Ce phénomène est qualifié de « saturation », par la fonction de rampage, du couple de freinage par le groupe moto-propulseur.
Cela induit un retard sur la réalisation du couple de freinage demandé au groupe moto- propulseur par le superviseur d’assistance à la conduite. Et il est alors nécessaire, pour le superviseur d’assistance à la conduite, d’utiliser le système de frein hydraulique plus intensément, abruptement et tardivement, ce qui n’est pas souhaitable pour l’usure du système et le confort des passagers. Le document FR3002904 divulgue d’adapter le couple de rampage à la présence d’un obstacle devant la voiture. Néanmoins il n’est pas prévu de coordonner la fonction de rampage du groupe moto-propulseur avec les fonctions d’assistance à la conduite.
Pour répondre à ces difficultés, il est proposé un procédé de pilotage d’un véhicule automobile lors d’une décélération sous contrôle assisté, comprenant une détermination d’une valeur maximale de couple de freinage pouvant être délivrée par le groupe moto- propulseur, puis, en tenant compte de ladite valeur maximale, une préparation de commandes à délivrer au groupe moto-propulseur et au système de frein hydraulique pour la décélération sous contrôle assisté.
De manière remarquable, ladite valeur maximale de couple de freinage est déterminée, si une fonction de rampage du groupe moto-propulseur est active, en fonction d’une valeur courante de couple de ladite fonction de rampage.
Ainsi, le système de pilotage automatique (ou système d’assistance à la conduite), est informé en temps réel de la présence ou non (activation ou non) d’un rampage et de la valeur du couple de celui-ci.
Cette solution permet de garantir le conducteur contre un freinage d’urgence ou un freinage simplement tardif qui pourrait survenir du fait d’une mauvaise réalisation du couple à basse vitesse. En effet, la décélération est obtenue par les deux commande : celle adressée au groupe moto-propulseur et celle adressée au système de frein hydraulique.
Il est aussi possible de choisir, une fois que cette solution est disponible sur le véhicule, entre l’activation du rampage ou sa désactivation, puisque même activé, le rampage ne gêne plus le contrôle assisté en décélération. Ainsi, il est possible de concilier précision de pilotage de couple par le système d’assistance et obtention d’un bon agrément à basse vitesse pour le conducteur.
De plus, les organes de freinage peuvent être dimensionnés au juste nécessaire, grâce à l’innovation.
Selon des caractéristiques optionnelles et avantageuses,
- ladite détermination d’une valeur maximale de couple de freinage est faite en tenant compte de plages de couple transmissible par différents organes du groupe moto-propulseur ;
- en tenant compte de ladite valeur maximale, une plage de valeurs de couple de freinage pouvant être délivrée aux roues par le groupe moto-propulseur est déterminée puis transmise à un superviseur d’assistance à la conduite, qui l’utilise pour adapter des consignes de freinage qu’il adresse ensuite au superviseur du groupe motopropulseur et au superviseur du système de freinage hydraulique ;
- en tenant compte de ladite valeur maximale, une plage de valeurs de couple de freinage pouvant être délivrée aux roues par le groupe moto-propulseur est déterminée puis transmise à un superviseur d’assistance à la conduite, qui l’utilise pour adapter une consigne qu’il adresse ensuite au superviseur du groupe motopropulseur qui la prend en compte pour la préparation de ladite commande ; Ainsi, la correction de la valeur extrême de couple de freinage est remontée jusqu’au superviseur d’assistance à la conduite, qui est un organe souvent séparé du superviseur du groupe moto-propulseur, qui peut mèner des calculs complexes avec une puissance de calcul importante, sur des composants matériels spécifiques ;
- les commandes sont déterminées en tenant compte d’une consigne de décélération déterminée par une fonction de régulateur de vitesse adaptatif, ou par une fonction de parking assisté ;
- les commandes sont déterminées en tant compte d’une distance courante avec un autre véhicule, d’une détection d’obstacle, ou d’une vitesse de référence demandée par le conducteur, pris en compte par exemple par un superviseur d’assistance à la conduite ;
- la commande à délivrer au groupe moto-propulseur est modifiée en fonction de la volonté courante exprimée par le conducteur sur la commande d’accélération, ou en fonction d’une volonté courante exprimée par le conducteur sur la commande de frein ;
- la commande à délivrer au groupe moto-propulseur est modifiée en fonction d’une consigne de récupération d’énergie par une machine électrique du groupe moto-propulseur transmise par un superviseur du système de frein hydraulique du véhicule par exemple à un superviseur du groupe moto-propulseur.
L’invention consiste aussi en un véhicule automobile comprenant des moyens de détermination d’une valeur maximale de couple de freinage pouvant être délivrée par un groupe moto-propulseur du véhicule, ainsi que des moyens de détermination, en tenant compte de ladite valeur maximale, de commandes à délivrer au groupe moto-propulseur et à un système de frein hydraulique du véhicule pour une décélération sous contrôle assisté.
De manière remarquable, lors d’une décélération sous contrôle assisté, ladite valeur maximale de couple de freinage est déterminée, si une fonction de rampage du groupe moto propulseur est active, en fonction d’une valeur courante de couple de ladite fonction de rampage. Selon des caractéristiques avantageuses et optionnelles,
- le groupe moto-propulseur comprend un moteur/générateur électrique (machine électrique réversible) piloté couplé à un train de roues du véhicule, fournissant ladite fonction de rampage ;
- le groupe moto-propulseur comprend un moteur thermique de traction et une machine électrique réversible, ledit moteur thermique et ladite machine électrique pouvant être couplés l’un à l’autre ou découplés l’un de l’autre, par le pilotage de la machine, pour produire de l’énergie électrique ou maximiser la transmission de couple aux roues ;
- les moyens de détermination d’une commande à délivrer au groupe moto-propulseur et d’application de ladite commande audit groupe moto-propulseur comprennent un superviseur d’assistance à la conduite intégré au superviseur du système de frein hydraulique, ou extérieur à celui-ci, ladite valeur maximale de couple de freinage pouvant être délivrée par le groupe moto-propulseur étant transmise audit superviseur d’assistance à la conduite, qui l’utilise pour adapter une consigne prise en compte pour la préparation de ladite commande.
L’invention sera mieux comprise, et d’autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement dans la description explicative qui va suivre faite en référence aux dessins annexés donnés uniquement à titre d’exemple illustrant un mode de réalisation de l’invention et dans lequel :
[Fig. 1] La figure 1 présente l’architecture d’un véhicule automobile dans lequel l’invention peut être mise en œuvre.
[Fig. 2] La figure 2 présente l’ensemble des fonctions de commande mises en œuvre dans un mode de réalisation de l’invention.
[Fig. 3 A] La figure 3 A présente certains aspects des fonctions présentées en figure 2, telles qu’elles étaient mises en œuvre dans l’art antérieur.
[Fig. 3B] La figure 3B représente ces fonctions telles qu’elles sont mises en œuvre selon un mode de réalisation de l’invention.
[Fig. 4A] La figure 4A montre une évolution d’un véhicule automobile selon la figure 1 selon l’art antérieur, dans un certain scénario.
[Fig. 4B] La figure 4B représente une même évolution dans le même scénario mais avec la mise en œuvre de l’invention.
En figure 1, on a représenté un véhicule automobile 1 pour mettre en œuvre l’invention. Le véhicule automobile 1 comprend un groupe moto-propulseur GMP ainsi qu’un train de roues motrices avant TRMAY et un train de roues motrices arrière TRMAR. Il comprend également un système de freins hydrauliques F et un superviseur d’assistance à la conduite 10, un superviseur du groupe moto-propulseur 20 et un superviseur du système de freins hydrauliques 30.
Le groupe moto-propulseur GMP comprend un moteur thermique MTH couplé au train de roues motrices avant TRM AV par, successivement, un embrayage avant EMBAV, par exemple à glissement et synchronisation, une machine électrique avant MELAV pilotée, une boîte de vitesses à rapports discrets BV, par exemple à convertisseur de couple, et un différentiel avant DIF1.
Le groupe moto-propulseur GMP comprend également une machine électrique arrière MELAR couplée au train de roues motrices arrière TRMAR par successivement un réducteur Red, un embrayage arrière EMBAR qui peut prendre la forme d’un simple crabot et un différentiel arrière DIF2.
Le groupe moto-propulseur GMP comprend, pour alimenter la machine électrique avant MELAV et la machine électrique arrière MELAR pilotée, un réseau électrique dit « basse tension » opérant en courant continu à une tension de l’ordre de 200 à 300 volts par exemple. La machine électrique avant et la machine électrique arrière MELAV et MELAR sont des machines électriques à courant alternatif et elles reçoivent un courant alternatif grâce à la présence d’onduleurs OND1 et OND2 qui convertissent le courant continu du réseau « basse tension » en courant alternatif. Les onduleurs, notamment, peuvent permettre le pilotage de la machine électrique associée.
Un réseau électrique à très basse tension, de l’ordre de 12 volts et opérant en courant continu est également présent dans le véhicule.
La batterie du réseau dit « basse tension » est appelée batterie de traction BT, alors que la batterie du réseau électrique à très basse tension est notée BTBT.
Les deux réseaux électriques sont interconnectés à l’aide d’un convertisseur courant continu vers courant continu CCC.
Le réseau de bord RdB sur lequel sont branchés différents consommateurs du véhicule automobile 1 est alimenté par le réseau à très basse tension.
Le groupe moto-propulseur comprend, de plus, un altemo-démarreur AD piloté et alimenté par le réseau électrique très basse tension et couplé au moteur thermique MTH par une courroie d’alterno-démarreur CAD sur la façade d’accessoires du moteur thermique MTH, de telle sorte que l’énergie fournie par le moteur thermique MTH puisse être utilisé pour alimenter le réseau électrique très basse tension et recharger la batterie très basse tension BTBT, ou que, à l’inverse, l’énergie de ce réseau puisse être utilisée pour mettre en mouvement ou freiner (prélever du couple sur) le moteur thermique MTH par l’intermédiaire de l’altemo-démarreur AD.
L’architecture présentée ci-dessus n’est qu’un exemple. L’invention s’applique notamment aux architectures permettant une fonction de rampage électrique, ce qui est le cas du véhicule automobile de la figure 1.
Ainsi cette architecture possède la machine électrique avant MELAV qui, couplée au train de roues motrices avant TRMAV par un rapport de vitesses de la boîte de vitesses BV et couplée ou découplée du moteur thermique MTH par l’ouverture de l’embrayage avant EMBAV, permet de produire la fonction de rampage, de manière contrôlée.
Mais si la machine électrique avant MELAV n’était pas présente, cette architecture possède l’alternodémarreur AD qui, couplé au train de roues motrices avant TRMAV par un rapport de vitesses de la boîte de vitesses BV et le moteur thermique MTH, permet de produire la fonction de rampage, de manière contrôlée.
Le couple de rampage est qualifié d’artificiel et peut être contrôlé par des fonctions de pilotage externes et il peut être activé ou désactivé selon les cas de vie.
Le superviseur d’assistance à la conduite 10 répond à une volonté du conducteur exprimée au moyens d’interfaces homme-machine. Le conducteur règle ainsi le régulateur adaptatif de vitesse adaptatif à une valeur de vitesse cible, ou demande que la voiture se gare en créneau ou en bataille.
On s’intéresse aux points de fonctionnement à très basse vitesse, comme l’accostage jusqu’à l’arrêt du véhicule, le décollage ou encore une manœuvre de parking automatique en cours. En figure 2, on a représenté les relations entre le superviseur d’assistance à la conduite 10, le superviseur du groupe moto-propulseur 20, et le superviseur du système de freins hydrauliques 30.
Le groupe moto-propulseur GMP est également représenté sur la figure.
Entre autres fonctions, le superviseur du groupe moto-propulseur 20 forme des moyens de détermination d’une valeur maximale de couple de freinage pouvant être délivrée par le groupe moto-propulseur GMP. Comme cela sera mentionné plus loin dans le texte, il tient pour cela compte de plages de couple transmissible par différents organes MTH, BV, EMB, MEL (moteur thermique MTH, les boîtes de vitesses BV, les embrayages EMB et les machines électriques MEL) du groupe moto-propulseur GMP. Et de manière générale, le superviseur d’assistance à la conduite 10 et le superviseur du groupe moto-propulseur 20 forment des moyens de détermination d’une commande 301 à délivrer au groupe moto-propulseur GMP et d’application de ladite commande 301 audit groupe moto-propulseur GMP.
Le superviseur d’assistance à la conduite 10 met en œuvre une étape El de calcul de la dynamique du véhicule en fonction des contraintes environnementales, comme la distance des véhicules environnants ou la présence d’obstacles. Il prend en compte les consignes initiales du conducteur définies par l’interface homme-machine du régulateur adaptatif de vitesse ou de la fonction de parking automatique, notamment une vitesse de référence, ou vitesse cible.
À l’issue de cette étape de calcul El, le superviseur d’assistance à la conduite 10 dispose d’une consigne de décélération 100 qui est utilisée au cours d’une étape E2 de répartition de la consigne de décélération entre le groupe moto-propulseur et le système de freins hydrauliques. Pour effectuer cette répartition, le superviseur d’assistance à la conduite 10 dispose d’une plage de valeurs de couple que le groupe motopropulseur GMP pourrait appliquer aux roues motrices. Le superviseur d’assistance à la conduite 10 en déduit ce qu’il peut demander au groupe moto-propulseur GMP, dont il ne faut pas dépasser les extrémités de la plage de couple communiquée, dont l’action est privilégiée, et ce qui doit être demandé au système de freinage F.
A l’issue de l’étape E2 de répartition, le superviseur d’assistance à la conduite 10 dispose d’une consigne 101 de décélération à adresser au superviseur du groupe moto-propulseur 20 et une consigne 102 de décélération à adresser au superviseur du système de freinage hydraulique. L’obtention de ces consignes constitue la préparation de commandes 301 et 302 qui seront adressées au groupe moto-propulseur GMP et au système de freinage hydraulique F.
Ainsi, en tenant compte d’une valeur maximale de couple que le groupe moto-propulseur peut fournir pour le freinage, qui est une borne d’un plage de valeurs de couple de freinage pouvant être délivrée aux roues par le groupe moto-propulseur GMP transmise au superviseur d’assistance à la conduite 10, celui-ci l’utilise pour adapter, au cours de l’état E2 des consignes de freinage 102 et 103 qu’il adresse ensuite au superviseur du groupe motopropulseur 20 et au superviseur du système de freinage hydraulique 30.
La consigne de décélération adressée au groupe moto-propulseur 101 fait, avant d’être adressée au superviseur du groupe moto-propulseur 20 l’objet d’une transformation en consigne de couple au cours d’une étape E3 de calcul d’une consigne de couple pour le groupe moto-propulseur, elle aussi mise en œuvre par le superviseur d’assistance à la conduite 10. A l’issue de cette étape de calcul E3, une consigne de couple émise par l’assistance à la conduite 103 est adressée du superviseur d’assistance à la conduite 10 au superviseur du groupe moto-propulseur 20.
Le superviseur du groupe moto-propulseur 20 prend en compte, au cours d’une étape E4 de prise en compte pour la consigne de couple du groupe moto-propulseur, de ladite consigne de couple émise par l’assistance à la conduite 103 et des états courants du groupe moto- propulseur.
Cette prise en compte comprend une correction de la valeur de consigne de couple 103 reçue du superviseur d’assistance à la conduite 10 en fonction des informations disponibles au sein du superviseur du groupe moto-propulseur 20, en particulier les états courants des différents organes du groupe moto-propulseur GMP, ainsi qu’une transmission, à destination du superviseur d’assistance à la conduite 10, d’informations permettant de mieux effectuer la préparation de la consigne de couple émise par l’assistance à la conduite 103.
A l’issue de cette étape de prise en compte E4, le superviseur du groupe moto-propulseur 20 dispose ainsi d’une part d’une consigne de couple corrigée 105 qui fait ensuite l’objet d’une prise en compte pour la consigne de couple de groupe moto-propulseur de la volonté du conducteur, et d’autre part d’une plage de valeurs de couple accessibles par le groupe moto- propulseur 104, qui est adressée au superviseur d’assistance à la conduite 10.
Le superviseur du groupe moto-propulseur 20 effectue pour sa part une étape de prise en compte E5 de la consigne de couple corrigée 105 pour adapter la consigne d’accélération transmise, au groupe moto-populseur, par le conducteur 200.
A l’issue de cette étape de prise en compte E5, le superviseur du groupe moto-propulseur 20 dispose d’une consigne de couple coordonnée 106. Elle prend en compte à la fois les éléments transmis pas les fonctions d’assistance à la conduite, basées sur des algorithmes et des mesures effectuées par les capteurs de la voiture, et la demande du conducteur exprimée sur la pédale d’accélérateur.
Par ailleurs, sur la partie droite de la figure, le superviseur d’assistance à la conduite 10 transmet, au superviseur du système de freins hydrauliques 30, la consigne de décélération adressée au système de freinage hydraulique 102.
Au cours d’une étape E6 de prise en compte pour la consigne de freinage de la volonté du conducteur, menée par le superviseur du système de freins hydrauliques 30, la consigne de freinage exprimée par le conducteur 201 par appui sur la pédale de frein est utilisée pour modifier la consigne de décélération adressée au système de freinage hydraulique 102 en une consigne de freinage coordonnée 107.
La consigne de freinage coordonnée 107 est ensuite utilisée au cours d’une étape de répartition de la consigne de freinage entre freins hydrauliques et freinage récupératif par le groupe moto-propulseur, pour exprimer d’une part une consigne de freins hydrauliques 302 qui est transmise au système de freins hydrauliques F et d’autre part, une consigne de récupération d’énergie par le groupe moto-propulseur 108 qui est transmise au superviseur du groupe moto-propulseur 20.
En partie basse de la figure, le superviseur du groupe moto-propulseur 20 prend en compte la consigne de récupération d’énergie 108 au cours d’une étape E8 de définition des consignes pour les organes du groupe moto-propulseur, fondée sur la consigne de couple coordonnée 106.
L’étape E8 de définition des consignes pour les organes du groupe moto-propulseur se fait donc en tenant compte de la consigne de couple coordonnée 106 et de la consigne de récupération d’énergie par le groupe moto-propulseur 108 et aboutit à l’expression d’une commande au groupe moto-propulseur 301. Cette commande au groupe moto-propulseur 301 est transmise au groupe moto-propulseur GMP, qui comprend le moteur thermique MTH, les boîtes de vitesses BV, les embrayages EMB et les machines électriques MEL. Il leur est transmis des consignes en couple et en rapport de démultiplication, ou encore en ouverture ou fermeture d’embrayage.
Au cours de l’étape E8 de définition des consignes pour les organes du groupe moto- propulseur, il y a également établissement de la valeur maximale de récupération d’énergie réalisable par groupe moto-propulseur 109 qui est transmise au superviseur du système de freins hydrauliques 30 pour détermination au cours de l’étape E7 de la répartition de la consigne de freinage entre frein hydraulique et freinage récupératif par groupe moto- propulseur. En effet, au cours de cette étape E7 de répartition, la consigne de récupération d’énergie par groupe moto-propulseur 108 ne doit pas dépasser la valeur maximale de récupération d’énergie réalisable 109 qui a été obtenue par le superviseur de système de freins hydrauliques 30 en provenance du superviseur du groupe moto-propulseur 20.
En figure 3A, on a représenté avec plus de détails, le fonctionnement interne du superviseur du groupe moto-propulseur 20 selon l’art antérieur. Tout d’abord, il est précisé que la consigne de couple coordonnée 106 présentée à la figure précédente est calculée en deux temps, avec utilisation d’une étape d’introduction de l’activation de la fonction de rampage E5’ qui agit sur une consigne de couple coordonnée 106a produite au cours de l’étape E5 de prise en compte pour la consigne de couple de groupe moto-propulseur de la volonté du conducteur. Ainsi, à l’issue de l’étape E5’ d’introduction de l’activation de la fonction de rampage, le superviseur du groupe moto-propulseur 20 définit une consigne de couple coordonnée avec le rampage 106b qui est utilisée au cours de l’étape E8, précédemment évoquée, de définition des consignes pour les organes du groupe moto-propulseur.
On fait figurer également sur la figure 3 A l’obtention par le superviseur du groupe moto- propulseur 20 des plages instantanées 350 de couple transmissible par les différents organes du groupe moto-propulseur. Ces plages 350 sont obtenues du groupe moto-propulseur GMP. Ces plages 350 sont utilisées, au sein du superviseur de groupe moto-propulseur 20, au cours d’une étape E20 de synthèse des capacités de production de couple du groupe moto- propulseur aux fins de définir une plage instantanée unique de couple transmissible par le groupe moto-propulseur 120.
Cette plage instantanée de couple 120 est prise en compte au cours de l’étape E4 de prise en compte pour la consigne de couple du groupe moto-propulseur de la consigne d’assistance à la conduite.
Selon l’invention, dont un mode de réalisation est représenté en figure 3B, ce n’est plus une plage instantanée de couple 120 qui est transmise aux fins d’effectuer l’étape E4, mais d’une part, une valeur maximale instantanée de couple transmissible par le groupe moto-propulseur 121 et, d’autre part, une valeur minimale instantanée de couple transmissible par le groupe moto-propulseur 122. Les valeurs instantanées maximale et minimale 121 et 122 constituent les bornes de la plage instantanée 120 utilisée antérieurement.
La valeur instantanée maximale 121 est directement prise en compte au cours de l’étape E4 de prise en compte pour la consigne de couple du groupe moto-propulseur de la consigne d’assistance à la conduite.
Par contre, la valeur instantanée minimale 122 est modifiée au cours d’une étape E21 de prise en compte du rampage pour constituer une valeur minimale instantanée de couple transmissible par legroupe moto-propulseur corrigée pour tenir compte du rampage 123. Si la fonction de rampage n’est pas activée, la valeur minimale instantanée corrigée 123 qui résulte de cette étape est inchangée par rapport à la valeur instantanée minimale 122, et si la fonction de rampage est activée, la valeur est corrigée en fonction de la valeur instantanée courante de couple de la fonction de rampage.
C’est la valeur minimale instantanée corrigée 123 qui est prise en compte aux fins de l’étape E4 de prise en compte pour la consigne de couple du groupe moto-propulseur de la consigne d’assistance à la conduite.
La correction est par exemple le fait de remplacer la valeur instantanée minimale 122 par la plus faible en valeur absolue de ladite valeur instantanée minimale 122 et la valeur instantanée de couple de la fonction de rampage. La valeur ainsi corrigée est la valeur minimale corrigée 123.
Ainsi, si le rampage est physiquement présent, la valeur de couple de la fonction de rampage est introduite dans la valeur de couple minimale pouvant être mise en œuvre par le groupe moto-propulseur. Si la fonction de rampage n’est pas activée, la valeur de couple est laissée inchangée (la valeur 123 est égale à la valeur 122).
La plage de couple 104 qui est transmise au superviseur d’assistance à la conduite est définie par la valeur minimale instantanée corrigée 123 et la valeur maximale instantanée 121.
En figure 4A, on a représenté un scénario de diminution de vitesse sans l’invention, selon l’art antérieur.
La courbe Cl représente la vitesse du véhicule en km/h. La courbe C2 représente l’activation (1) ou la désactivation (0) de la demande de pilotage par le groupe moto-propulseur GMP. La courbe C3 indique l’activation (1) ou la désactivation (0) de la demande de pilotage par le système de frein hydraulique, par exemple par la fonction ESP (correcteur électronique de trajectoire).
La coupe C4 représente quant à elle des valeurs de couples en Nm, négatives dans la plage entre 0 et -4000 Nm.
Ces courbes sont le couple réalisé effectivement à la roue 40, la consigne en couple transmise au superviseur du groupe moto-propulseur 41 (référence 103 sur les figures 2, 3A et 3B), le couple de la fonction de rampage du groupe moto-propulseur 42 et le couple minimum du groupe moto-propulseur 43 transmis par le superviseur du groupe moto-propulseur 20 au superviseur d’assistance à la conduite 10.
Au début du scénario, la vitesse horizontale du véhicule est positive et un couple réalisé à la roue négatif engendre une décélération. La fonction de rampage n’influe pas sur le couple à la roue car la valeur absolue du couple réalisé à la roue 40 est inférieure à la valeur du couple de la fonction de rampage 42. Ainsi, la consigne en couple transmise au superviseur du groupe moto-propulseur 41 est réalisée avec succès et fidelité sous la forme du couple réalisé à la roue 40. On note, de plus, que ces valeurs 40 et 41 sont inférieures en valeur absolue au couple minimum 43 (valeur négative, de valeur absolue maximale) que peut produire le groupe moto-propulseur.
Néanmoins, la consigne en couple transmise au groupe moto-propulseur 41 augmente en valeur absolue et croise la valeur de couple de la fonction de rampage 42 à un instant tl. A partir de cet instant, le couple réalisé à la roue 40 suit la valeur de couple de rampage 42 qui surpasse la consigne en couple transmise au groupe moto-propulseur 41, qui ne veut plus faire l’objet de la réalisation fidèle. On parle de saturation.
Un peu plus tard, à un instant t2, la consigne en couple transmise au groupe moto-propulseur 41 atteint la valeur minimale de couple du groupe moto-propulseur 43 et est limitée par celle- ci, car le superviseur d’aide à la conduite connaît cette valeur. Néanmoins, cela n’a pas d’impact sur le couple réalisé à la roue 40 car celui-ci est toujours limité par le couple de la fonction de rampage 42, par le phénomène de saturation. Le pilotage est imparfait, et il y a un retard dans l’application du freinage.
A partir d’un instant t3, le superviseur d’assistance à la conduite 10 décide de compenser la réalisation insuffisante du couple par l’intermédiaire d’une consigne en décélération par le système de frein hydraulique F comme cela est visible sur la courbe C3. Le véhicule est alors freiné de manière plus forte et plus rapide. Il n’y a plus de pilotage du freinage par le groupe moto-propulseur GMP, comme cela est visible sur la courbe C2. Les passagers et le conducteur ont une expérience peu satisfaisante, et les freins sont sollicités au-delà ce qui aurait été souhaitable.
Sur la figure 4B, le même scénario est représenté mais avec la mise en œuvre de l’invention, permettant une meilleure coordination de la consigne de décélération avec la valeur de couple de la fonction de rampage.
La courbe Cl’ présente la vitesse, alors que les courbes C2’ et C3’ représentent, comme précédemment, l’activation ou la désactivation du pilotage par le groupe moto-propulseur ou du pilotage par le système de frein hydraulique F.
La courbe C4’ représente les valeurs de couple en Nm.
La courbe 50 représente le couple réalisé à la roue, alors que la courbe 51 représente la consigne en couple transmise vers le superviseur du groupe moto-propulseur 20 et la courbe 52 représente la valeur de couple de la fonction de rampage. La courbe 53 représente quant à elle le couple minimum pouvant être produit par le groupe moto-propulseur GMP, telle que connue par le superviseur d’assistance à la conduite 10.
Dans ce scénario, avec l’invention, la valeur de couple de la fonction de rampage (courbe 52) est coordonnée avec la valeur de couple minimale pouvant être fournie par le groupe moto- propulseur GMP (courbe 53). Il en résulte que le rampage n’influe pas sur la réalisation fidèle de la consigne de couple de freinage, car la consigne en couple transmise au groupe moto- propulseur GMP ne croise pas la valeur de couple de la fonction de rampage et reste constamment inférieure à celle-ci en valeur absolue.
Il en résulte que le couple réalisé à la roue (courbe 50) suit fidèlement la consigne en couple transmise au superviseur du groupe moto-propulseur 20 (courbe 51) et que, quand à l’instant tl’, le système de frein hydraulique F est engagé, l’effet cumulé du couple réalisé à la roue a été plus prononcé que dans l’art antérieur, ce qui implique une meilleure qualité de freinage sans à-coup, avec une bonne transition du freinage récupératif par le groupe moto-propulseur vers le freinage par le système de frein hydraulique F.
On a ainsi montré comment le superviseur d’assistance à la conduite 10 pouvait demander au superviseur du groupe moto-propulseur 20 de réaliser une consigne de couple jusqu’à la saturation de la borne minimale de couple réalisable, sans saturation, de telle sorte que la consigne soit réalisée fidèlement, et que la transition vers le freinage par le circuit de frein hydraulique, avec la fonction ESP, peut se faire de manière souple et sans à coup.
On précise que le superviseur d’assistance à la conduite 10 visible en figures 2, 3 A et 3B est incorporé dans le superviseur du système de frein hydraulique 30 dans le cadre de la fonction de parking automatique, sans que les principes présentés ne soient remis en cause.
A l’inverse, dans la fonction de régulateur adaptatif, le superviseur d’assistance à la conduite 10 est séparé du superviseur du système de frein hydraulique 30, extérieur à celui-ci. Il dispose alors de matériel informatique spécifique, pouvant avoir une forte puissance de calcul.
Comme évoqué en relation avec la figure 1 et la position des machines électriques, le véhicule automobile peut être doté d’une motorisation hybride de type full-hybrid (hybridation parallèle avec deux moteurs de traction, l’un thermique et l’autre électrique), ou mild-hybrid (hybride léger, avec un moteur thermique de traction assisté par un moteur/générateur électrique d’assistance, à la puissance trop modeste pour permettre en lui-même la traction du véhicule). La batterie de puissance du véhicule (batterie « basse tension » BT visible en figure 1) peut être rechargeable sur un réseau externe à l’aide d’une connexion filaire ou à induction, ou ne pas être rechargeable autrement que par la régénération obtenue via le moteur/générateur électrique. Le véhicule peut aussi être un véhicule électrique à batterie ou à pile à combustible.

Claims

Revendications
[Revendication 1]. Procédé de pilotage d’un véhicule automobile (1) lors d’une décélération sous contrôle assisté, comprenant une détermination (E20, E21) d’une valeur maximale de couple de freinage (123) pouvant être délivrée par un groupe moto-propulseur (GMP) du véhicule, puis, en tenant compte de ladite valeur maximale (123), une préparation (E2) de commandes à délivrer au groupe moto-propulseur (GMP) et au système de frein hydraulique (F) pour la décélération sous contrôle assisté, caractérisé en ce que ladite valeur maximale (123) est déterminée (E21), si une fonction de rampage du groupe moto-propulseur (GMP) est active, en tenant compte d’une valeur courante de couple de ladite fonction de rampage.
[Revendication 2] . Procédé de pilotage selon la revendication 1, caractérisé en ce que, en tenant compte de ladite valeur maximale (123), une plage de valeurs de couple de freinage (104) pouvant être délivrée aux roues par le groupe moto-propulseur (GMP) est transmise à un superviseur d’assistance à la conduite (10), qui l’utilise pour adapter (E2) des consignes de freinage (102, 103) qu’il adresse ensuite au superviseur du groupe motopropulseur (20) et au superviseur du système de freinage hydraulique (30).
[Revendication 3]. Procédé de pilotage selon la revendication 1 ou la revendication 2, caractérisé en ce que ladite détermination (E20, E21) est faite en tenant compte (E20) de plages (350) de couples transmissibles respectivement par différents organes du groupe moto-propulseur (MTH, BV, EMB, MEL).
[Revendication 4] . Procédé de pilotage selon l’une des revendications 1 à 3, caractérisé en ce que les commandes à délivrer au groupe moto-propulseur (GMP) et au système de frein hydraulique (F) tiennent compte d’une consigne de décélération (100) déterminée (El) par une fonction de régulateur de vitesse adaptatif, ou par une fonction de parking assisté.
[Revendication 5]. Procédé de pilotage selon l’une des revendications 1 à 4, caractérisé en ce que les commandes à délivrer au groupe moto-propulseur (GMP) et au système de frein hydraulique (F) pour la décélération sous contrôle assisté sont déterminées en tenant compte (El) d’une distance courante avec un autre véhicule, d’une détection d’obstacle, ou d’une vitesse de référence demandée par le conducteur.
[Revendication 6] . Procédé de pilotage selon l’une des revendications 1 à 5, caractérisé en ce que la commande à délivrer au groupe moto-propulseur (GMP) est modifiée (E5) en fonction de la volonté courante exprimée par le conducteur sur la commande d’accélération (200), ou modifiée (E8) en fonction d’une volonté courante exprimée par le conducteur sur la commande de frein (201).
[Revendication 7]. Procédé de pilotage selon l’une des revendications 1 à 6, caractérisé en ce que la commande à délivrer au groupe moto-propulseur (GMP) est modifiée (E8) en fonction d’une consigne de récupération d’énergie par une machine électrique du groupe moto-propulseur (108) transmise par un superviseur (30) du système de frein hydraulique (30) du véhicule (1).
[Revendication 8]. Véhicule automobile (1) comprenant des moyens de détermination (20) d’une valeur maximale de couple de freinage (123) pouvant être délivrée par un groupe moto-propulseur (GMP) du véhicule (1), ainsi que des moyens de détermination (10, 20), en tenant compte de ladite valeur maximale (123), de commandes (301) à délivrer au groupe moto- propulseur (GMP) et à un système de frein hydraulique (F) du véhicule (1) pour une décélération sous contrôle assisté, caractérisé en ce que ladite valeur maximale (123) est déterminée, si une fonction de rampage du groupe moto-propulseur (GMP) est active, en fonction d’une valeur courante de couple de ladite fonction de rampage.
[Revendication 9] . Véhicule automobile selon la revendication 8, caractérisé en ce que les moyens de détermination (10, 20) d’une commande (301) à délivrer au groupe moto-propulseur (GMP) et d’application de ladite commande (301) audit groupe moto-propulseur (GMP) comprennent un superviseur d’assistance à la conduite (10) intégré au superviseur du système de frein hydraulique (30), ou extérieur à celui-ci, ladite valeur maximale (123) pouvant être délivrée par le groupe moto-propulseur (GMP) étant transmise audit superviseur d’assistance à la conduite (10), qui l’utilise pour adapter une consigne (103) prise en compte pour la préparation de ladite commande (301).
[Revendication 10]. Véhicule automobile selon la revendication 8 ou la revendication 9, caractérisé en ce que le groupe moto-propulseur (GMP) comprend une machine électrique pilotée (MELAV ; AD) couplée à un train de roues du véhicule, fournissant ladite fonction de rampage.
EP19848811.6A 2019-02-26 2019-12-20 Pilotage d'un groupe moto-propulseur de vehicule automobile lors d'une deceleration sous controle assiste Pending EP3931055A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1901942A FR3093053B1 (fr) 2019-02-26 2019-02-26 Pilotage d’un groupe moto-propulseur de véhicule automobile lors d’une décélération sous contrôle assisté
PCT/FR2019/053250 WO2020174131A1 (fr) 2019-02-26 2019-12-20 Pilotage d'un groupe moto-propulseur de vehicule automobile lors d'une deceleration sous controle assiste

Publications (1)

Publication Number Publication Date
EP3931055A1 true EP3931055A1 (fr) 2022-01-05

Family

ID=67441291

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19848811.6A Pending EP3931055A1 (fr) 2019-02-26 2019-12-20 Pilotage d'un groupe moto-propulseur de vehicule automobile lors d'une deceleration sous controle assiste

Country Status (4)

Country Link
EP (1) EP3931055A1 (fr)
CN (1) CN113518740A (fr)
FR (1) FR3093053B1 (fr)
WO (1) WO2020174131A1 (fr)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539374B2 (ja) * 2005-03-03 2010-09-08 日産自動車株式会社 複合ブレーキの協調制御装置
JP2010173610A (ja) * 2009-02-02 2010-08-12 Toyota Motor Corp 電動車両
KR101234652B1 (ko) * 2010-12-02 2013-02-19 기아자동차주식회사 하이브리드 차량의 가속 토크 제어 방법 및 장치
JP2012171521A (ja) * 2011-02-23 2012-09-10 Toyota Motor Corp ハイブリッド車両の駆動制御装置
JP2012188023A (ja) * 2011-03-10 2012-10-04 Toyota Motor Corp 車両の制動制御装置
FR3002904B1 (fr) 2013-03-11 2016-07-01 Peugeot Citroen Automobiles Sa Procede et dispositif de controle d'un mode de marche rampante d'un vehicule en fonction d'une distance separant ce vehicule d'un obstacle
US9352741B2 (en) * 2013-08-15 2016-05-31 GM Global Technology Operations LLC Method and apparatus for controlling creep torque in a powertrain system
KR101628495B1 (ko) * 2014-10-13 2016-06-08 현대자동차주식회사 친환경자동차의 타행 주행 유도 장치와 방법
JP6308167B2 (ja) * 2015-04-30 2018-04-11 トヨタ自動車株式会社 車両の制御装置
DE102018105123A1 (de) * 2017-03-06 2018-09-06 Ford Global Technologies, Llc Verfahren und System zum Betreiben eines Hybridfahrzeugs

Also Published As

Publication number Publication date
WO2020174131A1 (fr) 2020-09-03
FR3093053B1 (fr) 2022-01-14
FR3093053A1 (fr) 2020-08-28
CN113518740A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
US10723229B1 (en) Regenerative braking control system
US11273713B2 (en) Regenerative braking/anti-lock braking control system
EP3019374B1 (fr) Commande du couple transmis a une roue motrice d'un vehicule a motorisation hybride
CN105799689A (zh) 混合动力车辆及分离混合动力车辆中的超速离合器的方法
EP2116412A2 (fr) Dispositif de propulsion ou de traction électrique d'un véhicule
US10099694B2 (en) Motor vehicle
US11180125B2 (en) Regenerative braking/anti-lock braking control system
FR2999138A1 (fr) Procede de controle de couples lors du demarrage du moteur thermique d'un vehicule hybride, pour passer d'un mode electrique a un mode hybride
JP5092611B2 (ja) 車両の駆動力制御装置
EP3164285B1 (fr) Procede de commande de systeme de motorisation hybride, pour un vehicule hybride
US11731640B2 (en) Energy saving traction and stability control
FR3005921A1 (fr) Repartition du couple entre le train avant et le train arriere d'un vehicule hybride
EP2830902B1 (fr) Procede de controle de motorisation d'un vehicule comprenant au moins deux motorisations
EP3931055A1 (fr) Pilotage d'un groupe moto-propulseur de vehicule automobile lors d'une deceleration sous controle assiste
EP3090910B1 (fr) Procede de pilotage du moteur thermique d'un vehicule hybride pour une phase de deceleration du vehicule
EP2941374A1 (fr) Procédé et système de correction d'oscillations de régime d'un train roulant
EP2758292B1 (fr) Procede de controle de l'energie electrique delivree par des batteries d'un vehicule hybride
EP3150453B1 (fr) Procédé de répartition d'une consigne d'assistance de couple d'une fonction de dépollution thermique pour un véhicule hybride
EP2991847B1 (fr) Stratégie pour un véhicule hybride, d'accouplement dans un virage d'une machine électrique aux roues arrière
EP4153439B1 (fr) Procédé de commande d'un groupe motopropulseur pour véhicule automobile à transmission électrique hybride
EP3268255B1 (fr) Procédé de répartition de couple entre les trains de roues d'un véhicule automobile
FR2992041A1 (fr) Procede et dispositif de controle de l'utilisation des moteurs electrique et thermique d'un vehicule hybride, en fonction d'une acceleration demandee par un systeme de controle de vitesse
WO2007138222A1 (fr) Dispositif de pilotage d'un vehicule hybride a quatre roues motrices
WO2020016491A1 (fr) Procede de pilotage d'un groupe moto-propulseur comprenant un alterno-demarreur
EP4153439A1 (fr) Procédé de commande d'un groupe motopropulseur pour véhicule automobile à transmission électrique hybride

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STELLANTIS AUTO SAS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240222