EP3921355A1 - Rubber replacement articles and their use as footwear components - Google Patents
Rubber replacement articles and their use as footwear componentsInfo
- Publication number
- EP3921355A1 EP3921355A1 EP20709402.0A EP20709402A EP3921355A1 EP 3921355 A1 EP3921355 A1 EP 3921355A1 EP 20709402 A EP20709402 A EP 20709402A EP 3921355 A1 EP3921355 A1 EP 3921355A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- isocyanate
- rubber replacement
- weight
- article according
- replacement article
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
- C08G18/751—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
- C08G18/752—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
- C08G18/753—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
- C08G18/755—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B1/00—Footwear characterised by the material
- A43B1/14—Footwear characterised by the material made of plastics
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/04—Plastics, rubber or vulcanised fibre
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/24—Catalysts containing metal compounds of tin
- C08G18/244—Catalysts containing metal compounds of tin tin salts of carboxylic acids
- C08G18/246—Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3225—Polyamines
- C08G18/325—Polyamines containing secondary or tertiary amino groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4825—Polyethers containing two hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4854—Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5021—Polyethers having heteroatoms other than oxygen having nitrogen
- C08G18/5024—Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/721—Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
- C08G18/725—Combination of polyisocyanates of C08G18/78 with other polyisocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/73—Polyisocyanates or polyisothiocyanates acyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/7806—Nitrogen containing -N-C=0 groups
- C08G18/7818—Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
- C08G18/7837—Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/791—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
- C08G18/792—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/4007—Curing agents not provided for by the groups C08G59/42 - C08G59/66
- C08G59/4064—Curing agents not provided for by the groups C08G59/42 - C08G59/66 sulfur containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
- C08J3/126—Polymer particles coated by polymer, e.g. core shell structures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/02—Polyureas
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/08—Polyurethanes from polyethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2410/00—Soles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
Definitions
- the present invention is directed to rubber replacement articles prepared from curable compositions.
- Curable compositions are often used as coatings and molded or extruded articles in a wide variety of industries.
- industries may include but are not limited to landcraft such as cars, trucks, sport utility vehicles, motorcycles; watercraft such as boats, ships and submarines; aircraft such as airplanes and helicopters, industrial such as commercial equipment and structures including walls and roofs; construction such as construction vehicles and structures including walls and roofs, military such as military vehicles, and military structures including walls and roofs, for example, ammunition cases and battery enclosures; and the like.
- Curable compositions can also be used as rubber replacements in footwear and other industries.
- Footwear such as a shoe
- the upper is the portion of the footwear designed to comfortably enclose the foot
- the sole which typically includes an insole, optionally a midsole, and an outsole, is the portion of the footwear designed to provide traction, protection, cushioning, and/or a durable wear surface.
- the upper is typically comprised of many different components, often made of different materials. Such materials include, for example, natural leather, synthetic leather, vinyl, and fabric such as nylon; other textiles may also be used. Many of the upper components, particularly the“toe”, can experience wear and/or abrasion during even normal use of the shoe.
- Midsoles are typically made of foam, such as ethylene vinyl acetate (EVA) foam or polyurethane, such as TPU, foam. These materials compress resiliently under an applied load, such as the forces generated by the feet and legs during physical activity.
- EVA ethylene vinyl acetate
- TPU polyurethane
- the bladders can be inflatable inserts made of polymeric materials that are resistantly compressible to provide additional cushioning to the wearer of the footwear. These bladders can be filled, for example, with a gel, water or other fluid, such as air or nitrogen.
- Outsoles are often made of synthetic and/or natural rubbers, such as silica- filled rubber compositions. The outsole can also experience wear and/or abrasion during even normal use of a shoe.
- references to any monomer(s) herein refers generally to a monomer that can be polymerized with another polymerizable compound such as another monomer or polymer. Unless otherwise indicated, it should be appreciated that once the monomer components react with one another to form the compound, the compound will comprise the residues of the monomer components.
- the curable composition used to prepare the rubber replacement article of the present invention comprises (a) an isocyanate-functional prepolymer.
- the isocyanate-functional prepolymer comprises (i) a reaction product of a polyisocyanate and a polyamine having primary and/or secondary amino groups; and/or (ii) a reaction product of a polyisocyanate and a polyol.
- the phrase“and/or” when used in a list is meant to encompass alternative embodiments including each individual component in the list as well as any combination of components.
- an “isocyanate functional prepolymer” refers to the reaction product of a polyisocyanate with polyamine and/or polyol, and optionally other isocyanate reactive groups such as thiol; the isocyanate functional prepolymer has at least one free isocyanate functional group (NCO). Combinations of isocyanate-functional prepolymers can be used according to the present invention.
- the reaction mixture used to prepare the isocyanate-functional prepolymer is usually essentially free of any phosphorus- containing polyols.
- the curable composition is also usually essentially free of any a phosphorus-containing polyols or reaction products thereof.
- by“essentially free’’ is meant that a compound is not intentionally present in the composition; and if a compound is present in the composition, it is present incidentally in an amount less than 0.1 percent by weight, usually less than trace amounts.
- the terms“cure” and “curable” refer to a composition wherein any crosslinkable components of the composition are or may be at least partially crosslinked via chemical reaction.
- the crosslink density of the crosslinkable components i.e., the degree of crosslinking
- the presence and degree of crosslinking, i.e., the crosslink density can be determined by a variety of methods, such as dynamic mechanical thermal analysis (DMTA) using a Polymer Laboratories MK III DMTA analyzer conducted under nitrogen.
- DMTA dynamic mechanical thermal analysis
- Suitable polyisocyanates for use in preparing the isocyanate-functional prepolymer can include one or more of those that are known in the art.
- suitable polyisocyanates can include monomeric, dimeric, trimeric and/or oligomeric polyisocyanates.
- the isocyanate can be C2-C20 linear, branched, cyclic, aromatic, aliphatic, or combinations thereof.
- aromatic polyisocyanates include phenylene diisocyanate, toluene diisocyanate (TDI), xylene diisocyanate, 1 ,5-naphthalene diisocyanate, chlorophenylene 2,4-diisocyanate, bitoluene diisocyanate, dianisidine diisocyanate, tolidine diisocyanate, alkylated benzene diisocyanates, methylene-interrupted aromatic diisocyanates such as methylenediphenyl diisocyanate, 4,4'-isomer (MDI) including alkylated analogs such as 3, 3' -dimethyl-4, 4' -diphenylmethane diisocyanate, polymeric methylenediphenyl diisocyanate; mixed aralkyl diisocyanates such as tetramethylxylyl diisocyanates, OCN-C(CH3)2-C6H4C
- Suitable materials include, without limitation, those available under the designation DESMODUR from Covestro LLC and include DESMODUR N 3200, DESMODUR N 3300, DESMODUR N 3400, DESMODUR N3900 and DESMODUR XP 2580.
- TOLONATE HDT LV2 available from Vencorex Chemicals, is also suitable. Isocyanate functional acrylics can also be used.
- polyisocyanate in an excess amount, often greater than 10 percent by weight, based on the total weight of resin solids in the isocyanate-functional prepolymer (a).
- the excess polyisocyanate serves as a plasticizer in the curable composition.
- the polyisocyanate is reacted with (i) a polyamine having primary and/or secondary amino groups, and/or (ii) a polyol.
- the polyamines and polyols may be any of those known in the art, such as acrylic, polyester, polycarbonate, polybutadiene and/or polyether.
- Polyethers are used most often. Suitable polyethers include polyoxyalkyleneamines having two or more primary and/or secondary amino groups attached to a backbone, derived, for example, from propylene oxide, ethylene oxide, butylene oxide or a mixture thereof.
- Suitable polyethers having hydroxyl groups include polyether polyols such as polyalkylene ether polyols, which include those having the following structural formula:
- substituent R1 is hydrogen or lower alkyl containing from 1 to 5 carbon atoms including mixed substituents, and n is typically from 2 to 6 and m is from 8 to 100 or higher. Included are poly(oxytetramethylene) glycols, poly(oxytetraethylene) glycols, poly(oxy-1 ,2-propylene) glycols, and poly(oxy-1 , 2-butylene) glycols.
- polyether polyols formed from oxyalkylation of various polyols, for example, diols such as ethylene glycol, 1 ,6-hexanediol, Bisphenol A and the like, or other higher polyols such as trimethylolpropane, pentaerythritol, and the like.
- Polyols of higher functionality which can be utilized as indicated can be made, for instance, by oxyalkylation of compounds such as sucrose or sorbitol.
- One commonly utilized oxyalkylation method is reaction of a polyol with an alkylene oxide, for example, propylene or ethylene oxide, in the presence of an acidic or basic catalyst.
- Particular polyether polyols include those sold under the names TERATHANE (e.g., TERATHANE 250, TERATHANE 650, TERATHANE 1000) and TERACOL, available from Invista Corporation, and POLYMEG, available from Lyondell Chemical Co. Also useful for the isocyanate-functional prepolymer are polyester polyols, butadiene diols and triols and saturated versions of same, chlorinated olefin polyols, hydrazides, and polyamide polyols as well as polyurethane polyols.
- TERATHANE e.g., TERATHANE 250, TERATHANE 650, TERATHANE 1000
- TERACOL e.g., TERATHANE 250, TERATHANE 650, TERATHANE 1000
- POLYMEG available from Lyondell Chemical Co.
- isocyanate-functional prepolymer are polyester polyols, butadiene diol
- the isocyanate-functional prepolymer typically has a weight average molecular weight of 1 ,300 to 20,000, often 1 ,400 to 15,000, or 4,000 to 15,000, or 5,000 to 10,000.
- the isocyanate-functional prepolymer usually has an isocyanate equivalent weight greater than 300, often 400 to 1 ,000.
- the curable composition used to prepare the rubber replacement article of the present invention may further comprise a non-prepolymer isocyanate, such as a monomeric polyisocyanate, in combination with the isocyanate functional prepolymer.
- the non-prepolymer isocyanate can be the same or different from the polyisocyanate used to form the isocyanate-functional prepolymer, and may comprise one or more of those disclosed above. If combinations of isocyanates are used, the isocyanates should be substantially compatible, for example; the isocyanate-functional prepolymers can be substantially compatible with the non-prepolymer isocyanate.
- substantially compatible means the ability of a material to form a blend with other materials that is and will remain substantially homogeneous over time.
- the mixture of polyamines may include, for example, polyamines having at least two functional groups such as di-, tri-, or higher functional amines; and combinations thereof.
- the polyamines may be aromatic or aliphatic such as cycloaliphatic, or mixtures thereof.
- Suitable primary polyamines include ethylene diamine, 1 ,2-diaminopropane, 1 ,4-diaminobutane, 1 ,3-diaminopentane (DYTEK EP, Invista), 1 ,6-diaminohexane, 2-methyl-1 , 5-pentane diamine (DYTEK A, Invista), 2,5- diamino-2,5-dimethylhexane, 2,2,4- and/or 2,4, 4-trimethyl-1 ,6-diamino-hexane, 1 ,1 1 - diaminoundecane, 1 ,12-diaminododecane, 1 ,3- and/or 1 ,4-cyclohexane diamine, 1 - amino-3,3,5-trimethyl-5-aminomethyl-cyclohexane (isophorone diamine or IPDA), 2,4- and/or 2,6-hexahydrotoluylene diamine
- Secondary cycloaliphatic diamines may also be used in the present invention.
- Suitable cycloaliphatic diamines include JEFFLINK 754 (Huntsman Corporation), CLEARLINK 1000 (Dorf-Ketal Chemicals, LLC), and aspartic ester functional amines, such as those available under the name DESMOPHEN such as DESMOPHEN NH 1420, and DESMOPHEN NH 1520 (Covestro LLC).
- DESMOPHEN such as DESMOPHEN NH 1420
- DESMOPHEN NH 1520 Covestro LLC
- Other suitable secondary amines that can be used in the present invention include the reaction products of materials comprising primary amine functionality, such as those described herein, with acrylonitrile.
- the secondary amine can be the reaction product of 4,4'-diaminodicyclohexylmethane and acrylonitrile.
- the secondary amine can be the reaction product of isophorone diamine and acrylonitrile, such as POLYCLEAR 136 (available from BASF/Hansen Group LLC).
- POLYCLEAR 136 available from BASF/Hansen Group LLC.
- the aliphatic secondary diamine often has an amine equivalent weight of up to 200, more often up to 162.
- the curing agent (b) comprises 5 to 50 percent by weight of an aliphatic polyamine having an amine equivalent weight of 125 to 250, and 50 to 95 percent by weight of an aliphatic polyamine having an amine equivalent weight of 900 to 2,500.
- the curing agent comprises 20 percent by weight CLEARLINK 1000, with an amine equivalent weight of about 161 , and 80 percent by weight JEFFAMINE T-5000, a trifunctional aliphatic amine that has an amine equivalent weight of about 1902.
- the curing agent (b) often comprises 1 to 20 percent by weight, such as 1.5 to 15 percent by weight, or 2 to 12.5 percent by weight, or 3 to 10 percent by weight by weight of said non-cyclic polyamine, based on the total weight of polyamines in the curable composition.
- the curing agent often comprises about 8 percent by weight DESMOPHEN NH 1220, a non-cyclic amine with an amine equivalent weight of about 234, about 8 percent by weight CLEARLINK 1000, a cycloaliphatic amine with an amine equivalent weight of about 161 , and about 84 percent by weight JEFFAMINE T-5000, a trifunctional aliphatic amine that has an amine equivalent weight of about 1902.
- the curable composition used to prepare the rubber replacement article of the present invention may comprise one or more additional ingredients.
- Additional ingredients may include, for example, an adhesion promoter such as amine functional materials, aminosilanes and the like, halogenated polyolefin (e. g., chlorinated polyolefin) or organic titanate or zirconate.
- an adhesion promoter such as amine functional materials, aminosilanes and the like, halogenated polyolefin (e. g., chlorinated polyolefin) or organic titanate or zirconate.
- a tertiary amine comprising 1 ,5- diazabicyclo[4.3.0]non-5-ene, 1 ,8-diazabicyclo[5.4.0]undec-7-ene, and/or 1 ,4- diazabicyclo[2.2.2]octane is an exemplary amine functional material suitable as an adhesion promoter.
- the colorant can be in the form of a dispersion including a nanoparticle dispersion.
- Nanoparticle dispersions can include one or more highly dispersed nanoparticle colorants and/or colorant particles that produce a desired visible color and/or opacity and/or visual effect.
- Nanoparticle dispersions can include colorants such as pigments or dyes having a particle size of less than 150 nm, such as less than 70 nm, or less than 30 nm. Nanoparticles can be produced by milling stock organic and/or inorganic pigments with grinding media having a particle size of less than 0.5 mm. Example nanoparticle dispersions and methods for making them are identified in U.S. Patent No. 6,875,800 B2.
- the composition may be prepared using a two-component mixing device.
- isocyanate and amine are added to a high pressure impingement mixing device.
- the isocyanate is added to the“A-side” and amine is added to the“B-side”.
- the A- and B- side streams are impinged upon each other and immediately sprayed onto at least a portion of an uncoated or coated substrate.
- the isocyanate and the amine react to produce a coating composition that is cured upon application to the uncoated or coated substrate.
- the A- and/or B-side can also be heated prior to application, such as to a temperature of ⁇ 70°C, such as 60°C.
- a commercially available mixing device can be used such as those described in Paragraphs [0037] and [0038] of United States Patent Publication Number 2007/0160851.
- the isocyanate-functional prepolymer may be provided as a first component by a first pump to a mixer and the curing agent may be provided as a second component by a second pump to said mixer, to provide a curable composition, which may then be deposited/extruded through a nozzle connected to the mixer.
- the abrasion resistant additive may be included in the first or the second component or may be to the mixture formed in the mixer. Further, if the additive manufacturing process does not contain heated lines, the isocyan ate -functional prepolymer should be liquid.
- the coated substrate Upon application of the curable composition to a substrate as a coating and after curing to form a coated substrate, the coated substrate demonstrates a coating loss of less than 0.33 cm 3 after being subjected to 1 ,000 cycles of a TABER Abrasion Test using S-42 sandpaper strips and two 1 ,000 gram weights, from Taber Industries.
- the TABER Abrasion Test is conducted as described in the Examples below.
- the rubber replacement articles of the present invention may be used for any application where rubber is conventionally used; for example, vehicle components such as automotive parts and accessories including bumpers, fenders, hoods, doors, panels, trim, etc.; athletic equipment such as specialized floor surfaces and running tracks, components of balls (cores, surface coatings, etc., for basketballs, baseballs, golf balls, lacrosse balls and the like); protective equipment for sports and other applications such as chest protectors and helmet components, stick components such as grips and/or butts for ice hockey, field hockey, lacrosse, etc., and the like.
- vehicle components such as automotive parts and accessories including bumpers, fenders, hoods, doors, panels, trim, etc.
- athletic equipment such as specialized floor surfaces and running tracks, components of balls (cores, surface coatings, etc., for basketballs, baseballs, golf balls, lacrosse balls and the like)
- protective equipment for sports and other applications such as chest protectors and helmet components, stick components such as grips and/or butts for ice hockey, field
- Dry film thicknesses of the footwear components may range from 20 to 1 ,000 mils (508 to 25,400 microns), or from 40 to 150 mils (1 ,016 to 3,810 microns), or from 60 to 100 mils (1 ,524-2,540 microns), or from 500 to 750 mils (12,700 to 19,050 microns). It will be appreciated that these layers are relatively “thick”.
- the compositions of the present invention can also be applied as much thinner layers as well, such as 0.1 to less than 15 mils (2.54 to less than 381 microns), or 0.1 to 10 (2.54 to 254 microns), or 0.5 to 3 (12.7 to 76.2 microns), or 1 to 2 mils (25.4 to 50.8 microns).
- the wear resistance observed in footwear components according to the present invention is particularly relevant in the tread and other portions of the shoe outsole, but is also particularly relevant in the toe of the shoes, especially shoes used for tennis, where the toe is often dragged during play such as during service. It is often the case that the wearer can abrade the toe such that the aesthetics or even the shoe itself are impaired and ultimately such that a hole can be worn through the toe.
- the footwear components of the present invention typically demonstrate a material loss of less than 0.33 cm 3 after being subjected to 1 ,000 cycles of a TABER Abrasion Test using S-42 sandpaper strips and two 1 ,000 gram weights.
- a rubber replacement article prepared from a curable composition comprising:
- an isocyanate-functional prepolymer wherein the isocyanate-functional prepolymer comprises (i) a reaction product of a polyisocyanate and a polyamine having primary and/or secondary amino groups; and/or (ii) a reaction product of a polyisocyanate and a polyol;
- a curing agent comprising a mixture of polyamines, wherein at least one polyamine in the curing agent has an amine equivalent weight of 125 to 250;
- an abrasion resistant additive comprising organic particles, wherein the organic particles demonstrate a volume average particle size of at least 5 microns.
- the curing agent comprises 5 to 50 percent by weight of an aliphatic polyamine having an amine equivalent weight of 125 to 250, and 50 to 95 percent by weight of an aliphatic polyamine having an amine equivalent weight of 900 to 2,500.
- organic particles comprise polyethylene, polypropylene, and/or saturated, linear primary alcohols with an average carbon chain length of C20 to C50.
- the rubber replacement article according to any of aspects 9 to 1 1 wherein the adhesive layer comprises an adhesion promoter comprising an organic titanate or zirconate.
- the adhesive layer comprises an adhesion promoter comprising an organic titanate or zirconate.
- said rubber replacement article is prepared by 3D-printing the article by forming at least one portion or cross-sectional layer of the article by depositing at least two co-reactive components onto a substrate until the article is fully formed, wherein a first co-reactive component comprises the isocyanate-functional prepolymer (a) and a second co-reactive component comprises the curing agent (b).
- a method of preparing the rubber replacement article according to any of aspects 1 to 12 by 3D-printing comprising:
- step (c) repeating step (b) until the article is fully formed
- the final material had a measured isocyanate equivalent weight of 505.8 as measured by ASTM D2572 “Standard Test Method for Isocyanate Groups in Urethane Materials or Prepolymers” and a weight average Molecular Weight (Mw) of -5,300 as measured by Gel Permeation Chromatography versus a polystyrene standard.
- An isocyanate-functional prepolymer was prepared from the following ingredients as described below:
- the final material had a measured isocyanate equivalent weight of 1025 as measured by ASTM D2572“Standard Test Method for Isocyanate Groups in Urethane Materials or Prepolymers” and a weight average Molecular Weight (Mw) of ⁇ 6,800 as measured by Gel Permeation Chromatography versus a polystyrene standard.
- a total of 850 grams of isophorone diisocyanate was placed in a suitable reaction vessel equipped with a stirrer, temperature probe, a condenser and a nitrogen inlet tube and blanketed with nitrogen gas.
- room temperature 22°C
- 2,346 grams of JEFFAMINE D2000 was added over 70 minutes, during which time the temperature increased to about 57°C.
- 0.64 grams of dibutyltin dilaurate was added and the mixture held for 15 minutes after which the mixture was heated to 70°C. The mixture was held at this temperature for 1.25 hour, during which time the isocyanate equivalent weight reached about 650 grams per equivalent.
- the final material had a measured isocyanate equivalent weight of 653 as measured by ASTM D2572“Standard Test Method for Isocyanate Groups in Urethane Materials or Prepolymers” and a weight average Molecular Weight (Mw) of -5,300 as measured by Gel Permeation Chromatography versus a polystyrene standard.
- An isocyanate-functional prepolymer was prepared from the following ingredients as described below:
- a total of 760 grams of isophorone diisocyanate was placed in a suitable reaction vessel equipped with a stirrer, temperature probe, a condenser and a nitrogen inlet tube and blanketed with nitrogen gas.
- room temperature (22°C) 1 ,356.4 grams of JEFFAMINE D2000 and was added over 70 minutes, during which time the temperature increased to about 56°C.
- 0.42 grams of dibutyltin dilaurate was added and the mixture held for 15 minutes after which the mixture was heated to 70°C. The mixture was held at this temperature for 2 hours, during which time the isocyanate equivalent weight reached about 404 grams per equivalent.
- the final material had a measured isocyanate equivalent weight of 403 as measured by ASTM D2572“Standard Test Method for Isocyanate Groups in Urethane Materials or Prepolymers” and a weight average Molecular Weight (Mw) of -4,600 as measured by Gel Permeation Chromatography versus a polystyrene standard.
- An isocyanate-functional prepolymer was prepared from the following ingredients as described below:
- a total of 575 grams of isophorone diisocyanate was placed in a suitable reaction vessel equipped with a stirrer, temperature probe, a condenser and a nitrogen inlet tube and blanketed with nitrogen gas.
- room temperature (22°C) 1 ,935.2 grams of JEFFAMINE D2000 and was added over 60 minutes, during which time the temperature increased to about 57°C.
- 0.51 grams of dibutyltin dilaurate was added and the mixture held for 15 minutes after which the mixture was heated to 70°C. The mixture was held at this temperature for 1.5 hours, during which time the isocyanate equivalent weight reached about 865 grams per equivalent.
- An isocyanate-functional prepolymer was prepared from the following ingredients as described below:
- the temperature was reduced to 80°C and 353.0g of Desmodur XP2580 and 1059.3g of Tolonate HDT LV2 were added and the temperature further reduced to 60°C. After 1 hour, the material had a measured isocyanate equivalent weight of about 259 grams per equivalent.
- Examples 1 and 5 are control examples with identical compositions (different batches), and contain no abrasive component like that used in the compositions of the present invention.
- Examples 2-4 are comparative; they contain inorganic particles as abrasion resistant additive, but no organic particles.
- Examples 6 and 7 demonstrate compositions prepared in accordance with the present invention. Curable compositions were prepared from the following ingredients:
- Microgrit WCA 3 is alumina powder with a volume average particle size of 3 m ⁇ h
- Microgrit WA 360TO is alumina powder with a volume average particle size of 36 mhi
- Microgrit WA 180TO is alumina powder with a volume average particle size of 90 mih.
- a side A total of 100 grams of isocyanate functional prepolymer was used. In some cases one or more pre-polymers were mixed to achieve the desired properties. The contents were kept at 60°C prior to application in order to achieve spraying viscosities.
- B side The amine component was prepared from the ingredients listed in the above examples. In example 1 all the ingredients are mixed together with zircoa beads and ground in LAU mixer for 3 hours. In examples 2-7, a pre-paste was mixed using JEFFAMINE T5000 and T1O2 in the desired ratios and ground in the LAU using zircoa beads for 3 hours. The paste was filtered and used to bring in the desired levels of T1O2 and JEFFAMINE T5000 levels with the rest of the resin components. Alumina or PETROLITE 5000 T6 particles were then added and mixed using a Cowles blade.
- Polyurea coating compositions of the invention were prepared by combining an isocyanate functional “A” side component and an amine functional “B” side component in the following manner:
- Free films of the polyurea coating compositions were produced by charging the A and B sides in a double barreled syringe equipped with a static mix tube and a pneumatic applicator gun (available from Plas-Pak Industries) and injecting the components at a 1 : 1 ratio onto a polyethylene sheet and then immediately drawn down with Gardco Adjustable Micrometer Film Applicator at approximately 60-80 mils. Before testing the film properties (Young’s Modulus, elongation, and glass transition temperature), the films rested for 1 day at 104°F.
- Modulus and elongation properties were measured using an INSTRON 4443 with a pull rate of 50mm/min. at room temperature (23°C).
- the glass transition temperature was measured using TA Instruments 2980 DMA Dynamic Mechanical Analyzer.
- the DMA test parameters included tensile film mode, 20pm amplitude, 1 Hz frequency, 40cNm clamping force, and heating rate of 3°C/min.
- Hardness values were determined by charging the A and B sides in a double barreled syringe equipped with a static mix tube and a pneumatic applicator gun and injecting the components at a 1 : 1 ratio into a mold to form a round “puck” approximately 6 cm in diameter and 0.2 cm in thickness. The puck was tested after resting for 1 day at 104°F. The hardness of the polyurea puck was measured with a Shore D Durometer (Pacific Transducer Corp. Model 212) at ambient conditions. [0092] TABER Abrasion test: Coatings were applied onto primed panels by drawdown method and cut to 4” x 4” pieces with a hole punched in the center.
- An isocyanate-functional polymer was prepared from the following ingredients as described below:
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Structural Engineering (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Civil Engineering (AREA)
- Ceramic Engineering (AREA)
- Polyurethanes Or Polyureas (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/266,894 US20190168495A1 (en) | 2016-11-09 | 2019-02-04 | Rubber replacement articles and their use as footwear components |
PCT/US2020/016412 WO2020163233A1 (en) | 2019-02-04 | 2020-02-03 | Rubber replacement articles and their use as footwear components |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3921355A1 true EP3921355A1 (en) | 2021-12-15 |
Family
ID=69743939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20709402.0A Pending EP3921355A1 (en) | 2019-02-04 | 2020-02-03 | Rubber replacement articles and their use as footwear components |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP3921355A1 (es) |
JP (1) | JP2022519589A (es) |
KR (1) | KR102688864B1 (es) |
CN (1) | CN113366045B (es) |
AU (1) | AU2020218495A1 (es) |
BR (1) | BR112021015143A2 (es) |
CA (1) | CA3128378A1 (es) |
MX (1) | MX2021009348A (es) |
SG (1) | SG11202108356RA (es) |
WO (1) | WO2020163233A1 (es) |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2092108A (en) | 1935-07-10 | 1937-09-07 | Dill Mfg Co | Heater |
US2132508A (en) | 1935-12-03 | 1938-10-11 | Pennsylvania Crusher Co | Cone crusher |
US4219945B1 (en) | 1978-06-26 | 1993-10-19 | Robert C. Bogert | Footwear |
US4506460A (en) | 1982-06-18 | 1985-03-26 | Rudy Marion F | Spring moderator for articles of footwear |
US5284918A (en) * | 1991-05-01 | 1994-02-08 | W. R. Grace & Co.-Conn. | One package polyurethane/thermoplast plastisol composition |
DE4317981A1 (de) | 1993-05-28 | 1994-12-01 | Ranco Inc | Gas-Luft-Verhältnisregelvorrichtung für einen Temperaturregelkreis für Gasverbrauchseinrichtungen |
US5353459A (en) | 1993-09-01 | 1994-10-11 | Nike, Inc. | Method for inflating a bladder |
AT409934B (de) | 1994-01-28 | 2002-12-27 | Varpat Patentverwertung | Bremsvorrichtung für einen schi |
US5952065A (en) | 1994-08-31 | 1999-09-14 | Nike, Inc. | Cushioning device with improved flexible barrier membrane |
US5993585A (en) | 1998-01-09 | 1999-11-30 | Nike, Inc. | Resilient bladder for use in footwear and method of making the bladder |
US6875800B2 (en) | 2001-06-18 | 2005-04-05 | Ppg Industries Ohio, Inc. | Use of nanoparticulate organic pigments in paints and coatings |
US6665958B2 (en) | 2001-09-17 | 2003-12-23 | Nike, Inc. | Protective cage for footwear bladder |
US6894086B2 (en) | 2001-12-27 | 2005-05-17 | Ppg Industries Ohio, Inc. | Color effect compositions |
DE10218594A1 (de) * | 2002-04-26 | 2003-11-20 | Bayer Ag | Modifizierte Polyurethane, ein Verfahren zu ihrer Herstellung und ihre Verwendung |
US7968197B2 (en) | 2005-08-25 | 2011-06-28 | Ppg Industries Ohio, Inc. | Polyurea coating comprising an amine/(meth)acrylate oligomeric reaction product |
US20090092811A1 (en) * | 2007-10-09 | 2009-04-09 | Ppg Industries Ohio, Inc | Compressible coating layers |
WO2017130685A1 (ja) * | 2016-01-28 | 2017-08-03 | バンドー化学株式会社 | 3次元造形物の製造方法及び造形材料 |
DE102016115049B3 (de) * | 2016-08-12 | 2018-02-15 | Troester Gmbh & Co. Kg | Vorrichtung zum Beschicken eines Extruders |
US10240064B2 (en) * | 2016-11-09 | 2019-03-26 | Ppg Industries Ohio, Inc. | Curable compositions and their use as coatings and footwear components |
EP3560969B1 (en) * | 2016-12-26 | 2022-03-30 | Sunstar Engineering Inc. | Curable composition |
US11286400B2 (en) * | 2018-07-12 | 2022-03-29 | Ppg Industries Ohio, Inc. | Curable compositions containing reactive functional compounds and polysiloxane resins, articles of manufacture and coated articles prepared therefrom, and a method of mitigating dirt build-up on a substrate |
-
2020
- 2020-02-03 AU AU2020218495A patent/AU2020218495A1/en not_active Abandoned
- 2020-02-03 JP JP2021545390A patent/JP2022519589A/ja active Pending
- 2020-02-03 CA CA3128378A patent/CA3128378A1/en not_active Abandoned
- 2020-02-03 BR BR112021015143-5A patent/BR112021015143A2/pt not_active IP Right Cessation
- 2020-02-03 KR KR1020217025319A patent/KR102688864B1/ko active IP Right Grant
- 2020-02-03 EP EP20709402.0A patent/EP3921355A1/en active Pending
- 2020-02-03 WO PCT/US2020/016412 patent/WO2020163233A1/en active Application Filing
- 2020-02-03 CN CN202080011755.5A patent/CN113366045B/zh active Active
- 2020-02-03 SG SG11202108356RA patent/SG11202108356RA/en unknown
- 2020-02-03 MX MX2021009348A patent/MX2021009348A/es unknown
Also Published As
Publication number | Publication date |
---|---|
KR20210113657A (ko) | 2021-09-16 |
CN113366045B (zh) | 2023-05-02 |
CA3128378A1 (en) | 2020-08-13 |
BR112021015143A2 (pt) | 2021-09-28 |
MX2021009348A (es) | 2021-09-10 |
AU2020218495A1 (en) | 2021-09-16 |
SG11202108356RA (en) | 2021-08-30 |
KR102688864B1 (ko) | 2024-07-26 |
WO2020163233A1 (en) | 2020-08-13 |
JP2022519589A (ja) | 2022-03-24 |
CN113366045A (zh) | 2021-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10240064B2 (en) | Curable compositions and their use as coatings and footwear components | |
US8822594B2 (en) | Low temperature application coating composition comprising polyurea and a phosphorus-containing polyol and footwear comprising polyurea | |
EP2097466B1 (en) | Polyurea coating comprising an amine/(meth)acrylate oligomeric reaction product | |
US7968198B2 (en) | Polyurea coating comprising a polyamine/mono(meth)acrylate reaction product | |
CA2673071C (en) | Triamine/aspartate curative and coatings comprising the same | |
US7972701B2 (en) | Substrates coated with a polyurea comprising a (meth)acrylated amine reaction product | |
US11286400B2 (en) | Curable compositions containing reactive functional compounds and polysiloxane resins, articles of manufacture and coated articles prepared therefrom, and a method of mitigating dirt build-up on a substrate | |
US20190168495A1 (en) | Rubber replacement articles and their use as footwear components | |
WO2019216893A1 (en) | Curable compositions and their use as coatings and footwear components | |
KR102688864B1 (ko) | 고무 대체 물품 및 신발류 구성성분으로서의 이의 용도 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210825 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230726 |