EP3912183B1 - Detecteur de particules elementaires - Google Patents

Detecteur de particules elementaires Download PDF

Info

Publication number
EP3912183B1
EP3912183B1 EP20707305.7A EP20707305A EP3912183B1 EP 3912183 B1 EP3912183 B1 EP 3912183B1 EP 20707305 A EP20707305 A EP 20707305A EP 3912183 B1 EP3912183 B1 EP 3912183B1
Authority
EP
European Patent Office
Prior art keywords
conducting
dynode
avalanche
sensors
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20707305.7A
Other languages
German (de)
English (en)
Other versions
EP3912183A1 (fr
Inventor
Imad LAKTINEH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Claude Bernard Lyon 1 UCBL filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3912183A1 publication Critical patent/EP3912183A1/fr
Application granted granted Critical
Publication of EP3912183B1 publication Critical patent/EP3912183B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/24Dynodes having potential gradient along their surfaces
    • H01J43/246Microchannel plates [MCP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/30Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for

Definitions

  • the invention relates to an elementary particle detector and a method for detecting elementary particles.
  • the invention also relates to an information recording medium for the implementation of this method for detecting elementary particles.
  • Such detectors operate correctly to determine a position of the point of impact of the elementary particle and an instant of arrival of this elementary particle. However, it is desirable to improve the precision on the measurement of this position and/or of the instant of arrival.
  • the invention therefore aims to propose an elementary particle detector in which the precision of the measurement of the position of the point of impact and/or the precision of the measurement of the instant of arrival of the elementary particle are improved. It therefore relates to such a detector of elementary particles according to claim 1.
  • the invention also relates to a method for detecting an elementary particle using the claimed detector.
  • the invention also relates to an information recording medium, readable by an electronic computer, this recording medium comprising instructions for the execution of the method for detecting elementary particles, when these instructions are executed by the electronic calculator.
  • Detector 2 is a detector known by the term “microchannel pancake detector” or under the English term “MicroChannel Plate Detector”.
  • the elementary particles to be detected are photons.
  • the cathode 4 is made of a material which is also electrically conductive or resistive.
  • the cathode 4 is connected to a terminal 20 of a power source 22 which delivers a potential HV1.
  • the cathode 4 is generally made of an emissive material which generates at least one electron when an elementary particle strikes it. In the particular case where the elementary particle is a photon, this cathode is known by the term “photocathode”.
  • electrically conductive material or “conductive material” is meant here a material whose resistivity at 20° C. is less than 10 -2 ⁇ .m and, preferably, less than 10 -5 ⁇ .m or 10 -6 ⁇ .m. Generally, the resistivity of an electrically conductive material at 20°C is greater than 10 -10 ⁇ .m.
  • electrically resistive material or “resistive material” is meant here a material whose resistivity at 20° C. is less than 10 12 ⁇ .m and, preferably, less than 10 6 ⁇ .m or 10 4 ⁇ .m .
  • Dynode 6 is located just below cathode 4.
  • Dynode 6 is a microchannel plate known by the acronym MCP (“Micro-Channel Plate”). It is crossed vertically, from side to side, by several million channels often called “microchannels”. On the figure 1 , only a few channels 24 are schematically represented. In this embodiment, each channel runs along a vertical axis 26.
  • the density of channels 24 per unit horizontal area is typically greater than one thousand channels per square centimeter or 10,000 channels per square centimeter or 100,000 channels per square centimeter.
  • the density of channels per square centimeter is very important. For example, this density is greater than 1 million channels per square centimeter or greater than 3 million channels per square centimeter.
  • the average diameter Dm24 of the channels 24 is very small, that is to say, generally less than 100 ⁇ m or 50 ⁇ m or 10 ⁇ m. This diameter Dm24 is also usually greater than 10 nm or 50 nm.
  • mean diameter is meant the unweighted or arithmetic average of the diameters of all cross-sections of channel 24 along its axis 26.
  • the cross-sections are horizontal.
  • the term “diameter” designates the hydraulic diameter of this cross-section.
  • the cross section of channel 24 is circular. Moreover, this cross-section is constant over the entire length of the channel 24.
  • the length of the channel 24 in the Z direction is conventionally greater than its diameter Dm24 or 2*Dm24 or 10*Dm24. In this description, the symbol "*" designates the multiplication operation. This length is also usually less than 500*Dm24 or 100*Dm24 or 50*Dm24.
  • the shortest horizontal distance which separates the axes 26 of two channels 24 located one beside the other is usually less than 4*Dm24 or 2*Dm24.
  • At least the upper part of the vertical walls of the channel 24 consists of an emissive coating 32 ( picture 2 ).
  • the liner 32 forms only part of the vertical wall of the channel 24, it typically forms more than a quarter or more than a third of the height of this vertical wall.
  • the emissive coating 32 extends the full length of the channel 24.
  • the coating 32 is made of an emissive material which, on average, when struck by an electron generates in response more than one secondary electron and preferably more than 1.5 or 2 secondary electrons.
  • the emissive material used to produce the coating 32 is chosen from the group consisting of the emissive materials listed between lines 6 to 44 of column 10 of US6384519B1 .
  • the dynode 6 includes a matrix 34 in which these channels 24 are cut.
  • the matrix 34 can be made of a resistive material or a dielectric material.
  • dielectric material is meant here a material whose resistivity at 20° C. is greater than or equal to 10 12 ⁇ .m and, preferably, greater than or equal to 10 14 ⁇ .m or 10 16 ⁇ .m. Generally, the resistivity of a dielectric material at 20°C is less than 10 28 ⁇ .m.
  • a resistive material is a material whose resistivity is between those of dielectric materials and conductive materials.
  • the grid 8 in combination with the cathode 4 generates an electric field suitable for accelerating downwards the electrons located and generated inside each of the channels 24.
  • the electric field generated is between 1 kV/cm 50 kV/cm.
  • the grid 8 is made of a conductive material, such as a metal. It is connected to a terminal 36 of the source 22 which delivers a potential HV2 greater than the potential HV1.
  • the difference between the potentials HV1 and HV2 is, for example, greater than 10 volts or 100 volts and generally less than 5000 volts or 2000 volts.
  • the grid 8 is also, as far as possible, transparent to the electrons accelerated and expelled by the outputs 30 of the channels 24.
  • Such a grid is known under the name of “Frisch grid” or “Frisch grid” in English.
  • the degree of transparency of a conductive grid is defined as being the value, expressed in %, of the ratio between the number of electrons passing through this grid divided by the number of electrons projected onto this grid. This rate of transparency is generally between 30% and 95% or between 45% and 90%. For example, here it is greater than 60% or 70%.
  • the grid 8 is pierced with a multitude of small holes 38, only a small number of which are schematically represented on the figure 1 .
  • the diameter D38 of the holes 38 is less than 50 ⁇ m or 100 ⁇ m.
  • the cumulative surfaces of the cross sections of the holes 38 represent more than 30% or 45% and, preferably, more than 60% or 70% of the smallest surface of the conductive grid containing all these holes 38.
  • the thickness of the grid 8 is small compared to the diameter D38 of the holes, ie the thickness of the grid is generally less than the diameter D38 or 0.5*D38.
  • the impedance of gate 8 is uniform.
  • the impedance of the grid is uniform if the impedance between any two points A and B of the grid 8, spaced horizontally from each other by a constant horizontal distance, is systematically included between 0.95Z AB and 1.05Z AB and this whatever the chosen horizontal distance, where Z AB is a constant.
  • the dynode 10 is positioned relative to the dynode 6 so that the electrons which escape from the outlet 30 of a channel 24 are distributed in several channels 40.
  • the orthogonal projection, on a horizontal plane containing the inputs 42, of the cross section of the output 30 of each channel 24 covers, at least partially, at least two inputs 42. Thanks to this, the electrons escaping from the outlet 30 are distributed in several of the channels 40 of the dynode 10.
  • the diameter Dm40 is less than the diameter Dm24 and, preferably, less than 0.8*Dm24 or 0.5*Dm24.
  • This embodiment is illustrated in the picture 3 .
  • the orthogonal projection of the output 30 of a channel 24 on the horizontal plane containing the inputs 42 is represented by a dotted circle which bears the same reference as the output 30.
  • the diameter Dm40 is equal to or greater than the diameter Dm24.
  • the channels 40 are horizontally offset from the channels 24. By way of illustration, this is shown in the figure 4 in the particular case where the diameters Dm40 and Dm24 are equal.
  • the grid 12 is identical to the grid 8, except that the holes bear the reference numerals 50.
  • the diameter D50 of the holes 50 is not necessarily equal to the diameter D38. Indeed, if necessary, it is adapted to obtain a transparency rate greater than 60% or 80%.
  • the D50 diameter is adapted according to the Dm40 diameter.
  • Gate 12 is connected to a terminal 52 of source 22 which generates a potential HV3.
  • the potential HV3 is higher than the potential HV2 to create an electric field in the channels 40 which makes it possible to accelerate the secondary electrons towards the gate 12.
  • the potential HV3 is adjusted to generate an electric field identical to that generated in the channels 24.
  • the spacer 14 separates the dynode 10 from the reading plate 16. More specifically, it provides an empty space 56 between the outputs 42 of the channels 40 and a horizontal outer face 60 of the plate 16. This empty space 56 is crossed by the avalanche of secondary electrons which emerge from the outputs 44 of the dynode 10 when an elementary particle is detected. This space 56 increases the spatial dispersion of these secondary electrons, in particular, in the horizontal direction. Thus, the surface of the impact zone of the secondary electrons of the avalanche on the outer face 60 is greater in the presence of the spacer 14 than in its absence.
  • the spacer 14 is arranged so that the distance between the horizontal plane containing the outlets 44 and the outer face 60 is greater than 10 ⁇ m or 15 ⁇ m and generally less than 300 ⁇ m or 200 ⁇ m.
  • cathode 4, dynode 6, grid 8, dynode 10 and grid 12 forms an electrical charge amplification device. More specifically, each time an electron is generated by the cathode 4 and enters one of the channels 24, the probability is high that it strikes the coating 32, which, in response, causes the generation, on average, of more of a secondary electron. These secondary electrons are accelerated in turn and collide again with the coating 32, which multiplies the number of secondary electrons and causes what is called an avalanche of secondary electrons. The secondary electrons penetrate inside the channels 40 and the same phenomenon of demultiplication of the secondary electrons occurs in these channels 40.
  • each elementary particle that strikes the cathode 4 causes the appearance of an avalanche of secondary electrons which is then projected onto the outer face 60 of the plate 16.
  • the location of this avalanche of secondary electrons on the outer face 60 is representative of the position of the point of impact of the elementary particle on the cathode 4. It is therefore necessary to determine the location of the avalanche of secondary electrons in order to be able to deduce the position of this point of impact.
  • the plate 16 makes it possible, in particular, to determine the location of this avalanche of secondary electrons in a horizontal plane.
  • Each strip 62 is electrically isolated from the other conductive strips 62 present in the plate 16.
  • Each strip 62 extends mainly horizontally from a distal end to a proximal end.
  • the distal and proximal ends of each band 62 are located on one edge of the plate 16. The arrangement of the bands 62 is described in more detail with reference to the figures 8 and 9 .
  • the bands 62 are located on the exterior face 60, they are directly exposed to the secondary electrons of each avalanche. Thus, when the electrons of an avalanche reach a band 62 this generates a peak of characteristic charges on this band.
  • a load peak 64 is schematically represented on the graph of the figure 5 .
  • the abscissa axis represents time and the ordinate axis represents the quantity of electric charges.
  • This peak 64 begins at a time t 1 and ends at a time t 2 .
  • the times t 1 and t 2 correspond to times when the quantity of charges on the strip 62, respectively, exceeds and falls below a predetermined threshold. Indeed, the secondary electrons of the same avalanche do not all arrive at the same time and at the same place on the strip 62 because they have not all followed the same route.
  • each strip 62 is connected to a respective input of a sensor 70 of electrical charges.
  • the detector 2 comprises a set 72 of sensors which comprises at least as many sensors 70 as there are bands 62.
  • the memory 82 contains the instructions and the data necessary for the execution of the method of the figure 10 .
  • the detector 2 comprises a set 90 of one or more sensors 92 each capable of measuring a time at which the avalanche of secondary electrons crosses the grid 8. Subsequently, this time is called “crossing time”.
  • each of these sensors is electrically connected to the grid 8.
  • the assembly 90 here comprises four sensors 92 individually designated by the references 92a to 92d on the figure 7 . To simplify the figure 1 , only one of these sensors 92 is shown in this figure. In this first embodiment, each sensor is for example connected to a respective point on the periphery of the grid 8.
  • the connection points of the sensors 92a to 92d are denoted, respectively, P 92a to P 92d .
  • these points P 92a to P 92d are uniformly distributed over the periphery of the grid 8.
  • the unit 80 is also connected to each of the sensors 92 to determine a time t a of arrival of the elementary particle from the measurements of the sensors 92.
  • dielectric layer is meant a horizontal layer of which more than 90% of the volume is made of dielectric material.
  • the metallization layers are made of copper.
  • the metallization layer 114 is structured to form horizontal tiles 120 separated horizontally mechanically from each other by interstices 124.
  • the reference 120 is used as a generic reference to designate all the tiles made in the layer 114
  • Each tile 120 is completely surrounded by a gap 124.
  • the gaps 124 are filled with a dielectric material, for example, identical to that of the dielectric layer 112.
  • 120 tiles are all identical to each other.
  • each tile 120 is deduced from another tile 120 only by a horizontal translation possibly combined with a rotation around a vertical axis.
  • Each tile is shaped like a polygon with all sides the same length.
  • the largest dimension of a tile 120 is chosen so that each avalanche of secondary electrons which touches the plate 16 strikes at least two, and in this embodiment, at least three tiles 120 belonging to different conductive strips 62 .
  • the largest dimension of a tile 120 is preferably less than or equal to 5*Dm40 or 3*Dm40 and, advantageously, less than Dm40 or 0.5Dm40.
  • Largest dimension of a tile we designate here the length of the longest side of the horizontal rectangle of smallest surface which entirely contains the tile 120.
  • smallest dimension of a tile we designate the length of the short side of this rectangle.
  • the smallest dimension of a tile 120 is typically greater than 0.01*Dm40 or 0.1*Dm40 or 0.3*Dm40.
  • track 130 is made in metallization layer 110.
  • Vias 132, 134 therefore only cross dielectric layer 112. used to make the electrical tracks, corresponding to the track 130, for the conductive strips 62 which extend, respectively, parallel to other directions U and W.
  • the V direction is parallel to the Y direction and the U directions and W are angularly offset by, respectively, 60° and 120° with respect to the direction V.
  • each conductive strip comprises at least one additional via 136 which opens onto the underside of the layer 104 and which makes it possible to connect this strip to a respective sensor 70.
  • the via 136 extends, for example, from one of the connections 128 to this underside of the layer 104. Consequently, the sensor 70 which measures the quantity of electric charges present on this strip 62 can be placed n anywhere on this underside and not just on the periphery of plate 16.
  • each tile 120 has the shape of a diamond whose two vertices 140, 142 the most pointed are located at each end of the long diagonal of this rhombus.
  • the angle at vertices 140 and 142 is 60°.
  • the tiles 120 are arranged relative to each other so as to form a paving, also known by the English term of "tessallation", of the front face of the dielectric layer 112.
  • the tiles 120 are distributed over the front face of the dielectric layer 112 so as to form a periodic tiling, that is to say a tiling which can be entirely constructed by periodically repeating a same pattern in at least two different horizontal directions.
  • the repeated pattern is a hexagon formed by three adjacent tiles 120 which carry, respectively, the numerical references 120a, 120b and 120c on the figure 9 .
  • the large diagonals of these tiles 120a, 120b and 120c are, respectively, parallel to directions Da, Db and Dc.
  • the direction Da is parallel to the direction X and the directions Db and De are angularly offset, respectively, by +60° and +120° with respect to the direction Da.
  • these three tiles 120a, 120b and 120c have a common vertex.
  • the pattern is repeated periodically in the Da, Db and Dc directions.
  • each tile 120a, 120b and 120c is filled with a respective texture.
  • All the tiles 120b whose long diagonals are aligned on the line 126 are electrically connected in series to each other from one edge of the paving to the opposite edge to form a conductive strip 62 which extends parallel to the direction V.
  • each tile 120b is separated from the immediately consecutive tile 120b along line 126 by tiles 120a and 120c. Thanks to this, the precision on the measurement of the position of the elementary particle is increased.
  • the other tiles 120b are electrically connected to each other in a similar manner to form a plurality of conductive strips 62 which extend parallel to the Y direction.
  • the various conductive strips 62 parallel to the Y direction thus formed are electrically isolated from each other. others.
  • the tiles 120a whose long diagonals are aligned one after the other along a line 144 parallel to the direction W are all electrically connected in series with each other by connections 128. Proceeding in this way for all the tiles 120a, a plurality of conductive strips 62 electrically insulated from each other and all parallel to the direction U are formed.
  • the tiles 120c aligned one behind the other along the same line 146 parallel to the direction U are electrically connected in series to each other. by connections 128.
  • a plurality of conductive strips 62 are formed, electrically insulated from each other and all parallel to the direction U.
  • the tiles 120 When the dimensions of the tiles 120 are large enough, these can be etched into the metallization layer 114 using simple etching methods such as photolithography. When the dimensions of the tiles 120 are very small, it is possible to produce them using the same manufacturing processes as those used to interconnect electronic components produced on a silicon substrate. Typically, these are the processes implemented during the manufacturing phase designated by the acronym BEOL ("Back End Of Line").
  • BEOL Back End Of Line
  • the metallization layers used to make the tiles 120 and their connections 128 are then, for example, chosen from the metallization levels known by the acronyms M1 to M8.
  • the processing unit 80 is capable of unambiguously determining the positions of the two simultaneous impact points if they are separated from each other by a distance greater than the largest dimension of a tile.
  • each conductive strip 62 is identical to that of the other conductive strips 62. Thus, it is not necessary to provide in the plate 16 means for compensating for the difference in sensitivity between the various conductive strips 62.
  • the number of sensors 70 necessary to measure the position of the point of impact of an elementary particle is much smaller than in the case where each tile 120 would be electrically isolated from all the other tiles 120 and directly connected to an input of a respective 70 sensor.
  • the assembly 72 must include as many sensors 70 as tiles 120, whereas in the embodiment described here, it only includes one sensor 70 per conductive strip 62.
  • detector 2 will now be described using the method of figure 10 .
  • a photon strikes the cathode 4 and the cathode 4 generates in response at least one electron which penetrates inside the channel 24 closest to the point of impact. This electron is then accelerated and strikes the coating 32, thus causing the generation of a first avalanche of secondary electrons.
  • the first avalanche of secondary electrons crosses the grid 8, thus generating a peak of charges, such as the peak 94.
  • the electrons of this first avalanche penetrate inside several of the channels 40. These electrons are then once again amplified inside the channels 40. There is thus produced at the output of the dynode 10 a second avalanche of secondary electrons containing many more electrons than the first avalanche of secondary electrons.
  • the second avalanche crosses the grid 12 and the empty space 56 and the secondary electrons of this second avalanche strike several of the tiles 120 of the plate 16. This then generates a peak of charges such as the peak 64, on several of the conductive strips 62.
  • the sensors 70 permanently measure the quantity of electric charges present on each of the strips 62 and transmit these measurements to the unit 80.
  • the sensors 92 permanently measure the quantity electrical charges present on grid 8 and transmit these measurements to unit 80.
  • the unit 80 processes the measurements of the sensors 70 and 92 to establish, during an operation 156, the position Pf of the point of impact of the photon on the cathode 4 and, during an operation 158, the instant t a of arrival of this photon.
  • a location P701 is first determined from the crossing points between the conductive strips 62 on which a charge peak has been detected.
  • the charge distribution zone of the secondary electrons of the second avalanche on the outer face 60 is located at the intersection of several bands 62 on which a charge peak is detected. Since the location of the bands 62 is known in an X,Y plane, the location of this distribution area in the X,Y plane can be determined.
  • the memory 82 comprises a cartography of the bands 62 encoding for each of these bands the equation of the horizontal axis along which it extends. The coordinates in the X, Y plane of the point of intersection between two strips 62 can then easily be found, since the equation of the axes of these strips is known.
  • the measurements of the sensors 92 are additionally used to validate or invalidate the location P701 determined from the measurements of the sensors 70.
  • sensors 92a and 92b in the X,Y plane are known and, for example, stored in memory 82.
  • the deviation Ee ab is then compared with the measured deviation Em ab .
  • the deviation Em ab is equal to the difference tm 92a -tm 92b , where the instants tm 92a and tm 92b are the instants measured when, respectively, the sensors 92a and 92b detect the load peak.
  • location P701 is tested, as described above, in the particular case of the sensors 92a and 92b, by successively using the other possible pairs of sensors 92. If the determined location P701 is validated with the measurements from each of the sensors 92, then location P701 is considered valid. For example, in this case, the position Pf of the point of impact is taken equal to this location P701. Otherwise, location P701 is considered invalid. In the latter case, the method stops and returns to an initial state to determine the position of the point of impact of the next elementary particle received.
  • unit 80 establishes the time t a of arrival of the elementary particle.
  • a time t a92 of arrival of the elementary particle is determined from the measurements of the sensors 92.
  • the unit 80 records the times tm 92a , tm 92b , tm 92c and tm 92d where the sensors, respectively, 92a, 92b, 92c and 92d have detected a load peak such as peak 94.
  • each of these instants tm 92 is established from the instants corresponding to instants t 3 and t 4 of peak 94.
  • each of these instants tm 92a to tm 92d is corrected by subtracting from it the propagation time of the electric signal between the location where the first avalanche crosses the grid 8 and the location of the sensor 92. Subsequently, the instants tm 92a to tm 92d corrected are denoted, respectively, tc 92a to tc 92d .
  • the location where the first avalanche crosses the grid 8 is established from the position Pf determined during operation 156. For example, the coordinates of this location are taken equal to the x,y coordinates of the position Pf.
  • the coordinates of the sensor 92a in the plane X, Y are known and, for example, pre-recorded in the memory 82.
  • the other corrected instants tc 92b , tc 92c and tc 92d are typically calculated in a similar way, but by replacing the distance d 92a by the appropriate distance.
  • the arrival time t a92 of the elementary particle is then determined from the corrected times tc 92a to tc 92d .
  • time t a92 is equal to the arithmetic mean of times tc 92a to tc 92d .
  • the instant t a of arrival of the elementary particle is for example taken equal to the instant t a92 thus determined.
  • FIG 11 represents a reading plate 200 capable of being used instead of plate 16.
  • This plate 200 is identical to plate 16, except that two sensors 70 1 and 70 2 are connected to each end of each conductive strip 62.
  • a single band 62 is shown.
  • the wavy and vertical lines indicate that a central part of plate 200 has not been represented on the figure 11 .
  • the via 136 is replaced by two vias 202 and 204 each located at a respective end of the strip 62.
  • the sensors 70 1 and 70 2 are connected, respectively, to the vias 202 and 204.
  • Each of the sensors 70 1 and 70 2 is identical to sensor 70.
  • Operation 212 is identical to operation 156, except that it comprises, in addition or instead, the determination of a location P702 of the second avalanche of secondary electrons from instants tm 701 and tm 702 where the sensors 70 1 and 70 2 detect the presence of a peak of charges, such as the peak 64.
  • each instant tm 701 and tm 702 is determined from the instants corresponding to the instants t 1 and t 2 of the peak 64
  • the location P702 along this strip 62 is determined from the coordinates xc 62 , yc 62 of the midpoint located halfway between the sensors 70 1 and 70 2 and times tm 701 and tm 702 .
  • the coordinates x 2i , y 2i of the location P702 are taken equal to the coordinates xc 62 , yc 62 to which are added the distance (tm 701 -tm 702 )*c 16 , where c 16 is the speed of propagation of the electrical signal in the band 62.
  • the times tm 701 and tm 702 are equal, only if the second avalanche is located on the midpoint. In all the other cases, that is to say as soon as the second avalanche is offset with respect to the midpoint, the instants tm 701 and tm 702 are different.
  • the difference between times tm 701 and tm 702 is proportional to the shift of the second avalanche with respect to the midpoint.
  • the above calculation is preferably carried out for several of the strips 62 on which a charge peak is detected. For each of these bands 62, a location P702 is obtained. These different P702 locations are then combined to obtain more precise x 2i , y 2i coordinates.
  • the coordinates x 1i , y 1i of the location P701 have been determined from the crossing points of the conductive strips 62 on which a charge peak has been detected, advantageously, these are combined with the coordinates x 2i , y 2i to obtain more precise coordinates of the second avalanche.
  • the coordinates of the second avalanche are obtained by carrying out an arithmetic or weighted average of the coordinates x 1i , y 1i , and x 2i , y 2i .
  • the weight given to coordinates x 2i , y 2i is less than that given to coordinates x 1i , y 1i .
  • the x,y coordinates of the position Pf of the point of impact are taken equal to the more precise coordinates thus determined.
  • Operation 212 is identical to operation 158, except that it comprises, in addition or instead, the determination of a time t a70 of arrival from the measurements of the sensors 70 1 and 70 2 connected to a band 62 affected by the second avalanche of secondary electrons.
  • each instant tm 701 and tm 702 is first corrected to subtract from it the propagation time of the electrical signal between the location of the second avalanche and the location of each of the sensors 70 1 and 70 2 .
  • the coordinates of the location where the second avalanche touches the plate 16 are established from the coordinates of the position Pf determined during operation 210.
  • the coordinates of each of the sensors 70 1 and 70 2 in the plane X , Y are known and, for example, pre-recorded in the memory 82.
  • the corrected instant tc 702 is calculated in a similar way by replacing the coordinates of the sensor 70 1 by the coordinates of the sensor 70 2 .
  • Time t a70 is then obtained by combining times tc 701 and tc 702 calculated for the different bands 62 on which a charge peak has been detected.
  • time t a70 is the arithmetic mean of all times tc 701 and tc 702 calculated.
  • the arrival instant t a is obtained by combining these two instants t a70 and t a92 .
  • time t a is equal to the arithmetic mean of times t a70 and t a92 .
  • FIG 13 represents four conductive grids 220 to 223, capable of being used instead of the grid 8.
  • the grids 220 to 223 here each extend in the same horizontal plane as the horizontal plane in which the grid 8 extends.
  • grids 220 to 223 are arranged and arranged next to each other, so as to occupy the same surface as grid 8.
  • Grids 220 to 223 are electrically insulated from each other. To this end, they are here electrically isolated from each other by two horizontal separations 226 and 228 parallel, respectively, to the X and Y directions.
  • each grid 220 to 223 corresponds to a quarter disc.
  • Each grid 220 to 223 is connected to a respective sensor 92.
  • gates 220 to 223 are connected to sensors 92a to 92d, respectively.
  • grids 220 to 223 are identical to grid 8, except that each of them occupies a respective part of the surface likely to be traversed by the first avalanche of secondary electrons.
  • each of the gates 220 to 223 is connected to terminal 36.
  • This detector is also capable of distinguishing, from the measurements of the sensors 92a to 92d, two elementary particles which arrive at the same time on the cathode 4, from the moment when each of these elementary particles triggers an avalanche of secondary electrons which pass through a respective one of grids 220 to 223.
  • each tile 252 is identical to the tiles 120 except that they each have a triangular shape. More specifically, each tile 252 is an equilateral or isosceles triangle. In this embodiment, the tiles 252 are electrically connected to each other so as to form conductive strips 254 which extend parallel to six directions A, B, C, D, E and F.
  • Directions A and D are parallel to the Y direction.
  • the B and E directions are angularly offset by -60° from, respectively, to directions A and D.
  • Directions C and E are angularly offset by +60° with respect to directions A and D, respectively.
  • the reference numerals 252a, 252b, 252c, 252d, 252e and 252f are used to designate the tiles 252 which belong to parallel conductive strips, respectively, to the directions A, B, C, D, E and F.
  • each tile that belongs to the conductive strips that extend parallel to a predetermined direction is filled with a respective texture, which makes it possible to identify this tile in the plate 250, even without a numerical reference.
  • the periodically repeating pattern is a hexagon having one each of tiles 252a, 252b, 252c, 252d, 252e and 252f. In this pattern, these tiles 252a, 252b, 252c, 252d, 252e and 252f share a common vertex located on the geometric center of the hexagon. This hexagon is repeated periodically in directions A, B and C.
  • Tiles 252a and 252d are aligned along lines parallel to directions A and D such as line 256. Along line 256, a tile 252d is interposed between each pair of successive tiles 252a.
  • Tiles 252b and 252f are aligned along lines parallel to directions B and F such as line 258. Along line 258, a tile 252b is interposed between each pair of successive tiles 252f.
  • Tiles 252c and 252e are aligned along lines parallel to directions C and E such as line 260. Along line 260, a tile 252c is interposed between each pair of successive tiles 252e.
  • each tile 252 which is not located on an edge of the paving, is immediately surrounded by tiles 252 belonging to five different conductive strips. Therefore, each point of impact results in a variation of the electrical charge of at least six different conductive strips. With the plate 250, it is therefore possible to determine, without ambiguity, the position of at least five simultaneous impact points if the distance separating these impact points two by two is greater than the largest dimension of the tile.
  • matrix 34 is made of the same material as coating 32.
  • the coating 32 is obtained by a chemical reaction between the material that makes up the matrix 34 and a chemical reagent.
  • this chemical reagent is a liquid or gaseous reagent introduced inside each of the channels.
  • coating 32 is the result of oxidation or nitridation of matrix 34.
  • the coating 32 can also be made in one or more of the materials selected from the group consisting of materials listed between lines 41 and 44 of column 10 of US6384519B1 .
  • the coating 32 does not cover all of the channel walls.
  • the coating 32 is only located on the upper part of the channels, while the lower part of these channels has no emissive coating.
  • the emissive material is a gas and the channels are filled with this gas.
  • the gas is a mixture of 90%, by mass, argon and 10%, by mass, carbon dioxide.
  • coating 32 can be omitted.
  • the cross section of the channels can have any shape.
  • the cross section of the channels can be a polygon, such as a square, or be an oval.
  • the cross-section of the channels is not necessarily constant over the entire length of the channel.
  • the cross-section of the channel can be reduced as one advances towards its exit.
  • the channels can be produced by anisotropic plasma etching, by photolithography or otherwise.
  • the axis of the channels can be tilted with respect to the horizontal plane. If the detector has several dynodes stacked one above the other, the axes of the channels of the upper dynode are preferably inclined along a first direction which intersects a second direction. The axes of the channels of the lower dynode are then parallel to this second direction.
  • the channels do not extend along a straight axis, but along a curved or sinuous path.
  • the dynode can be made of other material.
  • the dynode is made of a resistive or dielectric or conductive material.
  • the material used to make the dynode can be chosen from the group consisting of the materials listed between lines 6 and 17 of column 10 of US6384519B1 .
  • the conductivity of the walls of the channels can be increased by depositing on these walls an underlayer of a resistive material such as, for example, a resistive polymer underlayer. This sub-layer then forms the wall of the channel on which the emissive coating is produced.
  • the ends of each conductive strip are located on the edge of the reading plate.
  • the ends of at least some of the conductive strips are then located between the edges of the reading plate.
  • the conductive strips can be replaced by conductive electrodes electrically insulated from each other and individually connected each to its own sensor 70 as described in US6384519B1 .
  • the conductive strips are rectilinear strips which extend in a single plane. They therefore have no tiles located in a first horizontal plane and electrical connections located under this first horizontal plane. In this case, so that the conductive strips that extend in secant directions can cross each other, they are made in horizontal planes located at different heights.
  • a full and uniform resistive layer is deposited on the outer face 60 of the plate 16.
  • this resistive layer is separated from the conductive strips 62 by a layer of dielectric material.
  • the surface resistivity of this resistive layer known by the English term “sheet resistivity” or “surface resistivity” at 20° Celsius is between 10 k ⁇ /square and 100 M ⁇ /square.
  • the surface resistivity is greater than 100 k ⁇ /square or 1 M ⁇ /square and, advantageously, less than 10 M ⁇ /square.
  • the substrate 61 additionally comprises ground planes extending horizontally between the metallization layers to reduce the crosstalk between the conductive strips.
  • Elementary particles other than a photon can be detected.
  • the elementary particle to be detected can be a charged particle, such as an ion or a muon, or a neutral particle such as a neutron.
  • the cathode is then made of an emissive material which releases at least one electron when it is struck by the elementary particle to be detected.
  • the emissive material therefore depends on the elementary particle to be detected.
  • the emissive material used can be boron or palladium. It is also possible to detect protons by choosing the appropriate emissive material.
  • the detector comprises a single dynode and a single conductive grid.
  • a spacer can also be placed between the dynodes 6 and 10. This makes it possible in particular to improve the spatial dispersion of the secondary electrons in different channels. For example, it is then possible to distribute the electrons which leave the outlet 30 of a single channel 24 in several channels 40 even if the diameter Dm40 of the channels 40 is greater than the diameter Dm24.
  • the spacer 14 can be omitted in certain embodiments such as the embodiments where the diameter Dm24 is greater than the diameter Dm40.
  • the detector comprises a single sensor 92.
  • the combination of instants tc 92a to tc 92d is omitted.
  • the sensors 70 and 92 are not necessarily electrically connected directly to, respectively, a strip 62 and the grid 8.
  • the detector comprises several dynodes and several conductive grids located between these dynodes, only one or more of these conductive grids are connected to sensors 92.
  • the sensors 92 are connected to the grid 12 at the instead of being connected to the grid 8. In this case, the quantity of electric charges which crosses the grid 12 is greater but the spatial distribution of the electrons is then more spread out.
  • grids 220 to 223 are possible. For example, more than four grids can be used or, conversely, less than four grids.
  • the shapes of the grids 220 to 223 can also be different.
  • the sensors 70 are connected to the distal or proximal end of the conductive strips 62.
  • the connections to the strips 62 are distributed over the periphery of the reading plate. It is then not necessary to provide a vertical via to connect the sensors 70 to a central point of these strips 62.
  • location P702 is not determined.
  • the Pf position of the point of impact is only established from the location P701.
  • the location P701 is not determined.
  • the position Pf is established using only the location P702 and without using the points of intersection between the conductive strips 62.
  • Enabling and, alternately, disabling of location P701 can be applied to location P702.
  • enabling and, alternately, disabling of the location determined from the measurements of the sensors 92 may be omitted.
  • a location P92 where the first avalanche crosses the grid 8 from the measurements of the sensors 92. More precisely, the fact that there are several sensors is exploited at this time. 92 connected to the same grid 8 at different places. The propagation times of the electric signal, generated by the first avalanche of secondary electrons which crosses the grid 8, up to each of the sensors 92a to 92d are then not identical because the distances to be covered are not the same. It is this difference between propagation times which is exploited to determine the P92 location by triangulation. The determination of a location by triangulation being well known, this is not described in more detail here. Then, the position Pf of the point of impact is established by combining the locations P701 and P92 or P702 and P92. For example, position Pf is equal to the arithmetic mean of locations P701 and P92.
  • locations P701, P702 and P92 can be combined to determine the Pf position of the point of impact.
  • a weighted average of locations P701 and P92 can be used, preferably giving more weight to location P701.
  • the determination of the instant t a92 from the various corrected instants tc 92a to tc 92d can be carried out other than by a simple arithmetic average.
  • the arithmetic average is replaced by a weighted average in which a greater weight is assigned to the sensors 92 which are closest to the point of impact.
  • only the measurement or measurements of the sensors 92 which are at a distance less than a predetermined threshold from the point of impact are taken into account.
  • time t a70 can be calculated by implementing means other than a simple arithmetic average.
  • the various variants described in the particular case of the determination of the instant t a92 also apply to the determination of the instant t a70 .
  • time t a is a weighted average of times t a70 and t a92 giving more weight to time t a92 than to time t a70 .
  • the correction of times tm 92 or tm 70 is omitted.
  • the instant t a92 or t a70 is calculated directly from the measurements of the sensors 92 or 70 but without using the position Pf of the point of impact. This embodiment is practical if the propagation times are negligible.
  • time t a70 can be implemented even if a single sensor 70 is connected to each conductive strip 62.
  • the instant t a70 is not determined and the measurements of the sensors 70 are not used to determine the instant t a .
  • time t a92 is not determined.
  • the instant t a is determined solely from the measurements of the sensors 70.
  • the instant t a is then taken equal to the instant t a70 .
  • the sensors 92 can be omitted.
  • the avalanche of secondary electrons flares up.
  • the zone of impact of the secondary electrons on the reading plate is therefore wider than the zone of the conductive grid crossed by these same secondary electrons.
  • the spatial dispersion of these secondary electrons is lower at the level of the conductive grid than at the level of the reading plate. Since the spatial dispersion of these secondary electrons at the level of the conductive grid is lower, it generates a narrower charge peak.
  • the impedance of the conductive grid is much more uniform than the impedance of the conductive strips 62. Indeed, the impedance of the tiles 120 is different from the impedance of the connections 128 which creates numerous impedance breaks along each strip 62. Because of these two characteristics, the uncertainty on the instant t a at which the elementary particle arrives is lower if this instant is established from the measurements of the sensors 92 than only from the measurements of the sensors 70.
  • Using conductive strips instead of individual electrodes greatly reduces the number of sensors 70 needed to determine the position Pf of the point of impact.
  • the tiles of each conductive strip are located in the same plane, so that they have the same sensitivity. It is therefore not necessary to implement means for correcting differences in sensitivity between the conductive strips, as is the case when these conductive strips are located in different horizontal planes.
  • the largest dimension of the tiles is less than or equal to the largest dimension of the exit of the channels simply makes it possible to distribute the avalanche of secondary electrons over several tiles and this even in the case where the detector comprises a single dynode .
  • the invention naturally applies to the study of particle physics.
  • the invention also applies to the field of imaging, in particular in the space, medical or environmental field and also the field of transport.
  • the invention can be used in the context of treatment by hadrontherapy or protontherapy or even in the context of positron emission therapy (PET).
  • PET positron emission therapy

Landscapes

  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Description

  • L'invention concerne un détecteur de particules élémentaires et un procédé de détection de particules élémentaires. L'invention concerne également un support d'enregistrement d'informations pour la mise en oeuvre de ce procédé de détection de particules élémentaires.
  • Des détecteurs connus de particules élémentaires comportent :
    • une cathode et une grille conductrice apte à créer une différence de potentiels susceptible d'accélérer des électrons en direction de la grille conductrice, la grille conductrice étant apte à être traversée par les électrons accélérés,
    • une dynode interposée entre la cathode et la grille conductrice, cette dynode étant apte, pour chaque particule élémentaire, à produire une avalanche d'électrons secondaires, cette dynode comportant à cet effet plusieurs canaux, chaque canal comportant un matériau émissif, ce matériau émissif étant apte, en réponse à un impact d'un électron, à générer, en moyenne, plus d'un électron secondaire,
    • une plaque de lecture disposée du côté de la grille conductrice opposé à la dynode, cette plaque de lecture comportant :
      • une face extérieure agencée de manière à être percutée par l'avalanche d'électrons secondaires, et
      • des électrodes disposées les unes à côtés des autres dans une face parallèle à ou confondue avec la face extérieure,
    • des premiers capteurs aptes à mesurer la quantité de charges électriques sur les électrodes,
    • une unité de traitement apte à déterminer l'emplacement de l'avalanche d'électrons à partir de la quantité de charges électriques mesurée par les premiers capteurs et à partir de l'emplacement connu des électrodes.
  • Par exemple, un tel détecteur de particules élémentaires est connu du brevet US6384519B1 .
  • De tels détecteurs fonctionnent correctement pour déterminer une position du point d'impact de la particule élémentaire et un instant d'arrivée de cette particule élémentaire. Toutefois, il est souhaitable d'améliorer la précision sur la mesure de cette position et/ou de l'instant d'arrivée.
  • L'invention vise donc à proposer un détecteur de particules élémentaires dans lequel la précision de la mesure de la position du point d'impact et/ou la précision de la mesure de l'instant d'arrivée de la particule élémentaire sont améliorées. Elle a donc pour objet un tel détecteur de particules élémentaires conforme à la revendication 1.
  • L'invention a également pour objet un procédé de détection d'une particule élémentaire à l'aide du détecteur revendiqué.
  • Enfin, l'invention a également pour objet un support d'enregistrement d'informations, lisibles par un calculateur électronique, ce support d'enregistrement comportant des instructions pour l'exécution du procédé de détection de particules élémentaires, lorsque ces instructions sont exécutées par le calculateur électronique.
  • L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif et faite en se référant aux dessins sur lesquels :
    • la figure 1 est une illustration schématique, en coupe verticale, d'un premier mode de réalisation d'un détecteur de particules élémentaires ;
    • la figure 2 est une illustration schématique et partielle en coupe verticale d'un canal d'une dynode du détecteur de la figure 1 ;
    • les figures 3 et 4 sont des illustrations schématiques de différents positionnements possibles des canaux d'une dynode supérieure par rapport aux canaux d'une dynode inférieure dans un détecteur tel que le détecteur de la figure 1 ;
    • la figure 5 est une illustration schématique d'un pic de charges susceptible d'être mesuré par une plaque de lecture du détecteur de la figure 1 ;
    • la figure 6 est une illustration schématique d'un pic de charges susceptible d'être mesuré sur une grille conductrice du détecteur de la figure 1 ;
    • la figure 7 est une illustration schématique et en vue de dessus d'une grille conductrice du détecteur de la figure 1 ;
    • la figure 8 est une illustration schématique partielle, en coupe verticale, d'une plaque de lecture du détecteur de la figure 1 ;
    • la figure 9 est une illustration schématique, partielle et en vue de dessus, de l'agencement de différentes électrodes, les unes par rapport aux autres, de la plaque de lecture de la figure 8 ;
    • la figure 10 est un organigramme d'un procédé de détection de particules élémentaires à l'aide du détecteur de la figure 1 ;
    • la figure 11 est une illustration schématique et partielle, en coupe verticale, d'un autre mode de réalisation d'une plaque de lecture ;
    • la figure 12 est un organigramme d'un procédé de détection de particules élémentaires en utilisant la plaque de lecture de la figure 11 ;
    • la figure 13 est une illustration schématique et en vue de dessus d'un autre mode de réalisation d'une grille conductrice pour le détecteur de la figure 1 ;
    • la figure 14 est une illustration schématique, partielle et en vue de dessus, d'un autre agencement possible des différentes électrodes de la plaque de lecture.
  • Dans ces figures, les mêmes références sont utilisées pour désigner les mêmes éléments. Dans la suite de cette description, les caractéristiques et fonctions bien connues de l'homme du métier ne sont pas décrites en détail.
  • Chapitre I : Exemples de modes de réalisation
  • La figure 1 représente un détecteur 2 de particules élémentaires. Le détecteur 2 est un détecteur connu sous le terme de "détecteur à galette de microcanaux" ou sous le terme anglais de "MicroChannel Plate Detector". Dans ce mode de réalisation, les particules élémentaires à détecter sont des photons.
  • L'architecture générale et le principe de fonctionnement d'un tel détecteur sont connus. Par exemple, le lecteur peut se référer au brevet US6384519B1 . Ainsi, par la suite, seuls les détails nécessaires pour comprendre l'invention sont décrits en détail.
  • Dans cette demande, les figures sont orientées par rapport à un repère orthogonal XYZ, où Z est la direction verticale qui pointe vers le haut. Les termes tels que "supérieur", "inférieur", "haut", "bas", "au-dessus" et "au-dessous" sont définis par rapport à la direction Z.
  • Le détecteur 2 comporte successivement en allant du haut vers le bas les différents éléments suivants:
    • une cathode 4,
    • une dynode supérieure 6,
    • une grille conductrice supérieure 8,
    • une dynode inférieure 10,
    • un grille conductrice inférieure 12,
    • un espaceur 14, et
    • une plaque 16 de lecture.
  • Ces différents éléments s'étendent essentiellement chacun dans un plan horizontal. Ils sont donc beaucoup plus larges que haut. Ils sont également directement empilés les uns sur les autres. Toutefois, pour accroître la lisibilité de la figure 1, sur cette figure, ces différents éléments sont espacés verticalement les uns des autres.
  • La cathode 4 est réalisée dans un matériau qui est aussi électriquement conducteur ou résistif. La cathode 4 est raccordée à une borne 20 d'une source 22 d'alimentation qui délivre un potentiel HV1. La cathode 4 est en général réalisée dans un matériau émissif qui génère au moins un électrons lorsqu'une particule élémentaire le percute. Dans le cas particulier où la particule élémentaire est un photon, cette cathode est connue sous le terme de "photocathode".
  • Par "matériau électriquement conducteur" ou "matériau conducteur", on désigne ici un matériau dont la résistivité à 20°C est inférieure à 10-2 Ω.m et, de préférence, inférieure à 10-5 Ω.m ou 10-6 Ω.m. Généralement, la résistivité d'un matériau électriquement conducteur à 20°C est supérieure à 10-10 Ω.m.
  • Par "matériau électriquement résistif" ou "matériau résistif", on désigne ici un matériau dont la résistivité à 20°C est inférieure à 1012 Ω.m et, de préférence, inférieure à 106 Ω.m ou 104 Ω.m.
  • La dynode 6 est située juste sous la cathode 4. La dynode 6 est une galette de microcanaux connue sous l'acronyme MCP (« Micro-Channel Plate »). Elle est traversée verticalement, de part en part, par plusieurs millions de canaux souvent appelés « microcanaux ». Sur la figure 1, seuls quelques canaux 24 sont schématiquement représentés. Dans ce mode de réalisation, chaque canal s'étend le long d'un axe vertical 26.
  • La densité des canaux 24 par unité de surface horizontale est typiquement supérieure à mille canaux par centimètre carré ou 10 000 canaux par centimètre carré ou 100 000 canaux par centimètre carré. Ici, la densité de canaux par centimètre carré est très importante. Par exemple, cette densité est supérieure à 1 million de canaux par centimètre carré ou supérieure à 3 millions de canaux par centimètre carré. A cet effet, le diamètre moyen Dm24 des canaux 24 est très petit, c'est-à-dire, généralement inférieur à 100 µm ou 50 µm ou 10 µm. Ce diamètre Dm24 est aussi habituellement supérieur à 10 nm ou 50 nm.
  • Par "diamètre moyen", on désigne la moyenne non pondérée ou arithmétique des diamètres de toutes les sections transversales du canal 24 le long de son axe 26. Les sections transversales sont horizontales. De plus, lorsque la section transversale du canal 24 n'est pas circulaire, le terme « diamètre » désigne le diamètre hydraulique de cette section transversale.
  • Ici, la section transversale du canal 24 est circulaire. De plus, cette section transversale est constante sur toute la longueur du canal 24. La longueur du canal 24 dans la direction Z est classiquement supérieure à son diamètre Dm24 ou à 2*Dm24 ou à 10*Dm24. Dans cette description, le symbole "*" désigne l'opération de multiplication. Cette longueur est aussi habituellement inférieure à 500*Dm24 ou 100*Dm24 ou 50*Dm24.
  • La distance horizontale la plus courte qui sépare les axes 26 de deux canaux 24 situés l'un à côté de l'autre est habituellement inférieure à 4*Dm24 ou 2*Dm24.
  • Chaque canal 24 comporte :
    • une entrée 28 (figure 2) par l'intermédiaire de laquelle les électrons à amplifier pénètrent à l'intérieur du canal 24, et
    • une sortie 30 (figure 2) par l'intermédiaire de laquelle les électrons amplifiés s'échappent du canal 24.
  • Au moins, la partie supérieure des parois verticales du canal 24 est constituée d'un revêtement émissif 32 (figure 2). Lorsque le revêtement 32 ne forme qu'une partie de la paroi verticale du canal 24, il forme typiquement plus d'un quart ou plus d'un tiers de la hauteur de cette paroi verticale. Ici, le revêtement émissif 32 s'étend sur toute la longueur du canal 24.
  • Le revêtement 32 est réalisé dans un matériau émissif qui, en moyenne, lorsqu'il est heurté par un électron génère en réponse plus d'un électron secondaire et de préférence plus de 1,5 ou 2 électrons secondaires. Par exemple, le matériau émissif utilisé pour réaliser le revêtement 32 est choisi dans le groupe constitué des matériaux émissifs listés entre les lignes 6 à 44 de la colonne 10 de US6384519B1 .
  • En dehors des canaux 24 et des revêtements 32, la dynode 6 comporte une matrice 34 dans laquelle sont creusés ces canaux 24. La matrice 34 peut être réalisée dans un matériau résistif ou un matériau diélectrique. Par « matériau diélectrique », on désigne ici un matériau dont la résistivité à 20°C est supérieure ou égale à 1012 Ω.m et, de préférence, supérieure ou égale à 1014 Ω.m ou 1016 Ω.m. Généralement, la résistivité d'un matériau diélectrique à 20°C est inférieure à 1028 Ω.m. Un matériau résistif est un matériau dont la résistivité est comprise entre celles des matériaux diélectriques et des matériaux conducteurs.
  • La grille 8 en combinaison avec la cathode 4 génère un champ électrique propre à accélérer vers le bas, les électrons situés et générés à l'intérieur de chacun des canaux 24. Par exemple, le champ électrique généré est compris entre 1 kV/cm 50 kV/cm.
  • A cet effet, la grille 8 est réalisée dans un matériau conducteur, tel qu'un métal. Elle est raccordée à une borne 36 de la source 22 qui délivre un potentiel HV2 supérieur au potentiel HV1. La différence entre les potentiels HV1 et HV2 est, par exemple, supérieure à 10 Volts ou 100 Volts et généralement, inférieure à 5 000 Volts ou 2 000 Volts.
  • La grille 8 est aussi, autant que possible, transparente aux électrons accélérés et expulsés par les sorties 30 des canaux 24. Une telle grille est connue sous le nom de « Grille de Frisch » ou « Frisch grid » en anglais.
  • Le taux de transparence d'une grille conductrice est défini comme étant la valeur, exprimée en %, du rapport entre le nombre d'électrons traversant cette grille divisé par le nombre d'électrons projetés sur cette grille. Ce taux de transparence est généralement compris entre 30 % et 95 % ou entre 45 % et 90 %. Par exemple, ici, il est supérieur à 60 % ou 70 %.
  • A cet effet, la grille 8 est transpercée d'une multitude de petits trous 38, dont seul un petit nombre est schématiquement représenté sur la figure 1. Typiquement, le diamètre D38 des trous 38 est inférieur à 50 µm ou 100 µm. Pour obtenir un taux de transparence élevé, le cumul des surfaces des sections transversales des trous 38 représentent plus de 30 % ou 45 % et, de préférence, plus de 60 % ou 70 % de la plus petite surface de la grille conductrice contenant tous ces trous 38.
  • Typiquement, l'épaisseur de la grille 8 est faible devant le diamètre D38 des trous, c'est-à-dire que l'épaisseur de la grille est généralement inférieure au diamètre D38 ou à 0,5*D38.
  • L'impédance de la grille 8 est uniforme. Par exemple, ici, on considère que l'impédance de la grille est uniforme si l'impédance entre deux points A et B quelconque de la grille 8, espacés horizontalement l'un de l'autre par une distance horizontale constante, est systématiquement comprise entre 0,95ZAB et 1,05ZAB et ceci quelle que soit la distance horizontale choisie, où ZAB est une constante.
  • La dynode 10 est identique à la dynode 6 sauf que :
    • les canaux, les entrées et les sorties de ces canaux portent, respectivement, les références numériques 40, 42 et 44, et
    • le diamètre Dm40 de ces canaux 40 est différent du diamètre Dm24.
  • La dynode 10 est positionnée par rapport à la dynode 6 de manière à ce les électrons qui s'échappent de la sortie 30 d'un canal 24 se répartissent dans plusieurs canaux 40. Par exemple, à cet effet, la projection orthogonale, sur un plan horizontal contenant les entrées 42, de la section transversale de la sortie 30 de chaque canal 24 recouvre, au moins partiellement, au moins deux entrées 42. Grâce à cela, les électrons qui s'échappent de la sortie 30 sont répartis dans plusieurs des canaux 40 de la dynode 10.
  • Pour cela, dans un premier mode de réalisation, le diamètre Dm40 est inférieur au diamètre Dm24 et, de préférence, inférieur à 0,8*Dm24 ou à 0,5*Dm24. Ce mode de réalisation est illustré sur la figure 3. Sur cette figure, la projection orthogonale de la sortie 30 d'un canal 24 sur le plan horizontal contenant les entrées 42 est représentée par un cercle en pointillés qui porte la même référence que la sortie 30.
  • Dans un autre mode de réalisation, le diamètre Dm40 est égal ou supérieur au diamètre Dm24. Dans ce cas, les canaux 40 sont décalés horizontalement par rapport aux canaux 24. A titre d'illustration, ceci est représenté sur la figure 4 dans le cas particulier où les diamètres Dm40 et Dm24 sont égaux.
  • La grille 12 est identique à la grille 8, sauf que les trous portent les références numériques 50. De plus, le diamètre D50 des trous 50 n'est pas nécessairement égal au diamètre D38. En effet, si nécessaire, il est adapté pour obtenir un taux de transparence supérieur à 60 % ou 80 %. Par exemple, le diamètre D50 est adapté en fonction du diamètre Dm40.
  • La grille 12 est raccordée à une borne 52 de la source 22 qui génère un potentiel HV3. Le potentiel HV3 est supérieur au potentiel HV2 pour créer un champ électrique dans les canaux 40 qui permet d'accélérer les électrons secondaires vers la grille 12. Par exemple, le potentiel HV3 est réglé pour générer un champ électrique identique à celui généré dans les canaux 24.
  • L'espaceur 14 sépare la dynode 10 de la plaque de lecture 16. Plus précisément, il ménage un espace vide 56 entre les sorties 42 des canaux 40 et une face extérieure horizontale 60 de la plaque 16. Cet espace vide 56 est traversé par l'avalanche d'électrons secondaires qui débouchent des sorties 44 de la dynode 10 lorsqu'une particule élémentaire est détectée. Cet espace 56 augmente la dispersion spatiale de ces électrons secondaires, en particulier, dans la direction horizontale. Ainsi, la surface de la zone d'impact des électrons secondaires de l'avalanche sur la face extérieure 60 est supérieure en présence de l'espaceur 14 qu'en son absence. Par exemple, l'espaceur 14 est agencé pour que la distance entre le plan horizontal contenant les sorties 44 et la face extérieure 60, soit supérieure à 10 µm ou 15 µm et généralement inférieure à 300 µm ou 200 µm.
  • L'association de la cathode 4, de la dynode 6, de la grille 8, de la dynode 10 et de la grille 12 forme un dispositif d'amplification de charges électriques. Plus précisément, à chaque fois qu'un électron est généré par la cathode 4 et pénètre dans un des canaux 24, la probabilité est grande qu'il percute le revêtement 32, ce qui, en réponse, entraîne la génération, en moyenne de plus d'un électron secondaire. Ces électrons secondaires sont accélérés à leur tour et percutent à nouveau le revêtement 32 ce qui démultiplie le nombre d'électrons secondaires et provoque ce que l'on appelle une avalanche d'électrons secondaires. Les électrons secondaires pénètrent à l'intérieur des canaux 40 et le même phénomène de démultiplication des électrons secondaires se produit dans ces canaux 40. Ainsi, chaque particule élémentaire qui percute la cathode 4 provoque l'apparition d'une avalanche d'électrons secondaires qui est ensuite projetée sur la face extérieure 60 de la plaque 16. L'emplacement de cette avalanche d'électrons secondaires sur la face extérieure 60 est représentative de la position du point d'impact de la particule élémentaire sur la cathode 4. Il faut donc déterminer l'emplacement de l'avalanche d'électrons secondaires pour pouvoir en déduire la position de ce point d'impact. La plaque 16 permet, notamment, de déterminer l'emplacement de cette avalanche d'électrons secondaires dans un plan horizontal.
  • A cet effet, la plaque 16 comporte notamment :
    • un substrat 61 dont la face supérieure forme la face extérieure 60, et
    • des bandes conductrices 62 qui s'étendent horizontalement sur la face extérieure 60.
  • Chaque bande 62 est électriquement isolée des autres bandes conductrices 62 présentes dans la plaque 16. Chaque bande 62 s'étend principalement horizontalement depuis une extrémité distale jusqu'à une extrémité proximale. Les extrémités distale et proximale de chaque bande 62 sont situées sur un bord de la plaque 16. L'agencement des bandes 62 est décrit plus en détail en référence aux figures 8 et 9.
  • Puisque les bandes 62 sont situées sur la face extérieure 60, elles sont directement exposées aux électrons secondaires de chaque avalanche. Ainsi, lorsque les électrons d'une avalanche atteignent une bande 62 cela génère sur cette bande un pic de charges caractéristiques. Un tel pic 64 de charges est schématiquement représenté sur le graphe de la figure 5. Sur ce graphe, ainsi que sur le graphe de la figure 6, l'axe des abscisses représente le temps et l'axe des ordonnées représente la quantités de charges électriques. Ce pic 64 débute à un instant t1 et se termine à un instant t2. Les instants t1 et t2 correspondent à des instants où la quantité de charges sur la bande 62, respectivement, dépasse et retombe sous un seuil prédéterminé. En effet, les électrons secondaires de la même avalanche n'arrivent pas tous en même temps et au même endroit sur la bande 62 car ils n'ont pas tous suivi le même parcours.
  • Pour détecter ou mesurer de tel pics de charges, chaque bande 62 est raccordée à une entrée respective d'un capteur 70 de charges électriques. A cet effet, le détecteur 2 comporte un ensemble 72 de capteurs qui comporte au moins autant de capteurs 70 qu'il y a de bandes 62.
  • Pour simplifier la figure 1, une seule bande conductrice 62 et un seul capteur 70 sont représentées.
  • Le capteur 70 est capable de mesurer une grandeur physique représentative de la quantité de charges électriques présente sur la bande 62 à laquelle il est raccordé. Dans ce mode de réalisation, le capteur 70 mesure rapidement la quantité de charges électriques présentent sur cette bande conductrice 62. La mesure de la quantité de charges électriques sur une bande peut consister :
    • à signaler le franchissement du seuil prédéterminé par la quantité de charges électriques tant que ce seuil est franchi, ou
    • à systématiquement générer une grandeur électrique représentative de la quantité de charges électriques actuellement présentes sur la bande conductrice.
  • Le détecteur 2 comporte aussi une unité de traitement 80 raccordée à chacun des capteurs 70. L'unité de traitement 80 est capable d'acquérir les mesures des capteurs 70. Ensuite, l'unité 80 détermine automatiquement, à partir des mesures des capteurs 70 et de l'agencement connu des bandes conductrices 62, l'emplacement de la seconde avalanche d'électrons secondaires. A partir de l'emplacement de la seconde avalanche, l'unité 80 établit la position du point d'impact entre la particule élémentaire et la cathode 4. À cet effet, l'unité de traitement 80 comporte :
    • une mémoire 82, et
    • un microprocesseur 84 programmable apte à exécuter des instructions enregistrées dans la mémoire 82.
  • La mémoire 82 comporte les instructions et les données nécessaires pour l'exécution du procédé de la figure 10.
  • Enfin, le détecteur 2 comporte un ensemble 90 d'un ou plusieurs capteurs 92 aptes chacun à mesurer un instant auquel l'avalanche d'électrons secondaires traverse la grille 8. Par la suite, cet instant est appelé "instant de traversée". Ici, chacun de ces capteurs est raccordé électriquement à la grille 8. L'ensemble 90 comporte ici quatre capteurs 92 désignés individuellement par les références 92a à 92d sur la figure 7. Pour simplifier la figure 1, un seul de ces capteurs 92 est représenté sur cette figure. Dans ce premier mode de réalisation, chaque capteur est par exemple raccordé à un point respectif de la périphérie de la grille 8. Les points de raccordement des capteurs 92a à 92d sont notés, respectivement, P92a à P92d. Ici, ces points P92a à P92d sont uniformément répartis sur la périphérie de la grille 8.
  • Chaque capteur 92 est conçu pour mesurer le signal électrique caractéristique qui apparaît lorsque la grille 8 est traversée par une avalanche d'électrons secondaires. Plus précisément, lorsqu'une avalanche d'électrons secondaires traverse la grille 8, cela provoque, par induction électromagnétique, l'apparition d'un pic de charges dans la grille 8. Un tel pic 94 de charges est représenté sur le graphe de la figure 6. Le pic 94 débute à un instant t3 et se termine à un instant t4. Par exemple, les instants t3 et t4 sont les instants où la quantité de charges électriques mesurée par le capteur 92, respectivement, dépasse puis retombe sous un seuil prédéterminé. On notera que le pic 94 est beaucoup plus étroit que le pic 64 et que donc les instants t3 et t4 sont plus rapprochés l'un de l'autre que les instants t1 et t2. En effet :
    • l'impédance de la grille 8 est beaucoup plus uniforme que l'impédance des bandes conductrices 62, et
    • au moment où l'avalanche d'électrons secondaires traverse la grille 8, les électrons secondaires sont moins dispersés spatialement qu'au moment où cette avalanche percute la plaque 16.
    Par contre, la quantité d'électrons secondaires est moindre au niveau de la grille 8.
  • L'unité 80 est également raccordée à chacun des capteurs 92 pour déterminer un instant ta d'arrivée de la particule élémentaire à partir des mesures des capteurs 92.
  • La figure 8 représente la plaque 16 en coupe verticale le long d'une direction V horizontale. Le substrat 61 est ici formé d'un empilement, immédiatement les unes sur les autres, de couches horizontales. Ces couches horizontales empilées sont les suivantes, en allant du bas vers le haut dans la direction Z :
    • une couche inférieure de métallisation 102,
    • une première couche diélectrique 104,
    • une première couche de métallisation intermédiaire 106,
    • une deuxième couche diélectrique 108,
    • une deuxième couche de métallisation intermédiaire 110,
    • une troisième couche diélectrique 112, et
    • une couche de métallisation supérieure 114 déposée sur la face avant de la couche diélectrique 112.
  • Par "couche diélectrique", on désigne une couche horizontale dont plus de 90 % du volume est réalisé en matériau diélectrique.
  • Par exemple, les couches de métallisation sont réalisées en cuivre.
  • Comme cela est décrit plus en détail en référence à la figure 9, la couche de métallisation 114 est structurée pour former des tuiles horizontales 120 séparées horizontalement mécaniquement les unes des autres par des interstices 124. Dans ce texte, la référence 120 est utilisée en tant que référence générique pour désigner toutes les tuiles réalisées dans la couche 114. Chaque tuile 120 est complètement entourée par un interstice 124. Les interstices 124 sont remplis d'un matériau diélectrique, par exemple, identique à celui de la couche diélectrique 112. Ainsi, il n'existe pas de connexion électrique, réalisée dans la couche 114, qui raccorde électriquement deux tuiles 120 entre elles. Ici, les tuiles 120 sont toutes identiques les unes aux autres. En particulier, chaque tuile 120 se déduit d'une autre tuile 120 seulement par une translation horizontale éventuellement combinée à une rotation autour d'un axe vertical. Chaque tuile a la forme d'un polygone dont tous les côtés ont la même longueur.
  • La plus grande dimension d'une tuile 120 est choisie pour que chaque avalanche d'électrons secondaires qui touche la plaque 16, percute au moins deux, et dans ce mode de réalisation, au moins trois tuiles 120 appartenant à des bandes conductrices 62 différentes. A cet effet, la plus grande dimension d'une tuile 120 est de préférence inférieure ou égale à 5*Dm40 ou à 3*Dm40 et, avantageusement, inférieure à Dm40 ou à 0,5Dm40. Par « plus grande dimension d'une tuile», on désigne ici la longueur du plus grand côté du rectangle horizontal de plus petite surface qui contient entièrement la tuile 120. Par « plus petite dimension d'une tuile », on désigne la longueur du petit côté de ce rectangle. La plus petite dimension d'une tuile 120 est typiquement supérieure à 0,01*Dm40 ou 0,1*Dm40 ou 0,3*Dm40.
  • Pour former une bande conductrice 62 qui s'étend principalement le long d'une ligne horizontale 126 (Figure 9) parallèle à la direction V, des tuiles situées les unes derrière les autres le long de cette ligne 126 sont raccordées électriquement entre elles en série par l'intermédiaire de connexions électriques 128. Les connexions 128 sont réalisées sous la face avant de la couche diélectrique 112. Ici, chaque connexion 128 qui raccorde électriquement une première et une deuxième tuiles 120 le long de la ligne 126 comporte :
    • un piste conductrice 130 réalisée dans l'une des couches de métallisation 102, 106, ou 110 et qui s'étend horizontalement entre une première extrémité située sous la première tuile 120 et une deuxième extrémité située sous la deuxième tuile 120, et
    • des plots conducteurs 132, 134 verticaux, connus sous le terme de « via », qui traversent chacun une ou plusieurs des couches 104, 108 et 112 pour raccorder électriquement les première et deuxième tuiles, respectivement, aux première et deuxième extrémités de la piste 130.
  • Ici, dans le cas particulier des tuiles 120 alignées le long de la ligne 126, la piste 130 est réalisée dans la couche de métallisation 110. Les vias 132, 134 traversent donc uniquement la couche diélectrique 112. Les couches de métallisation 102 et 106 sont utilisées pour réaliser les pistes électriques, correspondant à la piste 130, pour les bandes conductrices 62 qui s'étendent, respectivement, parallèlement à d'autres directions U et W. Ici, la direction V est parallèle à la direction Y et les directions U et W sont décalées angulairement de, respectivement, 60° et 120° par rapport à la direction V.
  • En plus des vias 132 et 134, chaque bande conductrice comporte au moins un via supplémentaire 136 qui débouche sur la face inférieure de la couche 104 et qui permet de raccorder cette bande à un capteur 70 respectif. Le via 136 s'étend, par exemple, depuis l'une des connexions 128 jusqu'à cette face inférieure de la couche 104. Dès lors, le capteur 70 qui mesure la quantité de charges électriques présente sur cette bande 62 peut être placé n'importe où sur cette face inférieure et non pas seulement sur la périphérie de la plaque 16.
  • La figure 9 représente un premier exemple d'agencement possible, les unes par rapport aux autres, des tuiles 120 sur la face avant horizontale de la couche diélectrique 112. Dans ce mode de réalisation, chaque tuile 120 a la forme d'un losange dont les deux sommets 140, 142 les plus pointus sont situés à chaque extrémité de la grande diagonale de ce losange. L'angle au niveau des sommets 140 et 142 est égal à 60°.
  • Sur la figure 9, les interstices 124 entre les tuiles 120 sont représentés par des traits.
  • Les tuiles 120 sont agencées les unes par rapport aux autres de manière à former un pavage, également connu sous le terme anglais de « tessallation », de la face avant de la couche diélectrique 112. Ici, les tuiles 120 sont réparties sur la face avant de la couche diélectrique 112 de manière à former un pavage périodique, c'est-à-dire un pavage qui peut être entièrement construit en répétant périodiquement un même motif dans au moins deux directions horizontales différentes. Par exemple, ici, le motif répété est un hexagone formé par trois tuiles 120 adjacentes qui portent, respectivement, les références numériques 120a, 120b et 120c sur la figure 9. Les grandes diagonales de ces tuiles 120a, 120b et 120c sont, respectivement, parallèles à des directions Da, Db et Dc. La direction Da est parallèle à la direction X et les directions Db et De sont décalées angulairement, respectivement, de +60° et +120° par rapport à la direction Da. Dans le motif répété, ces trois tuiles 120a, 120b et 120c ont un sommet commun. Dans le cas du pavage de la figure 9, le motif est répété périodiquement dans les directions Da, Db et Dc.
  • Sur la figure 9, pour faciliter l'identification des tuiles 120a, 120b et 120c, chaque tuile 120a, 120b et 120c est remplie avec une texture respective.
  • Toutes les tuiles 120b dont les grandes diagonales sont alignées sur la ligne 126 sont électriquement raccordées en série les unes aux autres depuis un bord du pavage jusqu'au bord opposé pour former une bande conductrice 62 qui s'étend parallèlement à la direction V. En raccordant ainsi les tuiles 120b alignées le long de la ligne 126, chaque tuile 120b est séparée de la tuile 120b immédiatement consécutive le long de la ligne 126 par des tuiles 120a et 120c. Grâce à cela, la précision sur la mesure de la position de la particule élémentaire est augmentée. Les autres tuiles 120b sont électriquement raccordées les unes aux autres de façon similaire pour former une pluralité de bandes conductrices 62 qui s'étendent parallèlement à la direction Y. Les différentes bandes conductrices 62 parallèles à la direction Y ainsi formées sont électriquement isolées les unes des autres.
  • De façon similaire, les tuiles 120a dont les grandes diagonales sont alignées les unes après les autres le long d'une ligne 144 parallèle à la direction W sont toutes électriquement raccordées en série les unes aux autres par des connexions 128. En procédant ainsi pour toutes les tuiles 120a, on forme une pluralité de bandes conductrices 62 électriquement isolées les unes des autres et toutes parallèles à la direction U.
  • Enfin, toujours de façon similaire à ce qui a été décrit pour les tuiles 120a et 120b, les tuiles 120c alignées les unes derrière les autres le long d'une même ligne 146 parallèle à la direction U sont électriquement raccordées en série les unes aux autres par des connexions 128. En procédant ainsi pour toutes les tuiles 120c, on forme une pluralité de bandes conductrices 62 électriquement isolées les unes des autres et toutes parallèles à la direction U.
  • Lorsque les dimensions des tuiles 120 sont assez grandes, celles-ci peuvent être gravées dans la couche de métallisation 114 en utilisant des procédés de gravure simple comme la photolithographie. Lorsque les dimensions des tuiles 120 sont très petites, il est possible de les réaliser en utilisant les mêmes procédés de fabrications que ceux mis en oeuvre pour raccorder entre eux des composants électroniques réalisés sur un substrat en silicium. Typiquement, il s'agit des procédés mis en oeuvre durant la phase de fabrication désignée par l'acronyme BEOL ("Back End Of Line"). Les couches de métallisation utilisées pour réaliser les tuiles 120 et leurs connexions 128 sont alors, par exemple, choisies dans les niveaux de métallisation connus sous les acronymes M1 à M8.
  • Etant donné que les charges de l'avalanche s'étalent systématiquement au-dessus d'au moins trois tuiles 120 contiguës, l'avalanche provoque une variation de la charge électrique d'au moins trois bandes conductrices 62 qui s'étendent chacune dans trois directions différentes. Ainsi, même si deux avalanches touchent simultanément la plaque 16 à deux endroits différents, l'unité de traitement 80 est capable de déterminer sans ambiguïté les positions des deux points d'impact simultanés s'ils sont séparés l'un de l'autre par une distance supérieure à la plus grande dimension d'une tuile.
  • Ici, la sensibilité de chaque bande conductrice 62 est identique à celle des autres bandes conductrices 62. Ainsi, il n'est pas nécessaire de prévoir dans la plaque 16 des moyens de compensation d'écart de sensibilité entre les différentes bandes conductrices 62.
  • Enfin, le nombre de capteurs 70 nécessaires pour mesurer la position du point d'impact d'une particule élémentaire est beaucoup plus petit que dans le cas où chaque tuile 120 serait électriquement isolée de toutes les autres tuiles 120 et directement raccordée à une entrée d'un capteur 70 respectif. En effet, dans ce dernier cas, l'ensemble 72 doit comporter autant de capteur 70 que de tuiles 120 alors que dans le mode de réalisation décrit ici, il comporte seulement un capteur 70 par bande conductrice 62.
  • Le fonctionnement du détecteur 2 va maintenant être décrit à l'aide du procédé de la figure 10.
  • Lors d'une étape 150, un photon percute la cathode 4 et la cathode 4 génère en réponse au moins un électron qui pénètre à l'intérieur du canal 24 le plus proche du point d'impact. Cet électron est alors accéléré et percute le revêtement 32, entraînant ainsi la génération d'une première avalanche d'électrons secondaires.
  • La première avalanche d'électrons secondaires traverse la grille 8, générant ainsi un pic de charges, tel que le pic 94. Les électrons de cette première avalanche pénètrent à l'intérieur de plusieurs des canaux 40. Ces électrons sont alors une nouvelle fois amplifiés à l'intérieur des canaux 40. On produit ainsi en sortie de la dynode 10 une seconde avalanche d'électrons secondaires contenant beaucoup plus d'électrons que la première avalanche d'électrons secondaires.
  • La seconde avalanche traverse la grille 12 et l'espace vide 56 et les électrons secondaires de cette seconde avalanche viennent percuter plusieurs des tuiles 120 de la plaque 16. Cela génère alors un pic de charges tel que le pic 64, sur plusieurs des bandes conductrices 62.
  • En parallèle, lors d'une étape 152, les capteurs 70 mesurent en permanence la quantité de charges électrique présente sur chacune des bandes 62 et transmettent ces mesures à l'unité 80. Dans le même temps, les capteurs 92 mesurent en permanence la quantité de charges électrique présente sur la grille 8 et transmettent ces mesures à l'unité 80.
  • Lors d'une étape 154, par exemple, exécutée en parallèle de l'étape 152, l'unité 80 traite les mesures des capteurs 70 et 92 pour établir, lors d'une opération 156, la position Pf du point d'impact du photon sur la cathode 4 et, lors d'une opération 158, l'instant ta d'arrivée de ce photon.
  • Lors de l'opération 156, un emplacement P701 est d'abord déterminé à partir des points de croisement entre les bandes conductrices 62 sur lesquelles un pic de charges a été détecté. La zone de répartition des charges des électrons secondaires de la seconde avalanche sur la face extérieure 60 se trouve à l'intersection de plusieurs bandes 62 sur lesquelles un pic de charges est détecté. Puisque l'emplacement des bandes 62 est connue dans un plan X, Y, l'emplacement de cette zone de répartition dans le plan X, Y peut être déterminée. Par exemple, à cet effet, la mémoire 82 comporte une cartographie des bandes 62 codant pour chacune de ces bandes l'équation de l'axe horizontal le long duquel elle s'étend. Les coordonnées dans le plan X, Y du point d'intersection entre deux bandes 62 peuvent alors facilement être trouvées, puisque l'équation des axes de ces bandes est connue.
  • Dans ce mode de réalisation, à titre d'illustration, lors de l'opération 156, les mesures des capteurs 92 sont en plus utilisées pour valider ou invalider l'emplacement P701 déterminé à partir des mesures des capteurs 70.
  • Par exemple, pour cela, l'unité 80 calcule l'écart Eea-b. L'écart Eea-b est égale à l'estimation de la différence entre les instants tm92a et tm92b où le pic de charges est détecté par les capteurs, respectivement, 92a et 92b. Cet écart Eea-b est, par exemple, estimé à l'aide de la relation suivante : Eea-b= (d92a-d92b)/c8, où
    • d92a et d92b sont les distances qui séparent l'emplacement P701 déterminé des emplacements, respectivement, des capteurs 92a et 92b, et
    • c8 est la vitesse de propagation du signal électrique dans la grille 8.
  • Les emplacements des capteurs 92a et 92b dans le plan X, Y sont connues et, par exemple, mémorisées dans la mémoire 82.
  • L'écart Eea-b est ensuite comparé à l'écart mesuré Ema-b. L'écart Ema-b est égale à la différence tm92a-tm92b, où les instants tm92a et tm92b sont les instants mesurés où, respectivement, les capteur 92a et 92b détectent le pic de charges.
  • Si la différence, en valeur absolue, entre les écarts Eea-b et Ema-b est supérieure à un seuil S1, alors l'emplacement P701 est considéré comme invalide. Dans le cas contraire, il est considéré comme valide.
  • La vérification de la validité de l'emplacement P701 est testée, comme décrit ci-dessus, dans le cas particulier des capteurs 92a et 92b, en utilisant successivement les autres paires possibles de capteurs 92. Si l'emplacement P701 déterminé est validé avec les mesures de chacun des capteurs 92, alors l'emplacement P701 est considéré comme valide. Par exemple, dans ce cas, la position Pf du point d'impact est prise égale à cet emplacement P701. Dans le cas contraire, l'emplacement P701 est considéré comme invalide. Dans ce dernier cas, le procédé s'arrête et retourne dans un état initial pour déterminer la position du point d'impact de la prochaine particule élémentaire reçue.
  • Ensuite, lors de l'opération 158, l'unité 80 établit l'instant ta d'arrivée de la particule élémentaire. Pour cela, dans ce mode de réalisation, un instant ta92 d'arrivée de la particule élémentaire est déterminé à partir des mesures des capteurs 92. A cet effet, l'unité 80 relève les instants tm92a, tm92b, tm92c et tm92d où les capteurs, respectivement, 92a, 92b, 92c et 92d ont détecté un pic de charges tel que le pic 94. Par exemple, chacun de ces instants tm92 est établi à partir des instants correspondant aux instants t3 et t4 du pic 94.
  • Ensuite, chacun de ces instants tm92a à tm92d est corrigé en y retranchant le temps de propagation du signal électrique entre l'emplacement où la première avalanche traverse la grille 8 et l'emplacement du capteur 92. Par la suite, les instants tm92a à tm92d corrigés sont notés, respectivement, tc92a à tc92d.
  • Par exemple, l'instant tc92a est calculé à l'aide de la relation suivante : tc92a=tm92a-d92a/c8, où :
    • c8 est la vitesse de propagation du signal électrique dans la grille 8, et
    • d92a est la distance entre l'emplacement où la première avalanche traverse la grille 8 et l'emplacement du capteur 92a.
  • L'emplacement où la première avalanche traverse la grille 8 est établi à partir de la position Pf déterminée lors de l'opération 156. Par exemple, les coordonnées de cet emplacement sont prises égales aux coordonnées x,y de la position Pf. Les coordonnées du capteur 92a dans le plan X, Y sont connues et, par exemple, pré-enregistrées dans la mémoire 82.
  • Les autres instants corrigés tc92b, tc92c et tc92d sont typiquement calculés de façon similaire, mais en remplaçant la distance d92a par la distance appropriée.
  • L'instant d'arrivée ta92 de la particule élémentaire est alors déterminé à partir des instants corrigés tc92a à tc92d. Par exemple, l'instant ta92 est égal à la moyenne arithmétique des instants tc92a à tc92d. Ici, l'instant ta d'arrivée de la particule élémentaire est par exemple pris égale à l'instant ta92 ainsi déterminé.
  • La figure 11 représente une plaque de lecture 200 susceptible d'être utilisée à la place de la plaque 16. Cette plaque 200 est identique à la plaque 16, sauf que deux capteurs 701 et 702 sont raccordés à chaque extrémité de chaque bande conductrice 62. Pour simplifier la figure 11, une seule bande 62 est représentée. Les traits ondulés et verticaux indiquent qu'une partie centrale de la plaque 200 n'a pas été représentée sur la figure 11. Le via 136 est remplacé par deux vias 202 et 204 situés chacun à une extrémité respective de la bande 62. Les capteurs 701 et 702 sont raccordés, respectivement, aux vias 202 et 204. Chacun des capteurs 701 et 702 est identique au capteur 70.
  • Le fonctionnement d'un détecteur équipé de la plaque 200 va maintenant être décrit en référence au procédé de la figure 12. Le procédé de la figure 12 est identique au procédé de la figure 10, sauf que l'étape 154 est remplacée par une étape 208. L'étape 208 comporte successivement :
    • une opération 210 d'établissement de la position Pf du point d'impact, et
    • une opération 212 d'établissement de l'instant ta d'arrivée de la particule élémentaire.
  • L'opération 212 est identique à l'opération 156, sauf qu'elle comporte, en plus ou à la place, la détermination d'un emplacement P702 de la seconde avalanche d'électrons secondaires à partir des instants tm701 et tm702 où les capteurs 701 et 702 détectent la présence d'un pic de charges, tel que le pic 64. Par exemple, chaque instant tm701 et tm702 est déterminé à partir des instants correspondant aux instants t1 et t2 du pic 64. Pour au moins l'une des bandes 62 touchée par la seconde avalanche, l'emplacement P702 le long de cette bande 62 est déterminé à partir des coordonnées xc62, yc62 du point milieu situé à mi-distance entre les capteurs 701 et 702 et des instants tm701 et tm702. Par exemple, les coordonnées x2i, y2i de l'emplacement P702 sont prises égales aux coordonnées xc62, yc62 auxquelles sont ajoutée la distance (tm701-tm702)*c16, où c16 est la vitesse de propagation du signal électrique dans la bande 62. En effet, les instants tm701 et tm702 sont égaux, seulement si la seconde avalanche est située sur le point milieu. Dans tous les autres cas, c'est-à-dire dès que la seconde avalanche est excentrée par rapport au point milieu, les instants tm701 et tm702 sont différents. L'écart entre les instants tm701 et tm702 est proportionnel au décalage de la seconde avalanche par rapport au point milieu.
  • Le calcul ci-dessus est, de préférence, réalisé pour plusieurs des bandes 62 sur lesquelles un pic de charges est détecté. Pour chacune de ces bandes 62, un emplacement P702 est obtenu. Ces différents emplacements P702 sont alors combinés pour obtenir des coordonnées x2i, y2i plus précises.
  • Si des coordonnées x1i, y1i de l'emplacement P701 ont été déterminées à partir des points de croisement des bandes conductrices 62 sur lesquelles un pic de charges a été détecté, avantageusement, celles-ci sont combinées aux coordonnées x2i, y2i pour obtenir des coordonnées plus précises de la seconde avalanche. Par exemple, les coordonnées de la seconde avalanche sont obtenues en réalisant une moyenne arithmétique ou pondérée des coordonnées x1i, y1i, et x2i, y2i. Par exemple, le poids accordé aux coordonnées x2i, y2i est inférieur à celui accordé aux coordonnées x1i, y1i. Ensuite, par exemple, les coordonnées x,y de la position Pf du point d'impact sont prises égales aux coordonnées plus précises ainsi déterminées.
  • L'opération 212 est identique à l'opération 158, sauf qu'elle comporte, en plus ou à la place, la détermination d'un instant ta70 d'arrivée à partir des mesures des capteurs 701 et 702 raccordés à une bande 62 touchée par la seconde avalanche d'électrons secondaires.
  • Par exemple, pour cette bande 62, chaque instant tm701 et tm702 est d'abord corrigé pour y retrancher le temps de propagation du signal électrique entre l'emplacement de la seconde avalanche et l'emplacement de chacun des capteurs 701 et 702. Pour cela, les coordonnées de l'emplacement où la seconde avalanche touche la plaque 16 sont établies à partir des coordonnées de la position Pf déterminée lors de l'opération 210. Les coordonnées de chacun des capteurs 701 et 702 dans le plan X, Y sont connues et, par exemple, pré-enregistrées dans la mémoire 82. Par exemple, un instant tc701 corrigé de l'instant tm701 est calculé à l'aide de la relation suivante tc701=tm701-d701/c16, où d701 est la distance entre les coordonnées de la seconde avalanche le long de la bande 62 et les coordonnées du capteur 701 dans le plan X, Y.
  • L'instant tc702 corrigé est calculé de façon similaire en remplaçant les coordonnées du capteur 701 par les coordonnées du capteur 702.
  • L'instant ta70 est alors obtenu en combinant les instants tc701 et tc702 calculés pour les différentes bandes 62 sur lesquelles un pic de charges a été détecté. Par exemple, l'instant ta70 est la moyenne arithmétique de tous les instants tc701 et tc702 calculés. Lorsque les instants ta70 et ta92 sont tous les deux déterminés, l'instant d'arrivée ta est obtenu en combinant ces deux instants ta70 et ta92. Par exemple, dans un mode de réalisation simple, l'instant ta est égal à la moyenne arithmétique des instants ta70 et ta92.
  • La figure 13 représente quatre grilles conductrices 220 à 223, susceptibles d'être utilisées à la place de la grille 8. Les grilles 220 à 223 s'étendent ici chacune dans le même plan horizontal que le plan horizontal dans lequel s'étend la grille 8. Ces grilles 220 à 223 sont agencées et disposées les unes à côté des autres, de manière à occuper la même surface que la grille 8. Les grilles 220 à 223 sont électriquement isolées les unes des autres. A cet effet, elles sont ici isolées électriquement les unes des autres par deux séparations horizontales 226 et 228 parallèles, respectivement, aux directions X et Y. Ainsi, chaque grille 220 à 223 correspond à un quart de disque. Chaque grille 220 à 223 est raccordée à un capteur 92 respectif. Ici, les grilles 220 à 223 sont raccordées, respectivement, aux capteurs 92a à 92d. Par exemple, les grilles 220 à 223 sont identiques à la grille 8, sauf que chacune d'elle occupe une partie respective de la surface susceptible d'être traversée par la première avalanche d'électrons secondaires. En particulier, chacune des grilles 220 à 223 est raccordée à la borne 36.
  • Le fonctionnement d'un détecteur dans lequel la grille 8 est remplacée par les grilles 220 à 223 se déduit des explications précédemment données. Ce détecteur est en plus capable de distinguer, à partir des mesures des capteurs 92a à 92d, deux particules élémentaires qui arrivent en même temps sur la cathode 4, à partir du moment où chacune de ces particules élémentaires déclenchent une avalanche d'électrons secondaires qui traversent une grille respective parmi les grilles 220 à 223.
  • La figure 14 représente une plaque de lecture 250 identique à la plaque 16 sauf que les tuiles 120 sont remplacées par des tuiles 252. Les tuiles 252 sont identiques aux tuiles 120 sauf qu'elles ont chacune une forme triangulaire. Plus précisément, chaque tuile 252 est un triangle équilatéral ou isocèle. Dans ce mode de réalisation, les tuiles 252 sont raccordées électriquement les unes aux autres de manière à former des bandes conductrices 254 qui s'étendent parallèlement à six directions A, B, C, D, E et F. Les directions A et D sont parallèles à la direction Y. Les directions B et E sont décalées angulairement de -60° par rapport, respectivement, aux directions A et D. Les directions C et E sont décalées angulairement de +60° par rapport, respectivement, aux directions A et D.
  • Sur la figure 14, les références numériques 252a, 252b, 252c, 252d, 252e et 252f sont utilisées pour désigner les tuiles 252 qui appartiennent à des bandes conductrices parallèles, respectivement, aux directions A, B, C, D, E et F. Pour simplifier la figure 14, chaque tuile qui appartient aux bandes conductrices qui s'étendent parallèlement à une direction prédéterminée est remplie avec une texture respective, ce qui permet d'identifier cette tuile dans la plaque 250, même sans référence numérique. Dans le pavage de la figure 14, le motif répété de façon périodique est un hexagone comportant un exemplaire de chacune des tuiles 252a, 252b, 252c, 252d, 252e et 252f. Dans ce motif, ces tuiles 252a, 252b, 252c, 252d, 252e et 252f partagent un sommet commun situé sur le centre géométrique de l'hexagone. Cet hexagone est répété périodiquement dans les directions A, B et C.
  • Les tuiles 252a et 252d sont alignées le long de lignes parallèles aux directions A et D telles que la ligne 256. Le long de la ligne 256, une tuile 252d est interposée entre chaque paire de tuiles 252a successives.
  • Les tuiles 252b et 252f sont alignées le long de lignes parallèles aux directions B et F telles que la ligne 258. Le long de la ligne 258, une tuile 252b est interposée entre chaque paire de tuiles 252f successives.
  • Les tuiles 252c et 252e sont alignées le long de lignes parallèles aux directions C et E telles que la ligne 260. Le long de la ligne 260, une tuile 252c est interposée entre chaque paire de tuiles 252e successives.
  • Grâce à cet agencement et à ce raccordement des tuiles 252 entre elles, chaque tuile 252, qui n'est pas située sur un bord du pavage, est immédiatement entourée de tuiles 252 appartenant à cinq bandes conductrices différentes. Dès lors, chaque point d'impact se traduit par une variation de la charge électrique d'au moins six bandes conductrices différentes. Avec la plaque 250, il est donc possible de déterminer, sans ambiguïté, la position de cinq points d'impact simultanés au moins si la distance séparant ces points d'impacts deux à deux est supérieure à la plus grande dimension de la tuile.
  • Chapitre II. VARIANTES Variantes des dynodes
  • En variante, la matrice 34 est réalisée dans le même matériau que le revêtement 32.
  • De nombreux procédés sont possibles pour fabriquer le revêtement 32. Par exemple, le revêtement est obtenu par une réaction chimique entre la matière qui compose la matrice 34 et un réactif chimique. Par exemple, ce réactif chimique est un réactif liquide ou gazeux introduit à l'intérieur de chacun des canaux. Par exemple, le revêtement 32 est le résultat d'une oxydation ou d'une nitridation de la matrice 34.
  • D'autres matériaux émissifs sont utilisables pour réaliser le revêtement 32. Par exemple, le revêtement 32 peut aussi être réalisé dans un ou plusieurs des matériaux choisis dans le groupe composé des matériaux listés entre les lignes 41 et 44 de la colonne 10 de US6384519B1 .
  • Dans un autre mode de réalisation, le revêtement 32 ne recouvre pas la totalité des parois des canaux. Par exemple, le revêtement 32 est seulement situé sur la partie supérieure des canaux, tandis que la partie inférieure de ces canaux est dépourvue de revêtement émissif.
  • Dans un autre mode de réalisation, le matériau émissif est un gaz et les canaux sont remplis de ce gaz. Par exemple, le gaz est un mélange de 90 %, en masse, d'argon et de 10 %, en masse, de dioxyde de carbone. Dans ce cas, le revêtement 32 peut être omis.
  • La section transversale des canaux peut avoir n'importe quelle forme. Par exemple, la section transversale des canaux peut être un polygone, tel qu'un carré ou être un ovale.
  • La section transversale des canaux n'est pas nécessairement constante sur toute la longueur du canal. Par exemple, la section transversale du canal peut se réduire au fur et à mesure que l'on avance vers sa sortie.
  • De nombreuses méthodes sont possibles pour fabriquer les canaux. Par exemple, les canaux peuvent être réalisés par gravure plasma anisotropique (« anisotropic plasma etching »), par photolithographie ou autre.
  • L'axe des canaux peut être incliné par rapport au plan horizontal. Si le détecteur comporte plusieurs dynodes empilées les unes au-dessus des autres, les axes des canaux de la dynode supérieure sont, de préférence, inclinés le long d'une première direction qui coupe une seconde direction. Les axes des canaux de la dynode inférieure sont alors parallèles à cette seconde direction.
  • Dans un autre mode de réalisation, les canaux ne s'étendent pas le long d'un axe rectiligne, mais le long d'une trajectoire courbe ou sinueuse.
  • La dynode peut être réalisée dans d'autre matériau. Par exemple, en variante, la dynode est réalisée dans un matériau résistif ou diélectrique ou conducteur. Par exemple, le matériau utilisé pour fabriquer la dynode peut être choisi dans le groupe composé des matériaux listés entre les lignes 6 et 17 de la colonne 10 de US6384519B1 .
  • Lorsque la dynode est réalisée dans un matériau diélectrique, la conductivité des parois des canaux peut être augmentée en déposant sur ces parois une sous-couche d'un matériau résistif comme, par exemple une sous-couche polymère résistif. Cette sous-couche forme alors la paroi du canal sur laquelle le revêtement émissif est réalisé.
  • Variante de la plaque de lecture
  • Lorsque les capteurs 70 sont raccordés entre les extrémités des bandes conductrices, il n'est pas nécessaire que les extrémités de chaque bande conductrice soient situées sur le bord de la plaque de lecture. En variante, les extrémités d'au moins certaines des bandes conductrices sont alors situées entre les bords de la plaque de lecture.
  • Les bandes conductrices peuvent être remplacées par des électrodes conductrices électriquement isolées les unes des autres et individuellement raccordées chacune à son propre capteur 70 comme décrit dans US6384519B1 .
  • En variante, les bandes conductrices sont des bandes rectilignes qui s'étendent dans un seul plan. Elles sont donc dépourvues de tuiles situées dans un premier plan horizontal et de connexions électriques situées sous ce premier plan horizontal. Dans ce cas, pour que les bandes conductrices qui s'étendent dans des directions sécantes puissent se croiser, elles sont réalisées dans des plans horizontaux situés à différentes hauteurs.
  • En variante, une couche résistive pleine et uniforme est déposée sur la face extérieure 60 de la plaque 16. Éventuellement, cette couche résistive est séparée des bandes conductrices 62 par une couche en matériau diélectrique. La résistivité de surface de cette couche résistive, connue sous le terme anglais de « sheet resistivity » ou « surface resistivity » à 20 °Celsius est comprise entre 10 kΩ/carré et 100 MΩ/carré. De préférence, la résistivité de surface est supérieure à 100 kΩ/carré ou 1 MΩ/carré et, avantageusement, inférieure à 10 MΩ/carré. Par couplage capacitif entre cette couche résistive et les bandes 62, les électrons secondaires reçus sur la couche résistive engendrent une variation correspondante de la charge électrique de certaines des bandes 62. C'est cette variation de la charge électrique des bandes 62 qui est mesurée par les capteurs 70. Cette couche résistive permet d'étaler les charges électriques sur la face extérieure 60.
  • Dans une autre variante, le substrat 61 comporte en plus des plans de masse s'étendant horizontalement entre les couches de métallisation pour réduire la diaphonie entre les bandes conductrices.
  • Autres variantes du détecteur
  • D'autres particules élémentaires qu'un photon peuvent être détectées. Par exemple, la particule élémentaire à détecter peut être une particule chargée, telle qu'un ion ou un muon, ou une particule neutre tel qu'un neutron. Pour cela, la cathode est alors réalisée dans un matériau émissif qui libère au moins un électron lorsqu'elle est percutée par la particule élémentaire à détecter. Le matériau émissif dépend donc de la particule élémentaire à détecter. Par exemple, pour détecter un neutron, le matériau émissif utilisé peut être du bore ou du palladium. Il est aussi possible de détecter des protons en choisissant le matériau émissif approprié.
  • En variante, le détecteur comporte une seule dynode et une seule grille conductrice.
  • En variante, un espaceur peut aussi être placé entre les dynodes 6 et 10. Cela permet notamment d'améliorer la dispersion spatiale des électrons secondaires dans différents canaux. Par exemple, il est alors possible de répartir les électrons qui sortent de la sortie 30 d'un seul canal 24 dans plusieurs canaux 40 même si le diamètre Dm40 des canaux 40 est supérieure au diamètre Dm24. A l'inverse, l'espaceur 14 peut être omis dans certains modes de réalisation comme les modes de réalisation où le diamètre Dm24 est supérieur au diamètre Dm40.
  • Dans un mode de réalisation simplifié, le détecteur comporte un seul capteur 92. Dans ce cas, la combinaison des instants tc92a à tc92d est omise.
  • Il existe de nombreuses technologies différentes pour mesurer un pic de charge tel que le pic 64 ou 94. En particulier, une mesure capacitive ou inductive peut être mise en oeuvre. Dans ces cas là, les capteurs 70 et 92 ne sont pas nécessairement raccordés électriquement directement à, respectivement, une bande 62 et la grille 8.
  • Lorsque le détecteur comporte plusieurs dynodes et plusieurs grilles conductrices situées entre ces dynodes, une seule ou plusieurs de ces grilles conductrices sont raccordées à des capteurs 92. Par exemple, dans un mode de réalisation alternatif, les capteurs 92 sont raccordés à la grille 12 au lieu d'être raccordés à la grille 8. Dans ce cas, la quantité de charges électrique qui traverse la grille 12 est plus importante mais la répartition spatiale des électrons est alors plus étalée.
  • D'autres modes de réalisation des grilles 220 à 223 sont possibles. Par exemple, plus de quatre grilles peuvent être utilisées ou, à l'inverse, moins de quatre grilles. Les formes des grilles 220 à 223 peuvent aussi être différentes.
  • En variante, les capteurs 70 sont raccordés à l'extrémité distale ou proximale des bandes conductrices 62. Dans ce cas, les connexions aux bandes 62 sont réparties sur la périphérie de la plaque de lecture. Il n'est alors pas nécessaire de prévoir un via vertical pour raccorder les capteurs 70 à un point central de ces bandes 62.
  • Variantes du procédé de fonctionnement
  • En variante, lors de l'opération 210, l'emplacement P702 n'est pas déterminé. Par exemple, dans ce cas, la position Pf du point d'impact est uniquement établie à partir de l'emplacement P701.
  • Dans une autre variante, l'emplacement P701 n'est pas déterminé. Par exemple, dans ce cas, la position Pf est établie en utilisant uniquement l'emplacement P702 et sans utiliser les points d'intersection entre les bandes conductrices 62. Dans ce cas, il n'est pas nécessaire que les bandes conductrices se croisent. Par exemple, elles peuvent être toutes parallèles les unes aux autres.
  • La validation et, en alternance, l'invalidation de l'emplacement P701 peut être appliquée à l'emplacement P702. Dans un autre mode de réalisation, La validation et, en alternance, l'invalidation de l'emplacement déterminé à partir des mesures des capteurs 92 peut être omise.
  • Lors de l'opération 156, il est aussi possible de déterminer un emplacement P92 où la première avalanche traverse la grille 8 à partir des mesures des capteurs 92. Plus précisément, on exploite à ce moment-là le fait qu'il existe plusieurs capteurs 92 raccordés à la même grille 8 à des endroits différents. Les temps de propagation du signal électrique, généré par la première avalanche d'électrons secondaires qui traverse la grille 8, jusqu'à chacun des capteurs 92a à 92d ne sont alors pas identiques car les distances à parcourir ne sont pas les mêmes. C'est cette différence entre les temps de propagation qui est exploitée pour déterminer l'emplacement P92 par triangulation. La détermination d'un emplacement par triangulation étant bien connue, celle-ci n'est pas décrite plus en détail ici. Ensuite, la position Pf du point d'impact est établie en combinant les emplacements P701 et P92 ou P702 et P92. Par exemple, la position Pf est égale à la moyenne arithmétique des emplacements P701 et P92.
  • Il existe de nombreuses façons de combiner les emplacements P701, P702 et P92 pour déterminer la position Pf du point d'impact. Par exemple, une moyenne pondérée des emplacements P701 et P92 peut être utilisée en donnant de préférence plus de poids à l'emplacement P701.
  • La détermination de l'instant ta92 à partir des différents instants corrigés tc92a à tc92d peut être réalisée autrement que par une simple moyenne arithmétique. Par exemple, la moyenne arithmétique est remplacée par une moyenne pondérée dans laquelle un poids plus important est affecté aux capteurs 92 qui sont les plus proches du point d'impact. Dans un autre mode de réalisation, seule la ou les mesures des capteurs 92 qui se trouvent à une distance inférieure à un seuil prédéterminé du point d'impact sont prises en compte. De façon similaire, l'instant ta70 peut être calculé en mettant en oeuvre d'autres moyens qu'une simple moyenne arithmétique. Par exemple, les différentes variantes décrites dans le cas particulier de la détermination de l'instant ta92 s'appliquent aussi à la détermination de l'instant ta70.
  • D'autres modes de réalisation qu'une moyenne arithmétique des instants ta70 et ta92 sont possibles pour établir l'instant ta. Par exemple, l'instant ta est une moyenne pondérée des instants ta70 et ta92 en donnant plus de poids à l'instant ta92 qu'à l'instant ta70.
  • Dans un mode de réalisation simplifié, la correction des instants tm92 ou tm70 est omise. Par exemple, l'instant ta92 ou ta70 est directement calculé à partir des mesures des capteurs 92 ou 70 mais sans utiliser la position Pf du point d'impact. Ce mode de réalisation est pratique si les temps de propagation sont négligeables.
  • Le calcul de l'instant ta70 peut être mis en oeuvre même si un seul capteur 70 est raccordé à chaque bande conductrice 62.
  • Dans une variante, l'instant ta70 n'est pas déterminé et les mesures des capteurs 70 ne sont pas utilisées pour déterminer l'instant ta.
  • En variante, l'instant ta92 n'est pas déterminé. Par exemple, l'instant ta est déterminé uniquement à partir des mesures des capteurs 70. A titre d'illustration, l'instant ta est alors pris égal à l'instant ta70. Dans ce cas, les capteurs 92 peuvent être omis.
  • Chapitre III. AVANTAGES DES MODES DE REALISATION DECRITS
  • Après avoir traversé la grille conductrice, l'avalanche d'électrons secondaires s'évase. La zone d'impact des électrons secondaires sur la plaque de lecture est donc plus large que la zone de la grille conductrice traversée par ces mêmes électrons secondaires. Autrement dit, la dispersion spatiale de ces électrons secondaires est plus faible au niveau de la grille conductrice qu'au niveau de la plaque de lecture. Puisque la dispersion spatiale de ces électrons secondaires au niveau de la grille conductrice est plus faible, il génère un pic de charges plus étroit. De plus, l'impédance de la grille conductrice est beaucoup plus uniforme que l'impédance des bandes conductrices 62. En effet, l'impédance des tuiles 120 est différente de l'impédance des connexions 128 ce qui crée de nombreuses ruptures d'impédance le long de chaque bande 62. A cause de ces deux caractéristiques, l'incertitude sur l'instant ta auquel la particule élémentaire arrive est plus faible si cet instant est établi à partir des mesures des capteurs 92 que seulement à partir des mesures des capteurs 70.
  • Le fait d'utiliser les instants corrigés tc92a à tc92d permet d'accroître encore plus la précision sur la mesure de l'instant ta d'arrivée.
  • Le fait d'utiliser plusieurs capteurs 92 permet aussi d'accroître encore plus la précision sur la mesure de l'instant ta d'arrivée.
  • Le fait d'utiliser plusieurs grilles contiguës les unes aux autres dans un même plan permet de distinguer plusieurs particules élémentaires touchant la cathode 4 simultanément. Cela permet alors de déterminer de façon plus fiable l'instant d'arrivée ta de ces particules élémentaires.
  • Le fait d'utiliser des bandes conductrices au lieu d'électrodes individuelles réduit considérablement le nombre de capteurs 70 nécessaires pour déterminer la position Pf du point d'impact. De plus, les tuiles de chaque bande conductrice sont situées dans même plan, de sorte qu'elles présentent la même sensibilité. Il n'est donc pas nécessaire d'implémenter des moyens pour corriger des écarts de sensibilité entre les bandes conductrices, comme c'est le cas lorsque ces bandes conductrices sont situées dans des plans horizontaux différents.
  • Le fait que la plus grande dimension des tuiles soit inférieure ou égale à la plus grande dimension de la sortie des canaux permet simplement de répartir l'avalanche d'électrons secondaires sur plusieurs tuiles et cela même dans le cas où le détecteur comporte une seule dynode.
  • Le fait de raccorder le capteur 70 non pas aux extrémités de la bande 62, mais en un point central, en passant par l'intermédiaire du via 136, permet de loger le capteurs 70 sous la bande 62. Cela facilite le placement des capteurs 70 et donc la fabrication de la plaque de lecture.
  • Le fait que la sortie des canaux de la dynode 6 recouvre au moins partiellement plusieurs entrées de la dynode 10 permet de simplement étaler l'avalanche d'électrons secondaires sur un plus grand nombre de tuiles, même si la plus grande dimension de ces tuiles est supérieure à la plus grande dimension de la section transversale de la sortie des canaux directement en vis-à-vis de ces tuiles. Cela permet de simplifier la conception et la fabrication de la plaque de lecture, car les contraintes sur les dimensions des tuiles sont réduites.
  • Le fait que la section transversale des entrées 42 des canaux 40 de la dynode inférieure 10 soient plus petites que la section transversale des sorties 30 des canaux 24 de la dynode 6 permet simplement d'étaler l'avalanche d'électrons secondaires. En particulier, cet étalement se produit sans qu'il soit pour cela nécessaire de positionner précisément la dynode 6 par rapport à la dynode 10.
  • L'invention s'applique naturellement à l'étude de la physique des particules. L'invention s'applique également au domaine de l'imagerie, notamment dans le domaine spatial, médical ou environnemental et également le domaine du transport. Par exemple, dans le domaine médical, l'invention peut être utilisée dans le cadre de traitement par hadronthérapie ou protonthérapie ou encore dans le cadre de la thérapie par émission de positons (TEP).

Claims (11)

  1. Détecteur de particules élémentaires, ce détecteur comportant :
    - une cathode (4) et une grille conductrice (8, 12) apte à créer une différence de potentiels susceptible d'accélérer des électrons en direction de la grille conductrice, la grille conductrice étant apte à être traversée par les électrons accélérés,
    - une dynode (6, 10) interposée entre la cathode et la grille conductrice, cette dynode étant apte, pour chaque particule élémentaire, à produire une avalanche d'électrons secondaires, cette dynode comportant à cet effet plusieurs canaux, chaque canal comportant un matériau émissif, ce matériau émissif étant apte, en réponse à un impact d'un électron, à générer, en moyenne, plus d'un électron secondaire,
    - une plaque (16; 200) de lecture disposée du côté de la grille conductrice opposé à la dynode, cette plaque de lecture comportant :
    • une face extérieure (60) agencée de manière à être percutée par l'avalanche d'électrons secondaires, et
    • des électrodes (120; 252) disposées les unes à côtés des autres dans une face parallèle à ou confondue avec la face extérieure,
    - des premiers capteurs (70) aptes à mesurer la quantité de charges électriques sur les électrodes,
    - une unité (80) de traitement apte à déterminer l'emplacement de l'avalanche d'électrons à partir de la quantité de charges électriques mesurée par les premiers capteurs et à partir de l'emplacement connu des électrodes,
    caractérisé en ce que :
    - le détecteur comporte au moins un second capteur (92), chaque second capteur étant apte à mesurer un signal électrique produit par les électrons secondaires lorsqu'ils traversent la grille conductrice, et
    - l'unité (80) de traitement est apte à établir, en plus, un instant d'arrivée de la particule élémentaire à partir d'un instant dit "de traversée" où le signal électrique est mesuré par le second capteur.
  2. Détecteur selon la revendication 1, dans lequel l'unité (80) de traitement est configurée pour :
    - corriger l'instant de traversée en y retranchant un temps de propagation du signal électrique entre l'emplacement où la grille conductrice (8, 12) est traversée par l'avalanche d'électrons secondaires et l'emplacement où le signal électrique est mesuré par le second capteur (92), l'emplacement où la grille conductrice est traversée par l'avalanche d'électrons secondaires étant établi à partir des mesures des premiers capteurs (70), puis
    - déterminer l'instant d'arrivée à partir de l'instant corrigé de traversée ainsi obtenu.
  3. Détecteur selon la revendication 2, dans lequel le détecteur comporte plusieurs seconds capteurs (92a-92d) situés à des endroits respectifs, espacés les uns des autres, et l'unité (80) de traitement est configurée pour déterminer l'instant d'arrivée à partir des instants corrigés de traversée obtenus à partir des mesures de chacun de ces seconds capteurs (92).
  4. Détecteur selon l'une quelconque des revendications précédentes, dans lequel le détecteur comporte :
    - plusieurs grilles (220-223) conductrices disposées de façon contiguë les unes aux autres dans un même plan pour recouvrir toute la surface susceptible d'être traversée par l'avalanche d'électrons secondaires, ces grilles conductrices étant électriquement isolées les unes des autres, et
    - au moins un second capteur (92a-92d) associé à chacune de ces grilles conductrices pour mesurer le signal électrique dans cette grille conductrice seulement.
  5. Détecteur selon l'une quelconque des revendications précédentes, dans lequel la plaque de lecture comporte dans l'ordre en se rapprochant de sa face extérieure :
    - une couche diélectrique (104, 108, 112) présentant une face avant tournée vers la face extérieure,
    - des bandes conductrices (62) formant les électrodes de la plaque de lecture, ces bandes conductrices s'étendant principalement parallèlement à la face avant dans au moins deux directions différentes, chaque bande conductrice étant électriquement raccordée à au moins un premier capteur (70) de charges électriques, ces bandes conductrices étant formées par :
    • des tuiles (120; 252) conductrices toutes identiques les unes aux autres et toutes situées à la même distance de la face extérieure, ces tuiles conductrices étant réparties sur la face avant de la couche diélectrique et étant mécaniquement séparées les unes des autres par un matériau diélectrique, et
    • des connexions électriques (128), situées sous la couche diélectrique, qui raccordent électriquement en série des tuiles conductrices de manière à former lesdites bandes conductrices, ces connexions électriques étant agencées de manière à ce que chaque tuile conductrice appartienne à une seule bande conductrice et chaque côté d'une tuile est adjacent au côté d'une autre tuile appartenant à une autre bande conductrice.
  6. Détecteur selon la revendication 5, dans lequel la plus grande dimension de chaque tuile (120; 252) est inférieure ou égale à la plus grande dimension de la section transversale de la sortie (44) de chaque canal (40) directement en vis-à-vis de la plaque de lecture, la plus grande dimension de la section transversale de la sortie d'un canal et la plus grande dimension d'une tuile étant égales à la longueur du plus grand côté du rectangle de plus petite surface qui contient entièrement, respectivement, cette section transversal et cette tuile.
  7. Détecteur selon la revendication 5 ou 6, dans lequel :
    - au moins une bande conductrice (62) s'étend depuis une première extrémité jusqu'à une seconde extrémité, et
    - la plaque de lecture comporte au moins un via (136) qui s'étend perpendiculairement à sa face extérieure depuis un point situé entre les extrémités de la bande conductrice jusqu'à un point de raccordement électrique à un premier capteur (70).
  8. Détecteur selon l'une quelconque des revendications 5 à 7, dans lequel le détecteur comporte au moins une dynode supérieure (6) empilée sur une dynode inférieure (10), la dynode inférieure étant agencée par rapport à la dynode supérieure de manière à ce que les électrons secondaires qui débouchent d'un canal de la dynode supérieure se répartissent dans plusieurs canaux de la dynode inférieure.
  9. Détecteur selon la revendication 8, dans lequel le diamètre de la section transversale des entrées (42) des canaux de la dynode inférieure est égale ou inférieure au diamètre de la section transversale des sorties (30) des canaux de la dynode supérieure.
  10. Procédé de détection d'une particule élémentaire à l'aide d'un détecteur conforme à l'une quelconque des revendications précédentes, dans lequel le procédé comporte :
    - la mesure (152) de la quantité de charges électrique reçue par chaque électrode de la plaque de lecture à l'aide des premiers capteurs, et
    - la détermination (156; 210) de l'emplacement de l'avalanche d'électrons secondaires à partir de la quantité de charges électriques mesurée par les premier capteurs et à partir de l'emplacement connu des électrodes,
    caractérisé en ce que le procédé comporte, en plus, :
    - la mesure (152) d'un signal électrique produit par les électrons secondaires lorsqu'ils traversent la grille conductrice à l'aide dudit au moins un second capteur (92), et
    - l'établissement (158; 212) d'un instant d'arrivée de la particule élémentaire à partir d'un instant dit "de traversée" où le signal électrique est mesuré par le second capteur.
  11. Support (82) d'enregistrement d'informations, lisible par un calculateur électronique, caractérisé en ce que ce support d'enregistrement d'informations comporte des instructions pour l'exécution d'un procédé conforme à la revendication 10, lorsque ces instructions sont exécutées par le calculateur électronique.
EP20707305.7A 2019-01-18 2020-01-16 Detecteur de particules elementaires Active EP3912183B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1900458A FR3091953B1 (fr) 2019-01-18 2019-01-18 Detecteur de particules elementaires
PCT/FR2020/050058 WO2020148508A1 (fr) 2019-01-18 2020-01-16 Detecteur de particules elementaires

Publications (2)

Publication Number Publication Date
EP3912183A1 EP3912183A1 (fr) 2021-11-24
EP3912183B1 true EP3912183B1 (fr) 2023-03-01

Family

ID=67956843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20707305.7A Active EP3912183B1 (fr) 2019-01-18 2020-01-16 Detecteur de particules elementaires

Country Status (5)

Country Link
US (1) US11823881B2 (fr)
EP (1) EP3912183B1 (fr)
JP (1) JP7350863B2 (fr)
FR (1) FR3091953B1 (fr)
WO (1) WO2020148508A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3140205A1 (fr) 2022-09-23 2024-03-29 Universite Claude Bernard Lyon 1 Détecteur de particules élémentaires et procédé de détection associé

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118914A (ja) * 1991-10-29 1993-05-14 Shimadzu Corp アレー状電磁波センサ
AU5098798A (en) 1996-10-30 1998-05-22 Nanosystems, Inc. Microdynode integrated electron multiplier
US6747271B2 (en) * 2001-12-19 2004-06-08 Ionwerks Multi-anode detector with increased dynamic range for time-of-flight mass spectrometers with counting data acquisition
JP4259276B2 (ja) * 2003-10-24 2009-04-30 パナソニック電工株式会社 マイクロ波無電極放電灯装置
JP5118914B2 (ja) 2007-07-31 2013-01-16 東海ゴム工業株式会社 防振ゴム組成物およびその製法
JP5159393B2 (ja) * 2008-03-31 2013-03-06 サイエナジー株式会社 電子増幅器及びこれを使用した放射線検出器
GB2486484B (en) * 2010-12-17 2013-02-20 Thermo Fisher Scient Bremen Ion detection system and method
FR3062926B1 (fr) * 2017-02-15 2019-04-12 Universite Claude Bernard Lyon 1 Detecteur gazeux de particules elementaires
JP6395906B1 (ja) * 2017-06-30 2018-09-26 浜松ホトニクス株式会社 電子増倍体

Also Published As

Publication number Publication date
WO2020148508A1 (fr) 2020-07-23
US20220082709A1 (en) 2022-03-17
JP7350863B2 (ja) 2023-09-26
EP3912183A1 (fr) 2021-11-24
US11823881B2 (en) 2023-11-21
JP2022517431A (ja) 2022-03-08
FR3091953A1 (fr) 2020-07-24
FR3091953B1 (fr) 2021-01-29

Similar Documents

Publication Publication Date Title
EP0855086B1 (fr) Detecteur de position, a haute resolution, de hauts flux de particules ionisantes
EP2798339B1 (fr) Procédé d'analyse d'un échantillon de matériau par diffractométrie et diffractomètre associé
EP0742954A1 (fr) Detecteur de rayonnements ionisants a microcompteurs proportionnels
EP3912183B1 (fr) Detecteur de particules elementaires
EP0810631A1 (fr) Dispositif d'imagerie radiographique à haute résolution
EP3583446B1 (fr) Détecteur gazeux de particules élémentaires
JP4570132B2 (ja) X線画像のサブピクセル分解能のための中心点装置及び方法
WO1993003495A1 (fr) Detecteur a gaz de rayonnement ionisant
EP0045704B1 (fr) Détecteur de rayonnement
EP0165119B1 (fr) Dispositif multiplicateur d'électrons, à localisation par le champ électrique
WO2004057675A1 (fr) Matrice de detecteurs multispectraux
EP2483909B1 (fr) Détecteurs de radiations et dispositifs d'imagerie autoradiographique comprenant de tels détecteurs
EP1343194A1 (fr) Détecteurs de radiations et dispositifs d'imagerie autoradiographique comprenant de tels détecteurs
EP0340126B1 (fr) Détecteur gazeux pour rayons-x sans parallaxe
FR3140205A1 (fr) Détecteur de particules élémentaires et procédé de détection associé
EP2749903B1 (fr) Circuit de connexion multiplexé et dispositif de détection d'au moins une particule utilisant le circuit de connexion
EP2997399B1 (fr) Detecteur de rayons x
WO1997004335A1 (fr) Detecteur de particules sensible a la position et transparent
FR2856481A1 (fr) Dispositif et procede a centroide pour une definition d'image de rayons x inferieure au pixel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220907

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1551581

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020008496

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230301

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230601

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1551581

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230602

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230703

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020008496

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

26N No opposition filed

Effective date: 20231204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 5

Ref country code: GB

Payment date: 20240123

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240122

Year of fee payment: 5