EP3910086A1 - Copper manganese aluminium-iron wrought alloy - Google Patents

Copper manganese aluminium-iron wrought alloy Download PDF

Info

Publication number
EP3910086A1
EP3910086A1 EP21000110.3A EP21000110A EP3910086A1 EP 3910086 A1 EP3910086 A1 EP 3910086A1 EP 21000110 A EP21000110 A EP 21000110A EP 3910086 A1 EP3910086 A1 EP 3910086A1
Authority
EP
European Patent Office
Prior art keywords
weight
alloy
aluminum
iron
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP21000110.3A
Other languages
German (de)
French (fr)
Other versions
EP3910086B1 (en
Inventor
Igor Altenberger
Hans-Achim Kuhn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP3910086A1 publication Critical patent/EP3910086A1/en
Application granted granted Critical
Publication of EP3910086B1 publication Critical patent/EP3910086B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the invention relates to a wrought copper-manganese-aluminum-iron alloy.
  • Alloy systems based on copper-manganese-aluminum alloys are characterized by their high strength.
  • the yield strength Rp 0.2 is the more important parameter compared to the tensile strength, as it is used for dimensioning against excessively elastic stress and only a few technical components are only designed for high tensile strength.
  • the invention is based on the object of providing a copper alloy which, in the hot-formed state, has a tensile strength of at least 900 MPa, preferably at least 1000 MPa, and a 0.2% proof stress Rp 0.2 of at least 650 MPa, preferably at least 850 MPa, as well as has an acceptable ductility. Furthermore, the alloy should be inexpensive.
  • the invention includes a wrought copper-manganese-aluminum-iron alloy with the following composition in% by weight: Mn: 11.0 to 17.0% Al: 10.0 to 13.0% Fe: 5.0 to 8.0% optional Ti: 0.01 to 0.4% optional B: 0.002 to 0.3%
  • the sum of the aluminum content and the iron content being at least 16.5% by weight.
  • An alloy of the composition mentioned has a special combination of strength and ductility.
  • the tensile strength is at least 900 MPa, in selected areas at least 1000 MPa, and the 0.2% proof stress at least 650 MPa, in selected areas at least 850 MPa.
  • the elongation at break as a measure of the ductility is between 0.5% and 5.0%, the elongation at break decreasing in a known manner with increasing strength.
  • the lower limits of the elements Mn, Al and Fe as well as the additional condition that the sum of the aluminum content and the iron content is at least 16.5% by weight are selected so that the required strength is achieved.
  • the upper limits of the elements Mn, Al, and Fe are chosen so that a minimum ductility is guaranteed. Exceeding these limits would lead to embrittlement and also to a decrease in tensile strength above certain element limits of the alloy. It should be noted that 1% by weight of aluminum has approximately the same effect as 5% by weight of manganese in terms of embrittlement.
  • the optional elements Ti and B bring about a grain refinement of the structure.
  • the alloy does not contain any expensive elements such as nickel or tin.
  • the alloy also has excellent oil corrosion resistance and high fatigue strength.
  • the alloy is present in the entire area of the composition as an ⁇ - ⁇ alloy, in the structure of which additionally manganese and / or iron-containing particles or such excretions are embedded.
  • the iron-containing particles come in different size classes: On the one hand, as Fe particles with a diameter of more than 1 ⁇ m, which anchor the grain boundaries and counteract grain coarsening during hot forming, and on the other hand, in the form of face-centered cubic precipitates containing iron and manganese of K IV phase (kappa IV phase), which are only about 20 to 100 nm in size and lead to the particularly high strength of this alloy. Due to the high Fe content of 5 - 8%, a particularly large number of K IV precipitates are formed.
  • the sum of the Mn content and the Fe content is preferably at least 18% by weight, particularly preferably at least 19% by weight.
  • the alloy does not contain a brittle ⁇ phase.
  • the copper content can be at most 70.0% by weight.
  • a minimum proportion of alloying elements in particular Mn, Al and Fe, is specified indirectly. This ensures that the required strength of the alloy is achieved.
  • the limitation of the copper content also has a positive effect on the price of the alloy.
  • the sum of the manganese component, the iron component and three times the aluminum component can be at least 52.0% by weight. In this way, alloys with a tensile strength of at least 1000 MPa are achieved.
  • the triple weighting of the aluminum share in total expresses the particularly strength-increasing effect of aluminum.
  • the proportion of manganese in the alloy can advantageously be 12.0 to 16.0% by weight, particularly preferably 13.0 to 15.0% by weight. In this narrower range for the Mn component, particularly favorable results are obtained Property combinations. With an Mn content of at least 12.0% by weight, a tensile strength of at least 1100 MPa can be achieved. By restricting the upper limit, the ductility of the alloy is favorably influenced.
  • the aluminum content can be 11.0 to 12.0% by weight.
  • Aluminum has a great influence on strength, but also on embrittlement. At the same time, aluminum reduces the density of the alloy. The range between 11.0 and 12.0% by weight has proven to be particularly favorable with regard to these properties.
  • the iron content in the alloy can preferably be 6.0 to 7.0% by weight.
  • a minimum proportion of iron in combination with manganese is important to achieve a high-strength alloy because the yield strength is positively influenced by the formation of Mn- and Fe-rich K IV precipitates. It is therefore advantageous to include at least 6.0 wt% iron in the alloy.
  • the strength-increasing effect of iron is somewhat smaller than that of aluminum. Above an iron content of 7% by weight, there is no further improvement in tensile strength due to iron. Nevertheless, the iron content should be as large as possible, as iron reduces the density of the alloy and lowers the metal price. Iron also has a grain-refining effect.
  • compositions with manganese from 13.0 to 15.0% by weight in combination with aluminum from 11.0 to 12.0% by weight and iron from 6.0 to 7.0% by weight offer the advantage that the material has a low density of approximately 6900 kg / m 3 and thus a significant weight saving, for example 25% compared to pure copper or low-alloy copper and approximately 13% compared to steel, can be achieved.
  • the alloy composition can particularly advantageously be selected in this way that the alloy has Mn- and Fe-rich K IV precipitates with a volume fraction of at least 20%. This can be achieved by choosing the proportions of Mn and Fe to be sufficiently high.
  • the face-centered cubic Mn and Fe-rich K IV precipitates have a positive effect on the yield strength of the alloy. With a volume fraction of at least 20%, the yield strength Rp 0.2 is at least 1000 MPa.
  • the wrought copper-manganese-aluminum-iron alloy can preferably have a combination of properties in which the 0.2% proof stress Rp 0.2 , depending on the elongation at break x in%, fulfills the following relation: Rp 0 , 2 ⁇ 920 MPa ⁇ x - 0 , 17th
  • the 0.2% proof stress and elongation at break are determined by means of a tensile test at room temperature.
  • Table 1 shows alloy examples with their properties in the hot-worked state.
  • the composition of the respective alloy is documented in the first column.
  • the alloys were melted in a Tammann furnace and cast using the conventional permanent mold casting process without protective gas as a plate measuring 90 x 50 x 20 mm.
  • the alloying elements Fe, Mn and Al were added in the form of binary CuX master alloys, where X stands for the respective alloying element.
  • the porosity after casting was less than 2% by volume for all variants, mostly even less than 1% by volume.
  • the plates were then hot rolled between 750 and 800 ° C.
  • the degree of deformation, which is defined as the relative decrease in plate thickness, was approximately 40%.
  • the unavoidable impurities were less than 0.05% by weight in all examples.
  • Table 1 shows nine alloy examples according to the invention and three comparative examples.
  • the sum of the alloying elements Al and Fe is at least 17% by weight, whereas in the comparative examples it is only approximately 14 to 15% by weight.
  • the sum of the manganese content, the iron content and three times the aluminum content is entered.
  • the sum of the proportions of the alloying elements Mn and Fe is entered in the sixth column. In the examples in the first nine lines this is at least 18% by weight, in the comparative examples it is less than 15% by weight.
  • All examples according to the invention have a tensile strength of over 900 MPa and a 0.2% yield strength of at least 650 MPa. Alloys in which the sum of the manganese content, the iron content and three times the aluminum content is at least 53% by weight, have a tensile strength of over 1000 MPa and a 0.2% yield strength of over 850 MPa on. The elongation at break decreases continuously with increasing yield strength. Particularly favorable combinations of properties result for alloys in which the sum of the manganese content, the iron content and three times the aluminum content is at least 54.0 and at most 56.0% by weight.
  • the alloys CuMn13Al10Fe7 and CuMn12Al10Fe7 have a 0.2% yield strength between 650 and 700 MPa and thus the lowest yield strengths of the first nine examples. On the other hand, they are characterized by a high elongation at break of 4.6% or 6% and thus greater ductility than the other alloy examples.
  • the alloys can be straightened after hot forming. Their density is approximately 7100 kg / m 3 .
  • Comparative example 1 has acceptable tensile strength and sufficient yield strength, but its elongation at break is comparatively low: Compared to comparative alloy 1, alloy CuMn14Al11Fe6 is distinguished by a significantly higher strength with even a slightly better yield strength. This shows that the quaternary alloy system Cu-Mn-Al-Fe reacts sensitively to a change in the composition.
  • Comparative example 2 corresponds to that from the publication GB 762 235 A well-known nickel-free example. The mechanical parameters were determined after hot forming. The alloy of Comparative Example 2 is inferior to the alloys according to the invention in terms of strength.
  • Comparative example 3 corresponds to one from the publication FR 1 177 060 A known alloy. The mechanical parameters were determined after hot forming. Although the alloy of Comparative Example 3 has a sufficient tensile strength of 950 MPa, the yield strength is below the requirements.

Abstract

Die Erfindung betrifft eine Kupfer-Mangan-Aluminium-Eisen-Knetlegierung mit folgender Zusammensetzung in Gew.-%:Mn:11,0 bis 17,0%Al:10,0 bis 13,0%Fe:5,0 bis 8,0 %optional Ti:0,01 bis 0,4 %optional B:0,002 bis 0,3 %Rest Kupfer sowie unvermeidbare Verunreinigungen,wobei die Summe aus Aluminium-Anteil und Eisen-Anteil mindestens 16,5 Gew.-% beträgt.The invention relates to a wrought copper-manganese-aluminum-iron alloy with the following composition in% by weight: Mn: 11.0 to 17.0% Al: 10.0 to 13.0% Fe: 5.0 to 8, 0% optional Ti: 0.01 to 0.4% optional B: 0.002 to 0.3% remainder copper as well as unavoidable impurities, the sum of the aluminum content and iron content being at least 16.5% by weight.

Description

Die Erfindung betrifft eine Kupfer-Mangan-Aluminium-Eisen-Knetlegierung.The invention relates to a wrought copper-manganese-aluminum-iron alloy.

Legierungssysteme auf Basis von Kupfer-Mangan-Aluminium-Legierungen zeichnen sich durch eine hohe Festigkeit aus. Die Dehngrenze Rp0,2 ist dabei im Vergleich zur Zugfestigkeit die wichtigere Kenngröße, da sie zur Dimensionierung gegen überelastische Beanspruchung verwendet wird und nur wenige technische Bauteile lediglich auf hohe Zugfestigkeit ausgelegt sind.Alloy systems based on copper-manganese-aluminum alloys are characterized by their high strength. The yield strength Rp 0.2 is the more important parameter compared to the tensile strength, as it is used for dimensioning against excessively elastic stress and only a few technical components are only designed for high tensile strength.

In der Literatur sind bereits ternäre Cu-Al-Mn, quaternäre Cu-Al-Mn-X und quinäre Cu-Al-Mn-X-Y Legierungen beschrieben. Beispielsweise ist eine Shape-Memory-Legierung mit der ungefähren Zusammensetzung CuMn11Al8 bekannt. Die Zugfestigkeit und 0,2 %-Dehngrenze dieser Legierung liegen deutlich unter 1000 MPa. Des Weiteren existiert eine eisenfreie, genormte Cu-Al-Mn Legierung mit der Zusammensetzung CuAl9Mn2. Verschiedene sogenannte Heusler-Legierungen sind ebenfalls vom Typ Cu-Al-Mn.Ternary Cu-Al-Mn, quaternary Cu-Al-Mn-X and quinary Cu-Al-Mn-X-Y alloys have already been described in the literature. For example, a shape memory alloy with the approximate composition CuMn11Al8 is known. The tensile strength and 0.2% proof stress of this alloy are well below 1000 MPa. There is also an iron-free, standardized Cu-Al-Mn alloy with the composition CuAl9Mn2. Various so-called Heusler alloys are also of the Cu-Al-Mn type.

Aus der Druckschrift GB 762 235 A sind eine Legierung der Zusammensetzung CuMn6,2Al9,7Fe4,6Zn0,5 sowie nickelhaltige Legierungen ähnlicher Zusammensetzung mit maximal 8 Gew.-% Mn bekannt. Die Zugfestigkeit der Legierungen liegt im Gusszustand zwischen 600 und 700 MPa, die Dehngrenze bei ungefähr 250 MPa.From the pamphlet GB 762 235 A an alloy of the composition CuMn6.2Al9.7Fe4.6Zn0.5 and nickel-containing alloys of a similar composition with a maximum of 8% by weight of Mn are known. The tensile strength of the alloys in the as-cast state is between 600 and 700 MPa, the yield strength at about 250 MPa.

Des Weiteren ist aus der Druckschrift FR 1 177 060 A eine Kupferlegierung mit 8,5 bis 9,5 Gew.-% Mn, 8 bis 10,5 Gew.-% Al, 2,5 bis 5 Gew.-% Fe und 2 bis 3 Gew.-% Ni bekannt. Die Zugfestigkeit der Legierung beträgt im Gusszustand ungefähr 600 MPa und die Dehngrenze ungefähr 260 MPa.Furthermore, from the publication FR 1 177 060 A a copper alloy with 8.5 to 9.5% by weight of Mn, 8 to 10.5% by weight of Al, 2.5 to 5% by weight of Fe and 2 to 3% by weight of Ni is known. The as-cast tensile strength of the alloy is approximately 600 MPa and the yield strength is approximately 260 MPa.

Ferner sind aus der Druckschrift US 2 715 577 A Legierung mit 10 bis 15 Gew.-% Mn, 6,5 bis 9 % Al, 2 bis 4 % Fe und 1,5 bis 6 % Nickel bekannt. Ein Beispiel mit der Zusammensetzung CuMn11,7Al7,2Fe3,3Ni2,2 weist im Gusszustand eine Zugfestigkeit von 600 bis 700 MPa und eine Dehngrenze von ungefähr 280 MPa auf.Furthermore, from the publication U.S. 2,715,577 A Alloy with 10 to 15% by weight Mn, 6.5 to 9% Al, 2 to 4% Fe and 1.5 to 6% nickel is known. An example with the composition CuMn11.7Al7.2Fe3.3Ni2.2 has a tensile strength of 600 to 700 MPa and a yield strength of approximately 280 MPa in the as-cast state.

Der Erfindung liegt die Aufgabe zugrunde, eine Kupferlegierung bereitzustellen, die im warmumgeformten Zustand eine Zugfestigkeit von mindestens 900 MPa, vorzugsweise mindestens 1000 MPa, und eine 0,2 %-Dehngrenze Rp0,2 von mindestens 650 MPa, vorzugsweise mindestens 850 MPa, sowie eine akzeptable Duktilität aufweist. Ferner sollte die Legierung kostengünstig sein.The invention is based on the object of providing a copper alloy which, in the hot-formed state, has a tensile strength of at least 900 MPa, preferably at least 1000 MPa, and a 0.2% proof stress Rp 0.2 of at least 650 MPa, preferably at least 850 MPa, as well as has an acceptable ductility. Furthermore, the alloy should be inexpensive.

Die Erfindung wird durch die Merkmale des Anspruchs 1 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.The invention is represented by the features of claim 1. The further back-referenced claims relate to advantageous designs and developments of the invention.

Die Erfindung schließt eine Kupfer-Mangan-Aluminium-Eisen-Knetlegierung mit folgender Zusammensetzung in Gew.-% ein: Mn: 11,0 bis 17,0 % Al: 10,0 bis 13,0 % Fe: 5,0 bis 8,0 % optional Ti: 0,01 bis 0,4 % optional B: 0,002 bis 0,3 % The invention includes a wrought copper-manganese-aluminum-iron alloy with the following composition in% by weight: Mn: 11.0 to 17.0% Al: 10.0 to 13.0% Fe: 5.0 to 8.0% optional Ti: 0.01 to 0.4% optional B: 0.002 to 0.3%

Rest Kupfer sowie unvermeidbare Verunreinigungen,
wobei die Summe aus Aluminium-Anteil und Eisen-Anteil mindestens 16,5 Gew.-% beträgt.
Rest of copper and unavoidable impurities,
the sum of the aluminum content and the iron content being at least 16.5% by weight.

Eine Legierung der genannten Zusammensetzung weist eine besondere Kombination von Festigkeit und Duktilität auf. Die Zugfestigkeit beträgt mindestens 900 MPa, in ausgewählten Bereichen mindestens 1000 MPa, und die 0,2 %-Dehngrenze mindestens 650 MPa, in ausgewählten Bereichen mindestens 850 MPa. Die Bruchdehnung als Maß für die Duktilität liegt zwischen 0,5 % und 5,0 %, wobei die Bruchdehnung in bekannter Weise mit zunehmender Festigkeit abnimmt.An alloy of the composition mentioned has a special combination of strength and ductility. The tensile strength is at least 900 MPa, in selected areas at least 1000 MPa, and the 0.2% proof stress at least 650 MPa, in selected areas at least 850 MPa. The elongation at break as a measure of the ductility is between 0.5% and 5.0%, the elongation at break decreasing in a known manner with increasing strength.

Die Untergrenzen der Elemente Mn, Al und Fe sowie die Zusatzbedingung, dass die Summe aus Aluminium-Anteil und Eisen-Anteil mindestens 16,5 Gew.-% beträgt, sind so gewählt, dass die erforderliche Festigkeit erreicht wird. Die Obergrenzen der Elemente Mn, Al, und Fe sind so gewählt, dass eine Mindestduktilität gewährleistet wird. Eine Überschreitung dieser Grenzen würde zu einer Versprödung und auch zu einer Abnahme der Zugfestigkeit oberhalb bestimmter Elementgrenzen der Legierung führen. Dabei ist zu beachten, dass 1 Gew.-% Aluminium hinsichtlich der Versprödung ungefähr den gleichen Effekt wie 5 Gew.-% Mangan hat.The lower limits of the elements Mn, Al and Fe as well as the additional condition that the sum of the aluminum content and the iron content is at least 16.5% by weight are selected so that the required strength is achieved. The upper limits of the elements Mn, Al, and Fe are chosen so that a minimum ductility is guaranteed. Exceeding these limits would lead to embrittlement and also to a decrease in tensile strength above certain element limits of the alloy. It should be noted that 1% by weight of aluminum has approximately the same effect as 5% by weight of manganese in terms of embrittlement.

Die optionalen Elemente Ti und B bewirken eine Kornfeinung des Gefüges.The optional elements Ti and B bring about a grain refinement of the structure.

Die Legierung enthält keine teuren Elemente wie Nickel oder Zinn. Die Legierung weist ferner eine exzellente Ölkorrosionsbeständigkeit und eine hohe Schwingfestigkeit auf.The alloy does not contain any expensive elements such as nickel or tin. The alloy also has excellent oil corrosion resistance and high fatigue strength.

Die Legierung liegt im gesamten Bereich der Zusammensetzung als α-β-Legierung vor, in deren Gefüge zusätzlich mangan- und/oder eisenhaltige Partikel oder derartige Ausscheidungen eingelagert sind. Die eisenhaltigen Partikel liegen in unterschiedlichen Größenklassen vor: Einerseits als Fe-Partikel mit einem Durchmesser von mehr als 1 µm, welche die Korngrenzen verankern und einer Kornvergröberung bei der Warmumformung entgegenwirken, und andererseits auch in Form von kubisch-flächenzentrierten, eisen- und manganhaltigen Ausscheidungen von KIV-Phase (kappa-IV-Phase), welche nur ungefähr 20 bis 100 nm groß sind und zur besonders hohen Festigkeit dieser Legierung führen. Durch den hohen Fe-Gehalt von 5 - 8 % bilden sich besonders viele KIV-Ausscheidungen. Bevorzugt beträgt die Summe aus Mn-Anteil und Fe-Anteil mindestens 18 Gew.-%, besonders bevorzugt mindestens 19 Gew.-%. Die Legierung enthält im Gegensatz zu konventionellen Aluminiumbronzen, wie beispielsweise CuAl10Ni5Fe4, keine spröde γ-Phase.The alloy is present in the entire area of the composition as an α-β alloy, in the structure of which additionally manganese and / or iron-containing particles or such excretions are embedded. The iron-containing particles come in different size classes: On the one hand, as Fe particles with a diameter of more than 1 µm, which anchor the grain boundaries and counteract grain coarsening during hot forming, and on the other hand, in the form of face-centered cubic precipitates containing iron and manganese of K IV phase (kappa IV phase), which are only about 20 to 100 nm in size and lead to the particularly high strength of this alloy. Due to the high Fe content of 5 - 8%, a particularly large number of K IV precipitates are formed. The sum of the Mn content and the Fe content is preferably at least 18% by weight, particularly preferably at least 19% by weight. In contrast to conventional aluminum bronzes such as CuAl10Ni5Fe4, the alloy does not contain a brittle γ phase.

In bevorzugter Ausgestaltung der Erfindung kann der Kupfer-Anteil höchstens 70,0 Gew.-% betragen. Indem der Maximalanteil von Kupfer in der Legierung beschränkt wird, wird indirekt ein Mindestanteil von Legierungselementen, insbesondere von Mn, Al und Fe, spezifiziert. Dadurch wird sichergestellt, dass die erforderliche Festigkeit der Legierung erreicht wird. Die Begrenzung des Kupfer-Anteils wirkt sich ferner positiv auf den Preis der Legierung aus.In a preferred embodiment of the invention, the copper content can be at most 70.0% by weight. By limiting the maximum proportion of copper in the alloy, a minimum proportion of alloying elements, in particular Mn, Al and Fe, is specified indirectly. This ensures that the required strength of the alloy is achieved. The limitation of the copper content also has a positive effect on the price of the alloy.

In weiterer bevorzugter Ausgestaltung der Erfindung kann die Summe aus dem Mangan-Anteil, dem Eisen-Anteil und dem Dreifachen des Aluminium-Anteils mindestens 52,0 Gew.-% betragen. Auf diese Weise werden Legierungen mit einer Zugfestigkeit von mindestens 1000 MPa erreicht. Die dreifache Gewichtung des Aluminium-Anteils in der Summe bringt die besonders festigkeitssteigernde Wirkung des Aluminiums zum Ausdruck.In a further preferred embodiment of the invention, the sum of the manganese component, the iron component and three times the aluminum component can be at least 52.0% by weight. In this way, alloys with a tensile strength of at least 1000 MPa are achieved. The triple weighting of the aluminum share in total expresses the particularly strength-increasing effect of aluminum.

Vorteilhafterweise kann der Mangan-Anteil in der Legierung 12,0 bis 16,0 Gew.-%, besonders bevorzugt 13,0 bis 15,0 Gew.-% betragen. In diesem enger gefassten Bereich für den Mn-Anteil ergeben sich besonders günstige Eigenschaftskombinationen. Bei einem Mn-Anteil von mindestens 12,0 Gew.-% kann eine Zugfestigkeit von mindestens 1100 MPa erreicht werden. Durch eine Beschränkung der Obergrenze wird die Duktilität der Legierung günstig beeinflusst.The proportion of manganese in the alloy can advantageously be 12.0 to 16.0% by weight, particularly preferably 13.0 to 15.0% by weight. In this narrower range for the Mn component, particularly favorable results are obtained Property combinations. With an Mn content of at least 12.0% by weight, a tensile strength of at least 1100 MPa can be achieved. By restricting the upper limit, the ductility of the alloy is favorably influenced.

Bei einer vorteilhaften Ausführungsform der Erfindung kann der Aluminium-Anteil 11,0 bis 12,0 Gew.-% betragen. Aluminium hat einen großen Einfluss auf die Festigkeit, aber auch auf die Versprödung. Gleichzeitig reduziert Aluminium die Dichte der Legierung. Der Bereich zwischen 11,0 und 12,0 Gew.-% hat sich als besonders günstig hinsichtlich dieser Eigenschaften erwiesen.In an advantageous embodiment of the invention, the aluminum content can be 11.0 to 12.0% by weight. Aluminum has a great influence on strength, but also on embrittlement. At the same time, aluminum reduces the density of the alloy. The range between 11.0 and 12.0% by weight has proven to be particularly favorable with regard to these properties.

Bevorzugt kann der Eisen-Anteil in der Legierung 6,0 bis 7,0 Gew.-% betragen. Ein Mindestanteil an Eisen in Kombination mit Mangan ist zur Erzielung einer hochfesten Legierung wichtig, weil die Dehngrenze durch die Ausbildung von Mn- und Fe-reichen KIV-Ausscheidungen positiv beeinflusst wird. Deshalb ist es vorteilhaft, mindestens 6,0 Gew.-% Eisen in der Legierung vorzusehen. Die festigkeitssteigernde Wirkung des Eisens ist etwas kleiner als die des Aluminiums. Oberhalb eines Eisenanteils von 7 Gew.-% erfolgt keine weitere Verbesserung der Zugfestigkeit durch Eisen. Dennoch sollte der Eisen-Anteil so groß wie möglich sein, da Eisen die Dichte der Legierung reduziert und den Metallpreis absenkt. Eisen wirkt zudem kornfeinend.The iron content in the alloy can preferably be 6.0 to 7.0% by weight. A minimum proportion of iron in combination with manganese is important to achieve a high-strength alloy because the yield strength is positively influenced by the formation of Mn- and Fe-rich K IV precipitates. It is therefore advantageous to include at least 6.0 wt% iron in the alloy. The strength-increasing effect of iron is somewhat smaller than that of aluminum. Above an iron content of 7% by weight, there is no further improvement in tensile strength due to iron. Nevertheless, the iron content should be as large as possible, as iron reduces the density of the alloy and lowers the metal price. Iron also has a grain-refining effect.

Insbesondere die Zusammensetzungen mit Mangan von 13,0 bis 15,0 Gew.-% in Kombination mit Aluminium von 11,0 bis 12,0 Gew.-% und Eisen von 6,0 bis 7,0 Gew.-% bieten den Vorteil, dass der Werkstoff eine geringe Dichte von ungefähr 6900 kg/m3 aufweist und somit eine deutliche Gewichtsersparnis, beispielsweise 25 % gegenüber Reinkupfer oder niedrig legiertem Kupfer und ungefähr 13 % gegenüber Stahl, erzielt werden kann.In particular, the compositions with manganese from 13.0 to 15.0% by weight in combination with aluminum from 11.0 to 12.0% by weight and iron from 6.0 to 7.0% by weight offer the advantage that the material has a low density of approximately 6900 kg / m 3 and thus a significant weight saving, for example 25% compared to pure copper or low-alloy copper and approximately 13% compared to steel, can be achieved.

Besonders vorteilhafterweise kann die Legierungszusammensetzung so gewählt werden, dass die Legierung Mn- und Fe-reiche KIV-Ausscheidungen mit einem Volumenanteil von mindestens 20 % aufweist. Dies kann erreicht werden, indem die Anteile an Mn und Fe ausreichend hoch gewählt werden. Die kubisch-flächenzentrierten Mn- und Fe-reichen KIV-Ausscheidungen haben einen positiven Effekt auf die Dehngrenze der Legierung. Bei einem Volumenanteil von mindestens 20 % beträgt die Dehngrenze Rp0,2 mindestens 1000 MPa. Bevorzugt kann die Kupfer-Mangan-Aluminium-Eisen-Knetlegierung eine Kombination von Eigenschaften aufweisen, bei der die 0,2 %-Dehngrenze Rp0,2 in Abhängigkeit von der Bruchdehnung x in % folgende Relation erfüllt: Rp 0 , 2 920 MPa x 0 , 17

Figure imgb0001
0,2 %-Dehngrenze und Bruchdehnung werden dabei mittels eines Zugversuchs bei Raumtemperatur ermittelt.The alloy composition can particularly advantageously be selected in this way that the alloy has Mn- and Fe-rich K IV precipitates with a volume fraction of at least 20%. This can be achieved by choosing the proportions of Mn and Fe to be sufficiently high. The face-centered cubic Mn and Fe-rich K IV precipitates have a positive effect on the yield strength of the alloy. With a volume fraction of at least 20%, the yield strength Rp 0.2 is at least 1000 MPa. The wrought copper-manganese-aluminum-iron alloy can preferably have a combination of properties in which the 0.2% proof stress Rp 0.2 , depending on the elongation at break x in%, fulfills the following relation: Rp 0 , 2 920 MPa x - 0 , 17th
Figure imgb0001
The 0.2% proof stress and elongation at break are determined by means of a tensile test at room temperature.

Durch diese Relation wird die vergleichsweise hohe Dehngrenze bei noch akzeptabler Bruchdehnung quantitativ beschrieben. Bei einer Bruchdehnung von beispielsweise 0,5 % erreicht die Legierung eine 0,2 %-Dehngrenze von ungefähr 1030 MPa.This relation quantitatively describes the comparatively high yield strength with an acceptable elongation at break. At an elongation at break of 0.5%, for example, the alloy reaches a 0.2% proof stress of approximately 1030 MPa.

Die Erfindung wird anhand von Ausführungsbeispielen näher erläutert.The invention is explained in more detail using exemplary embodiments.

Tabelle 1 zeigt Legierungsbeispiele mit ihren Eigenschaften im warmumgeformten Zustand. In der ersten Spalte ist die Zusammensetzung der jeweiligen Legierung dokumentiert. Die Legierungen wurden in einem Tammannofen erschmolzen und im konventionellen Kokillengussverfahren ohne Schutzgas als Platte der Abmessung 90 x 50 x 20 mm abgegossen. Die Legierungselemente Fe, Mn und Al wurden in Form von binären CuX-Vorlegierungen hinzuchargiert, wobei X für das jeweilige Legierungselement steht. Die Porosität nach dem Abguss betrug für alle Varianten weniger als 2 Vol.-%, meist sogar weniger als 1 Vol.-%. Die Platten wurden anschließend zwischen 750 und 800 °C warmgewalzt. Der Umformgrad, der als die relative Abnahme der Plattendicke definiert ist, betrug hierbei ungefähr 40 %. Die unvermeidbaren Verunreinigungen betrugen bei allen Beispielen weniger als 0,05 Gew.-%. Tabelle 1: Legierungsbeispiele mit Eigenschaften im warmumgeformten Zustand Legierung in Gew.-% Bruchdehnung in % Zugfestigkeit in MPa Dehngrenze Rp0,2 in MPa Mn+3Al+Fe in Gew.-% Mn+Fe in Gew-% CuMn15Al12Fe6 0,5 1060 1042 57 21 CuMn13Al12Fe6 0,7 1140 1005 55 19 CuMn14Al12Fe6 0,8 1120 977 56 20 CuMn12Al12Fe6 0,9 1100 971 54 18 CuMn16Al11 Fe6 0,9 1060 980 55 22 CuMn17Al11Fe6 1,3 1080 910 56 23 CuMn14Al11Fe6 2,3 1060 862 53 20 CuMn13Al10Fe7 4,6 945 697 50 20 CuMn12Al10Fe7 6 923 651 49 19 Vergleichsbeispiel 1 CuMn10Al11Fe4 2 918 806 47 14 Vergleichsbeispiel 2 CuMn6,2Al9,7Fe4,6Zn 12,5 810 564 39,9 10,8 Vergleichsbeispiel 3 CuMn9,5Al10Fe5Ni2 6 950 500 44,5 14,5 Table 1 shows alloy examples with their properties in the hot-worked state. The composition of the respective alloy is documented in the first column. The alloys were melted in a Tammann furnace and cast using the conventional permanent mold casting process without protective gas as a plate measuring 90 x 50 x 20 mm. The alloying elements Fe, Mn and Al were added in the form of binary CuX master alloys, where X stands for the respective alloying element. The porosity after casting was less than 2% by volume for all variants, mostly even less than 1% by volume. The plates were then hot rolled between 750 and 800 ° C. The degree of deformation, which is defined as the relative decrease in plate thickness, was approximately 40%. The unavoidable impurities were less than 0.05% by weight in all examples. Table 1: Alloy examples with properties in the hot-formed state Alloy in% by weight Elongation at break in% Tensile strength in MPa Yield strength Rp 0.2 in MPa Mn + 3Al + Fe in% by weight Mn + Fe in% by weight CuMn15Al12Fe6 0.5 1060 1042 57 21 CuMn13Al12Fe6 0.7 1140 1005 55 19th CuMn14Al12Fe6 0.8 1120 977 56 20th CuMn12Al12Fe6 0.9 1100 971 54 18th CuMn16Al11 Fe6 0.9 1060 980 55 22nd CuMn17Al11Fe6 1.3 1080 910 56 23 CuMn14Al11Fe6 2.3 1060 862 53 20th CuMn13Al10Fe7 4.6 945 697 50 20th CuMn12Al10Fe7 6th 923 651 49 19th Comparative example 1 CuMn10Al11Fe4 2 918 806 47 14th Comparative Example 2 CuMn6.2Al9.7Fe4.6Zn 12.5 810 564 39.9 10.8 Comparative Example 3 CuMn9.5Al10Fe5Ni2 6th 950 500 44.5 14.5

Tabelle 1 zeigt neun erfindungsgemäße Legierungsbeispiele und drei Vergleichsbeispiele. Bei den Beispielen der ersten neun Zeilen beträgt die Summe der Legierungselemente Al und Fe mindestens 17 Gew.-%, bei den Vergleichsbeispielen hingegen nur ungefähr 14 bis 15 Gew.-%. In der fünften Spalte ist die Summe aus dem Mangan-Anteil, dem Eisen-Anteil und dem Dreifachen des Aluminium-Anteils eingetragen. In der sechsten Spalte ist die Summe der Anteile der Legierungselemente Mn und Fe eingetragen. Bei den Beispielen in den ersten neun Zeilen beträgt diese mindestens 18 Gew.-%, bei den Vergleichsbeispielen liegt sie unter 15 Gew.-%.Table 1 shows nine alloy examples according to the invention and three comparative examples. In the examples of the first nine lines, the sum of the alloying elements Al and Fe is at least 17% by weight, whereas in the comparative examples it is only approximately 14 to 15% by weight. In the fifth column, the sum of the manganese content, the iron content and three times the aluminum content is entered. The sum of the proportions of the alloying elements Mn and Fe is entered in the sixth column. In the examples in the first nine lines this is at least 18% by weight, in the comparative examples it is less than 15% by weight.

Alle erfindungsgemäßen Beispiele weisen ein Zugfestigkeit von über 900 MPa und eine 0,2 %-Dehngrenze von mindestens 650 MPa auf. Legierungen, bei denen die Summe aus dem Mangan-Anteil, dem Eisen-Anteil und dem Dreifachen des Aluminium-Anteils mindestens 53 Gew.-% beträgt, weisen eine Zugfestigkeit von über 1000 MPa und eine 0,2 %-Dehngrenze von über 850 MPa auf. Mit zunehmender Dehngrenze nimmt die Bruchdehnung kontinuierlich ab. Besonders günstige Eigenschaftskombinationen ergeben sich für Legierungen, bei denen die Summe aus dem Mangan-Anteil, dem Eisen-Anteil und dem Dreifachen des Aluminium-Anteils mindestens 54,0 und höchstens 56,0 Gew.-% beträgt.All examples according to the invention have a tensile strength of over 900 MPa and a 0.2% yield strength of at least 650 MPa. Alloys in which the sum of the manganese content, the iron content and three times the aluminum content is at least 53% by weight, have a tensile strength of over 1000 MPa and a 0.2% yield strength of over 850 MPa on. The elongation at break decreases continuously with increasing yield strength. Particularly favorable combinations of properties result for alloys in which the sum of the manganese content, the iron content and three times the aluminum content is at least 54.0 and at most 56.0% by weight.

Die Legierungen CuMn13Al10Fe7 und CuMn12Al10Fe7 weisen eine 0,2 %-Dehngrenze zwischen 650 und 700 MPa und somit die geringsten Dehngrenzen der ersten neun Beispiele auf. Andererseits zeichnen sie sich durch eine hohe Bruchdehnung von 4,6 % beziehungsweis 6 % und somit eine größere Duktilität als die übrigen Legierungsbeispiele aus. Die Legierungen lassen sich nach dem Warmumformen richten. Ihre Dichte beträgt ungefähr 7100 kg/m3. Diese beiden Beispiele zeigen, dass durch moderate Änderungen der Legierungszusammensetzung die Eigenschaften der Legierung zielgerichtet angepasst werden können.The alloys CuMn13Al10Fe7 and CuMn12Al10Fe7 have a 0.2% yield strength between 650 and 700 MPa and thus the lowest yield strengths of the first nine examples. On the other hand, they are characterized by a high elongation at break of 4.6% or 6% and thus greater ductility than the other alloy examples. The alloys can be straightened after hot forming. Their density is approximately 7100 kg / m 3 . These two examples show that the properties of the alloy can be adjusted in a targeted manner by modifying the alloy composition.

Das Vergleichsbeispiel 1 weist zwar eine akzeptable Zugfestigkeit und eine ausreichende Dehngrenze auf, seine Bruchdehnung ist jedoch vergleichsweise gering: So zeichnet sich die Legierung CuMn14Al11Fe6 gegenüber der Vergleichslegierung 1 durch eine deutlich höhere Festigkeit bei sogar etwas besserer Dehngrenze aus. Dies zeigt, dass das quaternäre Legierungssystem Cu-Mn-Al-Fe sensibel auf eine Änderung der Zusammensetzung reagiert.Comparative example 1 has acceptable tensile strength and sufficient yield strength, but its elongation at break is comparatively low: Compared to comparative alloy 1, alloy CuMn14Al11Fe6 is distinguished by a significantly higher strength with even a slightly better yield strength. This shows that the quaternary alloy system Cu-Mn-Al-Fe reacts sensitively to a change in the composition.

Das Vergleichsbeispiel 2 entspricht dem aus der Druckschrift GB 762 235 A bekannten nickelfreien Beispiel. Die mechanischen Kennwerte wurden nach einer Warmumformung ermittelt. Die Legierung des Vergleichsbeispiels 2 ist hinsichtlich der Festigkeit den erfindungsgemäßen Legierungen unterlegen.Comparative example 2 corresponds to that from the publication GB 762 235 A well-known nickel-free example. The mechanical parameters were determined after hot forming. The alloy of Comparative Example 2 is inferior to the alloys according to the invention in terms of strength.

Das Vergleichsbeispiel 3 entspricht einer aus der Druckschrift FR 1 177 060 A bekannten Legierung. Die mechanischen Kennwerte wurden nach einer Warmumformung ermittelt. Die Legierung des Vergleichsbeispiels 3 weist zwar eine ausreichende Zugfestigkeit von 950 MPa auf, die Dehngrenze liegt jedoch unter den Anforderungen.Comparative example 3 corresponds to one from the publication FR 1 177 060 A known alloy. The mechanical parameters were determined after hot forming. Although the alloy of Comparative Example 3 has a sufficient tensile strength of 950 MPa, the yield strength is below the requirements.

Claims (8)

Kupfer-Mangan-Aluminium-Eisen-Knetlegierung mit folgender Zusammensetzung in Gew.-%: Mn: 11,0 bis 17,0 % Al: 10,0 bis 13,0 % Fe: 5,0 bis 8,0 % optional Ti: 0,01 bis 0,4 % optional B: 0,002 bis 0,3 %
Rest Kupfer sowie unvermeidbare Verunreinigungen,
wobei die Summe aus Aluminium-Anteil und Eisen-Anteil mindestens 16,5 Gew.-% beträgt.
Wrought copper-manganese-aluminum-iron alloy with the following composition in% by weight: Mn: 11.0 to 17.0% Al: 10.0 to 13.0% Fe: 5.0 to 8.0% optional Ti: 0.01 to 0.4% optional B: 0.002 to 0.3%
Rest of copper and unavoidable impurities,
the sum of the aluminum content and the iron content being at least 16.5% by weight.
Kupfer-Mangan-Aluminium-Eisen-Knetlegierung nach Anspruch 1, dadurch gekennzeichnet, dass der Kupfer-Anteil höchstens 70,0 Gew.-% beträgt.Wrought copper-manganese-aluminum-iron alloy according to Claim 1, characterized in that the copper content is at most 70.0% by weight. Kupfer-Mangan-Aluminium-Eisen-Knetlegierung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Summe aus dem Mangan-Anteil, dem Eisen-Anteil und dem Dreifachen des Aluminium-Anteils mindestens 52,0 Gew.-% beträgt.Wrought copper-manganese-aluminum-iron alloy according to claim 1 or 2, characterized in that the sum of the manganese content, the iron content and three times the aluminum content is at least 52.0% by weight. Kupfer-Mangan-Aluminium-Eisen-Knetlegierung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Mangan-Anteil 12,0 bis 16,0 Gew.-% beträgt.Wrought copper-manganese-aluminum-iron alloy according to one of the preceding claims, characterized in that the manganese content is 12.0 to 16.0% by weight. Kupfer-Mangan-Aluminium-Eisen-Knetlegierung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Aluminium-Anteil 11,0 bis 12,0 Gew.-% beträgt.Wrought copper-manganese-aluminum-iron alloy according to one of the preceding claims, characterized in that the aluminum content is 11.0 to 12.0% by weight. Kupfer-Mangan-Aluminium-Eisen-Knetlegierung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Eisen-Anteil 6,0 bis 7,0 Gew.-% beträgt.Wrought copper-manganese-aluminum-iron alloy according to one of the preceding claims, characterized in that the iron content is 6.0 to 7.0% by weight. Kupfer-Mangan-Aluminium-Eisen-Knetlegierung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sie Mn- und Fe-reiche KIV-Ausscheidungen mit einem Volumenanteil von mindestens 20 % aufweist.Wrought copper-manganese-aluminum-iron alloy according to one of the preceding claims, characterized in that it has Mn- and Fe-rich K IV precipitates with a volume fraction of at least 20%. Kupfer-Mangan-Aluminium-Eisen-Knetlegierung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die 0,2 %-Dehngrenze Rp0,2 in Abhängigkeit von der Bruchdehnung x in % folgende Relation erfüllt: Rp 0 , 2 920 MPa x 0 , 17
Figure imgb0002
Copper-manganese-aluminum-iron wrought alloy according to one of the preceding claims, characterized in that the 0.2% proof stress Rp 0.2 , depending on the elongation at break x in%, fulfills the following relation: Rp 0 , 2 920 MPa x - 0 , 17th
Figure imgb0002
EP21000110.3A 2020-05-14 2021-04-21 Copper manganese aluminium-iron wrought alloy Active EP3910086B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020002885.3A DE102020002885A1 (en) 2020-05-14 2020-05-14 Wrought copper-manganese-aluminum-iron alloy

Publications (2)

Publication Number Publication Date
EP3910086A1 true EP3910086A1 (en) 2021-11-17
EP3910086B1 EP3910086B1 (en) 2023-09-13

Family

ID=75659755

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21000110.3A Active EP3910086B1 (en) 2020-05-14 2021-04-21 Copper manganese aluminium-iron wrought alloy

Country Status (2)

Country Link
EP (1) EP3910086B1 (en)
DE (1) DE102020002885A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2715577A (en) 1951-07-24 1955-08-16 Stone & Company Charlton Ltd J Copper-base alloys
GB762235A (en) 1954-06-11 1956-11-28 Manganese Bronze And Brass Com New aluminium bronzes
FR1177060A (en) 1957-05-29 1959-04-20 Forges Chantiers Mediterranee Aluminum bronzes
FR1358505A (en) * 1963-03-04 1964-04-17 Ct Technique Des Ind Fonderie Parts intended to be used in hot conditions while being subjected to thermal shock
US5104457A (en) * 1988-02-23 1992-04-14 Country Club Golf Equipment (Proprietary) Limited Golf clubs and method of making thereof
JPH059619A (en) * 1991-07-08 1993-01-19 Furukawa Electric Co Ltd:The Production of high-strength copper alloy
EP0695372A1 (en) * 1993-04-22 1996-02-07 Federalloy, Inc. Copper-bismuth casting alloys
US20080298999A1 (en) * 2005-07-27 2008-12-04 Hennadiy Zak Method for Producing a Copper Alloy Having a High Damping Capacity
EP3023508A1 (en) * 2013-07-16 2016-05-25 Furukawa Techno Material Co., Ltd. Expanded member comprising cu-al-mn alloy material and exhibiting superior anti-stress corrosion properties, and use therefor
EP3212815A1 (en) * 2014-10-28 2017-09-06 Advanced Alloy Holdings PTY Ltd Metal alloys including copper

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2715577A (en) 1951-07-24 1955-08-16 Stone & Company Charlton Ltd J Copper-base alloys
GB762235A (en) 1954-06-11 1956-11-28 Manganese Bronze And Brass Com New aluminium bronzes
FR1177060A (en) 1957-05-29 1959-04-20 Forges Chantiers Mediterranee Aluminum bronzes
FR1358505A (en) * 1963-03-04 1964-04-17 Ct Technique Des Ind Fonderie Parts intended to be used in hot conditions while being subjected to thermal shock
US5104457A (en) * 1988-02-23 1992-04-14 Country Club Golf Equipment (Proprietary) Limited Golf clubs and method of making thereof
JPH059619A (en) * 1991-07-08 1993-01-19 Furukawa Electric Co Ltd:The Production of high-strength copper alloy
EP0695372A1 (en) * 1993-04-22 1996-02-07 Federalloy, Inc. Copper-bismuth casting alloys
US20080298999A1 (en) * 2005-07-27 2008-12-04 Hennadiy Zak Method for Producing a Copper Alloy Having a High Damping Capacity
EP3023508A1 (en) * 2013-07-16 2016-05-25 Furukawa Techno Material Co., Ltd. Expanded member comprising cu-al-mn alloy material and exhibiting superior anti-stress corrosion properties, and use therefor
EP3212815A1 (en) * 2014-10-28 2017-09-06 Advanced Alloy Holdings PTY Ltd Metal alloys including copper

Also Published As

Publication number Publication date
EP3910086B1 (en) 2023-09-13
DE102020002885A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
EP2770071B2 (en) Aluminium alloy for the production of semi-finished products or components for motor vehicles, method for producing an aluminium alloy strip from this aluminium alloy and aluminium alloy strip and uses thereof
EP3314031B1 (en) High strength and easily reformable almg tape and method for producing the same
DE102006005250B4 (en) Iron-nickel alloy
DE102010026808B4 (en) Corrosion-resistant austenitic phosphorous-alloyed steel casting with TRIP or TWIP properties and its use
EP2270249B1 (en) AlMgSi-sheet for applications with high shaping requirements
DE60124227T2 (en) DUPLEX STAINLESS STEEL
DE60020263T2 (en) USE OF A DESIGN-HARDENED MARTENSITIC STAINLESS STEEL
EP3176275B2 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
DE102020106433A1 (en) Nickel alloy with good corrosion resistance and high tensile strength as well as a process for the production of semi-finished products
DE102010049781A1 (en) Ni-Fe-Cr-Mo alloy
EP0154600A2 (en) Use of an austenitic stainless chromium-nickel-nitrogen steel for high-performance structural elements
DE1301586B (en) Austenitic precipitation hardenable steel alloy and process for its heat treatment
DE19735361B4 (en) Austenitic stainless steel
DE2324937A1 (en) DURABLE DISPERSION HARDENED NICKEL-IRON-CHROME ALLOY
DE1608171A1 (en) Nickel-chromium-molybdenum alloy
EP3910086B1 (en) Copper manganese aluminium-iron wrought alloy
DE102013104935B4 (en) CoNiCrMo alloy and method for producing a CoNiCrMo alloy
EP1748088B1 (en) Process for producing a semi-finished product or component for chassis or structural automotive applications
AT512120B1 (en) ALUMINUM ALLOY WITH TANTAL
DE3225614A1 (en) HIGH-STRENGTH STAINLESS STEEL WITH EXCELLENT GRAIN LIMIT CORROSION crack resistance and machinability
DE1558635B2 (en) High-strength, stable austenitic corrosion-resistant steel for the production of evaporator tubes and superheater tubes
DE1558624C (en) Copper alloy with improved strength and elongation
DE1558624B1 (en) COPPER ALLOY WITH IMPROVED STRENGTH AND ELONGATION
DE19758613C2 (en) High-strength and corrosion-resistant iron-manganese-chrome alloy
EP2824212B1 (en) Hot-working steel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20210723

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220419

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220720

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230216

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230421

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021001448

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240113