EP3908682B1 - Pb-freie cu-zn-legierung - Google Patents
Pb-freie cu-zn-legierung Download PDFInfo
- Publication number
- EP3908682B1 EP3908682B1 EP21716326.0A EP21716326A EP3908682B1 EP 3908682 B1 EP3908682 B1 EP 3908682B1 EP 21716326 A EP21716326 A EP 21716326A EP 3908682 B1 EP3908682 B1 EP 3908682B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- content
- free
- product
- proportion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001297 Zn alloy Inorganic materials 0.000 title 1
- 229910045601 alloy Inorganic materials 0.000 claims description 92
- 239000000956 alloy Substances 0.000 claims description 92
- 239000000203 mixture Substances 0.000 claims description 14
- 238000000137 annealing Methods 0.000 claims description 13
- 229910017518 Cu Zn Inorganic materials 0.000 claims description 12
- 229910017752 Cu-Zn Inorganic materials 0.000 claims description 11
- 229910017943 Cu—Zn Inorganic materials 0.000 claims description 11
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 235000012438 extruded product Nutrition 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 230000001050 lubricating effect Effects 0.000 claims 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- 239000011135 tin Substances 0.000 description 11
- 229910001369 Brass Inorganic materials 0.000 description 9
- 239000010951 brass Substances 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 239000011572 manganese Substances 0.000 description 9
- 238000003825 pressing Methods 0.000 description 8
- 238000005242 forging Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000011265 semifinished product Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Definitions
- the invention relates to a Pb-free Cu-Zn alloy, particularly for making alloy products used under lubricated conditions. An alloy product made from such an alloy is also described.
- This alloy is also used to manufacture components used in hydraulics, such as distributor plates.
- This previously known alloy has the following composition (data in % by weight): Cu: 57.0-59.0%, Mn: 1.5-3.0%, Al: 1.3-2.3%, Si : 0.3 - 1.3%, remainder zinc plus unavoidable impurities.
- Admissible admixtures are tolerated (in percent by weight): Ni: max. 1.0%, Fe: max. 1.0%, Sn: max. 0.4%, Pb: 0.2 - 0.8 %.
- this previously known alloy contains Pb. This element is responsible for machinability and, due to its incorporation in tribological layers the running-in behavior as well as friction and wear in sliding applications.
- the special brass alloy CW713R is characterized by versatile application properties, such as high wear and cavitation resistance, compatibility with lubricants and sufficient mechanical properties, especially with regard to the strength and toughness of the alloy product. These also include good machinability.
- the element Pb is introduced into brass alloys to achieve the desired machinability.
- DE 10 2005 017 574 A1 describes a wear-resistant brass alloy for synchronizer rings with an optional lead content.
- the composition (in percent by weight) is 57.5 - 59% copper, 2 - 3.5% manganese, 1 - 3% aluminum, 0.9 - 1.5% silicon, 0.15 - 0.4 % iron, 0 - 1% lead, 0 - 1% nickel, 0 - 0.5% tin and balance zinc.
- WO 2014/152619 A1 discloses a brass alloy for turbochargers with the following composition, optionally containing lead (data in % by weight): 57-60% copper, 1.5-3.0% manganese, 1.3-2.3% aluminum, 0.5 - 2.0% silicon, 0 - 1% nickel, 0 - 1% iron, 0 - 0.4% tin, 0 - 0.1% lead and the balance zinc.
- JP S56-127741 A a brass alloy with the following composition (in % by weight): 54 - 66% copper, 1.0 - 5.0% manganese, 1.0 - 5.0% aluminum, 0.2 - 1.5% silicon , 0.5 - 4.0% nickel, 0.1 - 2.0% iron, 0.2 - 2.0% tin and the balance zinc.
- the object of the invention is to propose a Pb-free Cu—Zn alloy that is fundamentally suitable for an application or use for which the alloy CuZn37Mn3Al2PbSi described above for the prior art was also suitable. It would be desirable if the mechanical strength properties were even improved compared to this previously known special brass alloy, but without having to accept losses in terms of cold and hot workability and machinability.
- Unavoidable impurities in the alloy are permitted at 0.05% by weight per element, the sum of the unavoidable impurities not exceeding 0.15% by weight.
- This alloy is characterized above all by the selection of the alloying elements Ni, Fe and Sn, as well as by the claimed content of these elements in the alloy composition in relation to the other alloying elements, above all Mn, Al and Si.
- This balanced alloy composition ensures particularly good properties of the alloy product in terms of cold and hot workability, machinability, strength and wear resistance, the latter especially under lubricated conditions.
- Bi is used as a Pb substitute in other special brass alloys, but the alloy according to the invention does not use Bi.
- the previously known alloy CuZn37Mn3Al2PbSi although it has good hot workability
- the subject matter of the claimed alloy not only has particularly good hot workability, but also good cold workability. The latter was not the case with the previously known alloy.
- the strength values achievable with this alloy and the surprisingly significantly better cavitation resistance compared to comparison alloys were not foreseeable for the people involved in the development of this alloy.
- the alloy products forged from the alloy according to the invention have a 0.2% yield strength between 330 and 350 MPa, which is significantly higher than was usual with forgings of the alloy CuZn37Mn3Al2PbSi (values of 230 to 300 MPa).
- the tensile strength of alloy products made from the alloy according to the invention is 600 to 640 MPa. In the case of the previously known alloy CuZn37Mn3Al2PbSi, the tensile strength values are usually between 590 and 670 MPa. Slightly higher tensile strength values can also be achieved with special treatments.
- the special properties of an alloy product made from this alloy are based on the fact that the Si content is preferably not less than the Ni content. Furthermore, the Sn content of the alloy is preferably adjusted in such a way that it is at most only 50% of the Ni content or only at most 50% of the Si content. The Ni content is preferably not less than the Si content, deviations of up to 0.075% being tolerated.
- the Fe content also plays a role in interaction with the other elements. Preferably, the Fe content is less than the Ni content by about 0.05% to 0.1% by weight.
- Figures 1a, 1b show micrographs of sample 1 in the pressed state from the start of pressing ( Figure 1a along the direction of pressing; Figure 1b perpendicular to the pressing direction).
- Figures 2a, 2b show corresponding microstructure images from the pressing end.
- the samples cut from the pressed rods were thermally relaxed for three hours at 360° C.
- an ⁇ -mixed crystal phase was formed in the structure, resulting in a ⁇ -mixed crystal-dominated structure with an ⁇ -mixed crystal component of about 14%.
- the proportion of intermetallic phases is around 3%.
- Figures 3a, 3b show micrographs of sample 2 after the stress-relief annealing described above.
- the intermetallic phases are denoted by IMP.
- the hardness HBW was measured as HBW 2.5/62.5.
- the microstructure of the comparative sample CW713R in the pressed state is ⁇ -phase dominated with a proportion of ⁇ -mixed crystal phase of about 10%.
- the Pb contained in this alloy has a grain-refining effect and serves as a chip breaker.
- figure 4 shows a micrograph of sample CW713R in the pressed state and after an annealing treatment, corresponding to that of sample 2.
- the proportion of ⁇ -mixed crystal phase is about 40 - 45%.
- Pipes were also made from the alloy of Sample 2 and that of the comparative alloy (CW713R) by extrusion. Sections were cut from the tubes which were then machined by turning to compare the machinability of the two alloys. In the course of this turning, rings were created. Interestingly, the machinability of the ring made from the alloy according to sample 2 is at least as good as the machinability of the ring made from the comparison alloy. This is remarkable since the sample according to the invention (sample 2), unlike the alloy composition of the comparative sample, does not contain any Pb because the alloying element Pb in the comparative sample is held responsible for the good machinability of this alloy.
- the alloy product of the present invention can be drawn directly. Nevertheless, an intermediate anneal before drawing is preferred in order to achieve as stress-free an alloy product as possible. Furthermore, additional investigations with the alloy compositions of samples 1 and 2 for differently adjusted material states have shown that the tensile strength R m , the 0.2% yield strength, the elongation at break and the hardness HB are also opposite for directly drawn specimens or specimens drawn after an intermediate annealing step Semi-finished product made from the comparison alloy CW713R is significantly increased. The same was the case for both variants of the samples for a material condition after a final stress-relief annealing. This was found in forgings made from the alloy as well as in extruded semi-finished products that were drawn (stretched) after pressing. In both cases, subsequent annealing can be helpful in relieving stresses contained in the respective workpiece.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Forging (AREA)
- Sliding-Contact Bearings (AREA)
- Mechanical Operated Clutches (AREA)
Description
- Die Erfindung betrifft eine Pb-freie Cu-Zn-Legierung, insbesondere zum Herstellen von unter geschmierten Bedingungen eingesetzten Legierungsprodukten. Beschrieben ist des Weiteren ein aus einer solchen Legierung hergestelltes Legierungsprodukt.
- Das im Werkstoff-Datenblatt (Stand 2005) des Deutschen Kupferinstituts beschriebene Sondermessing CuZn37Mn3Al2PbSi (CW713R) ist eine seit vielen Jahren in großem Umfange eingesetzte Legierung, die sich durch einen hohen Verschleißwiderstand und eine gute Warmumformbarkeit auszeichnet. Dieser Werkstoff weist hohe Festigkeitswerte und eine mittlere Spanbarkeit auf und hat eine gute Korrosionsbeständigkeit. Aus diesem Grunde wird diese Legierung für Konstruktionsteile im Maschinenbau, für Synchronringe und Ventilführungsrohre im Automobilbau sowie für eine Reihe von Gleitlagerelementen und Warmpressteilen eingesetzt. Dieses bedeutet, dass aus dieser Legierung hergestellte Legierungsprodukte unter geschmierten Bedingungen eingesetzt werden. Mögliche Anwendung betreffen das permanente Eintauchen in Öl oder die Zuführung von Schmierstoff durch dafür vorgesehene Kanal- und Nutsysteme. Synchronringe befinden sich in einer Ölumgebung. Gleiches kann für Gleitlagerelemente gelten, die jedoch auch nur ölgeschmiert sein können. Eingesetzt wird diese Legierung auch zum Herstellen von Bauteilen, die in der Hydraulik verwendet werden, wie beispielsweise Verteilerplatten. Diese vorbekannte Legierung weist folgende Zusammensetzung auf (Angaben in Gew.-%): Cu: 57,0 - 59,0 %, Mn: 1,5 - 3,0 %, Al: 1,3 - 2,3 %, Si: 0,3 - 1,3 %, Rest Zink nebst unvermeidbaren Verunreinigungen. Als zulässige Beimengungen werden geduldet (Angaben in Gew.-%): Ni: max. 1,0 %, Fe: max. 1,0 %, Sn: max. 0,4 %, Pb: 0,2 - 0,8 %.
- Wie sich aus der bereits eingangs wiedergegebenen Werkstoffbezeichnung ergibt, enthält diese vorbekannte Legierung Pb. Dieses Element ist für die Zerspanbarkeit verantwortlich und beeinflusst aufgrund dessen Einbaus in tribologische Schichten das Einlaufverhalten sowie Reibung und Verschleiß bei Gleitanwendungen.
- Die Sondermessinglegierung CW713R zeichnet sich durch vielseitige Anwendungseigenschaften aus, wie beispielsweise einen hohen Verschleiß- und Kavitationswiderstand, eine Schmierstoffverträglichkeit und hinreichend mechanische Eigenschaften, insbesondere im Hinblick auf die Festigkeit und Zähigkeit des Legierungsprodukts. Zu diesen zählt auch eine gute Zerspanbarkeit. Das Element Pb wird zum Erzielen der gewünschten Zerspanbarkeit in Messinglegierungen eingebracht.
- Aus gesundheitlichen Aspekten sowie aufgrund von Umweltgesichtspunkten ist man in jüngerer Zeit bemüht, Messinglegierungen bleifrei auszulegen. Dabei ist man bemüht, wenn möglich, nicht auf die durch das Element Pb in der Legierung bewirkten Eigenschaften verzichten zu müssen.
-
DE 10 2005 017 574 A1 beschreibt eine verschleißfeste Messinglegierung für Synchronringe mit einem optionalen Bleianteil. Als Zusammensetzung (Angaben in Gew.-%) ist 57,5 - 59 % Kupfer, 2 - 3,5 % Mangan, 1 - 3 % Aluminium, 0,9 - 1,5 % Silizium, 0,15 - 0,4 % Eisen, 0 - 1 % Blei, 0 - 1 % Nickel, 0 - 0,5 % Zinn und Rest Zink. -
WO 2014/152619 A1 offenbart eine Messinglegierung für Turbolader mit folgender, optional Blei enthaltender Zusammensetzung (Angaben in Gew.-%): 57 - 60 % Kupfer, 1,5 - 3,0 % Mangan, 1,3 - 2,3 % Aluminium, 0,5 - 2,0 % Silizium, 0 - 1 % Nickel, 0 - 1 % Eisen, 0 - 0,4 % Zinn, 0 - 0,1 % Blei und Rest Zink. - Für Gleitanwendungen nennt
JP S56-127741 A - Ausgehend von diesem diskutierten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Pb-freie Cu-Zn-Legierung vorzuschlagen, die sich grundsätzlich für einen Einsatzzweck bzw. eine Verwendung eignet, für die auch die vorstehend zum Stand der Technik beschriebene Legierung CuZn37Mn3Al2PbSi geeignet war. Dabei wäre es wünschenswert, wenn die mechanischen Festigkeitseigenschaften gegenüber dieser vorbekannten Sondermessinglegierung sogar noch verbessert wären, ohne jedoch Einbußen hinsichtlich der Kalt- und Warmumformbarkeit und der Zerspanbarkeit hinnehmen zu müssen.
- Gelöst wird diese Aufgabe durch eine Pb-freie Cu-Zn-Legierung mit folgender Zusammensetzung (Angaben in Gew.-%):
- Cu: 57 - 59%,
- Mn: 1,7 - 2,7 %,
- Al: 1,3 - 2,2 %,
- Si: 0,4 - 1,0 %,
- Ni: 0,4 - 0,85 %,
- Fe: 0,3 - 0,7 %,
- Sn: 0,15 - 0,4 %,
- Rest Zn nebst unvermeidbaren Verunreinigungen mit 0,05 Gew.-% je Element, wobei die Summe der unvermeidbaren Verunreinigungen 0,15 Gew.-% nicht überschreitet.
- Unvermeidbare Verunreinigungen in der Legierung sind zugelassen mit 0,05 Gew.-% je Element, wobei die Summe der unvermeidbaren Verunreinigungen 0,15 Gew.-% nicht überschreitet.
- Diese Legierung zeichnet sich vor allem durch die Auswahl der Legierungselemente Ni, Fe und Sn aus, ebenso wie durch die beanspruchten Gehalte dieser Elemente an der Legierungszusammensetzung im Verhältnis zu den weiteren Legierungselementen vor allem Mn, Al und Si. Diese ausgewogene Legierungszusammensetzung gewährleistet besonders gute Eigenschaften des Legierungsproduktes in Bezug auf eine Kalt- und Warmumformbarkeit, die Zerspanbarkeit, die Festigkeit und den Verschleißwiderstand, letzterer vor allem unter geschmierten Bedingungen. Dieses Ergebnis ist überraschend, da als Pb-Ersatz in anderen Sondermessinglegierungen Bi eingesetzt wird, die erfindungsgemäße Legierung jedoch Bi nicht verwendet. Während auch die vorbekannte Legierung CuZn37Mn3Al2PbSi zwar eine gute Warmumformbarkeit aufweist, ist beim Gegenstand der beanspruchten Legierung nicht nur eine besonders gute Warmumformbarkeit gegeben, sondern auch eine gute Kaltumformbarkeit. Letzteres war bei der vorbekannten Legierung nicht der Fall. Von Interesse bei dieser Legierung ist, dass sich diese eignet, um Schmiedestücke herzustellen. Werden die Schmiedestücke einem anschließenden Entspannungsglühen unterworfen, wobei dieses in einem Temperaturbereich zwischen 300° C und 450° C durchgeführt wird, kann durch diese Maßnahme der Anteil an eingelagerten α-Mischkristallen auf 10 - 15 % erhöht werden. Um die gewünschten Eigenschaften zu erreichen, ist ein Glühen in einem Temperaturbereich bereits von 350 bis 380° C in vielen Fällen bereits ausreichend. Dieser erhöhte Anteil an α-Mischkristallen begründet die verbesserte Kaltumformbarkeit. Ohne einen solchen Glühschritt enthält das Legierungsgefüge einen Anteil von α-Mischkristallen von weniger als 3 - 5 %. Dieselben Vorteile eines Entspannungsglühens stellen sich auch bei stranggepressten Produkten ein, wobei ebenfalls ein Gefüge mit α-Mischkristallanteil von 10 - 15 % durch die genannte thermische Behandlung erzielt werden kann.
- Nicht vorhersehbar für die an der Entwicklung dieser Legierung beteiligten Personen waren die mit dieser Legierung erzielbaren Festigkeitswerte und die gegenüber Vergleichslegierungen überraschend deutlich bessere Kavitationsbeständigkeit. Die aus der erfindungsgemäßen Legierung durch Schmieden hergestellten Legierungsprodukte weisen eine 0,2 %-Dehngrenze zwischen 330 und 350 MPa auf, was deutlich mehr ist als mit Schmiedestücken der Legierung CuZn37Mn3Al2PbSi üblich war (Werte von 230 bis 300 MPa). Die Zugfestigkeit von aus der erfindungsgemäßen Legierung hergestellten Legierungsprodukten beträgt 600 bis 640 MPa. Bei der vorbekannten Legierung CuZn37Mn3Al2PbSi liegen die Zugfestigkeitswerte üblicherweise zwischen 590 bis 670 MPa. Mit besonderen Behandlungen können auch etwas höhere Zugfestigkeitswerte erzielt werden.
- Untersuchungen haben gezeigt, dass das Zusammenspiel der Elemente Ni, Fe und Sn untereinander, aber auch mit Mn, Al und Si und im Zusammenhang mit einer Ausbildung von intermetallischen Phasen zu besonders guten Ergebnissen führt, wenn der Mn-Gehalt auf 1,9 - 2,6 %, der Al-Gehalt auf 1,4 - 2,1 %, der Ni-Gehalt von 0,45 - 0,75 % und der Fe-Gehalt von 0,3 - 0,6 % kontrolliert wird. Als besonders geeignet hat sich für die gewünschten Zwecke mit einer besonderen Ausprägung aus guter Kalt- und Warmumformbarkeit, Zerspanbarkeit, Festigkeit und Verschleißwiderstand ergeben, wenn die Legierungszusammensetzung wie folgt gewählt ist (Angaben in Gew.-%):
- Cu: 57,5 - 58,5 %,
- Mn: 2,0 - 2,5 %,
- Al: 1,5-2,0 %,
- Si: 0,50 - 0,70 %,
- Ni: 0,50 - 0,70 %,
- Fe: 0,5 - 0,55 %,
- Sn: 0,20 - 0,35 %.
- Die besonderen Eigenschaften eines aus dieser Legierung hergestellten Legierungsproduktes liegen darin begründet, dass vorzugsweise der Si-Gehalt nicht kleiner als der Ni-Gehalt ist. Ferner ist der Sn-Gehalt der Legierung vorzugsweise so abgestimmt, dass dieser maximal nur 50 % des Ni-Gehaltes bzw. nur maximal 50 % des Si-Gehaltes beträgt. Vorzugsweise ist der Ni-Gehalt nicht kleiner als der Si-Gehalt, wobei Abweichungen von bis zu 0,075 % toleriert werden. Auch der Fe-Gehalt spielt im Zusammenspiel mit den anderen Elementen eine Rolle. Vorzugsweise ist der Fe-Gehalt um etwa 0,05 % bis 0,1 Gew.-% geringer als der Ni-Gehalt.
- Die vorstehend beschriebenen besonderen Eigenschaften eines aus dieser Legierung hergestellten Legierungsproduktes ergeben sich sowohl bei Schmiedeprodukten als auch bei stranggepressten Produkten.
- Etliche Legierungen aus der erfindungsgemäßen Legierung wurden gegossen, anschließend stranggepresst und Teile davon einem nachgeschalteten Schmiedeschritt unterworfen. Parallel wurde eine Vergleichsprobe des Werkstoffes CW713R in derselben Weise hergestellt. Nachstehend sind beispielhaft zwei erfindungsgemäße Proben bezüglich ihrer Legierungszusammensetzung - die Proben 1 und 2 - und die Zusammensetzung einer Vergleichsprobe (CW713R) wiedergegeben:
Cu Zn Sn Fe Mn Ni Al Si Pb Probe 1 58,4 Rest 0,26 0,46 2,1 0,52 1,67 0,52 0 Probe 2 58,0 Rest 0,23 0,46 2,13 0,54 1,55 0,6 0 CW713R 58,1 Rest 0,15 0,35 2,2 0,32 1,6 0,7 0,7 - Nach dem Guss (Stranguss) wurden Blöcke gesägt und anschließend aus den Blöcken Stangen mit einem Durchmesser von 50 mm und einer Länge von 20 m gepresst. Die Strangpresstemperatur der untersuchten Probenreihe lag zwischen 685° C und 710° C. Die Strangpresstemperatur der beschriebenen Proben betrug etwa 700° C. Das sich einstellende Gefüge ist über die gepresste Stange sehr homogen, und zwar sowohl in Längsrichtung als auch in Querrichtung der gepressten Stange über ihre gesamte Länge hinweg. Einzig zu beobachten ist, dass die Korngröße vom Pressanfang zum Pressende hin etwas abnimmt, wie dieses üblicherweise beim Strangpressen zu beobachten ist. Das Gefüge besteht so gut wie ausschließlich aus β-Phase mit eingelagerten intermetallischen Verbindungen (Mischsiliziden, die in Pressrichtung eingeregelt sind). Der Anteil der intermetallischen Verbindungen liegt bei etwa 3 - 4 %.
-
Figuren 1a, 1b zeigen Mikroaufnahmen von der Probe 1 im Presszustand vom Pressanfang (Figur 1a längs zur Pressrichtung;Figur 1b quer zur Pressrichtung).Figuren 2a, 2b zeigen entsprechende Gefügebilder vom Pressende. Die von den gepressten Stangen geschnittenen Proben wurden in einem nachfolgenden Schritt thermisch entspannt, und zwar für drei Stunden bei 360° C. Infolge des Entspannungsglühens wurde im Gefüge eine α-Mischkristallphase gebildet, sodass ein vom β-Mischkristall dominiertes Gefüge mit einem α-Mischkristallanteil von etwa 14 % gebildet worden ist. Der Anteil intermetallischer Phasen liegt bei gut 3 %. -
Figuren 3a, 3b zeigen Gefügebilder der Probe 2 nach dem vorbeschriebenen Entspannungsglühen. - Die vorgenannten Gefügeparameter und die Festigkeitswerte dieser Proben sind in nachstehender Tabelle wiedergegeben:
Zustand α-Anteil [%] IMP-Anteil Zugfestigkeit [%] Bruchdehnung [%] 0,2% Dehngrenze [MPa] HBW Probe 1 Presszustand < 4 3,7 671 19,4 367 169 Probe 2 Presszustand und geglüht 14 3,1 649 22,5 321 162 CW713R Presszustand 10 3,4 643 16 318 155 - Mit IMP sind die intermetallischen Phasen bezeichnet. Die Härte HBW wurde als HBW 2,5/62,5 gemessen.
- Das Gefüge der Vergleichsprobe CW713R im Presszustand ist β-Phasendominiert mit einem Anteil an α-Mischkristallphase von etwa 10 %. Das in dieser Legierung enthaltene Pb wirkt kornfeinend und dient als Spanbrecher.
Figur 4 zeigt ein Gefügebild in der Probe CW713R im Presszustand und nach einer Glühbehandlung, entsprechend derjenigen der Probe 2. Der Anteil an α-Mischkristallphase beträgt etwa 40 - 45 %. - Aus den gepressten Stangen wurden in einem nachfolgenden Schritt zum Herstellen von Verteilerplatten Stutzen als Schmiedevorprodukte abgetrennt und diese warm geschmiedet. Geschmiedet wurden die Schmiedestücke bei der Probenreihe bei Temperaturen zwischen 635° C und 670° C. Die Probe 2 und die Vergleichsprobe sind bei etwa 650° C geschmiedet worden. Das sich einstellende Mikrogefüge eines solchermaßen geschmiedeten Vorproduktes für eine Verteilerplatte für eine hydraulische Anwendung ist in
Figuren 5a, 5b gezeigt.Figur 5a zeigt das Mikrogefüge am Rand, währendFigur 5b das Mikrogefüge im Kern des Schmiedeproduktes zeigt. - Diese Abbildungen verdeutlichen das über den Durchmesser des geschmiedeten Halbzeuges sehr homogene Gefüge. Dieses besteht so gut wie ausschließlich aus β-Phase mit eingelagerten intermetallischen Phasen von gut 3 %.
- In einem nachfolgenden Schritt wurden Proben dieser Art geglüht, und zwar für drei Stunden bei 360° C. Im Zuge dieses Glühprozesses bildete sich ein Anteil an α-Phase von etwa 12 %. Der Anteil an intermetallischen Phasen erhöhte sich auf etwa 3,7 %. Das Gefüge des geglühten Halbzeuges zum Herstellen einer Verteilerplatte für hydraulische Anwendungen ist in
Figuren 6a, 6b gezeigt (Figur 6a Rand;Figur 6b Kern). Deutlich erkennbar ist die darin enthaltene α-Phase. - In der nachstehenden Tabelle sind die Gefügeparameter und die mechanischen Festigkeitswerte zu diesen Proben wiedergegeben:
Zustand α-Anteil [%] IMP-Anteil Zugfestigkeit [%] Bruchdehnung [%] 0,2% Dehngrenze [MPa] HBW Probe 2 geschmiedet < 0,1 3,1 626 15,6 341 174 Probe 2 geschmiedet und geglüht 12 3,7 624 13,2 340 174 CW713R geschmiedet 5 3,5 535 14,5 275 158 - Wird die geschmiedete Vergleichsprobe (CW713R) einem Glühprozess unterzogen, wie vorstehend beschrieben, erhöht sich der Anteil an α-Phase deutlich, und zwar auf bis zu etwa 40 %.
- Aus der Legierung gemäß Probe 2 und derjenigen der Vergleichslegierung (CW713R) wurden zudem Rohre durch Strangpressen hergestellt. Von den Rohren wurden Abschnitte abgetrennt, die anschließend zum Vergleichen der Zerspanbarkeit der beiden Legierungen zerspanend durch Drehen bearbeitet wurden. Im Zuge dieser Drehbearbeitung wurden Ringe erstellt. Die Zerspanbarkeit des aus der Legierung gemäß Probe 2 hergestellten Ringes ist interessanterweise mindestens so gut wie die Zerspanbarkeit des Ringes, hergestellt aus der Vergleichslegierung. Dieses ist bemerkenswert, da die erfindungsgemäße Probe (Probe 2) im Unterschied zu der Legierungszusammensetzung der Vergleichsprobe kein Pb enthält, und zwar deswegen, da das Legierungselement Pb bei der Vergleichsprobe für die gute Zerspanbarkeit dieser Legierung verantwortlich gemacht wird.
- Das erfindungsgemäße Legierungsprodukt kann direkt gezogen werden. Dennoch wird ein Zwischenglühen vor dem Ziehen bevorzugt, um ein möglichst spannungsfreies Legierungsprodukt zu erzielen. Ferner haben zusätzliche Untersuchungen mit den Legierungszusammensetzungen der Proben 1 und 2 für unterschiedlich eingestellte Werkstoffzustände ergeben, dass die Zugfestigkeit Rm, die 0,2%-Dehngrenze, die Bruchdehnung und die Härte HB auch für direkt gezogene oder für nach einem Zwischenglühschritt gezogene Probestücke gegenüber Halbzeug aus der Vergleichslegierung CW713R deutlich gesteigert ist. Entsprechendes ergab sich bei beiden Varianten der Proben für einen Werkstoffzustand nach einem abschließenden Entspannungsglühen. Festgestellt wurde dieses an aus der Legierung hergestellten Schmiedestücken ebenso wie an stranggepressten Halbzeugen, die nach dem Pressen gezogen (gereckt) worden sind. In beiden Fällen kann ein anschließendes Glühen zum Abbau von in dem jeweiligen Werkstück enthaltenen Spannungen hilfreich sein.
- Des Weiteren wurden Kavitationsuntersuchungen mit der geschmiedeten und geglühten Probe 2 unternommen. Hierzu wurden Oberflächen von aus der Probe 2 gewonnenen Testkörpern zunächst mit einer Körnung von 1000 Mesh geschliffen und an diesen dann ein Kavitationstest gemäß ASTM G32 in destilliertem Wasser durchgeführt. Dabei hat sich gezeigt, dass der hoch eingeschätzte Kavitationswiderstand der Vergleichslegierung CW713R nochmals deutlich gesteigert werden konnte. Diese Verringerung der Kavitationsneigung in Wasser deutet darauf hin, dass Legierungsprodukte mit der erfindungsgemäßen Zusammensetzung auch bei einer hohen dynamischen Belastung in einer Schmierstoffumgebung, wie sie beispielsweise in Zylinderbuchsen von Axialkolbenpumpen auftritt, eine verbesserte Standfestigkeit aufweisen. Derartige Zylinderbuchsen sind aus stranggepressten und anschließend kaltgezogenen (gereckten) Halbzeugen hergestellt. Daher sind Zylinderbuchsen für derartige Anwendungen für die Herstellung aus erfindungsgemäßen Legierung besonders geeignet.
Claims (14)
- Pb-freie Cu-Zn-Legierung zum Herstellen von unter geschmierten Bedingungen eingesetzten Legierungsprodukten mit folgender Zusammensetzung (Angaben in Gew.-%):Cu: 57 - 59 %,Mn: 1,7 - 2,7 %,Al: 1,3 - 2,2 %,Si: 0,4 - 1,0 %,Ni: 0,4 - 0,85 %,Fe: 0,3 - 0,7 %,Sn: 0,15 - 0,4 %,Rest Zn nebst unvermeidbaren Verunreinigungen mit 0,05 Gew.-% je Element, wobei die Summe der unvermeidbaren Verunreinigungen 0,15 Gew.-% nicht überschreitet.
- Pb-freie Cu-Zn-Legierung nach Anspruch 1, gekennzeichnet durch:Mn: 1,9 - 2,6 %,Al: 1,4 - 2,1 %,Ni: 0,45 - 0,75 %,Fe: 0,3 - 0,6 %.
- Pb-freie Cu-Zn-Legierung nach Anspruch 2, gekennzeichnet durch:Cu: 57,5 - 58,5 %,Mn: 2,0 - 2,5 %,Al: 1,5 - 2,0 %,Si: 0,50 - 0,70 %,Ni: 0,50 - 0,70 %,Fe: 0,35 - 0,55 %,Sn: 0,20 - 0,35 %.
- Pb-freie Cu-Zn-Legierung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Si-Gehalt nicht kleiner ist als der Ni-Gehalt.
- Pb-freie Cu-Zn-Legierung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Sn-Gehalt maximal 50 % des Ni-Gehaltes und maximal 50 % des Si-Gehaltes beträgt.
- Pb-freie Cu-Zn-Legierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Fe-Gehalt um 0,05 % bis 0,1 % geringer ist als derjenige des Ni-Gehaltes.
- Schmiedeprodukt, hergestellt aus einer Pb-freien Cu-Zn-Legierung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das aus der Legierung hergestellte Schmiedeprodukt ein β-Gefüge und einen eingelagerten α-Mischkristallanteil von weniger als 5 % und einen Anteil intermetallischer Phasen von 2,5 - 4,5 % aufweist.
- Strangpressprodukt, hergestellt aus einer Pb-freien Cu-Zn-Legierung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das aus der Legierung hergestellte Strangpressprodukt ein β-Gefüge und einen eingelagerten α-Mischkristallanteil von weniger als 5 % und einen Anteil intermetallischer Phasen von 2,5 - 4,5 % aufweist.
- Legierungsprodukt nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass das Legierungsprodukt durch einen Glühprozess thermisch entspannt ist und durch diesen Prozess in dem Gefüge der Anteil der α-Mischkristalle auf 10 - 30 %, insbesondere auf 10 - 15 % angehoben und ein Anteil intermetallischer Phasen von 3 - 5 % gebildet ist.
- Legierungsprodukt nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Härte des Legierungsproduktes 160 - 190 HBW 2,5/62,5, insbesondere 170 - 185 HBW 2,5/62,5 beträgt.
- Legierungsprodukt nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass das Legierungsprodukt eine 0,2 %-Dehngrenze zwischen 300 und 400 MPa, insbesondere zwischen 300 und 350 MPa und eine Zugfestigkeit von 600 - 700 MPa, insbesondere von 600 - 640 MPa aufweist.
- Legierungsprodukt nach Anspruch 7 und 11, dadurch gekennzeichnet, dass das Legierungsprodukt eine Bruchdehnung zwischen 10 - 30 %, insbesondere 13 - 20 % aufweist.
- Legierungsprodukt nach Anspruch 8 und 11, dadurch gekennzeichnet, dass das Legierungsprodukt eine Bruchdehnung zwischen 10 und 16 % aufweist.
- Legierungsprodukt nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass die elektrische Leitfähigkeit des Legierungsproduktes zwischen 9 und 11 MS/m, insbesondere 9,3 und 10,0 MS/m beträgt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202020101700.4U DE202020101700U1 (de) | 2020-03-30 | 2020-03-30 | Pb-freie Cu-Zn-Legierung |
PCT/EP2021/058264 WO2021198236A1 (de) | 2020-03-30 | 2021-03-30 | Pb-freie cu-zn-legierung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3908682A1 EP3908682A1 (de) | 2021-11-17 |
EP3908682B1 true EP3908682B1 (de) | 2022-08-17 |
Family
ID=75377759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21716326.0A Active EP3908682B1 (de) | 2020-03-30 | 2021-03-30 | Pb-freie cu-zn-legierung |
Country Status (9)
Country | Link |
---|---|
US (1) | US20230091831A1 (de) |
EP (1) | EP3908682B1 (de) |
JP (1) | JP2023520678A (de) |
KR (1) | KR20220155437A (de) |
CN (1) | CN115103921A (de) |
BR (1) | BR112022015524A2 (de) |
DE (1) | DE202020101700U1 (de) |
ES (1) | ES2927042T3 (de) |
WO (1) | WO2021198236A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021118907A1 (de) * | 2021-07-21 | 2023-01-26 | Diehl Brass Solutions Stiftung & Co. Kg | Bleifreie Messinglegierung und Verwendung derselben |
CN115198139B (zh) * | 2022-08-31 | 2023-06-09 | 宁波金田铜业(集团)股份有限公司 | 一种耐磨黄铜合金棒材及其制备方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56127741A (en) | 1980-03-06 | 1981-10-06 | Honda Motor Co Ltd | Abrasion resistant copper alloy |
DE102005017574A1 (de) | 2005-04-16 | 2006-10-26 | Diehl Metall Stiftung & Co.Kg | Kupfer-Zink-Legierung und Verwendung einer solchen Legierung |
DE102007029991B4 (de) * | 2007-06-28 | 2013-08-01 | Wieland-Werke Ag | Kupfer-Zink-Legierung, Verfahren zur Herstellung und Verwendung |
ES2645466T3 (es) * | 2007-06-28 | 2017-12-05 | Wieland-Werke Ag | Aleación de cobre y cinc, procedimiento de producción y uso |
TW201114926A (en) * | 2009-10-29 | 2011-05-01 | Globe Union Ind Corp | Eco-frienly brass alloy |
CN101787461B (zh) * | 2010-03-02 | 2014-11-19 | 路达(厦门)工业有限公司 | 一种环保型锰黄铜合金及其制造方法 |
CN102251142A (zh) * | 2011-07-25 | 2011-11-23 | 龙工(上海)桥箱有限公司 | 一种行走马达用球铰的材料 |
CN102851533A (zh) * | 2012-09-26 | 2013-01-02 | 宁波正元铜合金有限公司 | 一种复杂黄铜及其制备方法和应用 |
US10287653B2 (en) | 2013-03-15 | 2019-05-14 | Garrett Transportation I Inc. | Brass alloys for use in turbocharger bearing applications |
DE102013008822A1 (de) * | 2013-05-24 | 2014-11-27 | Wieland-Werke Ag | Mine für Kugelschreiber und Verwendung |
CN103589903B (zh) * | 2013-08-16 | 2016-04-20 | 武汉泛洲中越合金有限公司 | 一种高强度耐磨铜合金及其制造方法 |
CN103725922B (zh) * | 2014-01-16 | 2017-06-20 | 沈阳亚欧星海铜业有限公司 | 一种无铅硅黄铜合金及制备方法 |
DE102014106933A1 (de) * | 2014-05-16 | 2015-11-19 | Otto Fuchs Kg | Sondermessinglegierung und Legierungsprodukt |
DE102014014239B4 (de) * | 2014-09-25 | 2024-04-11 | Wieland-Werke Ag | Elektrisches Verbindungselement |
DE202016102696U1 (de) * | 2016-05-20 | 2017-08-29 | Otto Fuchs - Kommanditgesellschaft - | Sondermessinglegierung sowie Sondermessinglegierungsprodukt |
JP2019178694A (ja) * | 2018-03-30 | 2019-10-17 | 株式会社Ihi | 過給機 |
CN109930025A (zh) * | 2019-03-22 | 2019-06-25 | 广东出入境检验检疫局检验检疫技术中心 | 一种无铅环保易切削黄铜材料 |
-
2020
- 2020-03-30 DE DE202020101700.4U patent/DE202020101700U1/de active Active
-
2021
- 2021-03-30 KR KR1020227037503A patent/KR20220155437A/ko unknown
- 2021-03-30 JP JP2022558022A patent/JP2023520678A/ja active Pending
- 2021-03-30 ES ES21716326T patent/ES2927042T3/es active Active
- 2021-03-30 WO PCT/EP2021/058264 patent/WO2021198236A1/de unknown
- 2021-03-30 CN CN202180014863.2A patent/CN115103921A/zh active Pending
- 2021-03-30 BR BR112022015524A patent/BR112022015524A2/pt unknown
- 2021-03-30 EP EP21716326.0A patent/EP3908682B1/de active Active
- 2021-03-30 US US17/790,947 patent/US20230091831A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
BR112022015524A2 (pt) | 2022-10-11 |
WO2021198236A1 (de) | 2021-10-07 |
KR20220155437A (ko) | 2022-11-22 |
EP3908682A1 (de) | 2021-11-17 |
US20230091831A1 (en) | 2023-03-23 |
JP2023520678A (ja) | 2023-05-18 |
DE202020101700U1 (de) | 2021-07-01 |
CN115103921A (zh) | 2022-09-23 |
ES2927042T3 (es) | 2022-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102007063643B4 (de) | Kupfer-Zink-Legierung, Verfahren zur Herstellung und Verwendung | |
EP2806044B1 (de) | Kupfer-Zink-Legierung, Verfahren zur Herstellung und Verwendung | |
EP3143170B1 (de) | Sondermessinglegierung und legierungsprodukt | |
DE102005015467C5 (de) | Verwendung einer Kupfer-Zink-Legierung | |
EP1886037B1 (de) | Gleitlagerverbundwerkstoff und verfahren zur herstellung des gleitlagerverbundwerkstoffes | |
EP1817438B1 (de) | Migrationsarme kupferlegierung | |
DE102013004383B4 (de) | Verwendung einer Kupfer-Zink-Legierung | |
EP3908682B1 (de) | Pb-freie cu-zn-legierung | |
EP3286348B1 (de) | Bleifreie sondermessinglegierung sowie sondermessinglegierungsprodukt | |
EP1712648B1 (de) | Kupfer-Zink-Legierung und Verwendung einer solchen Legierung | |
EP3374533B1 (de) | Sondermessinglegierung sowie sondermessinglegierungsprodukt | |
EP1518000A1 (de) | Al-cu-mg-ag-legierung mit si, halbzeug aus einer solchen legierung sowie verfahren zur herstellung eines solchen halbzeuges | |
DE4128941C2 (de) | Aluminiumlagerlegierungen mit ausgezeichneter Ermüdungsbeständigkeit und Beständigkeit gegenüber fressendem Verschleiß | |
EP3272888B1 (de) | Werkstoff aus einer kupfer-zink-legierung, verfahren zur herstellung eines solchen werkstoffs und gleitelement aus einem solchen werkstoff | |
EP3423604B1 (de) | Zinnhaltige kupferlegierung, verfahren zu deren herstellung sowie deren verwendung | |
EP3417083B1 (de) | Gleitelement aus einer kupfer-zink-legierung | |
EP3529389A1 (de) | Kupfer-zink-legierung | |
DE102013014502A1 (de) | Kupferlegierung | |
EP1158062B1 (de) | Kupfer-Zink-Aluminium-Knetwerkstoff und dessen Verwendung | |
EP0521319A1 (de) | Kupfer-Nickel-Zinn-Legierung, Verfahren zu ihrer Behandlung sowie ihre Verwendung | |
EP3366793B1 (de) | Gleitelement aus einer kupferlegierung | |
EP3781719B1 (de) | Kupfer-zink-nickel-mangan-legierung | |
EP3992317A1 (de) | Bleifreie cu-zn-basislegierung | |
EP3075870A1 (de) | Kupfer-zink-legierung, bandförmiger werkstoff aus dieser legierung, verfahren zur herstellung eines halbzeugs aus dieser legierung und gleitelement aus dieser legierung | |
EP3041966B1 (de) | Kupferlegierung, die eisen und phosphor enthält |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210629 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: PLETT, THOMAS Inventor name: MUENCH, TILEMAN Inventor name: REETZ, BJOERN |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220428 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502021000107 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1512212 Country of ref document: AT Kind code of ref document: T Effective date: 20220915 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2927042 Country of ref document: ES Kind code of ref document: T3 Effective date: 20221103 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 40434 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221219 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221117 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221217 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502021000107 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230529 |
|
26N | No opposition filed |
Effective date: 20230519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230330 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240319 Year of fee payment: 4 Ref country code: DE Payment date: 20240205 Year of fee payment: 4 Ref country code: SK Payment date: 20240321 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240319 Year of fee payment: 4 Ref country code: FR Payment date: 20240320 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240417 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240401 Year of fee payment: 4 |