EP3908682B1 - Pb-freie cu-zn-legierung - Google Patents

Pb-freie cu-zn-legierung Download PDF

Info

Publication number
EP3908682B1
EP3908682B1 EP21716326.0A EP21716326A EP3908682B1 EP 3908682 B1 EP3908682 B1 EP 3908682B1 EP 21716326 A EP21716326 A EP 21716326A EP 3908682 B1 EP3908682 B1 EP 3908682B1
Authority
EP
European Patent Office
Prior art keywords
alloy
content
free
product
proportion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21716326.0A
Other languages
English (en)
French (fr)
Other versions
EP3908682A1 (de
Inventor
Björn Reetz
Tileman MÜNCH
Thomas Plett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otto Fuchs KG
Original Assignee
Otto Fuchs KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otto Fuchs KG filed Critical Otto Fuchs KG
Publication of EP3908682A1 publication Critical patent/EP3908682A1/de
Application granted granted Critical
Publication of EP3908682B1 publication Critical patent/EP3908682B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the invention relates to a Pb-free Cu-Zn alloy, particularly for making alloy products used under lubricated conditions. An alloy product made from such an alloy is also described.
  • This alloy is also used to manufacture components used in hydraulics, such as distributor plates.
  • This previously known alloy has the following composition (data in % by weight): Cu: 57.0-59.0%, Mn: 1.5-3.0%, Al: 1.3-2.3%, Si : 0.3 - 1.3%, remainder zinc plus unavoidable impurities.
  • Admissible admixtures are tolerated (in percent by weight): Ni: max. 1.0%, Fe: max. 1.0%, Sn: max. 0.4%, Pb: 0.2 - 0.8 %.
  • this previously known alloy contains Pb. This element is responsible for machinability and, due to its incorporation in tribological layers the running-in behavior as well as friction and wear in sliding applications.
  • the special brass alloy CW713R is characterized by versatile application properties, such as high wear and cavitation resistance, compatibility with lubricants and sufficient mechanical properties, especially with regard to the strength and toughness of the alloy product. These also include good machinability.
  • the element Pb is introduced into brass alloys to achieve the desired machinability.
  • DE 10 2005 017 574 A1 describes a wear-resistant brass alloy for synchronizer rings with an optional lead content.
  • the composition (in percent by weight) is 57.5 - 59% copper, 2 - 3.5% manganese, 1 - 3% aluminum, 0.9 - 1.5% silicon, 0.15 - 0.4 % iron, 0 - 1% lead, 0 - 1% nickel, 0 - 0.5% tin and balance zinc.
  • WO 2014/152619 A1 discloses a brass alloy for turbochargers with the following composition, optionally containing lead (data in % by weight): 57-60% copper, 1.5-3.0% manganese, 1.3-2.3% aluminum, 0.5 - 2.0% silicon, 0 - 1% nickel, 0 - 1% iron, 0 - 0.4% tin, 0 - 0.1% lead and the balance zinc.
  • JP S56-127741 A a brass alloy with the following composition (in % by weight): 54 - 66% copper, 1.0 - 5.0% manganese, 1.0 - 5.0% aluminum, 0.2 - 1.5% silicon , 0.5 - 4.0% nickel, 0.1 - 2.0% iron, 0.2 - 2.0% tin and the balance zinc.
  • the object of the invention is to propose a Pb-free Cu—Zn alloy that is fundamentally suitable for an application or use for which the alloy CuZn37Mn3Al2PbSi described above for the prior art was also suitable. It would be desirable if the mechanical strength properties were even improved compared to this previously known special brass alloy, but without having to accept losses in terms of cold and hot workability and machinability.
  • Unavoidable impurities in the alloy are permitted at 0.05% by weight per element, the sum of the unavoidable impurities not exceeding 0.15% by weight.
  • This alloy is characterized above all by the selection of the alloying elements Ni, Fe and Sn, as well as by the claimed content of these elements in the alloy composition in relation to the other alloying elements, above all Mn, Al and Si.
  • This balanced alloy composition ensures particularly good properties of the alloy product in terms of cold and hot workability, machinability, strength and wear resistance, the latter especially under lubricated conditions.
  • Bi is used as a Pb substitute in other special brass alloys, but the alloy according to the invention does not use Bi.
  • the previously known alloy CuZn37Mn3Al2PbSi although it has good hot workability
  • the subject matter of the claimed alloy not only has particularly good hot workability, but also good cold workability. The latter was not the case with the previously known alloy.
  • the strength values achievable with this alloy and the surprisingly significantly better cavitation resistance compared to comparison alloys were not foreseeable for the people involved in the development of this alloy.
  • the alloy products forged from the alloy according to the invention have a 0.2% yield strength between 330 and 350 MPa, which is significantly higher than was usual with forgings of the alloy CuZn37Mn3Al2PbSi (values of 230 to 300 MPa).
  • the tensile strength of alloy products made from the alloy according to the invention is 600 to 640 MPa. In the case of the previously known alloy CuZn37Mn3Al2PbSi, the tensile strength values are usually between 590 and 670 MPa. Slightly higher tensile strength values can also be achieved with special treatments.
  • the special properties of an alloy product made from this alloy are based on the fact that the Si content is preferably not less than the Ni content. Furthermore, the Sn content of the alloy is preferably adjusted in such a way that it is at most only 50% of the Ni content or only at most 50% of the Si content. The Ni content is preferably not less than the Si content, deviations of up to 0.075% being tolerated.
  • the Fe content also plays a role in interaction with the other elements. Preferably, the Fe content is less than the Ni content by about 0.05% to 0.1% by weight.
  • Figures 1a, 1b show micrographs of sample 1 in the pressed state from the start of pressing ( Figure 1a along the direction of pressing; Figure 1b perpendicular to the pressing direction).
  • Figures 2a, 2b show corresponding microstructure images from the pressing end.
  • the samples cut from the pressed rods were thermally relaxed for three hours at 360° C.
  • an ⁇ -mixed crystal phase was formed in the structure, resulting in a ⁇ -mixed crystal-dominated structure with an ⁇ -mixed crystal component of about 14%.
  • the proportion of intermetallic phases is around 3%.
  • Figures 3a, 3b show micrographs of sample 2 after the stress-relief annealing described above.
  • the intermetallic phases are denoted by IMP.
  • the hardness HBW was measured as HBW 2.5/62.5.
  • the microstructure of the comparative sample CW713R in the pressed state is ⁇ -phase dominated with a proportion of ⁇ -mixed crystal phase of about 10%.
  • the Pb contained in this alloy has a grain-refining effect and serves as a chip breaker.
  • figure 4 shows a micrograph of sample CW713R in the pressed state and after an annealing treatment, corresponding to that of sample 2.
  • the proportion of ⁇ -mixed crystal phase is about 40 - 45%.
  • Pipes were also made from the alloy of Sample 2 and that of the comparative alloy (CW713R) by extrusion. Sections were cut from the tubes which were then machined by turning to compare the machinability of the two alloys. In the course of this turning, rings were created. Interestingly, the machinability of the ring made from the alloy according to sample 2 is at least as good as the machinability of the ring made from the comparison alloy. This is remarkable since the sample according to the invention (sample 2), unlike the alloy composition of the comparative sample, does not contain any Pb because the alloying element Pb in the comparative sample is held responsible for the good machinability of this alloy.
  • the alloy product of the present invention can be drawn directly. Nevertheless, an intermediate anneal before drawing is preferred in order to achieve as stress-free an alloy product as possible. Furthermore, additional investigations with the alloy compositions of samples 1 and 2 for differently adjusted material states have shown that the tensile strength R m , the 0.2% yield strength, the elongation at break and the hardness HB are also opposite for directly drawn specimens or specimens drawn after an intermediate annealing step Semi-finished product made from the comparison alloy CW713R is significantly increased. The same was the case for both variants of the samples for a material condition after a final stress-relief annealing. This was found in forgings made from the alloy as well as in extruded semi-finished products that were drawn (stretched) after pressing. In both cases, subsequent annealing can be helpful in relieving stresses contained in the respective workpiece.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mechanical Operated Clutches (AREA)

Description

  • Die Erfindung betrifft eine Pb-freie Cu-Zn-Legierung, insbesondere zum Herstellen von unter geschmierten Bedingungen eingesetzten Legierungsprodukten. Beschrieben ist des Weiteren ein aus einer solchen Legierung hergestelltes Legierungsprodukt.
  • Das im Werkstoff-Datenblatt (Stand 2005) des Deutschen Kupferinstituts beschriebene Sondermessing CuZn37Mn3Al2PbSi (CW713R) ist eine seit vielen Jahren in großem Umfange eingesetzte Legierung, die sich durch einen hohen Verschleißwiderstand und eine gute Warmumformbarkeit auszeichnet. Dieser Werkstoff weist hohe Festigkeitswerte und eine mittlere Spanbarkeit auf und hat eine gute Korrosionsbeständigkeit. Aus diesem Grunde wird diese Legierung für Konstruktionsteile im Maschinenbau, für Synchronringe und Ventilführungsrohre im Automobilbau sowie für eine Reihe von Gleitlagerelementen und Warmpressteilen eingesetzt. Dieses bedeutet, dass aus dieser Legierung hergestellte Legierungsprodukte unter geschmierten Bedingungen eingesetzt werden. Mögliche Anwendung betreffen das permanente Eintauchen in Öl oder die Zuführung von Schmierstoff durch dafür vorgesehene Kanal- und Nutsysteme. Synchronringe befinden sich in einer Ölumgebung. Gleiches kann für Gleitlagerelemente gelten, die jedoch auch nur ölgeschmiert sein können. Eingesetzt wird diese Legierung auch zum Herstellen von Bauteilen, die in der Hydraulik verwendet werden, wie beispielsweise Verteilerplatten. Diese vorbekannte Legierung weist folgende Zusammensetzung auf (Angaben in Gew.-%): Cu: 57,0 - 59,0 %, Mn: 1,5 - 3,0 %, Al: 1,3 - 2,3 %, Si: 0,3 - 1,3 %, Rest Zink nebst unvermeidbaren Verunreinigungen. Als zulässige Beimengungen werden geduldet (Angaben in Gew.-%): Ni: max. 1,0 %, Fe: max. 1,0 %, Sn: max. 0,4 %, Pb: 0,2 - 0,8 %.
  • Wie sich aus der bereits eingangs wiedergegebenen Werkstoffbezeichnung ergibt, enthält diese vorbekannte Legierung Pb. Dieses Element ist für die Zerspanbarkeit verantwortlich und beeinflusst aufgrund dessen Einbaus in tribologische Schichten das Einlaufverhalten sowie Reibung und Verschleiß bei Gleitanwendungen.
  • Die Sondermessinglegierung CW713R zeichnet sich durch vielseitige Anwendungseigenschaften aus, wie beispielsweise einen hohen Verschleiß- und Kavitationswiderstand, eine Schmierstoffverträglichkeit und hinreichend mechanische Eigenschaften, insbesondere im Hinblick auf die Festigkeit und Zähigkeit des Legierungsprodukts. Zu diesen zählt auch eine gute Zerspanbarkeit. Das Element Pb wird zum Erzielen der gewünschten Zerspanbarkeit in Messinglegierungen eingebracht.
  • Aus gesundheitlichen Aspekten sowie aufgrund von Umweltgesichtspunkten ist man in jüngerer Zeit bemüht, Messinglegierungen bleifrei auszulegen. Dabei ist man bemüht, wenn möglich, nicht auf die durch das Element Pb in der Legierung bewirkten Eigenschaften verzichten zu müssen.
  • DE 10 2005 017 574 A1 beschreibt eine verschleißfeste Messinglegierung für Synchronringe mit einem optionalen Bleianteil. Als Zusammensetzung (Angaben in Gew.-%) ist 57,5 - 59 % Kupfer, 2 - 3,5 % Mangan, 1 - 3 % Aluminium, 0,9 - 1,5 % Silizium, 0,15 - 0,4 % Eisen, 0 - 1 % Blei, 0 - 1 % Nickel, 0 - 0,5 % Zinn und Rest Zink.
  • WO 2014/152619 A1 offenbart eine Messinglegierung für Turbolader mit folgender, optional Blei enthaltender Zusammensetzung (Angaben in Gew.-%): 57 - 60 % Kupfer, 1,5 - 3,0 % Mangan, 1,3 - 2,3 % Aluminium, 0,5 - 2,0 % Silizium, 0 - 1 % Nickel, 0 - 1 % Eisen, 0 - 0,4 % Zinn, 0 - 0,1 % Blei und Rest Zink.
  • Für Gleitanwendungen nennt JP S56-127741 A eine Messinglegierung mit folgender Zusammensetzung vor (Angaben in Gew.-%): 54 - 66 % Kupfer, 1,0 - 5,0 % Mangan, 1,0 - 5,0 % Aluminium, 0,2 - 1,5 % Silizium, 0,5 - 4,0 % Nickel, 0,1 - 2,0 % Eisen, 0,2 - 2,0 % Zinn und Rest Zink.
  • Ausgehend von diesem diskutierten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Pb-freie Cu-Zn-Legierung vorzuschlagen, die sich grundsätzlich für einen Einsatzzweck bzw. eine Verwendung eignet, für die auch die vorstehend zum Stand der Technik beschriebene Legierung CuZn37Mn3Al2PbSi geeignet war. Dabei wäre es wünschenswert, wenn die mechanischen Festigkeitseigenschaften gegenüber dieser vorbekannten Sondermessinglegierung sogar noch verbessert wären, ohne jedoch Einbußen hinsichtlich der Kalt- und Warmumformbarkeit und der Zerspanbarkeit hinnehmen zu müssen.
  • Gelöst wird diese Aufgabe durch eine Pb-freie Cu-Zn-Legierung mit folgender Zusammensetzung (Angaben in Gew.-%):
    • Cu: 57 - 59%,
    • Mn: 1,7 - 2,7 %,
    • Al: 1,3 - 2,2 %,
    • Si: 0,4 - 1,0 %,
    • Ni: 0,4 - 0,85 %,
    • Fe: 0,3 - 0,7 %,
    • Sn: 0,15 - 0,4 %,
    • Rest Zn nebst unvermeidbaren Verunreinigungen mit 0,05 Gew.-% je Element, wobei die Summe der unvermeidbaren Verunreinigungen 0,15 Gew.-% nicht überschreitet.
  • Unvermeidbare Verunreinigungen in der Legierung sind zugelassen mit 0,05 Gew.-% je Element, wobei die Summe der unvermeidbaren Verunreinigungen 0,15 Gew.-% nicht überschreitet.
  • Diese Legierung zeichnet sich vor allem durch die Auswahl der Legierungselemente Ni, Fe und Sn aus, ebenso wie durch die beanspruchten Gehalte dieser Elemente an der Legierungszusammensetzung im Verhältnis zu den weiteren Legierungselementen vor allem Mn, Al und Si. Diese ausgewogene Legierungszusammensetzung gewährleistet besonders gute Eigenschaften des Legierungsproduktes in Bezug auf eine Kalt- und Warmumformbarkeit, die Zerspanbarkeit, die Festigkeit und den Verschleißwiderstand, letzterer vor allem unter geschmierten Bedingungen. Dieses Ergebnis ist überraschend, da als Pb-Ersatz in anderen Sondermessinglegierungen Bi eingesetzt wird, die erfindungsgemäße Legierung jedoch Bi nicht verwendet. Während auch die vorbekannte Legierung CuZn37Mn3Al2PbSi zwar eine gute Warmumformbarkeit aufweist, ist beim Gegenstand der beanspruchten Legierung nicht nur eine besonders gute Warmumformbarkeit gegeben, sondern auch eine gute Kaltumformbarkeit. Letzteres war bei der vorbekannten Legierung nicht der Fall. Von Interesse bei dieser Legierung ist, dass sich diese eignet, um Schmiedestücke herzustellen. Werden die Schmiedestücke einem anschließenden Entspannungsglühen unterworfen, wobei dieses in einem Temperaturbereich zwischen 300° C und 450° C durchgeführt wird, kann durch diese Maßnahme der Anteil an eingelagerten α-Mischkristallen auf 10 - 15 % erhöht werden. Um die gewünschten Eigenschaften zu erreichen, ist ein Glühen in einem Temperaturbereich bereits von 350 bis 380° C in vielen Fällen bereits ausreichend. Dieser erhöhte Anteil an α-Mischkristallen begründet die verbesserte Kaltumformbarkeit. Ohne einen solchen Glühschritt enthält das Legierungsgefüge einen Anteil von α-Mischkristallen von weniger als 3 - 5 %. Dieselben Vorteile eines Entspannungsglühens stellen sich auch bei stranggepressten Produkten ein, wobei ebenfalls ein Gefüge mit α-Mischkristallanteil von 10 - 15 % durch die genannte thermische Behandlung erzielt werden kann.
  • Nicht vorhersehbar für die an der Entwicklung dieser Legierung beteiligten Personen waren die mit dieser Legierung erzielbaren Festigkeitswerte und die gegenüber Vergleichslegierungen überraschend deutlich bessere Kavitationsbeständigkeit. Die aus der erfindungsgemäßen Legierung durch Schmieden hergestellten Legierungsprodukte weisen eine 0,2 %-Dehngrenze zwischen 330 und 350 MPa auf, was deutlich mehr ist als mit Schmiedestücken der Legierung CuZn37Mn3Al2PbSi üblich war (Werte von 230 bis 300 MPa). Die Zugfestigkeit von aus der erfindungsgemäßen Legierung hergestellten Legierungsprodukten beträgt 600 bis 640 MPa. Bei der vorbekannten Legierung CuZn37Mn3Al2PbSi liegen die Zugfestigkeitswerte üblicherweise zwischen 590 bis 670 MPa. Mit besonderen Behandlungen können auch etwas höhere Zugfestigkeitswerte erzielt werden.
  • Untersuchungen haben gezeigt, dass das Zusammenspiel der Elemente Ni, Fe und Sn untereinander, aber auch mit Mn, Al und Si und im Zusammenhang mit einer Ausbildung von intermetallischen Phasen zu besonders guten Ergebnissen führt, wenn der Mn-Gehalt auf 1,9 - 2,6 %, der Al-Gehalt auf 1,4 - 2,1 %, der Ni-Gehalt von 0,45 - 0,75 % und der Fe-Gehalt von 0,3 - 0,6 % kontrolliert wird. Als besonders geeignet hat sich für die gewünschten Zwecke mit einer besonderen Ausprägung aus guter Kalt- und Warmumformbarkeit, Zerspanbarkeit, Festigkeit und Verschleißwiderstand ergeben, wenn die Legierungszusammensetzung wie folgt gewählt ist (Angaben in Gew.-%):
    • Cu: 57,5 - 58,5 %,
    • Mn: 2,0 - 2,5 %,
    • Al: 1,5-2,0 %,
    • Si: 0,50 - 0,70 %,
    • Ni: 0,50 - 0,70 %,
    • Fe: 0,5 - 0,55 %,
    • Sn: 0,20 - 0,35 %.
  • Die besonderen Eigenschaften eines aus dieser Legierung hergestellten Legierungsproduktes liegen darin begründet, dass vorzugsweise der Si-Gehalt nicht kleiner als der Ni-Gehalt ist. Ferner ist der Sn-Gehalt der Legierung vorzugsweise so abgestimmt, dass dieser maximal nur 50 % des Ni-Gehaltes bzw. nur maximal 50 % des Si-Gehaltes beträgt. Vorzugsweise ist der Ni-Gehalt nicht kleiner als der Si-Gehalt, wobei Abweichungen von bis zu 0,075 % toleriert werden. Auch der Fe-Gehalt spielt im Zusammenspiel mit den anderen Elementen eine Rolle. Vorzugsweise ist der Fe-Gehalt um etwa 0,05 % bis 0,1 Gew.-% geringer als der Ni-Gehalt.
  • Die vorstehend beschriebenen besonderen Eigenschaften eines aus dieser Legierung hergestellten Legierungsproduktes ergeben sich sowohl bei Schmiedeprodukten als auch bei stranggepressten Produkten.
  • Beispiele
  • Etliche Legierungen aus der erfindungsgemäßen Legierung wurden gegossen, anschließend stranggepresst und Teile davon einem nachgeschalteten Schmiedeschritt unterworfen. Parallel wurde eine Vergleichsprobe des Werkstoffes CW713R in derselben Weise hergestellt. Nachstehend sind beispielhaft zwei erfindungsgemäße Proben bezüglich ihrer Legierungszusammensetzung - die Proben 1 und 2 - und die Zusammensetzung einer Vergleichsprobe (CW713R) wiedergegeben:
    Cu Zn Sn Fe Mn Ni Al Si Pb
    Probe 1 58,4 Rest 0,26 0,46 2,1 0,52 1,67 0,52 0
    Probe 2 58,0 Rest 0,23 0,46 2,13 0,54 1,55 0,6 0
    CW713R 58,1 Rest 0,15 0,35 2,2 0,32 1,6 0,7 0,7
  • Nach dem Guss (Stranguss) wurden Blöcke gesägt und anschließend aus den Blöcken Stangen mit einem Durchmesser von 50 mm und einer Länge von 20 m gepresst. Die Strangpresstemperatur der untersuchten Probenreihe lag zwischen 685° C und 710° C. Die Strangpresstemperatur der beschriebenen Proben betrug etwa 700° C. Das sich einstellende Gefüge ist über die gepresste Stange sehr homogen, und zwar sowohl in Längsrichtung als auch in Querrichtung der gepressten Stange über ihre gesamte Länge hinweg. Einzig zu beobachten ist, dass die Korngröße vom Pressanfang zum Pressende hin etwas abnimmt, wie dieses üblicherweise beim Strangpressen zu beobachten ist. Das Gefüge besteht so gut wie ausschließlich aus β-Phase mit eingelagerten intermetallischen Verbindungen (Mischsiliziden, die in Pressrichtung eingeregelt sind). Der Anteil der intermetallischen Verbindungen liegt bei etwa 3 - 4 %.
  • Figuren 1a, 1b zeigen Mikroaufnahmen von der Probe 1 im Presszustand vom Pressanfang (Figur 1a längs zur Pressrichtung; Figur 1b quer zur Pressrichtung). Figuren 2a, 2b zeigen entsprechende Gefügebilder vom Pressende. Die von den gepressten Stangen geschnittenen Proben wurden in einem nachfolgenden Schritt thermisch entspannt, und zwar für drei Stunden bei 360° C. Infolge des Entspannungsglühens wurde im Gefüge eine α-Mischkristallphase gebildet, sodass ein vom β-Mischkristall dominiertes Gefüge mit einem α-Mischkristallanteil von etwa 14 % gebildet worden ist. Der Anteil intermetallischer Phasen liegt bei gut 3 %.
  • Figuren 3a, 3b zeigen Gefügebilder der Probe 2 nach dem vorbeschriebenen Entspannungsglühen.
  • Die vorgenannten Gefügeparameter und die Festigkeitswerte dieser Proben sind in nachstehender Tabelle wiedergegeben:
    Zustand α-Anteil [%] IMP-Anteil Zugfestigkeit [%] Bruchdehnung [%] 0,2% Dehngrenze [MPa] HBW
    Probe 1 Presszustand < 4 3,7 671 19,4 367 169
    Probe 2 Presszustand und geglüht 14 3,1 649 22,5 321 162
    CW713R Presszustand 10 3,4 643 16 318 155
  • Mit IMP sind die intermetallischen Phasen bezeichnet. Die Härte HBW wurde als HBW 2,5/62,5 gemessen.
  • Das Gefüge der Vergleichsprobe CW713R im Presszustand ist β-Phasendominiert mit einem Anteil an α-Mischkristallphase von etwa 10 %. Das in dieser Legierung enthaltene Pb wirkt kornfeinend und dient als Spanbrecher. Figur 4 zeigt ein Gefügebild in der Probe CW713R im Presszustand und nach einer Glühbehandlung, entsprechend derjenigen der Probe 2. Der Anteil an α-Mischkristallphase beträgt etwa 40 - 45 %.
  • Aus den gepressten Stangen wurden in einem nachfolgenden Schritt zum Herstellen von Verteilerplatten Stutzen als Schmiedevorprodukte abgetrennt und diese warm geschmiedet. Geschmiedet wurden die Schmiedestücke bei der Probenreihe bei Temperaturen zwischen 635° C und 670° C. Die Probe 2 und die Vergleichsprobe sind bei etwa 650° C geschmiedet worden. Das sich einstellende Mikrogefüge eines solchermaßen geschmiedeten Vorproduktes für eine Verteilerplatte für eine hydraulische Anwendung ist in Figuren 5a, 5b gezeigt. Figur 5a zeigt das Mikrogefüge am Rand, während Figur 5b das Mikrogefüge im Kern des Schmiedeproduktes zeigt.
  • Diese Abbildungen verdeutlichen das über den Durchmesser des geschmiedeten Halbzeuges sehr homogene Gefüge. Dieses besteht so gut wie ausschließlich aus β-Phase mit eingelagerten intermetallischen Phasen von gut 3 %.
  • In einem nachfolgenden Schritt wurden Proben dieser Art geglüht, und zwar für drei Stunden bei 360° C. Im Zuge dieses Glühprozesses bildete sich ein Anteil an α-Phase von etwa 12 %. Der Anteil an intermetallischen Phasen erhöhte sich auf etwa 3,7 %. Das Gefüge des geglühten Halbzeuges zum Herstellen einer Verteilerplatte für hydraulische Anwendungen ist in Figuren 6a, 6b gezeigt (Figur 6a Rand; Figur 6b Kern). Deutlich erkennbar ist die darin enthaltene α-Phase.
  • In der nachstehenden Tabelle sind die Gefügeparameter und die mechanischen Festigkeitswerte zu diesen Proben wiedergegeben:
    Zustand α-Anteil [%] IMP-Anteil Zugfestigkeit [%] Bruchdehnung [%] 0,2% Dehngrenze [MPa] HBW
    Probe 2 geschmiedet < 0,1 3,1 626 15,6 341 174
    Probe 2 geschmiedet und geglüht 12 3,7 624 13,2 340 174
    CW713R geschmiedet 5 3,5 535 14,5 275 158
  • Wird die geschmiedete Vergleichsprobe (CW713R) einem Glühprozess unterzogen, wie vorstehend beschrieben, erhöht sich der Anteil an α-Phase deutlich, und zwar auf bis zu etwa 40 %.
  • Aus der Legierung gemäß Probe 2 und derjenigen der Vergleichslegierung (CW713R) wurden zudem Rohre durch Strangpressen hergestellt. Von den Rohren wurden Abschnitte abgetrennt, die anschließend zum Vergleichen der Zerspanbarkeit der beiden Legierungen zerspanend durch Drehen bearbeitet wurden. Im Zuge dieser Drehbearbeitung wurden Ringe erstellt. Die Zerspanbarkeit des aus der Legierung gemäß Probe 2 hergestellten Ringes ist interessanterweise mindestens so gut wie die Zerspanbarkeit des Ringes, hergestellt aus der Vergleichslegierung. Dieses ist bemerkenswert, da die erfindungsgemäße Probe (Probe 2) im Unterschied zu der Legierungszusammensetzung der Vergleichsprobe kein Pb enthält, und zwar deswegen, da das Legierungselement Pb bei der Vergleichsprobe für die gute Zerspanbarkeit dieser Legierung verantwortlich gemacht wird.
  • Das erfindungsgemäße Legierungsprodukt kann direkt gezogen werden. Dennoch wird ein Zwischenglühen vor dem Ziehen bevorzugt, um ein möglichst spannungsfreies Legierungsprodukt zu erzielen. Ferner haben zusätzliche Untersuchungen mit den Legierungszusammensetzungen der Proben 1 und 2 für unterschiedlich eingestellte Werkstoffzustände ergeben, dass die Zugfestigkeit Rm, die 0,2%-Dehngrenze, die Bruchdehnung und die Härte HB auch für direkt gezogene oder für nach einem Zwischenglühschritt gezogene Probestücke gegenüber Halbzeug aus der Vergleichslegierung CW713R deutlich gesteigert ist. Entsprechendes ergab sich bei beiden Varianten der Proben für einen Werkstoffzustand nach einem abschließenden Entspannungsglühen. Festgestellt wurde dieses an aus der Legierung hergestellten Schmiedestücken ebenso wie an stranggepressten Halbzeugen, die nach dem Pressen gezogen (gereckt) worden sind. In beiden Fällen kann ein anschließendes Glühen zum Abbau von in dem jeweiligen Werkstück enthaltenen Spannungen hilfreich sein.
  • Des Weiteren wurden Kavitationsuntersuchungen mit der geschmiedeten und geglühten Probe 2 unternommen. Hierzu wurden Oberflächen von aus der Probe 2 gewonnenen Testkörpern zunächst mit einer Körnung von 1000 Mesh geschliffen und an diesen dann ein Kavitationstest gemäß ASTM G32 in destilliertem Wasser durchgeführt. Dabei hat sich gezeigt, dass der hoch eingeschätzte Kavitationswiderstand der Vergleichslegierung CW713R nochmals deutlich gesteigert werden konnte. Diese Verringerung der Kavitationsneigung in Wasser deutet darauf hin, dass Legierungsprodukte mit der erfindungsgemäßen Zusammensetzung auch bei einer hohen dynamischen Belastung in einer Schmierstoffumgebung, wie sie beispielsweise in Zylinderbuchsen von Axialkolbenpumpen auftritt, eine verbesserte Standfestigkeit aufweisen. Derartige Zylinderbuchsen sind aus stranggepressten und anschließend kaltgezogenen (gereckten) Halbzeugen hergestellt. Daher sind Zylinderbuchsen für derartige Anwendungen für die Herstellung aus erfindungsgemäßen Legierung besonders geeignet.

Claims (14)

  1. Pb-freie Cu-Zn-Legierung zum Herstellen von unter geschmierten Bedingungen eingesetzten Legierungsprodukten mit folgender Zusammensetzung (Angaben in Gew.-%):
    Cu: 57 - 59 %,
    Mn: 1,7 - 2,7 %,
    Al: 1,3 - 2,2 %,
    Si: 0,4 - 1,0 %,
    Ni: 0,4 - 0,85 %,
    Fe: 0,3 - 0,7 %,
    Sn: 0,15 - 0,4 %,
    Rest Zn nebst unvermeidbaren Verunreinigungen mit 0,05 Gew.-% je Element, wobei die Summe der unvermeidbaren Verunreinigungen 0,15 Gew.-% nicht überschreitet.
  2. Pb-freie Cu-Zn-Legierung nach Anspruch 1, gekennzeichnet durch:
    Mn: 1,9 - 2,6 %,
    Al: 1,4 - 2,1 %,
    Ni: 0,45 - 0,75 %,
    Fe: 0,3 - 0,6 %.
  3. Pb-freie Cu-Zn-Legierung nach Anspruch 2, gekennzeichnet durch:
    Cu: 57,5 - 58,5 %,
    Mn: 2,0 - 2,5 %,
    Al: 1,5 - 2,0 %,
    Si: 0,50 - 0,70 %,
    Ni: 0,50 - 0,70 %,
    Fe: 0,35 - 0,55 %,
    Sn: 0,20 - 0,35 %.
  4. Pb-freie Cu-Zn-Legierung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Si-Gehalt nicht kleiner ist als der Ni-Gehalt.
  5. Pb-freie Cu-Zn-Legierung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Sn-Gehalt maximal 50 % des Ni-Gehaltes und maximal 50 % des Si-Gehaltes beträgt.
  6. Pb-freie Cu-Zn-Legierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Fe-Gehalt um 0,05 % bis 0,1 % geringer ist als derjenige des Ni-Gehaltes.
  7. Schmiedeprodukt, hergestellt aus einer Pb-freien Cu-Zn-Legierung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das aus der Legierung hergestellte Schmiedeprodukt ein β-Gefüge und einen eingelagerten α-Mischkristallanteil von weniger als 5 % und einen Anteil intermetallischer Phasen von 2,5 - 4,5 % aufweist.
  8. Strangpressprodukt, hergestellt aus einer Pb-freien Cu-Zn-Legierung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das aus der Legierung hergestellte Strangpressprodukt ein β-Gefüge und einen eingelagerten α-Mischkristallanteil von weniger als 5 % und einen Anteil intermetallischer Phasen von 2,5 - 4,5 % aufweist.
  9. Legierungsprodukt nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass das Legierungsprodukt durch einen Glühprozess thermisch entspannt ist und durch diesen Prozess in dem Gefüge der Anteil der α-Mischkristalle auf 10 - 30 %, insbesondere auf 10 - 15 % angehoben und ein Anteil intermetallischer Phasen von 3 - 5 % gebildet ist.
  10. Legierungsprodukt nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Härte des Legierungsproduktes 160 - 190 HBW 2,5/62,5, insbesondere 170 - 185 HBW 2,5/62,5 beträgt.
  11. Legierungsprodukt nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass das Legierungsprodukt eine 0,2 %-Dehngrenze zwischen 300 und 400 MPa, insbesondere zwischen 300 und 350 MPa und eine Zugfestigkeit von 600 - 700 MPa, insbesondere von 600 - 640 MPa aufweist.
  12. Legierungsprodukt nach Anspruch 7 und 11, dadurch gekennzeichnet, dass das Legierungsprodukt eine Bruchdehnung zwischen 10 - 30 %, insbesondere 13 - 20 % aufweist.
  13. Legierungsprodukt nach Anspruch 8 und 11, dadurch gekennzeichnet, dass das Legierungsprodukt eine Bruchdehnung zwischen 10 und 16 % aufweist.
  14. Legierungsprodukt nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass die elektrische Leitfähigkeit des Legierungsproduktes zwischen 9 und 11 MS/m, insbesondere 9,3 und 10,0 MS/m beträgt.
EP21716326.0A 2020-03-30 2021-03-30 Pb-freie cu-zn-legierung Active EP3908682B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202020101700.4U DE202020101700U1 (de) 2020-03-30 2020-03-30 Pb-freie Cu-Zn-Legierung
PCT/EP2021/058264 WO2021198236A1 (de) 2020-03-30 2021-03-30 Pb-freie cu-zn-legierung

Publications (2)

Publication Number Publication Date
EP3908682A1 EP3908682A1 (de) 2021-11-17
EP3908682B1 true EP3908682B1 (de) 2022-08-17

Family

ID=75377759

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21716326.0A Active EP3908682B1 (de) 2020-03-30 2021-03-30 Pb-freie cu-zn-legierung

Country Status (9)

Country Link
US (1) US20230091831A1 (de)
EP (1) EP3908682B1 (de)
JP (1) JP2023520678A (de)
KR (1) KR20220155437A (de)
CN (1) CN115103921A (de)
BR (1) BR112022015524A2 (de)
DE (1) DE202020101700U1 (de)
ES (1) ES2927042T3 (de)
WO (1) WO2021198236A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021118907A1 (de) * 2021-07-21 2023-01-26 Diehl Brass Solutions Stiftung & Co. Kg Bleifreie Messinglegierung und Verwendung derselben
CN115198139B (zh) * 2022-08-31 2023-06-09 宁波金田铜业(集团)股份有限公司 一种耐磨黄铜合金棒材及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127741A (en) 1980-03-06 1981-10-06 Honda Motor Co Ltd Abrasion resistant copper alloy
DE102005017574A1 (de) 2005-04-16 2006-10-26 Diehl Metall Stiftung & Co.Kg Kupfer-Zink-Legierung und Verwendung einer solchen Legierung
DE102007029991B4 (de) * 2007-06-28 2013-08-01 Wieland-Werke Ag Kupfer-Zink-Legierung, Verfahren zur Herstellung und Verwendung
ES2645466T3 (es) * 2007-06-28 2017-12-05 Wieland-Werke Ag Aleación de cobre y cinc, procedimiento de producción y uso
TW201114926A (en) * 2009-10-29 2011-05-01 Globe Union Ind Corp Eco-frienly brass alloy
CN101787461B (zh) * 2010-03-02 2014-11-19 路达(厦门)工业有限公司 一种环保型锰黄铜合金及其制造方法
CN102251142A (zh) * 2011-07-25 2011-11-23 龙工(上海)桥箱有限公司 一种行走马达用球铰的材料
CN102851533A (zh) * 2012-09-26 2013-01-02 宁波正元铜合金有限公司 一种复杂黄铜及其制备方法和应用
US10287653B2 (en) 2013-03-15 2019-05-14 Garrett Transportation I Inc. Brass alloys for use in turbocharger bearing applications
DE102013008822A1 (de) * 2013-05-24 2014-11-27 Wieland-Werke Ag Mine für Kugelschreiber und Verwendung
CN103589903B (zh) * 2013-08-16 2016-04-20 武汉泛洲中越合金有限公司 一种高强度耐磨铜合金及其制造方法
CN103725922B (zh) * 2014-01-16 2017-06-20 沈阳亚欧星海铜业有限公司 一种无铅硅黄铜合金及制备方法
DE102014106933A1 (de) * 2014-05-16 2015-11-19 Otto Fuchs Kg Sondermessinglegierung und Legierungsprodukt
DE102014014239B4 (de) * 2014-09-25 2024-04-11 Wieland-Werke Ag Elektrisches Verbindungselement
DE202016102696U1 (de) * 2016-05-20 2017-08-29 Otto Fuchs - Kommanditgesellschaft - Sondermessinglegierung sowie Sondermessinglegierungsprodukt
JP2019178694A (ja) * 2018-03-30 2019-10-17 株式会社Ihi 過給機
CN109930025A (zh) * 2019-03-22 2019-06-25 广东出入境检验检疫局检验检疫技术中心 一种无铅环保易切削黄铜材料

Also Published As

Publication number Publication date
BR112022015524A2 (pt) 2022-10-11
WO2021198236A1 (de) 2021-10-07
KR20220155437A (ko) 2022-11-22
EP3908682A1 (de) 2021-11-17
US20230091831A1 (en) 2023-03-23
JP2023520678A (ja) 2023-05-18
DE202020101700U1 (de) 2021-07-01
CN115103921A (zh) 2022-09-23
ES2927042T3 (es) 2022-11-03

Similar Documents

Publication Publication Date Title
DE102007063643B4 (de) Kupfer-Zink-Legierung, Verfahren zur Herstellung und Verwendung
EP2806044B1 (de) Kupfer-Zink-Legierung, Verfahren zur Herstellung und Verwendung
EP3143170B1 (de) Sondermessinglegierung und legierungsprodukt
DE102005015467C5 (de) Verwendung einer Kupfer-Zink-Legierung
EP1886037B1 (de) Gleitlagerverbundwerkstoff und verfahren zur herstellung des gleitlagerverbundwerkstoffes
EP1817438B1 (de) Migrationsarme kupferlegierung
DE102013004383B4 (de) Verwendung einer Kupfer-Zink-Legierung
EP3908682B1 (de) Pb-freie cu-zn-legierung
EP3286348B1 (de) Bleifreie sondermessinglegierung sowie sondermessinglegierungsprodukt
EP1712648B1 (de) Kupfer-Zink-Legierung und Verwendung einer solchen Legierung
EP3374533B1 (de) Sondermessinglegierung sowie sondermessinglegierungsprodukt
EP1518000A1 (de) Al-cu-mg-ag-legierung mit si, halbzeug aus einer solchen legierung sowie verfahren zur herstellung eines solchen halbzeuges
DE4128941C2 (de) Aluminiumlagerlegierungen mit ausgezeichneter Ermüdungsbeständigkeit und Beständigkeit gegenüber fressendem Verschleiß
EP3272888B1 (de) Werkstoff aus einer kupfer-zink-legierung, verfahren zur herstellung eines solchen werkstoffs und gleitelement aus einem solchen werkstoff
EP3423604B1 (de) Zinnhaltige kupferlegierung, verfahren zu deren herstellung sowie deren verwendung
EP3417083B1 (de) Gleitelement aus einer kupfer-zink-legierung
EP3529389A1 (de) Kupfer-zink-legierung
DE102013014502A1 (de) Kupferlegierung
EP1158062B1 (de) Kupfer-Zink-Aluminium-Knetwerkstoff und dessen Verwendung
EP0521319A1 (de) Kupfer-Nickel-Zinn-Legierung, Verfahren zu ihrer Behandlung sowie ihre Verwendung
EP3366793B1 (de) Gleitelement aus einer kupferlegierung
EP3781719B1 (de) Kupfer-zink-nickel-mangan-legierung
EP3992317A1 (de) Bleifreie cu-zn-basislegierung
EP3075870A1 (de) Kupfer-zink-legierung, bandförmiger werkstoff aus dieser legierung, verfahren zur herstellung eines halbzeugs aus dieser legierung und gleitelement aus dieser legierung
EP3041966B1 (de) Kupferlegierung, die eisen und phosphor enthält

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PLETT, THOMAS

Inventor name: MUENCH, TILEMAN

Inventor name: REETZ, BJOERN

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021000107

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1512212

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2927042

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221103

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 40434

Country of ref document: SK

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220817

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221219

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221117

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021000107

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

26N No opposition filed

Effective date: 20230519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230330

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240319

Year of fee payment: 4

Ref country code: DE

Payment date: 20240205

Year of fee payment: 4

Ref country code: SK

Payment date: 20240321

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240319

Year of fee payment: 4

Ref country code: FR

Payment date: 20240320

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240417

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240401

Year of fee payment: 4