EP3907563A1 - Mécanisme horloger comprenant un organe pivot - Google Patents

Mécanisme horloger comprenant un organe pivot Download PDF

Info

Publication number
EP3907563A1
EP3907563A1 EP20173411.8A EP20173411A EP3907563A1 EP 3907563 A1 EP3907563 A1 EP 3907563A1 EP 20173411 A EP20173411 A EP 20173411A EP 3907563 A1 EP3907563 A1 EP 3907563A1
Authority
EP
European Patent Office
Prior art keywords
spring
elastic arm
predetermined range
pivoting member
stiffness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20173411.8A
Other languages
German (de)
English (en)
Other versions
EP3907563B1 (fr
Inventor
Frédéric Maier
Jean-Baptiste LE BRIS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patek Philippe SA Geneve
Original Assignee
Patek Philippe SA Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe SA Geneve filed Critical Patek Philippe SA Geneve
Priority to EP20173411.8A priority Critical patent/EP3907563B1/fr
Publication of EP3907563A1 publication Critical patent/EP3907563A1/fr
Application granted granted Critical
Publication of EP3907563B1 publication Critical patent/EP3907563B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/02Back-gearing arrangements between gear train and hands
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B11/00Click devices; Stop clicks; Clutches
    • G04B11/02Devices allowing the motion of a rotatable part in only one direction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/06Free escapements
    • G04B15/08Lever escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F7/00Apparatus for measuring unknown time intervals by non-electric means
    • G04F7/04Apparatus for measuring unknown time intervals by non-electric means using a mechanical oscillator
    • G04F7/08Watches or clocks with stop devices, e.g. chronograph
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F7/00Apparatus for measuring unknown time intervals by non-electric means
    • G04F7/04Apparatus for measuring unknown time intervals by non-electric means using a mechanical oscillator
    • G04F7/08Watches or clocks with stop devices, e.g. chronograph
    • G04F7/0823Watches or clocks with stop devices, e.g. chronograph with couplings between the chronograph mechanism and the base movement
    • G04F7/0828Watches or clocks with stop devices, e.g. chronograph with couplings between the chronograph mechanism and the base movement acting in the plane of the movement

Definitions

  • the present invention relates to a watch mechanism comprising a pivoting member mounted on a pivot axis and subjected to the action of at least one spring arranged to work in a predetermined range of winding angles, said spring comprising at least one arm.
  • elastic having at one of its ends a first rotary element integral at least in rotation with the pivot axis of the pivoting member, said spring having zero or negative stiffness in at least part of the predetermined range.
  • Such a pivoting member is for example a finger acting on a rocker having a feeler cooperating with a snail cam of an instantaneous minute counter mechanism of a chronograph, as described in the publication. WO 2020/016818 .
  • the first rotating element of the spring is mounted on the pivot axis of the finger so that the first end of the spring is pivoted.
  • the rocker is held in abutment against the periphery of the snail cam by said spring acting on the pivot axis of the finger, this finger itself acting on the rocker. With each revolution of the cam, the rocker rises along the cam, which gradually arms the spring.
  • the pivoting member can also be the lever itself, the first rotating element of the spring then being mounted on the axis of the lever.
  • the spring At its second end, the spring has a base fixed to the frame of the watch mechanism by two pins, so that this second end of the spring is embedded.
  • This assembly makes it possible to obtain a spring having a stiffness that is substantially zero or slightly negative in the predetermined range of angular positions that the first rotary element can take during the operation of the mechanism. This decreases the amount of force applied to the snail cam by the spring compared to a traditional spring, thus reducing the energy required to rotate the snail cam.
  • the weakly negative stiffness of the spring also allows the finger to press on the rocker with a slightly decreasing force making it possible to partially compensate for the variation of the lever arm of the force applied to the cam by the rocker on one turn of rotation of this cam. . This makes it possible to have a smaller variation in the torque required to rotate said cam.
  • a drawback of this spring at one end pivoted and the other recessed end is therefore that it can be complex to manufacture due to the variable section or thickness of its elastic arm.
  • the present invention aims to remedy these drawbacks by proposing a watch mechanism comprising a pivoting member subjected to the action of a spring having zero or negative stiffness, said spring being easy to assemble.
  • the present invention also provides a horological mechanism comprising a pivoting member subjected to the action of a spring exhibiting negative stiffness, said spring also being simple to manufacture.
  • the present invention relates to a watch mechanism comprising a pivoting member mounted on a pivot axis and subjected to the action of at least one spring arranged to work in a predetermined range of winding angles, said spring comprising at least one elastic arm having at one of its ends a first integral rotating element at least in rotation of the pivot axis of the pivoting member, said spring having zero or negative stiffness in at least part of the predetermined range.
  • the elastic arm has at the other of its ends a second rotary element also mounted to pivot.
  • the spring can be easily put in place by the watchmaker.
  • the two pivoted ends of the spring make it possible to reduce the torque applied by the spring as well as the stress in the elastic arm with respect to a spring at one end pivoted and at the other end embedded.
  • the or each elastic arm is of sinuous shape.
  • the geometric shape of the or each elastic arm is a Bézier curve or a succession of Bézier curves.
  • the center distance between the first and second rotary elements can be chosen so that the spring has negative or zero stiffness in said at least part of the predetermined range, preferably in substantially the entire predetermined range.
  • the or each elastic arm of the spring has a constant section, the stiffness of the spring being negative or zero in said at least part of the predetermined range, preferably in substantially the entire predetermined range.
  • the invention makes it possible in particular to obtain a spring with negative stiffness without having to change the section of the elastic arm, so that said spring is simple to manufacture.
  • the or each elastic arm of the spring has a variable section, the variation of which is chosen to make the stiffness of the spring less negative, or even zero, in said at least part of the predetermined range, preferably in substantially the whole beach predetermined, with respect to an elastic arm of the same shape but of constant section.
  • the invention makes it possible to obtain a spring, the stiffness of which is chosen to be zero or negative depending on the intended application for the pivoting member.
  • the invention further provides a timepiece, such as a wristwatch or a pocket watch, comprising this horological mechanism.
  • stiffness is understood to mean tangential stiffness.
  • the present invention relates to a watch mechanism comprising a pivoting member mounted on a pivot axis and subjected to the action of at least one spring 100 arranged to work in a predetermined range of winding angles.
  • Said spring 100 is specially shaped to have zero or negative stiffness in at least part of the predetermined range.
  • Such a spring 100 makes it possible at least to improve, or even guarantee, the constancy of the torque or moment of force which it exerts on the pivoting member and thus at least reduce the energy consumption.
  • the spring 100 comprises at least one resilient arm 102 in the form of a leaf having at one of its ends a first rotary element 104 integral at least in rotation with the pivot axis of the pivoting member.
  • Said pivot axis of the pivoting member is pivotally mounted on an element of the frame of the watch mechanism.
  • the first rotary element 104 has for example the shape of a triangular ring as on the figures 1 and 2 or circular. It is made integral in rotation with the pivot axis of the pivoting member, for example by driving on said axis or any other suitable fixing means.
  • the elastic arm 102 has at the other of its ends a second rotary element 106 also mounted to pivot.
  • the two ends of the spring 100 are advantageously pivoted.
  • the second rotary element 106 of the spring 100 is pivotally mounted on an element of the frame of the watch mechanism. It can be pivotally mounted, for example, on a pin secured to said frame or by any other suitable mounting means.
  • the second rotating element 106 of the spring 100 is pivotally mounted on a movable element of the pivoting member arranged to be movable relative to the pivot axis of said pivoting member. It can be pivotally mounted for example on a pin or a tenon integral with said movable element of the pivoting member or by any other suitable mounting means.
  • the second rotary element 106 has for example the shape of a circular ring as shown in the figure. figure 1 or triangular as shown on the figure 2 .
  • the spring 100 could comprise several elastic arms connecting the two rotary elements 104, 106, depending on the intensity of the force. product sought.
  • a spring comprising a single elastic arm has the advantage of greater compactness, which may be advantageous depending on the applications.
  • the spring 100 is considered here in its entirety as a part comprising the two rotary elements 104 and 106 connected by the elastic arm 102.
  • the two rotating elements 104 and 106 are intended to rotate on themselves, only the elastic arm 102 being deformed during the operation of the mechanism.
  • the first rotary element 104 can form a single piece with its pivoting member.
  • the spring 100 is preferably in one piece. It is for example made of metal, alloy, silicon, plastic, mineral glass or metallic glass. It can be produced by machining or by the LIGA technique, in particular in the case where it is made of a metal or alloy, by deep reactive ionic etching called DRIE, in particular in the case where it is made in silicon, by molding, in particular in the case where it is made of plastic or metallic glass, or by laser cutting, in particular in the case where it is in mineral glass.
  • DRIE deep reactive ionic etching
  • the spring 100 has a preferred direction of rotation of its rotating elements 104, 106 with respect to their rest position, this direction being defined as that which allows, from a rest state of the isolated spring 100 in which its elastic arm 102 is at rest, the greatest relative angular displacement of the rotary elements 104 and 106 with respect to their rest position.
  • This preferred direction of rotation is clockwise for the first rotating element 104 of the figure 2 and counterclockwise for the second rotary member 106 of the figure 2 , wherein the first rotating member 104 in white is in its home position, and the first rotating member in black is in a stressed state after clockwise rotation.
  • the two rotary elements 104 and 106 pivot in the opposite direction but with different angles, which vary in particular according to the center distance E between the first element rotary 104 and the second rotary member 106, i.e. the distance between the centers of rotation of said rotary members 104, 106.
  • the angular position of the first rotating element 104 of the isolated spring 100 in a stressed state with respect to its rest position, ⁇ being equal to zero when the isolated spring 100 is at rest, that is to say when its elastic arm 102 is at rest, and increasing with the angular displacement of the first rotary member 104, when the spring 100 is constrained, with respect to its rest position in the preferred direction of rotation of said first rotary member 104.
  • the spring 100 differs from conventional elastic structures. Its properties are based on a sinuous shape of its elastic arm 102 which deforms so as to generate, in particular when its section is constant, a moment which decreases over a predetermined range of angular positions of its first rotary element 104 with respect to its position of rest, the spring 100 then having a negative stiffness over said range, or a substantially constant moment over a predetermined range of angular positions of its first rotary element 104 relative to its rest position, the spring 100 then having a substantially zero stiffness over said range, when the two ends of the spring are pivoted.
  • the geometric shape of the elastic arm 102 can for example be obtained by topological optimization using parametric polynomial curves such as Bézier curves.
  • a detailed description of this optimization method is described in the publication WO 2020/016818 of the Applicant to obtain an elastic arm 102 whose geometric shape is a Bézier curve or a succession of Bézier curves whose control points have been optimized to take into account, in particular, the dimensions of the spring 100 to be designed as well as obtaining a constancy of moment of 5% over a predetermined angular range.
  • the geometric shape of the arm 102 used in the present invention can be obtained according to the method described in said publication.
  • WO 2020/016818 to produce blades designed, in particular by virtue of their shape, to exert a substantially constant moment (constancy of 5%) in a spring comprising a pivoted end and a recessed end as detailed in said publication, but the blade obtained then being used in a spring 100, the two ends of which are pivoted in accordance with the present invention.
  • Such elastic blades can work in bending (positive stiffness) and in buckling (negative stiffness).
  • the mounting of the spring 100 comprising such a blade with its two ends pivoted in accordance with the present invention makes it possible to advantageously modify the behavior of the blade by increasing the buckling.
  • this can very advantageously make it possible to obtain a negative stiffness in at least a part of the predetermined range on a blade of constant thickness which had, at the base, a substantially zero stiffness with only one pivoted end, as in the publication WO 2020/016818 .
  • Any other shape of curve making it possible to obtain an elastic blade which can work in bending (positive stiffness) and in buckling (negative stiffness) so as to have overall a negative or zero stiffness, in particular for a blade of constant section, and more particularly a negative stiffness for a blade of constant section, in at least part of the predetermined range, when the two ends of the spring 100 are pivoted, can be used as an elastic arm in the invention.
  • the spring 100 can be configured to have negative or zero stiffness in at least part of the predetermined range of winding angles, depending on the intended application for the pivoting member.
  • the predetermined range of winding angles is the predetermined range of angular positions of the first rotary member 104 relative to its rest position, this range preferably being at least 10 °, preferably at least 15 °, the chosen minimum winding angular position preferably being greater than 5 °.
  • the spring 100 can be configured to have negative or zero stiffness over substantially the entire predetermined range.
  • the spring 100 may be configured to exhibit negative stiffness over substantially the entire predetermined range.
  • the spring 100 can be configured to have zero stiffness over substantially the entire predetermined range.
  • the center distance E between the first rotary element 104 and the second rotary element 106 can be advantageously chosen so that the spring 100 exhibits negative stiffness in said at least part of the predetermined range, preferably in substantially all of the predetermined range.
  • the center distance E varies between 96% and 200% of the developed length of the elastic arm 102.
  • the or each elastic arm 102 has a constant section, and the spring 100 with its two rotated ends, is configured to have a negative stiffness in said at least part of the predetermined range, preferably in substantially all the predetermined range, unlike a spring of the same shape with one end rotated and the other end embedded, which has zero stiffness.
  • the center distance E varies between 96% and 200% of the developed length of the elastic arm 102 and the elastic arm 102 is of constant section, the spring 100 with its two pivoted ends exhibiting negative stiffness within said at least part of the predetermined range, preferably over substantially the entire predetermined range.
  • the C2 curve of the figure 3 represents the results of a simulation of the evolution of the normalized moment of the spring 100 thus produced as a function of the angular position ⁇ of its first rotary element 104 with respect to its rest position, the two ends of the spring 100 being pivoted in accordance with invention.
  • the curve C1 of the figure 3 represents the evolution of the normalized moment of a similar spring but of which only one end is pivoted, the other end being embedded, as described in the publication WO 2020/016818 .
  • the simulation carried out considers a spring 100 made from an amorphous alloy based on zirconium, titanium, nickel, copper and beryllium, more precisely in a metallic glass of the Vitreloy 1b type, but any suitable material can be used.
  • materials such as other metallic glasses, other alloys such as Nivaflex® 45/18 (alloy based on cobalt, nickel and chromium), nickel phosphorus or CK101 (unalloyed structural steel), silicon, typically coated with silicon oxide, or plastic are also suitable. It is important to take into account the ratio between the elastic limit and the Young's modulus of the material when choosing the material constituting the elastic arm 102.
  • the stiffness of a spring is the derivative of the function M ( ⁇ ) defined respectively by the curves represented on the figure 3 .
  • the stiffness of the spring 100 used in accordance with the invention is negative.
  • the Ct2 curve of the figure 4 represents the results of a simulation of the evolution of the normalized stress on the spring 100 as a function of the angular position ⁇ of its first rotary element 104 with respect to its rest position, the two ends of the spring 100 being pivoted in accordance with invention.
  • the curve Ct1 of the figure 4 represents the evolution of the normalized stress on a similar spring but of which only one end is rotated, the other end being embedded, as described in the publication WO 2020/016818 .
  • the spring 100 mounted with its two ends pivoted in accordance with the invention makes it possible to simplify the assembly, the watchmaker having only to insert the second rotary element 106 along a pin fixed to the frame, instead of having to place the end of the spring between two pins to achieve a recess, as described in the publication WO 2020/016818 .
  • the spring 100 mounted according to the invention requires a minimum winding of about 5 ° to have a negative stiffness, with a wide range of angles over which the stiffness is negative, whereas a spring with a recessed end requires a minimum winding of 18 ° to have zero stiffness, and over a narrower range.
  • such a spring 100 mounted in accordance with the invention makes it possible to divide the torque almost by a ratio of 3 and to divide the stress almost by 2 with respect to the same spring, one end of which is embedded, at least on a part of the predetermined range.
  • the mounting of the spring 100 according to the invention therefore makes it possible to reduce the torque and the stress significantly compared to a spring at a recessed end, which makes it possible to be able to increase the thickness of the elastic arm 102, without exceeding the admissible stress. of the material. For example, for a center distance E of 3 mm, the thickness can be multiplied by approximately 1.4. An increase in the thickness of the elastic arm 102 reinforces the robustness of the mechanism. The torque will be less sensitive to dimensional variations linked to the manufacture of the elastic arm. In addition, the reduction in stress is appreciable for a material such as silicon.
  • the or each elastic arm 102 has a variable section, the variation of which is chosen to make it less negative, or even zero, depending on the variation of the thickness, the stiffness of the spring 100 in said at least part of the predetermined range, preferably in substantially the entire predetermined range, with respect to an elastic arm of the same shape but of constant section and configured to have a stiffness negative.
  • the figure 5 shows various curves representative of the normalized moment M ( ⁇ ) exerted in a spring with pivoted ends and embedded by an elastic arm of constant section of 30 ⁇ m (curve C1) and in the spring 100 at both ends pivoted in accordance with the invention, by an elastic arm 102 of constant section of 30 ⁇ m (curve C2) and by arms of different variable sections (other curves) for a center distance of 3 mm corresponding to 125% of the developed length of the elastic arm 102, the spring being moreover identical to the spring 100 described above.
  • the curves below the curve C2 correspond to an elastic arm 102 whose thickness increases linearly from the first rotary member 104 to the middle of the elastic arm 102 and linearly decreases from the middle of the elastic arm 9 to the second rotary member 106, the thickness in the middle of the elastic arm 102 being 30 ⁇ m for each curve, the thickness at the junction point with the first or second rotating elements 104, 106 being 29 ⁇ m for the curve C3 under the curve C2, 28 ⁇ m for the curve C4 under curve C2, by 27 ⁇ m for curve C5 under curve C2, and so on by decrementing by 1 ⁇ m.
  • the stiffness becomes less negative (the moment decreases less), or even zero (the moment is substantially constant), in the range of winding angles of interest where the stiffness is negative for an arm of constant section, when the variation in section of the elastic arm 102 is increased.
  • the publication WO 2020/016818 has shown that an increase in the variation of the section of the elastic arm of a spring with a pivoted end and a recessed end leads to a decrease in the negative stiffness of the spring.
  • the stiffness of the spring 100 mounted in accordance with the invention increases but remains negative when the variation in section of the elastic arm 102 increases but is less than 60%, preferably less than 50%.
  • the stiffness of the spring 100 mounted in accordance with the invention is zero.
  • the elastic arm 102 has a variable section, this typically varies strictly monotonically (it increases or decreases without interruption but not necessarily linearly) over at least one continuous portion of the elastic arm representing 10% , preferably 20%, preferably 30%, preferably 40%, of the length (developed) of the elastic arm.
  • the variation of the section is also chosen to make the stiffness of the elastic arm 102 less negative, or even zero, over the range [ ⁇ 2 a , ⁇ 2 b ] or at least over the part of the predetermined range which intersects with the range [ ⁇ 2 a , ⁇ 2 b ], with respect to an elastic arm of the same shape but of constant section.
  • section of the elastic arm which is constant or variable according to the negative or zero stiffness sought in the range of interest.
  • an increase in the variation of the section of the elastic arm makes it possible to reduce the moment as well as the stress, so that the section of the arm can also be adapted according to the intended application for the pivoting member.
  • a spring 100 having an elastic arm 102 of constant section or varying by less than 60% with a center distance E varying from 96% to 200% of the developed length of said elastic arm 102 and its two rotated ends, a negative stiffness is obtained. on the range [ ⁇ 2 a , ⁇ 2 b ] with a spring which, at the base, had zero stiffness and only one end rotated, the other being embedded.
  • the center distance between the first rotary member 104 and the second rotary member 106 can be chosen so that the spring 100 'has zero stiffness in said at least part of the predetermined range, preferably in substantially the entire predetermined range.
  • the center distance E is greater than 200% and less than 300% of the developed length of the elastic arm 102.
  • the or each elastic arm 102 has a constant section, and the spring 100 'with its two ends pivoted, is configured to have zero stiffness in said at least part of the predetermined range, preferably in substantially the entire predetermined range.
  • the center distance E is greater than 200% and less than 300% of the developed length of the elastic arm 102 and the elastic arm 102 is of constant section, the spring 100 'with its two ends rotated having zero stiffness in said at least part of the predetermined range, preferably in substantially all of the predetermined range.
  • the Applicant has designed another spring 100 'as shown in Figure figure 1 , having a distance between the two ends of the elastic arm 102 of 4 mm, ie a center distance E of 5 mm, equal to 208% of the developed length of the elastic arm 102; the other dimensions of the spring 100 'are identical to those of the spring 100 described above.
  • the curve C2 'of the figure 6 represents the results of a simulation of the evolution of the normalized moment of the spring 100 'thus produced as a function of the angular position ⁇ of its first rotary element 104 with respect to its rest position, the two ends of the spring 100' being pivoted in accordance with the invention.
  • the curve C1 of the figure 3 which represents the evolution of the normalized moment of a similar spring but of which only one end is pivoted, the other end being embedded, with a center distance E of 5 mm, the moment not varying according to the center distance when the second end is embedded.
  • the stiffness of the spring 100 ′ used in accordance with the invention is substantially zero.
  • the curve Ct2 'of the figure 7 represents the results of a simulation of the evolution of the normalized stress on the spring 100 'as a function of the angular position ⁇ of its first rotary element 104 with respect to its rest position, the two ends of the spring 100' being pivoted in accordance with the invention.
  • the curve Ct1 of the figure 4 which represents the evolution of the normalized stress on a similar spring but of which only one end is pivoted, the other end being embedded, with a center distance E of 5 mm, the stress not varying as a function of the center distance when the second end is recessed.
  • the curves of figures 6 and 7 show that with the spring 100 'at both ends pivoted in accordance with the invention, having an elastic arm 102 of constant section with a center distance E greater than 200% and less than 300% of the developed length of said elastic arm 102, one obtains zero stiffness on the range [ ⁇ 2 ' a , ⁇ 2' b ] with a spring which, at the base, had zero stiffness and only one end rotated, the other being embedded, but with very reduced moment and stress.
  • a spring 100 'mounted in accordance with the invention makes it possible to divide the torque almost by a ratio 10 and to divide the stress almost by 4 with respect to the same spring, one end of which is embedded, at least on a part. of the predetermined range. As seen above for the spring 100, this makes it possible to increase the thickness of the elastic arm 102, without exceeding the allowable stress of the material.
  • the spring 100 'mounted according to the invention requires a minimum winding of about 5 ° to have zero stiffness, while the same spring with a recessed end needs to be armed at least an angle of 18 ° to have zero stiffness.
  • the spring 100 makes it possible to simplify the assembly.
  • the elastic arm 102 is of variable section, the stiffness of the spring 100 'with its two ends rotated remaining zero at least in a portion of the predetermined range, preferably in substantially all of the predetermined range.
  • the variation in the section of the arm does not modify the stiffness of the spring 100 'which remains zero at least in part of the predetermined range, preferably within substantially the entire predetermined range.
  • an increase in the variation of the section of the elastic arm makes it possible to reduce the moment as well as the stress, so that the section of the arm can be adapted according to the intended application for the pivoting member and the values desired for the timing and the constraint.
  • the spring 100, 100 'mounted according to the invention makes it possible to be configured so as to adapt its stiffness to the function of the pivoting member with which it is associated.
  • the pivoting member can be subjected to the action of a single spring 100, 100 '.
  • the pivoting member may be subjected to the action of at least two springs 100, 100 'having respectively zero or negative stiffness at least over the same predetermined range and arranged to generate a torque of pivoting on the pivoting member.
  • said pivoting member is and / or cooperates with, for example, a rocker, a hammer, a lever, a rake, a finger, a slide, a hook, a wheel such as an escape wheel, a regulating member or a source of energy.
  • the second rotary element 106 of the spring 100, 100 ' is pivotally mounted on a frame of the watch mechanism.
  • a spring so mounted in accordance with the invention configured to exhibit negative stiffness in at least part of the predetermined range, and preferably in substantially all of the predetermined range, as described above, may be associated with a pivoting member which is and / or cooperates with a rocker, a rake or any other cam follower, resting on a cam of variable radius.
  • a pivoting member which is and / or cooperates with a rocker, a rake or any other cam follower, resting on a cam of variable radius.
  • the term “cam follower” is understood to mean a member which cooperates with the periphery of a cam, typically to read information, without having any function of maintaining the cam in determined positions in normal operation. of the mechanism, unlike, for example, a jumper or a pawl cooperating with a toothed wheel to position it.
  • the spring mounted and configured in accordance with the invention to have negative stiffness advantageously makes it possible to exert a constant torque on the variable radius cam, the negative stiffness compensating for the variation in radius. This makes it possible to have lower energy consumption and to limit jolts.
  • a spring thus mounted in accordance with the invention configured to have zero stiffness in at least part of the predetermined range, and preferably in substantially all of the predetermined range, as described above, can be associated with a pivoting member which is, for example, a rocker without support, a player, a hook, or a wheel such as an escape wheel.
  • a pivoting member which is, for example, a rocker without support, a player, a hook, or a wheel such as an escape wheel.
  • the pivoting member when the pivoting member cooperates with an escape wheel, it can be arranged to be subjected to the action of two springs mounted in accordance with the invention, configured to have respectively zero stiffness at least over the same predetermined range as described above, of slightly different thicknesses and having elastic arms in opposite directions, the subtraction of the two pairs of zero stiffness generating on the pivoting member a very low constant pivoting torque.
  • Zero stiffness is obtained according to the different configurations described above.
  • Such a pivoting member is grafted onto the escape wheel to deliver a constant torque at each alternation.
  • the spring of zero stiffness can be mounted directly on said player, so that the axis of the rocker of the player has a constant torque return spring.
  • the gear opposite the player will always see the same force. This makes it possible to make the machining imperfections of the player and of said gear less noticeable.
  • a zero stiffness spring can be mounted directly on an unsupported shaft, as a source of energy or as a return torque for a function.
  • the pivoting member is a hook
  • the zero stiffness spring can be mounted directly on the axis of said hook.
  • Such a spring of zero stiffness in accordance with the invention has a very low torque which is perfectly suited to the pivoting torque corresponding to this application.
  • the figure 8 shows an exemplary embodiment of a watch mechanism comprising a pivoting member according to the invention in which the second rotary element 106 of the spring 100 is pivotally mounted on a frame 1a of said watch mechanism.
  • the pivoting member cooperates with a rocker resting on a cam of variable radius and the spring 100, with an elastic arm 102 of constant section, is configured to have negative stiffness over the entire predetermined range
  • the mechanism 1 is an instantaneous minute counter mechanism of a chronograph.
  • Said mechanism 1 is mounted on the frame 1a, and comprises a rocker 2 pivoted in O and having a feeler 3 cooperating with a snail cam 4 mounted on, and driven by, the chronograph axis 5.
  • This chronograph axis 5 carries to its upper end, the chronograph seconds indicator hand 6 and is integral in rotation with the chronograph wheel 7 and the chronograph seconds reset heart 8.
  • the lever 2 is held in contact with the periphery of the snail cam 4 by a rocker return spring 100 acting on the axis 10 of a finger 11, this finger 11 itself acting on the rocker 2.
  • the cooperation between the finger 11 and the rocker 2 is of the rolling type.
  • the finger 11 in fact interacts with the wall of a recess 12 of the lever 2 in the manner of a mesh, almost without friction.
  • the rocker 2 and the finger 11 thus rotate in opposite directions.
  • the finger 11 constitutes the pivoting member mounted on its pivot axis 10 and subjected to the action of its spring 100.
  • the first rotary element 104 of the spring 100 is driven out on the axis 10 of the finger 11 and the second rotary element 106 is pivotally mounted on a pin 108 integral with the frame 1a.
  • a hook 13 is pivoted at P on the free end of the rocker 2 and is subjected to the action of a hook return spring 14, mounted on the rocker 2, tending to apply the nose 15 of the hook 13 against the toothed teeth of a minute counter wheel 16.
  • the hook return spring 14 could be replaced by a spring configured in accordance with the invention to have zero stiffness over a predetermined range and whose first rotary member is mounted directly on the axis of the hook, the second rotary member being mounted on a pin secured to the frame 1a.
  • the axle 17 of the minute counter wheel 16 carries a chronograph minutes indicator 18, such as a hand (as shown) or a disc, displaying the chronograph minutes in cooperation with the chronograph dial.
  • a chronograph minutes reset heart 19 is integral in rotation with the minute counter wheel 16.
  • the minute counter wheel 16 is held in determined angular positions between its successive actuations by a jumper 20 on which a jumper return spring 21.
  • the snail cam 4 has a slot 22 in its end part, in accordance with the teaching of the patent application EP 2241944 , but it could have a more classic shape, without this slot 22.
  • the snail cam 4 has a variable radius between its lower part B and its upper part H, so that at each turn of rotation of the snail cam 4, the feeler 3 of the rocker 2 slides from the lower part B towards the part high H of the cam 4.
  • the rocker 2 rises progressively by rotating the finger 11 in the opposite direction, the spring 100 arming as and when.
  • the feeler 3 and with it the whole rocker 2 falls from the upper part H to the lower part B of the snail cam 4 under the action of the spring 100.
  • the hook 13 advances by one step the minute counter wheel 16 to instantly change the value indicated by the chronograph minute indicator 18.
  • the hook 13 passes from the inter-tooth of the minute counter wheel 16 in which it was during the fall to the previous inter-tooth against the action of its return spring 14, to again advance the minute counter wheel 16 by one step during the next fall of rocker 2.
  • the spring 100 is arranged to work in a predetermined range of winding angles, said spring being shaped according to the invention to present here a negative stiffness over the entire predetermined range in order to compensate for the lever arm effect of the cam. snail. More specifically in relation to the spring 100 corresponding to the figure 3 , said spring 100 is of constant section, configured so that, on each turn of rotation of the snail cam 4 against the return action of the elastic arm 102, the first rotary element 104 moves in a predetermined range of angular positions relative to in its rest position, this range being included in the range of angular positions [ ⁇ 2 a , ⁇ 2 b ] associated with the spring 100 in which the stiffness of the elastic arm 102 is negative.
  • said predetermined range is formed by this range of angular positions [ ⁇ 2 a , ⁇ 2 b ] where the stiffness is negative at each point.
  • the length of the predetermined range is defined by the difference in radius between the upper part H and the lower part B of the cam 4, the position of the lever 2 and that of the finger 11. In the example illustrated, it is 3. °, which leaves a wide choice of the winding angle at the time of assembly.
  • the first rotary element 104 is positioned angularly when it is mounted on the axis 10 of the finger 11 so that the spring 100 is armed with ⁇ arm degrees when the feeler 3 of the rocker 2 is on the lower part B of the snail cam 4, this value ⁇ arm being chosen from the predetermined range, and may for example be the lower limit of the above-mentioned predetermined range, ie here 5 °. It is also possible to choose a value ⁇ arm of 9 ° for example in order to be situated in a part of the predetermined range, for which the stiffness is even more negative.
  • Such a spring 100 makes it possible to fully compensate for the increase in the lever arm of the force applied to the cam 4 by the rocker 2 over one rotation turn of this cam during the movement of the rocker 2 by the lower part B to the upper part H, with an elastic arm 102 of constant section, without having to use an arm of variable section as in the publication WO 2020/016818 .
  • This makes it possible to make constant the torque which it exerts indirectly on the cam 4 and thus, on the one hand, to improve the regularity of the oscillations of the regulating organ of the chronograph and therefore the precision of the measurement and, on the other hand, reduce energy consumption.
  • the thickness of the elastic arm 102 could be increased from a 28 ⁇ m metallic glass blade to a 40 ⁇ m blade to obtain the same torque without exceeding the allowable stress of the material.
  • the mounting of the spring 100 according to the invention is simplified, by only needing a single pin 108 and the winding is 9 ° against 18 ° for the spring at one end pivoted and the other end recessed.
  • the intermediate finger 11 between the spring 100 and the lever 2 makes it possible, by acting on the lever arms, to reduce the size of the mechanism 1 for a given return torque applied to the lever 2.
  • this finger 11 could be omitted and the spring 100 could act more directly on the lever 2, the pivoting member then being the lever itself.
  • the first rotary element 104 could be mounted directly on the axis of the rocker 2.
  • the spring 100 could also form a single piece with the rocker 2.
  • the second rotary element 106 of the spring 100, 100 ' is pivotally mounted on a movable element of the pivoting member, said movable element being arranged to be movable relatively with respect to the axis. pivoting of said pivoting member.
  • pivoting member 110 which in this example is more specifically subjected to the action of a plurality of springs 100, 100 'respectively having zero or negative stiffness at least over the same predetermined range and arranged for generating a pivoting torque on said pivoting member 110.
  • the pivoting member 110 comprises a hub 112 integral with the pivot axis (not shown) of said pivoting member 110, and an annular rim 114 constituting the movable element of the pivoting member 114.
  • Each of the second rotary elements 106 of the springs 100, 100 ' is pivotally mounted on the rim 114, for example by means of pins or tenons 116 distributed around the periphery of the rim 114.
  • the tenons 116 have the advantage of avoiding the displacement out of plane of the arms 102 of the springs 100, 100 '.
  • the pins or tenons 116 can be attached or form a single piece with the rim 114.
  • the first rotary elements 104 of the springs 100, 100 ' are all integral at least in rotation with the pivot axis of the pivoting member 110.
  • the first rotary elements 104 of the springs 100, 100 ' are advantageously arranged to form a single part which constitutes the hub 112 of the pivoting member 110.
  • the hub 112 formed by the union of the first rotary elements 104, and all of the arms 102 terminated by the second rotary elements 106 form a single integral part.
  • each arm 102 can be produced independently of the hub, and then assembled to the hub 112.
  • the hub 112 can be mounted integrally on the pivot axis, for example by driving or the like. equivalent means, or be made in one piece with the pivot axis of the pivoting member 110.
  • the pivoting member 110 is obtained by assembling on the rim 114 each of the second rotary elements 106 of the arms 102 carried by the hub 112 by means of its tenon 116.
  • the negative or zero stiffness of the springs 100, 100 'as well as for example the thickness of the blades of the arms 102 of the pivoting member 110 are chosen according to the desired application of said pivoting member 110.
  • the springs 100, 100 ' may have zero or negative stiffness, and preferably zero stiffness, obtained according to the various possibilities described above, with thicker blades than for a similar pivoting member but with second recessed rotating elements, so as to obtain a high constant torque, allowing application as an energy source. Thinner blades make it possible to obtain a very low torque for applications of the regulating member type or very reduced energy source.

Abstract

La présente invention propose un mécanisme horloger (1) comprenant un organe pivotant monté sur un axe de pivotement et soumis à l'action d'au moins un ressort (100) agencé pour travailler dans une plage prédéterminée d'angles d'armage, ledit ressort (100) comprenant au moins un bras élastique (102) présentant à l'une de ses extrémités un premier élément rotatif (104) solidaire au moins en rotation de l'axe de pivotement de l'organe pivotant, ledit ressort (100) présentant une raideur nulle ou négative dans au moins une partie de la plage prédéterminée. Le bras élastique (102) présente à l'autre de ses extrémités un second élément rotatif (106) monté pivotant, notamment sur un bâti (1a) du mécanisme horloger (1).

Description

  • La présente invention concerne un mécanisme horloger comprenant un organe pivotant monté sur un axe de pivotement et soumis à l'action d'au moins un ressort agencé pour travailler dans une plage prédéterminée d'angles d'armage, ledit ressort comprenant au moins un bras élastique présentant à l'une de ses extrémités un premier élément rotatif solidaire au moins en rotation de l'axe de pivotement de l'organe pivotant, ledit ressort présentant une raideur nulle ou négative dans au moins une partie de la plage prédéterminée.
  • Un tel organe pivotant est par exemple un doigt agissant sur une bascule présentant un palpeur coopérant avec une came escargot d'un mécanisme de compteur de minutes instantané d'un chronographe, tel que décrit dans la publication WO 2020/016818 . Le premier élément rotatif du ressort est monté sur l'axe de pivotement du doigt de sorte que la première extrémité du ressort est pivotée. La bascule est maintenue en appui contre la périphérie de la came escargot par ledit ressort agissant sur l'axe de pivotement du doigt, ce doigt agissant lui-même sur la bascule. A chaque tour de came, la bascule monte le long de la came, ce qui arme progressivement le ressort. L'organe pivotant peut être également la bascule en elle-même, le premier élément rotatif du ressort étant alors monté sur l'axe de la bascule. A sa deuxième extrémité, le ressort présente une base fixée au bâti du mécanisme horloger par deux goupilles, de sorte que cette deuxième extrémité du ressort est encastrée.
  • Ce montage permet d'obtenir un ressort présentant une raideur sensiblement nulle ou faiblement négative dans la plage prédéterminée des positions angulaires que peut prendre le premier élément rotatif pendant le fonctionnement du mécanisme. Cela permet de diminuer l'intensité de la force appliquée à la came escargot par le ressort par rapport à un ressort traditionnel, réduisant ainsi l'énergie requise pour faire tourner la came escargot.
  • La raideur faiblement négative du ressort permet en outre que le doigt appuie sur la bascule avec un effort légèrement décroissant permettant de compenser en partie la variation du bras de levier de la force appliquée à la came par la bascule sur un tour de rotation de cette came. Cela permet d'avoir une plus faible variation du couple requis pour faire tourner ladite came.
  • Toutefois, afin de pouvoir compenser complètement la variation du bras de levier, il est nécessaire d'utiliser un ressort présentant un bras élastique de section variable. La section du bras élastique du ressort, dont une extrémité est pivotée et l'autre extrémité est encastrée, doit donc varier entre ces deux extrémités pour obtenir un couple constant appliqué sur la came, permettant de réduire la consommation d'énergie et de limiter les à-coups.
  • Un inconvénient de ce ressort à une extrémité pivotée et l'autre extrémité encastrée est donc qu'il peut être complexe à fabriquer en raison de la section ou de l'épaisseur variable de son bras élastique.
  • Un autre inconvénient de ce ressort à une extrémité pivotée et l'autre extrémité encastrée est la difficulté rencontrée par l'horloger pour encastrer la base du ressort prévue à cet effet sur le bâti, ladite base devant se loger entre deux goupilles.
  • La présente invention vise à remédier à ces inconvénients en proposant un mécanisme horloger comprenant un organe pivotant soumis à l'action d'un ressort présentant une raideur nulle ou négative, ledit ressort étant simple à monter.
  • La présente invention propose également un mécanisme horloger comprenant un organe pivotant soumis à l'action d'un ressort présentant une raideur négative, ledit ressort étant en outre simple à fabriquer.
  • A cet effet, la présente invention concerne un mécanisme horloger comprenant un organe pivotant monté sur un axe de pivotement et soumis à l'action d'au moins un ressort agencé pour travailler dans une plage prédéterminée d'angles d'armage, ledit ressort comprenant au moins un bras élastique présentant à l'une de ses extrémités un premier élément rotatif solidaire au moins en rotation de l'axe de pivotement de l'organe pivotant, ledit ressort présentant une raideur nulle ou négative dans au moins une partie de la plage prédéterminée.
  • Selon l'invention, le bras élastique présente à l'autre de ses extrémités un second élément rotatif également monté pivotant.
  • Ainsi, le ressort peut être facilement mis en place par l'horloger. De plus, les deux extrémités pivotées du ressort permettent de diminuer le couple appliqué par le ressort ainsi que la contrainte dans le bras élastique par rapport à un ressort à une extrémité pivotée et à l'autre extrémité encastrée.
  • De préférence, le ou chaque bras élastique est de forme sinueuse.
  • Selon un mode de réalisation préféré, la forme géométrique du ou de chaque bras élastique est une courbe de Bézier ou une succession de courbes de Bézier.
  • D'une manière avantageuse, l'entraxe entre les premier et second éléments rotatifs peut être choisi pour que le ressort présente une raideur négative ou nulle dans ladite au moins une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée.
  • Selon un mode de réalisation, le ou chaque bras élastique du ressort présente une section constante, la raideur du ressort étant négative ou nulle dans ladite au moins une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée.
  • Ainsi, l'invention permet d'obtenir notamment un ressort à raideur négative sans avoir à changer la section du bras élastique, de sorte que ledit ressort est simple à fabriquer.
  • Selon un autre mode de réalisation, le ou chaque bras élastique du ressort présente une section variable dont la variation est choisie pour rendre moins négative, voire nulle, la raideur du ressort dans ladite au moins une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée, par rapport à un bras élastique de même forme mais de section constante.
  • Ainsi, l'invention permet d'obtenir un ressort dont la raideur est choisie nulle ou négative en fonction de l'application prévue pour l'organe pivotant.
  • L'invention propose en outre une pièce d'horlogerie, telle qu'une montre-bracelet ou une montre de poche, comprenant ce mécanisme horloger.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante de différents modes de réalisation de l'invention, donnés à titre d'exemples non limitatifs, et faite en référence aux dessins annexés dans lesquels :
    • la figure 1 est une vue plane de dessus d'un ressort utilisé dans le mécanisme horloger selon l'invention;
    • la figure 2 est une vue plane de dessus d'une variante de ressort utilisé dans le mécanisme horloger selon l'invention, le ressort apparaissant en clair étant en position de repos et le ressort apparaissant en sombre ayant ses éléments rotatifs pivotés pour occuper une position angulaire θ par rapport à la position de repos;
    • la figure 3 est une représentation graphique du moment normalisé exercé dans un ressort à extrémités pivotée et encastrée (courbe C1) et dans le ressort de la figure 1 (courbe C2), par un bras élastique de section constante, pour un entraxe de 3 mm;
    • la figure 4 est une représentation graphique de la contrainte normalisée sur un ressort à extrémités pivotée et encastrée (courbe Ct1) et sur le ressort de la figure 1 (courbe Ct2), le bras élastique étant de section constante, pour un entraxe de 3 mm ;
    • la figure 5 est une représentation graphique du moment normalisé exercé dans un ressort à extrémités pivotée et encastrée par un bras élastique de section constante (courbe C1) et dans le ressort de la figure 1, par un bras élastique de section constante (courbe C2) et par des bras de différentes sections variables (autres courbes) pour un entraxe de 3 mm ;
    • la figure 6 est une représentation graphique du moment normalisé exercé dans un ressort à extrémités pivotée et encastrée (courbe C1) et dans le ressort de la figure 1 (courbe C2'), par un bras élastique de section constante, pour un entraxe de 5 mm ;
    • la figure 7 est une représentation graphique de la contrainte normalisée sur un ressort à extrémités pivotée et encastrée (courbe Ct1) et sur le ressort de la figure 1 (courbe Ct2'), le bras élastique étant de section constante, pour un entraxe de 5 mm ;
    • la figure 8 est une vue plane de dessous d'un mécanisme horloger comprenant un organe pivotant selon un exemple de réalisation de l'invention ; et
    • la figure 9 est une vue isométrique d'un organe pivotant selon un autre exemple de réalisation de l'invention.
  • Dans le contexte de la présente invention, on entend par le terme « raideur » la raideur tangentielle.
  • En référence aux figures 1 et 2, la présente invention concerne un mécanisme horloger comprenant un organe pivotant monté sur un axe de pivotement et soumis à l'action d'au moins un ressort 100 agencé pour travailler dans une plage prédéterminée d'angles d'armage. Ledit ressort 100 est conformé spécialement pour présenter une raideur nulle ou négative dans au moins une partie de la plage prédéterminée. Un tel ressort 100 permet au moins d'améliorer, voire garantir, la constance du couple ou moment de force qu'il exerce sur l'organe pivotant et ainsi, au moins diminuer la consommation d'énergie.
  • Le ressort 100 comprend au moins un bras élastique 102 sous la forme d'une lame présentant à l'une de ses extrémités un premier élément rotatif 104 solidaire au moins en rotation de l'axe de pivotement de l'organe pivotant. Ledit axe de pivotement de l'organe pivotant est monté pivoté sur un élément du bâti du mécanisme horloger. Le premier élément rotatif 104 présente par exemple la forme d'un anneau triangulaire comme sur les figures 1 et 2 ou circulaire. Il est rendu solidaire en rotation de l'axe de pivotement de l'organe pivotant par exemple par chassage sur ledit axe ou tout autre moyen de fixation approprié.
  • Conformément à l'invention, le bras élastique 102 présente à l'autre de ses extrémités un second élément rotatif 106 également monté pivotant. Ainsi, les deux extrémités du ressort 100 sont avantageusement pivotées.
  • Selon un mode de réalisation de l'invention, le second élément rotatif 106 du ressort 100 est monté pivotant sur un élément du bâti du mécanisme horloger. Il peut être monté pivotant par exemple sur une goupille solidaire dudit bâti ou par tout autre moyen de montage approprié.
  • Selon un autre mode de réalisation de l'invention, le second élément rotatif 106 du ressort 100 est monté pivotant sur un élément mobile de l'organe pivotant agencé pour être mobile relativement par rapport à l'axe de pivotement dudit organe pivotant. Il peut être monté pivotant par exemple sur une goupille ou un tenon solidaire dudit élément mobile de l'organe pivotant ou par tout autre moyen de montage approprié.
  • Le second élément rotatif 106 présente par exemple la forme d'un anneau circulaire comme représenté sur la figure 1 ou triangulaire comme représenté sur la figure 2.
  • Il apparaîtra clairement à l'homme du métier qu'au lieu d'être constitué d'un seul bras élastique, le ressort 100 pourrait comprendre plusieurs bras élastiques reliant les deux éléments rotatifs 104, 106, en fonction de l'intensité de la force produite recherchée. Un ressort comprenant un seul bras élastique présente toutefois l'avantage d'une plus grande compacité, ce qui peut être intéressant selon les applications.
  • Le ressort 100 est ici considéré dans sa globalité comme une pièce comprenant les deux éléments rotatifs 104 et 106 reliés par le bras élastique 102. Les deux éléments rotatifs 104 et 106 sont destinés à tourner sur eux-mêmes, seul le bras élastique 102 se déformant pendant le fonctionnement du mécanisme.
  • Dans une variante non représentée, le premier élément rotatif 104 peut former une seule pièce avec son organe pivotant.
  • Le ressort 100 est de préférence monobloc. Il est par exemple en métal, alliage, silicium, plastique, verre minéral ou verre métallique. Il peut être réalisé par usinage ou par la technique LIGA, notamment dans le cas où il est fait d'un métal ou alliage, par gravure ionique réactive profonde dite DRIE, notamment dans le cas où il est fait en silicium, par moulage, notamment dans le cas où il est fait en plastique ou verre métallique, ou par découpe laser, notamment dans le cas où il est en verre minéral.
  • Pour la compréhension de l'invention, le comportement du ressort 100 considéré globalement et isolément, c'est-à-dire avec ses deux extrémités pivotées, mais libre de toute interaction avec le reste du mécanisme horloger auquel il est associé, est décrit ci-dessous. Les figures 1 et 2 représentent ce ressort isolé.
  • En raison de la forme spécifique de son bras élastique 102, le ressort 100 possède un sens de rotation privilégié de ses éléments rotatifs 104, 106 par rapport à leur position de repos, ce sens étant défini comme celui qui permet, à partir d'un état de repos du ressort 100 isolé dans lequel son bras élastique 102 est au repos, le plus grand déplacement angulaire relatif des éléments rotatifs 104 et 106 par rapport à leur position de repos. Ce sens de rotation privilégié est le sens horaire pour le premier élément rotatif 104 de la figure 2 et le sens antihoraire pour le second élément rotatif 106 de la figure 2, selon laquelle le premier élément rotatif 104 en blanc est dans sa position de repos, et le premier élément rotatif en noir est dans un état contraint après une rotation horaire. Les deux éléments rotatifs 104 et 106 pivotent dans le sens contraire mais avec des angles différents, qui varient notamment selon l'entraxe E entre le premier élément rotatif 104 et le second élément rotatif 106, c'est-à-dire la distance entre les centres de rotation desdits éléments rotatifs 104, 106.
  • On appelle θ la position angulaire du premier élément rotatif 104 du ressort 100 isolé dans un état contraint par rapport à sa position de repos, θ étant égal à zéro lorsque le ressort 100 isolé est au repos, c'est-à-dire lorsque son bras élastique 102 est au repos, et augmentant avec le déplacement angulaire du premier élément rotatif 104, lorsque le ressort 100 est contraint, par rapport à sa position de repos dans le sens de rotation privilégié dudit premier élément rotatif 104.
  • De manière générale, lorsque le premier élément rotatif 104 est dans la position angulaire dans laquelle θ = x°, on dit que le ressort 100 est armé de x.
  • Le ressort 100 diffère des structures élastiques classiques. Ses propriétés reposent sur une forme sinueuse de son bras élastique 102 qui se déforme de manière à générer, notamment lorsque sa section est constante, un moment qui décroit sur une plage prédéterminée de positions angulaires de son premier élément rotatif 104 par rapport à sa position de repos, le ressort 100 présentant alors une raideur négative sur ladite plage, ou un moment sensiblement constant sur une plage prédéterminée de positions angulaires de son premier élément rotatif 104 par rapport à sa position de repos, le ressort 100 présentant alors une raideur sensiblement nulle sur ladite plage, lorsque les deux extrémités du ressort sont pivotées.
  • L'obtention d'un tel bras élastique 102 requiert une conception spécifique et paramétrée. La forme géométrique du bras élastique 102 peut par exemple être obtenue par optimisation topologique utilisant des courbes polynomiales paramétriques telles que les courbes de Bézier. Une description détaillée de cette méthode d'optimisation est décrite dans la publication WO 2020/016818 de la demanderesse pour obtenir un bras élastique 102 dont la forme géométrique est une courbe de Bézier ou une succession de courbes de Bézier dont les points de contrôle ont été optimisés pour prendre en compte, notamment, les dimensions du ressort 100 à concevoir ainsi que l'obtention d'une constance du moment de 5% sur une plage angulaire prédéterminée.
  • La forme géométrique du bras 102 utilisé dans la présente invention peut être obtenue selon la méthode décrite dans ladite publication WO 2020/016818 pour réaliser des lames conçues, notamment de par leur forme, pour exercer un moment sensiblement constant (constance de 5%) dans un ressort comportant une extrémité pivotée et une extrémité encastrée comme détaillé dans ladite publication, mais la lame obtenue étant ensuite utilisée dans un ressort 100 dont les deux extrémités sont pivotées conformément à la présente invention.
  • En effet, de telles lames élastiques peuvent travailler en flexion (raideur positive) et en flambage (raideur négative). Le montage du ressort 100 comprenant une telle lame avec ses deux extrémités pivotées conformément à la présente invention permet de modifier avantageusement le comportement de la lame en augmentant le flambage. Notamment, cela peut permettre d'obtenir de manière très avantageuse une raideur négative dans au moins une partie de la plage prédéterminée sur une lame d'épaisseur constante qui avait, à la base, une raideur sensiblement nulle avec une seule extrémité pivotée, comme dans la publication WO 2020/016818 .
  • Toute autre forme de courbe permettant d'obtenir une lame élastique pouvant travailler en flexion (raideur positive) et en flambage (raideur négative) de manière à présenter globalement une raideur négative ou nulle, notamment pour une lame de section constante, et plus particulièrement une raideur négative pour une lame de section constante, dans au moins une partie de la plage prédéterminée, lorsque les deux extrémités du ressort 100 sont pivotées, peut être utilisée comme bras élastique dans l'invention.
  • D'une manière particulièrement avantageuse, le ressort 100 peut être configuré pour présenter une raideur négative ou nulle dans au moins une partie de la plage prédéterminée d'angles d'armage, en fonction de l'application prévue pour l'organe pivotant.
  • La plage prédéterminée d'angles d'armage est la plage prédéterminée des positions angulaires du premier élément rotatif 104 par rapport à sa position de repos, cette plage étant de préférence d'au moins 10°, de préférence d'au moins 15°, la position angulaire d'armage minimum choisie étant de préférence supérieure à 5°.
  • De préférence, le ressort 100 peut être configuré pour présenter une raideur négative ou nulle dans sensiblement toute la plage prédéterminée.
  • De préférence, pour certaines applications prévues pour l'organe pivotant, le ressort 100 peut être configuré pour présenter une raideur négative dans sensiblement toute la plage prédéterminée. Pour d'autres applications de l'organe pivotant, le ressort 100 peut être configuré pour présenter une raideur nulle dans sensiblement toute la plage prédéterminée.
  • Selon un mode de réalisation, l'entraxe E entre le premier élément rotatif 104 et le second élément rotatif 106, c'est-à-dire la distance entre les centres de rotation desdits éléments rotatifs 104, 106, peut être avantageusement choisi pour que le ressort 100 présente une raideur négative dans ladite au moins une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée.
  • Selon un mode de réalisation, l'entraxe E varie entre 96% et 200% de la longueur développée du bras élastique 102.
  • Selon un mode de réalisation, le ou chaque bras élastique 102 présente une section constante, et le ressort 100 avec ses deux extrémités pivotées, est configuré pour présenter une raideur négative dans ladite au moins une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée, contrairement à un ressort de même forme avec une extrémité pivotée et l'autre extrémité encastrée, qui présente une raideur nulle.
  • Plus particulièrement, selon un mode de réalisation préféré, l'entraxe E varie entre 96% et 200% de la longueur développée du bras élastique 102 et le bras élastique 102 est de section constante, le ressort 100 avec ses deux extrémités pivotées présentant une raideur négative dans ladite au moins une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée.
  • En utilisant ce principe, la demanderesse a conçu un ressort 100 tel que représenté sur la figure 1, ayant les dimensions suivantes:
    • Distance entre le centre de rotation du premier élément rotatif 104 et le point de jonction du bras élastique 102 audit premier élément rotatif 104: 0,5 mm ;
    • Distance entre les deux extrémités du bras élastique 102: 2 mm
    • Distance entre le point de jonction du bras élastique 102 et le centre de rotation du second élément rotatif 106: 0,5 mm;
    • Longueur développée du bras élastique 102: 2,4 mm ;
    • Soit un entraxe E de 3 mm, égal à 125% de la longueur développée du bras élastique 102 ;
    • Epaisseur (largeur) constante du bras élastique 102: 30 µm ;
    • Hauteur du ressort 100: 0,3 mm.
  • La courbe C2 de la figure 3 représente les résultats d'une simulation de l'évolution du moment normalisé du ressort 100 ainsi réalisé en fonction de la position angulaire θ de son premier élément rotatif 104 par rapport à sa position de repos, les deux extrémités du ressort 100 étant pivotées conformément à l'invention. A titre comparatif, la courbe C1 de la figure 3 représente l'évolution du moment normalisé d'un ressort similaire mais dont une seule extrémité est pivotée, l'autre extrémité étant encastrée, comme décrit dans la publication WO 2020/016818 .
  • La simulation effectuée considère un ressort 100 réalisé dans un alliage amorphe à base de zirconium, titane, nickel, cuivre et béryllium, plus précisément dans un verre métallique de type Vitreloy 1b, mais tout matériau approprié peut être utilisé. Par exemple des matériaux tels que d'autres verres métalliques, d'autres alliages tels que le Nivaflex® 45/18 (alliage à base de cobalt, nickel et chrome), le nickel-phosphore ou le CK101 (acier de construction non-allié), le silicium, typiquement revêtu d'oxyde de silicium, ou le plastique conviennent également. Il est important de tenir compte du rapport entre la limite élastique et le module de Young du matériau pour choisir le matériau constituant le bras élastique 102.
  • La raideur d'un ressort, plus précisément de son bras élastique, est la dérivée de la fonction M(θ) définie respectivement par les courbes représentées sur la figure 3.
  • Comme cela est visible sur les courbes M(θ) de la figure 3, le moment suit une évolution en trois phases :
    • pour un angle θ compris entre 0 et une première valeur θa, soit θ1a pour la courbe C1 et θ2a pour la courbe C2, le moment augmente avec la position angulaire θ ;
    • pour un angle θ compris entre la première valeur θa et une deuxième valeur θb, le moment décroît pour la courbe C2, le ressort présentant alors une raideur négative entre θ2a et θ2b, alors que le moment est sensiblement constant pour la courbe C1, le ressort présentant alors une raideur sensiblement nulle entre θ1a et θ1b. On entend par moment « sensiblement constant » un moment ne variant pas de plus de 10%, de préférence 5%, plus préférentiellement 3%, étant entendu que ce pourcentage peut être diminué davantage ;
    • pour un angle θ au-delà de la valeur θb, le moment augmente à nouveau jusqu'à atteindre une valeur limite qui dépend des propriétés du matériau dans lequel le ressort est réalisé et correspond à la contrainte maximale que peut subir ce ressort.
  • Sur la plage de positions angulaires [θ2a, θ2b] la raideur du ressort 100 utilisé conformément à l'invention est négative. Dans la présente invention, on se place dans cette plage [θ2a, θ2b] ou au moins en partie dans cette plage.
  • Il ressort de l'analyse des résultats présentés sur la figure 3 qu'un moment décroissant est obtenu lors d'un déplacement du premier élément rotatif 104 du ressort 100 étudié, ses deux extrémités étant pivotées, par rapport à sa position de repos d'une position angulaire θ2a = 5° à une position angulaire θ2b = 20°, c'est à dire sur une plage de 15° sur laquelle la raideur du ressort 100 est négative.
  • A titre comparatif, on obtient, avec un ressort de même forme mais présentant une extrémité pivotée et une extrémité encastrée, un moment sensiblement constant lors d'un déplacement de son élément rotatif pivoté par rapport à son extrémité encastrée, d'une position angulaire θ1a = 18° à une position angulaire θ1b = 30°, c'est à dire sur une plage de 12° sur laquelle la raideur du ressort est nulle.
  • La courbe Ct2 de la figure 4 représente les résultats d'une simulation de l'évolution de la contrainte normalisée sur le ressort 100 en fonction de la position angulaire θ de son premier élément rotatif 104 par rapport à sa position de repos, les deux extrémités du ressort 100 étant pivotées conformément à l'invention. A titre comparatif, la courbe Ct1 de la figure 4 représente l'évolution de la contrainte normalisée sur un ressort similaire mais dont une seule extrémité est pivotée, l'autre extrémité étant encastrée, comme décrit dans la publication WO 2020/016818 .
  • Les courbes des figures 3 et 4 montrent qu'avec le ressort 100 aux deux extrémités pivotées conformément à l'invention, avec un entraxe E variant de 96% à 200% de la longueur développée dudit bras élastique 102, on obtient une raideur négative sur la plage [θ2a, θ2b] avec un ressort, avec un bras élastique 102 de section constante, qui, à la base, avait une raideur nulle et une seule extrémité pivotée, l'autre étant encastrée. Avec un tel ressort 100 comprenant un bras élastique 102 de section constante et monté conformément à l'invention, il n'est plus nécessaire, pour obtenir une raideur négative, d'avoir un bras élastique de section variable comme décrit dans la publication WO 2020/016818 .
  • De plus, le ressort 100 monté avec ses deux extrémités pivotées conformément à l'invention, permet de simplifier le montage, l'horloger n'ayant qu'à insérer le second élément rotatif 106 le long d'une goupille fixée sur le bâti, au lieu de devoir loger l'extrémité du ressort entre deux goupilles pour réaliser un encastrement, comme décrit dans la publication WO 2020/016818 .
  • Par ailleurs, le ressort 100 monté selon l'invention nécessite un armage minimal de 5° environ pour avoir une raideur négative, avec une large plage d'angles sur laquelle la raideur est négative, alors qu'un ressort avec une extrémité encastrée nécessite un armage minimal de 18° pour présenter une raideur nulle, et sur une plage plus étroite.
  • De plus, un tel ressort 100 monté conformément à l'invention permet de diviser le couple quasiment d'un rapport 3 et de diviser la contrainte quasiment par 2 par rapport à un même ressort dont une extrémité est encastrée, au moins sur une partie de la plage prédéterminée. Le montage du ressort 100 selon l'invention permet donc de réduire le couple et la contrainte de manière importante par rapport à un ressort à une extrémité encastrée, ce qui permet de pouvoir augmenter l'épaisseur du bras élastique 102, sans dépasser la contrainte admissible du matériau. Par exemple, pour un entraxe E de 3 mm, l'épaisseur peut être multipliée par environ 1,4. Une augmentation de l'épaisseur du bras élastique 102 renforce la robustesse du mécanisme. Le couple sera moins sensible aux variations dimensionnelles liées à la fabrication du bras élastique. En outre, la diminution de la contrainte est appréciable pour un matériau tel que le silicium.
  • Il est possible d'ajuster la valeur de raideur négative d'un ressort 100 ayant un bras élastique de section constante configuré pour présenter une certaine raideur négative, en concevant le ressort 100 avec un bras élastique 102 de section variable.
  • A cet effet, le ou chaque bras élastique 102 présente une section variable dont la variation est choisie pour rendre moins négative, voire nulle selon la variation de l'épaisseur, la raideur du ressort 100 dans ladite au moins une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée, par rapport à un bras élastique de même forme mais de section constante et configuré pour présenter une raideur négative.
  • La figure 5 montre différentes courbes représentative du moment M(θ) normalisé exercé dans un ressort à extrémités pivotée et encastrée par un bras élastique de section constante de 30 µm (courbe C1) et dans le ressort 100 aux deux extrémités pivotées conformément à l'invention, par un bras élastique 102 de section constante de 30 µm (courbe C2) et par des bras de différentes sections variables (autres courbes) pour un entraxe de 3 mm correspondant à 125% de la longueur développée du bras élastique 102, le ressort étant par ailleurs identique au ressort 100 décrit ci-dessus.
  • Les courbes situées au-dessous de la courbe C2 correspondent à un bras élastique 102 dont l'épaisseur augmente linéairement du premier élément rotatif 104 au milieu du bras élastique 102 et diminue linéairement du milieu du bras élastique 9 au second élément rotatif 106, l'épaisseur au milieu du bras élastique 102 étant de 30 µm pour chaque courbe, l'épaisseur au point de jonction avec les premier ou second éléments rotatifs 104, 106 étant de 29 µm pour la courbe C3 sous la courbe C2, de 28 µm pour la courbe C4 sous la courbe C2, de 27 µm pour la courbe C5 sous la courbe C2, et ainsi de suite par décrémentation de 1 µm.
  • On constate qu'avec le ressort 100 monté conformément à l'invention, la raideur devient moins négative (le moment décroît moins), voire nulle (le moment est sensiblement constant), dans la plage d'angles d'armage d'intérêt où la raideur est négative pour un bras de section constante, lorsque l'on augmente la variation de section du bras élastique 102. Au contraire, la publication WO 2020/016818 a montré qu'une augmentation de la variation de section du bras élastique d'un ressort avec une extrémité pivotée et une extrémité encastrée entrainait une diminution de la raideur négative du ressort.
  • Plus particulièrement, la raideur du ressort 100 monté conformément à l'invention augmente mais reste négative lorsque la variation de section du bras élastique 102 augmente mais est inférieure à 60%, de préférence inférieure à 50%.
  • Lorsque la variation de section du bras élastique est supérieure à 60%, la raideur du ressort 100 monté conformément à l'invention est nulle.
  • Il est bien évident que d'autres modes de variation de la section du bras élastique peuvent être choisies.
  • De manière générale, dans les cas où le bras élastique 102 a une section variable, celle-ci varie typiquement de manière strictement monotone (elle augmente ou diminue sans interruption mais pas nécessairement linéairement) sur au moins une portion continue du bras élastique représentant 10%, de préférence 20%, de préférence 30%, de préférence 40%, de la longueur (développée) du bras élastique. La variation de la section est en outre choisie pour rendre moins négative, voire nulle la raideur du bras élastique 102 sur la plage [θ2a, θ2b] ou au moins sur la partie de la plage prédéterminée qui se recoupe avec la plage [θ2a, θ2b], par rapport à un bras élastique de même forme mais de section constante.
  • On peut dès lors choisir la section du bras élastique constante ou variable selon la raideur négative ou nulle recherchée dans la plage d'intérêt. De plus, une augmentation de la variation de la section du bras élastique permet de réduire le moment ainsi que la contrainte, de sorte que la section du bras peut également être adaptée en fonction de l'application prévue pour l'organe pivotant.
  • Ainsi, un ressort 100 ayant un bras élastique 102 de section constante ou variant de moins de 60% avec un entraxe E variant de 96% à 200% de la longueur développée dudit bras élastique 102 et ses deux extrémités pivotées, on obtient une raideur négative sur la plage [θ2a, θ2b] avec un ressort qui, à la base, avait une raideur nulle et une seule extrémité pivotée, l'autre étant encastrée.
  • Selon un autre mode de réalisation, l'entraxe entre le premier élément rotatif 104 et le second élément rotatif 106 peut être choisi pour que le ressort 100' présente une raideur nulle dans ladite au moins une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée.
  • Selon un mode de réalisation, l'entraxe E est supérieur à 200% et inférieur à 300% de la longueur développée du bras élastique 102.
  • Selon un mode de réalisation, le ou chaque bras élastique 102 présente une section constante, et le ressort 100' avec ses deux extrémités pivotées, est configuré pour présenter une raideur nulle dans ladite au moins une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée.
  • Plus particulièrement, selon un mode de réalisation préféré, l'entraxe E est supérieur à 200% et inférieur à 300% de la longueur développée du bras élastique 102 et le bras élastique 102 est de section constante, le ressort 100' avec ses deux extrémités pivotées présentant une raideur nulle dans ladite au moins une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée.
  • En utilisant ce principe, la demanderesse a conçu un autre ressort 100' tel que représenté sur la figure 1, ayant une distance entre les deux extrémités du bras élastique 102 de 4 mm, soit un entraxe E de 5 mm, égal à 208% de la longueur développée du bras élastique 102; les autres dimensions du ressort 100' sont identiques à celles du ressort 100 décrit ci-dessus.
  • La courbe C2' de la figure 6 représente les résultats d'une simulation de l'évolution du moment normalisé du ressort 100' ainsi réalisé en fonction de la position angulaire θ de son premier élément rotatif 104 par rapport à sa position de repos, les deux extrémités du ressort 100' étant pivotées conformément à l'invention. A titre comparatif figure également la courbe C1 de la figure 3 qui représente l'évolution du moment normalisé d'un ressort similaire mais dont une seule extrémité est pivotée, l'autre extrémité étant encastrée, avec un entraxe E de 5 mm, le moment ne variant pas en fonction de l'entraxe lorsque la seconde extrémité est encastrée.
  • Comme cela est visible sur les courbes M(θ) de la figure 6, le moment suit une évolution en trois phases :
    • pour un angle θ compris entre 0 et une première valeur θa, soit θ1a pour la courbe C1 et θ2'a pour la courbe C2', le moment augmente avec la position angulaire θ ;
    • pour un angle θ compris entre la première valeur θa et une deuxième valeur θb, le moment est sensiblement constant (moment ne variant pas de plus de 10%, de préférence 5%, plus préférentiellement 3%), pour la courbe C2', le ressort 100' présentant alors une raideur sensiblement nulle entre θ2'a et θ2'b, et le moment est sensiblement constant pour la courbe C1, le ressort présentant une raideur sensiblement nulle entre θ1a et θ1b;
    • pour un angle au-delà de la valeur θb, le moment augmente à nouveau jusqu'à atteindre une valeur limite qui dépend des propriétés du matériau dans lequel le ressort est réalisé et correspond à la contrainte maximale que peut subir ce ressort.
  • Sur la plage de positions angulaires [θ2'a, θ2'b] la raideur du ressort 100' utilisé conformément à l'invention est sensiblement nulle. Dans ce mode de réalisation de l'invention, on se place dans cette plage [θ2'a, θ2'b] ou au moins en partie dans cette plage.
  • Il ressort de l'analyse des résultats présentés sur la figure 6 qu'un moment sensiblement constant est obtenu lors d'un déplacement du premier élément rotatif 104 du ressort 100' étudié, ses deux extrémités étant pivotées, par rapport à sa position de repos d'une position angulaire θ2'a = 5° à une position angulaire θ2'b = 15°, c'est à dire sur une plage de 10° sur laquelle la raideur du ressort 100' est nulle. On rappelle que pour le ressort présentant une extrémité pivotée et une extrémité encastrée, le moment est sensiblement constant lors d'un déplacement de son élément rotatif pivoté par rapport à son extrémité encastrée, d'une position angulaire θ1a = 18° à une position angulaire θ1b = 30°.
  • La courbe Ct2' de la figure 7 représente les résultats d'une simulation de l'évolution de la contrainte normalisée sur le ressort 100' en fonction de la position angulaire θ de son premier élément rotatif 104 par rapport à sa position de repos, les deux extrémités du ressort 100' étant pivotées conformément à l'invention. A titre comparatif, figure également la courbe Ct1 de la figure 4 qui représente l'évolution de la contrainte normalisée sur un ressort similaire mais dont une seule extrémité est pivotée, l'autre extrémité étant encastrée, avec un entraxe E de 5 mm, la contrainte ne variant pas en fonction de l'entraxe lorsque la seconde extrémité est encastrée.
  • Les courbes des figures 6 et 7 montrent qu'avec le ressort 100' aux deux extrémités pivotées conformément à l'invention, ayant un bras élastique 102 de section constante avec un entraxe E supérieur à 200% et inférieur à 300% de la longueur développée dudit bras élastique 102, on obtient une raideur nulle sur la plage [θ2'a, θ2'b] avec un ressort qui, à la base, avait une raideur nulle et une seule extrémité pivotée, l'autre étant encastrée, mais avec un moment et une contrainte très réduits. En effet, un tel ressort 100' monté conformément à l'invention permet de diviser le couple quasiment d'un rapport 10 et de diviser la contrainte quasiment par 4 par rapport à un même ressort dont une extrémité est encastrée, au moins sur une partie de la plage prédéterminée. Comme vu ci-dessus pour le ressort 100, cela permet de pouvoir augmenter l'épaisseur du bras élastique 102, sans dépasser la contrainte admissible du matériau.
  • En outre, le ressort 100' monté selon l'invention nécessite un armage minimal de 5° environ pour avoir une raideur nulle, alors que le même ressort avec une extrémité encastrée nécessite d'être armé au minimum d'un angle de 18° pour présenter une raideur nulle.
  • De plus, comme pour le ressort 100 précédemment décrit, le ressort 100' permet de simplifier le montage.
  • Selon un autre mode de réalisation dans lequel l'entraxe E est supérieur à 200% et inférieur à 300% de la longueur développée du bras élastique 102, le bras élastique 102 est de section variable, la raideur du ressort 100' avec ses deux extrémités pivotées restant nulle au moins dans une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée.
  • Lorsque l'entraxe E est supérieur à 200% et inférieur à 300% de la longueur développée du bras élastique 102, la variation de la section du bras ne modifie pas la raideur du ressort 100' qui reste nulle au moins dans une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée. Toutefois, une augmentation de la variation de la section du bras élastique permet de réduire le moment ainsi que la contrainte, de sorte que la section du bras peut être adaptée en fonction de l'application prévue pour l'organe pivotant et des valeurs souhaitées pour le moment et la contrainte.
  • D'autre part, selon un autre mode de réalisation, comme vu ci-dessus, il est possible d'obtenir une raideur nulle avec un ressort 100 ayant un bras élastique 102 de section variant de plus de 60% avec un entraxe E variant de 96% à 200% de la longueur développée dudit bras élastique 102 et ses deux extrémités pivotées, avec un moment et une contrainte très réduits, voisins du moment et de la contrainte obtenus avec un ressort 100' similaire mais d'entraxe supérieur à 200% de la longueur développée du bras élastique.
  • Pour plus de compacité, on peut donc choisir de remplacer un ressort 100' par un ressort 100 de configuration appropriée, présentant un entraxe plus petit en réduisant la longueur du bras élastique 102.
  • D'une manière très avantageuse, le ressort 100, 100' monté selon l'invention permet d'être configuré de manière à adapter sa raideur à la fonction de l'organe pivotant auquel il est associé.
  • Selon certains modes de réalisation, l'organe pivotant peut être soumis à l'action d'un seul ressort 100, 100'.
  • Selon d'autres modes de réalisation, l'organe pivotant peut être soumis à l'action d'au moins deux ressorts 100, 100' présentant respectivement une raideur nulle ou négative au moins sur une même plage prédéterminée et agencés pour générer un couple de pivotement sur l'organe pivotant.
  • Avantageusement, ledit organe pivotant est et/ou coopère avec, par exemple, une bascule, un marteau, un levier, un râteau, un doigt, un baladeur, un crochet, une roue telle qu'une roue d'échappement, un organe réglant ou une source d'énergie.
  • Selon un mode de réalisation, le second élément rotatif 106 du ressort 100, 100' est monté pivotant sur un bâti du mécanisme horloger.
  • D'une manière avantageuse, un ressort monté ainsi conformément à l'invention, configuré pour présenter une raideur négative dans au moins une partie de la plage prédéterminée, et de préférence dans sensiblement toute la plage prédéterminée, comme décrit ci-dessus, peut être associé à un organe pivotant qui est et/ou coopère avec une bascule, un râteau ou tout autre suiveur de came, en appui sur une came de rayon variable. Une telle came escargot arme et désarme (partiellement) successivement, une ou plusieurs fois par tour de rotation ledit suiveur de came. Dans le contexte de la présente invention, on entend par « suiveur de came » un organe qui coopère avec la périphérie d'une came, typiquement pour lire une information, sans avoir aucune fonction de maintien de la came dans des positions déterminées en fonctionnement normal du mécanisme, à la différence par exemple d'un sautoir ou d'un cliquet coopérant avec une roue dentée pour la positionner.
  • Le ressort monté et configuré conformément à l'invention pour présenter une raideur négative permet avantageusement d'exercer sur la came de rayon variable un couple constant, la raideur négative compensant la variation de rayon. Cela permet d'avoir une plus faible consommation d'énergie et de limiter les à-coups.
  • D'une manière avantageuse, un ressort monté ainsi conformément à l'invention, configuré pour présenter une raideur nulle dans au moins une partie de la plage prédéterminée, et de préférence dans sensiblement toute la plage prédéterminée, comme décrit ci-dessus, peut être associé à un organe pivotant qui est, par exemple, une bascule sans appui, un baladeur, un crochet, ou une roue telle qu'une roue d'échappement. Un tel ressort est moins sensible à son positionnement qu'un ressort de raideur négative, ce qui nécessite moins d'effort sur la précision d'assemblage.
  • Notamment lorsque l'organe pivotant coopère avec une roue d'échappement, il peut être agencé pour être soumis à l'action de deux ressorts montés conformément à l'invention, configurés pour présenter respectivement une raideur nulle au moins sur une même plage prédéterminée comme décrit ci-dessus, d'épaisseurs légèrement différentes et présentant des bras élastiques de sens opposés, la soustraction des deux couples à raideur nulle générant sur l'organe pivotant un couple de pivotement constant très faible. Une raideur nulle est obtenue selon les différentes configurations décrites ci-dessus. Un tel organe pivotant vient se greffer sur la roue d'échappement pour délivrer un couple constant à chaque alternance.
  • Lorsque l'organe pivotant est un baladeur, le ressort de raideur nulle peut être monté directement sur ledit baladeur, de sorte que l'axe de la bascule du baladeur a un ressort de rappel de couple constant. L'engrenage en vis-à-vis du baladeur verra toujours le même effort. Cela permet de rendre moins perceptibles les imperfections d'usinage du baladeur et dudit engrenage.
  • Un ressort à raideur nulle peut être monté directement sur un axe sans appui, comme source d'énergie ou comme couple de rappel d'une fonction. Par exemple, lorsque l'organe pivotant est un crochet, le ressort de raideur nulle peut être monté directement sur l'axe dudit crochet. Un tel ressort de raideur nulle conforme à l'invention présente un couple très faible parfaitement adapté au couple de pivotement correspondant à cette application.
  • La figure 8 représente un exemple de réalisation d'un mécanisme horloger comprenant un organe pivotant selon de l'invention dans lequel le second élément rotatif 106 du ressort 100 est monté pivotant sur un bâti 1a dudit mécanisme horloger.
  • Dans cet exemple, l'organe pivotant coopère avec une bascule en appui sur une came de rayon variable et le ressort 100, avec un bras élastique 102 de section constante, est configuré pour présenter une raideur négative sur toute la plage prédéterminée, et le mécanisme 1 est un mécanisme de compteur de minutes instantané d'un chronographe. Ledit mécanisme 1 est monté sur le bâti 1a, et comprend une bascule 2 pivotée en O et présentant un palpeur 3 coopérant avec une came escargot 4 montée sur, et entraînée par, l'axe de chronographe 5. Cet axe de chronographe 5 porte à son extrémité supérieure l'aiguille indicatrice des secondes de chronographe 6 et est solidaire en rotation de la roue de chronographe 7 et du cœur de remise à zéro des secondes de chronographe 8. La bascule 2 est maintenue en appui contre la périphérie de la came escargot 4 par un ressort de rappel de bascule 100 agissant sur l'axe 10 d'un doigt 11, ce doigt 11 agissant lui-même sur la bascule 2. La coopération entre le doigt 11 et la bascule 2 est du type à roulement. Le doigt 11 interagit en effet avec la paroi d'un évidement 12 de la bascule 2 à la manière d'un engrènement, quasiment sans frottements. La bascule 2 et le doigt 11 tournent ainsi dans des sens opposés.
  • Dans cet exemple, le doigt 11 constitue l'organe pivotant monté sur son axe de pivotement 10 et soumis à l'action de son ressort 100. Le premier élément rotatif 104 du ressort 100 est chassé sur l'axe 10 du doigt 11 et le second élément rotatif 106 est monté pivotant sur une goupille 108 solidaire du bâti 1a.
  • Un crochet 13 est pivoté en P sur l'extrémité libre de la bascule 2 et est soumis à l'action d'un ressort de rappel de crochet 14, monté sur la bascule 2, tendant à appliquer le bec 15 du crochet 13 contre la denture en dents de loup d'une roue de compteur de minutes 16.
  • Le ressort de rappel de crochet 14 pourrait être remplacé par un ressort configuré conformément à l'invention pour avoir une raideur nulle sur une plage prédéterminée et dont le premier élément rotatif est monté directement sur l'axe du crochet, le second élément rotatif étant monté sur une goupille solidaire du bâti 1a.
  • L'axe 17 de la roue de compteur de minutes 16 porte un indicateur des minutes de chronographe 18, tel qu'une aiguille (comme représenté) ou un disque, affichant les minutes de chronographe en coopération avec le cadran du chronographe. Un cœur de remise à zéro des minutes de chronographe 19 est solidaire en rotation de la roue de compteur de minutes 16. La roue de compteur de minutes 16 est maintenue dans des positions angulaires déterminées entre ses actionnements successifs par un sautoir 20 sur lequel agit un ressort de rappel de sautoir 21.
  • Dans l'exemple illustré, la came escargot 4 présente une fente 22 dans sa partie terminale, conformément à l'enseignement de la demande de brevet EP 2241944 , mais elle pourrait avoir une forme plus classique, sans cette fente 22.
  • La came escargot 4 est de rayon variable entre sa partie basse B est sa partie haute H, de sorte qu'à chaque tour de rotation de la came escargot 4, le palpeur 3 de la bascule 2 glisse de la partie basse B vers la partie haute H de la came 4. La bascule 2 se soulève progressivement en faisant tourner le doigt 11 dans le sens inverse, le ressort 100 s'armant au fur et à mesure.
  • Chaque minute, le palpeur 3 et avec lui toute la bascule 2 chute de la partie haute H à la partie basse B de la came escargot 4 sous l'action du ressort 100. Pendant cette chute, le crochet 13 fait avancer d'un pas la roue de compteur de minutes 16 pour changer de manière instantanée la valeur indiquée par l'indicateur des minutes de chronographe 18. Puis, pendant le réarmage progressif du ressort 100 par l'intermédiaire de la bascule 2 de nouveau soulevée progressivement par la came escargot 4, le crochet 13 passe de l'entre-dent de la roue de compteur de minutes 16 dans lequel il se trouvait pendant la chute à l'entre-dent précédent contre l'action de son ressort de rappel 14, pour à nouveau faire avancer d'un pas la roue de compteur de minutes 16 pendant la chute suivante de la bascule 2.
  • Le ressort 100 est agencé pour travailler dans une plage prédéterminée d'angles d'armage, ledit ressort étant conformé selon l'invention pour présenter ici une raideur négative dans toute la plage prédéterminée afin de compenser l'effet de bras de levier de la came escargot. Plus spécifiquement en relation avec le ressort 100 correspondant à la figure 3, ledit ressort 100 est à section constante, configuré pour que, à chaque tour de rotation de la came escargot 4 contre l'action de rappel du bras élastique 102, le premier élément rotatif 104 se déplace dans une plage prédéterminée de positions angulaires par rapport à sa position de repos, cette plage étant incluse dans la plage de positions angulaires [θ2a, θ2b] associée au ressort 100 dans laquelle la raideur du bras élastique 102 est négative. De préférence, ladite plage prédéterminée est constituée par cette plage de positions angulaires [θ2a, θ2b] où la raideur est négative en chaque point. La longueur de la plage prédéterminée est définie par la différence de rayon entre la partie haute H et la partie basse B de la came 4, la position de la bascule 2 et celle du doigt 11. Dans l'exemple illustré, elle est de 3°, ce qui laisse un large choix de l'angle d'armage au moment du montage.
  • Le premier élément rotatif 104 est positionné angulairement lors de son montage sur l'axe 10 du doigt 11 de manière à ce que le ressort 100 soit armé de θarm degrés lorsque le palpeur 3 de la bascule 2 se trouve sur la partie basse B de la came escargot 4, cette valeur θarm étant choisie dans la plage prédéterminée, et peut être par exemple la borne inférieure de la plage prédéterminée susmentionnée, soit ici 5°. On peut aussi choisir une valeur θarm de 9° par exemple afin de se situer dans une partie de la plage prédéterminée, pour laquelle la raideur est encore plus négative.
  • Un tel ressort 100, avec ses deux extrémités pivotées, permet de compenser entièrement l'augmentation du bras de levier de la force appliquée à la came 4 par la bascule 2 sur un tour de rotation de cette came pendant le déplacement de la bascule 2 de la partie basse B à la partie haute H, avec un bras élastique 102 de section constante, sans avoir à utiliser un bras de section variable comme dans la publication WO 2020/016818 . Cela permet de rendre constant le couple qu'il exerce indirectement sur la came 4 et ainsi, d'une part, améliorer la régularité des oscillations de l'organe régulateur du chronographe et donc la précision de la mesure et, d'autre part, diminuer la consommation d'énergie.
  • De plus, le couple obtenu par le ressort 100, avec son bras élastique de section constante et ses deux extrémités pivotées, étant plus faible que celui obtenu avec le ressort à une extrémité pivotée et l'autre extrémité encastrée décrit dans la publication WO 2020/016818 dans le même mécanisme de compteur de minutes instantané d'un chronographe, l'épaisseur du bras élastique 102 a pu être augmentée pour passer d'une lame en verre métallique de 28 µm à une lame de 40 µm pour obtenir le même couple sans dépasser la contrainte admissible du matériau. Le montage du ressort 100 conformément à l'invention est simplifié, en n'ayant besoin que d'une seule goupille 108 et l'armage est de 9° contre 18° pour le ressort à une extrémité pivotée et l'autre extrémité encastrée.
  • L'utilisation du doigt intermédiaire 11 entre le ressort 100 et la bascule 2 permet, en jouant sur les bras de levier, de diminuer l'encombrement du mécanisme 1 pour un couple de rappel donné appliqué à la bascule 2. Cependant, ce doigt 11 pourrait être supprimé et le ressort 100 pourrait agir de manière plus directe sur la bascule 2, l'organe pivotant étant alors la bascule elle-même. Par exemple, le premier élément rotatif 104 pourrait être monté directement sur l'axe de la bascule 2. Le ressort 100 pourrait aussi former une seule pièce avec la bascule 2.
  • Selon un autre mode de réalisation de l'invention, le second élément rotatif 106 du ressort 100, 100' est monté pivotant sur un élément mobile de l'organe pivotant, ledit élément mobile étant agencé pour être mobile relativement par rapport à l'axe de pivotement dudit organe pivotant.
  • En référence à la figure 9, il est représenté un tel organe pivotant 110, qui dans cet exemple, est plus spécifiquement soumis à l'action d'une pluralité de ressorts 100, 100' présentant respectivement une raideur nulle ou négative au moins sur une même plage prédéterminée et agencés pour générer un couple de pivotement sur ledit organe pivotant 110.
  • Notamment, l'organe pivotant 110 comprend un moyeu 112 solidaire de l'axe de pivotement (non représenté) dudit organe pivotant 110, et une serge annulaire 114 constituant l'élément mobile de l'organe pivotant 114.
  • Chacun des seconds éléments rotatifs 106 des ressorts 100, 100' est monté pivotant sur la serge 114, au moyen par exemple de goupilles ou de tenons 116 repartis sur le pourtour de la serge 114. Les tenons 116 présentent l'avantage d'éviter le déplacement hors plan des bras 102 des ressorts 100, 100'. Les goupilles ou les tenons 116 peuvent être rapportés ou former une seule pièce monobloc avec la serge 114.
  • Les premiers éléments rotatifs 104 des ressorts 100, 100' sont tous solidaires au moins en rotation de l'axe de pivotement de l'organe pivotant 110.
  • Dans la variante représentée, les premiers éléments rotatifs 104 des ressorts 100, 100' sont avantageusement agencés pour former une seule pièce qui constitue le moyeu 112 de l'organe pivotant 110. Ainsi, le moyeu 112, constitué par la réunion des premiers éléments rotatifs 104, et l'ensemble des bras 102 terminés par les seconds éléments rotatifs 106 forment une seule pièce monobloc. Il est bien évident que chaque bras 102 peut être réalisé de manière indépendante du moyeu, et assemblé ensuite au moyeu 112. Le moyeu 112 peut être monté solidaire sur l'axe de pivotement, par exemple par chassage ou autre moyen équivalent, ou être réalisé d'une seule pièce avec l'axe de pivotement de l'organe pivotant 110.
  • L'organe pivotant 110 est obtenu en assemblant sur la serge 114 chacun des seconds éléments rotatifs 106 des bras 102 portés par le moyeu 112 au moyen de son tenon 116.
  • La raideur négative ou nulle des ressorts 100, 100' ainsi que par exemple l'épaisseur des lames des bras 102 de l'organe pivotant 110 sont choisies en fonction de l'application souhaitée dudit organe pivotant 110. Par exemple, les ressorts 100, 100' peuvent présenter une raideur nulle ou négative, et de préférence une raideur nulle, obtenue selon les différentes possibilités décrites ci-dessus, avec des lames plus épaisses que pour un organe pivotant similaire mais avec des seconds éléments rotatifs encastrés, de manière à obtenir un couple constant important, permettant une application comme source d'énergie. Des lames plus fines permettent d'obtenir un couple très faible pour des applications de type organe réglant ou source d'énergie très réduite.

Claims (19)

  1. Mécanisme horloger (1) comprenant un organe pivotant monté sur un axe de pivotement et soumis à l'action d'au moins un ressort (100, 100') agencé pour travailler dans une plage prédéterminée d'angles d'armage, ledit ressort (100, 100') comprenant au moins un bras élastique (102) présentant à l'une de ses extrémités un premier élément rotatif (104) solidaire au moins en rotation de l'axe de pivotement de l'organe pivotant, ledit ressort (100, 100') présentant une raideur nulle ou négative dans au moins une partie de la plage prédéterminée, caractérisé en ce que le bras élastique (102) présente à l'autre de ses extrémités un second élément rotatif (106) monté pivotant.
  2. Mécanisme horloger (1) selon la revendication 1, caractérisé en ce que la raideur du ressort (100, 100') est nulle ou négative dans sensiblement toute la plage prédéterminée.
  3. Mécanisme horloger (1) selon l'une des revendications précédentes, caractérisé en ce que le ou chaque bras élastique (102) est de forme sinueuse.
  4. Mécanisme horloger (1) selon l'une des revendications précédentes, caractérisé en ce que la forme géométrique du ou de chaque bras élastique (102) est une courbe de Bézier ou une succession de courbes de Bézier.
  5. Mécanisme horloger (1) selon l'une des revendications précédentes, caractérisé en ce que l'entraxe (E) entre le premier élément rotatif (104) et le second élément rotatif (106) est choisi pour que le ressort (100) présente une raideur négative dans ladite au moins une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée.
  6. Mécanisme horloger (1) selon l'une des revendications précédentes, caractérisé en ce que l'entraxe varie entre 96% et 200% de la longueur développée du bras élastique (102).
  7. Mécanisme horloger (1) selon l'une des revendications 5 et 6, caractérisé en ce que le ou chaque bras élastique (102) présente une section constante, la raideur du ressort (100) étant négative dans ladite au moins une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée.
  8. Mécanisme horloger selon l'une des revendications 5 et 6, caractérisé en ce que le ou chaque bras élastique (102) présente une section variable dont la variation est choisie pour rendre moins négative, voire nulle, la raideur du ressort (100) dans ladite au moins une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée, par rapport à un bras élastique de même forme mais de section constante.
  9. Mécanisme horloger selon l'une des revendications 1 à 4, caractérisé en ce que l'entraxe (E) entre le premier élément rotatif (104) et le second élément rotatif (106) est choisi pour que le ressort (100, 100') présente une raideur nulle dans ladite au moins une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée.
  10. Mécanisme horloger selon la revendication 9, caractérisé en ce que l'entraxe (E) est supérieur à 200% et inférieur à 300% de la longueur développée du bras élastique (102).
  11. Mécanisme horloger selon l'une des revendications 9 et 10, caractérisé en ce que le ou chaque bras élastique (102) présente une section constante, la raideur du ressort (100') étant nulle dans ladite au moins une partie de la plage prédéterminée, de préférence dans sensiblement toute la plage prédéterminée.
  12. Mécanisme horloger selon l'une des revendications précédentes, caractérisé en ce que l'organe pivotant est soumis à l'action d'au moins deux ressorts (100, 100') présentant respectivement une raideur nulle ou négative au moins sur une même plage prédéterminée et agencés pour générer un couple de pivotement sur l'organe pivotant.
  13. Mécanisme horloger (1) selon l'une des revendications précédentes, caractérisé en ce que l'organe pivotant est et/ou coopère avec une bascule (2), un marteau, un levier, un râteau, un doigt (11), un baladeur, un crochet, une roue, un organe réglant, une source d'énergie.
  14. Mécanisme horloger selon l'une des revendications précédentes, caractérisé en ce que le second élément rotatif (106) du ressort (100, 100') est monté pivotant sur un bâti (1a) du mécanisme horloger (1).
  15. Mécanisme horloger (1) selon l'une des revendications 13 à 14, caractérisé en ce que l'organe pivotant est et/ou coopère avec une bascule (2) en appui sur une came (4) de rayon variable, le ressort (100) présentant une raideur négative.
  16. Mécanisme horloger (1) selon l'une des revendications 13 à 14, caractérisé en ce que l'organe pivotant est une bascule sans appui, un baladeur, un crochet, une roue, le ressort (100, 100') présentant une raideur nulle.
  17. Mécanisme horloger selon l'une des revendications 1 à 13, caractérisé en ce que le second élément rotatif (106) du ressort (100, 100') est monté pivotant sur un élément mobile de l'organe pivotant (110) agencé pour être mobile relativement par rapport à l'axe de pivotement dudit organe pivotant (110).
  18. Mécanisme horloger selon la revendication 17, caractérisé en ce que l'organe pivotant (110) est soumis à l'action d'une pluralité de ressorts (100, 100') présentant respectivement une raideur nulle ou négative au moins sur une même plage prédéterminée et agencés pour générer un couple de pivotement sur l'organe pivotant (110), en ce que l'organe pivotant (110) comprend un moyeu (112) solidaire de l'axe de pivotement et une serge (114) constituant l'élément mobile de l'organe pivotant (110), et en ce que chacun des seconds éléments rotatifs (106) des ressorts (100, 100') est monté pivotant sur ladite serge (114), les premiers éléments rotatifs (104) des ressorts (100, 100') étant agencés pour former une seule pièce constituant le moyeu (112) de l'organe pivotant (110).
  19. Pièce d'horlogerie comprenant un mécanisme horloger (1) selon l'une quelconque des revendications 1 à 18.
EP20173411.8A 2020-05-07 2020-05-07 Mécanisme horloger comprenant un organe pivot Active EP3907563B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20173411.8A EP3907563B1 (fr) 2020-05-07 2020-05-07 Mécanisme horloger comprenant un organe pivot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20173411.8A EP3907563B1 (fr) 2020-05-07 2020-05-07 Mécanisme horloger comprenant un organe pivot

Publications (2)

Publication Number Publication Date
EP3907563A1 true EP3907563A1 (fr) 2021-11-10
EP3907563B1 EP3907563B1 (fr) 2022-09-14

Family

ID=70616932

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20173411.8A Active EP3907563B1 (fr) 2020-05-07 2020-05-07 Mécanisme horloger comprenant un organe pivot

Country Status (1)

Country Link
EP (1) EP3907563B1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2241944A2 (fr) 2009-04-15 2010-10-20 Patek Philippe SA Genève Mécanisme de compteur instantané et came escargot pour un tel mécanisme
WO2014037319A1 (fr) * 2012-09-07 2014-03-13 Nivarox-Far S.A. Ancre flexible à force constante
EP3483666A1 (fr) * 2017-11-10 2019-05-15 Patek Philippe SA Genève Dispositif pour guidage en rotation d'un composant mobile
WO2020016818A1 (fr) 2018-07-19 2020-01-23 Patek Philippe Sa Geneve Mecanisme horloger a came

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3399373A1 (fr) * 2017-05-03 2018-11-07 Patek Philippe SA Genève Dispositif horloger à organe de positionnement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2241944A2 (fr) 2009-04-15 2010-10-20 Patek Philippe SA Genève Mécanisme de compteur instantané et came escargot pour un tel mécanisme
WO2014037319A1 (fr) * 2012-09-07 2014-03-13 Nivarox-Far S.A. Ancre flexible à force constante
EP3483666A1 (fr) * 2017-11-10 2019-05-15 Patek Philippe SA Genève Dispositif pour guidage en rotation d'un composant mobile
WO2020016818A1 (fr) 2018-07-19 2020-01-23 Patek Philippe Sa Geneve Mecanisme horloger a came

Also Published As

Publication number Publication date
EP3907563B1 (fr) 2022-09-14

Similar Documents

Publication Publication Date Title
CH709508B1 (fr) Mouvement horloger muni d'un mécanisme d'entraînement d'un indicateur analogique à déplacement périodique ou intermittent.
EP2980658B1 (fr) Dispositif d'assemblage et de réglage d'un spiral
EP3824354A1 (fr) Mecanisme horloger a came
CH713409A2 (fr) Balancier-spiral du type thermocompensé, mouvement et pièce d'horlogerie.
EP3907563B1 (fr) Mécanisme horloger comprenant un organe pivot
EP1870784B1 (fr) Mobile de micro-mécanique à rotation contrôlée par chocs
EP3707565B1 (fr) Dispositif pour guidage en rotation d'un composant mobile
CH713787A2 (fr) Dispositif horloger à organe de positionnement.
EP1960843B1 (fr) Mouvement horloger
EP2138912B1 (fr) Spiral d'horlogerie à développement concentrique
EP3598241B1 (fr) Mecanisme horloger a dispositif a force constante
EP3619579B1 (fr) Dispositif horloger a organe de positionnement.
EP3707563B1 (fr) Organe moteur d'horlogerie
CH717357A2 (fr) Spiral horloger en verre ou en céramique, à géométrie complexe.
EP3761122B1 (fr) Mobile d'échappement horloger, mécanisme d'échappement et pièce d'horlogerie associés
EP3435362A1 (fr) Système d'affichage comportant un module d'affichage par elements mobiles autour de liaisons flexibles, et piece d'horlogerie comportant un tel système d'affichage
EP3825786B1 (fr) Mécanisme d'affichage d'une pièce d'horlogerie
CH719127A2 (fr) Mécanisme horloger comprenant un organe pivotant.
CH708553B1 (fr) Mobile horloger à rattrapage de jeu.
EP2643734A1 (fr) Balancier pour pièce d'horlogerie
EP3948433B1 (fr) Oscillateur sphérique pour mécanisme horloger
EP3851919B1 (fr) Dispositif de repositionnement pour l'horlogerie
CH719047A9 (fr) Mécanisme d'entraînement discontinu d'horlogerie.
CH719120A2 (fr) Mécanisme horloger comprenant un sautoir et un composant denté monté pivotant.
EP4325301A1 (fr) Mécanisme horloger comprenant un organe horloger rotatif et un dispositif à raideur angulaire prédéfinie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20201125

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220211

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G04F 7/08 20060101ALI20220414BHEP

Ipc: G04B 19/02 20060101ALI20220414BHEP

Ipc: G04B 15/08 20060101ALI20220414BHEP

Ipc: G04B 11/02 20060101AFI20220414BHEP

INTG Intention to grant announced

Effective date: 20220511

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020005083

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1519076

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221015

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1519076

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230116

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020005083

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230314

Year of fee payment: 4

Ref country code: CH

Payment date: 20230602

Year of fee payment: 4

26N No opposition filed

Effective date: 20230615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220914

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230507

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230507

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240314

Year of fee payment: 5

Ref country code: GB

Payment date: 20240314

Year of fee payment: 4