EP3907016B1 - Ensemble d'outils pourvu de composants d'outil permettant de configurer des outils de cintrage - Google Patents

Ensemble d'outils pourvu de composants d'outil permettant de configurer des outils de cintrage Download PDF

Info

Publication number
EP3907016B1
EP3907016B1 EP21169811.3A EP21169811A EP3907016B1 EP 3907016 B1 EP3907016 B1 EP 3907016B1 EP 21169811 A EP21169811 A EP 21169811A EP 3907016 B1 EP3907016 B1 EP 3907016B1
Authority
EP
European Patent Office
Prior art keywords
tool
insert
bending
receptacle
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21169811.3A
Other languages
German (de)
English (en)
Other versions
EP3907016A1 (fr
Inventor
Michael Eissler
Timo Laab
Rainer SCHÖNFELD
Frank Hacker
John Griffin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wafios AG
Original Assignee
Wafios AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wafios AG filed Critical Wafios AG
Publication of EP3907016A1 publication Critical patent/EP3907016A1/fr
Application granted granted Critical
Publication of EP3907016B1 publication Critical patent/EP3907016B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F1/00Bending wire other than coiling; Straightening wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/04Movable or exchangeable mountings for tools
    • B21D37/06Pivotally-arranged tools, e.g. disengageable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/02Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment
    • B21D7/024Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment by a swinging forming member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F1/00Bending wire other than coiling; Straightening wire
    • B21F1/008Bending wire other than coiling; Straightening wire in 3D with means to rotate the wire about its axis

Definitions

  • the invention relates to a tool set with a plurality of tool components for configuring two-part bending tools of different effective geometry for use in a bending head of a bending machine, as well as a two-part bending tool that can be configured using tool components of the tool set.
  • Bending machines are computer-numerically controlled, multi-axis machine tools that, with the help of suitable tools, can produce smaller or larger series of molded parts made of elongated semi-finished products, in particular wire or tubes, with sometimes complex geometry, primarily through forming, in an automatic manufacturing process.
  • a bending machine of the type considered in this application is equipped with a bending system which has a multi-part bending head which has a first tool carrier and a second tool carrier separate therefrom.
  • the first tool carrier can be rotated about a bending head axis by means of a first drive and has a first tool holder for receiving the first tool part of a two-part bending tool.
  • the second tool carrier can be rotated relative to the first tool carrier around the bending head axis by means of a second drive and has a second tool holder arranged eccentrically to the bending head axis for receiving the second tool part of the bending tool.
  • a suitable two-part bending tool which includes a first tool part and a separate second tool part.
  • the first tool part is designed for attachment in the first tool holder and has two engagement sections on its upper side for engaging opposite sides of a semi-finished product to be bent.
  • the second tool part is designed for attachment in the second tool holder and has an engagement section on its upper side for engaging the semi-finished product to be bent.
  • the attack sections generally each have a substantially rotationally symmetrical outer contour. When the two tool parts are inserted into their associated tool holder and fastened there ready for operation, the three engagement sections lie in a common plane.
  • the two attack sections of the first tool part can, for example opposite sides lie eccentrically to the bending head axis, the third attack section further out at a greater radial distance from this.
  • a bending operation on a wire can proceed as follows, for example. First, the section of the wire in which a bend is to be created is brought into the space between the two engagement elements of the first tool part. The clear distance between the attack sections is at least as large as the wire diameter. Then the first tool part is rotated until the two engagement sections rest on the wire section on opposite sides without bending it. The wire section still runs straight through the gap in its wire feed direction. To create a bend, the second workpiece holder is then rotated relative to the first workpiece holder, which is now no longer rotating.
  • the effective radius of the internal attack section determines the bending radius (radius of curvature) of the bend created, while the angle of rotation of the second tool part during the bending operation determines the bending angle.
  • the other of the two attack sections of the first tool part serves as a counter-holder, which absorbs the bending forces and prevents the wire from moving sideways on the side of the bending mandrel that is far from the point of attack of the bending pin.
  • one of the attack sections serves as a passive element, the effective radius of which determines the bending radius, another attack section as a further passive element that takes on the counter-holding function, and the third attack section as an active element that moves during the bending operation and which introduces the bending forces.
  • Bending machines are usually designed to bend wires or tubes of different diameters from a certain range of diameters (the working range of the bending machine).
  • the cross-sectional shapes can also be different, so that, for example, round cross-sections or polygonal cross-sections can be bent.
  • such bending machines are intended to be used over time to produce a variety of bent parts with different bending geometries from wires or tubes with different diameters.
  • a change between bending tools with different effective geometries is usually necessary, for example, if one Diameter of the semi-finished product should be changed to a different diameter and / or if the bending radius of the bends to be created should be changed.
  • a user wants to produce a larger variety of different bent parts, a corresponding number of tool parts for bending tools with different effective geometries must be kept available so that they can be replaced when necessary. For a user, this may mean a higher investment in bending tools that may only be used rarely and/or possibly delays if a change is to be made at short notice and delivery times have to be taken into account.
  • a bending machine with a two-part bending tool is, for example, from the WO 2010/080522 A1 known.
  • the invention is based on the object of offering the user of a bending machine a cost-effective way of being able to produce a large variety of different bending geometries from wire or pipe of different diameters using a bending machine.
  • the invention provides a tool set with the features of claim 1. Furthermore, a two-part bending tool with the features of claim 11 is provided. Advantageous further developments are specified in the dependent claims. The wording of all claims is incorporated by reference into the content of the description.
  • the invention provides a tool set with a plurality of tool components for configuring two-part bending tools with different effective geometries that are suitable and intended for use in a multi-part bending head of a bending machine.
  • the bending head has a first tool carrier and a second tool carrier.
  • the first tool carrier can be rotated about a bending head axis by means of a first drive and has a first tool holder for receiving a first tool part of a bending tool.
  • the second tool carrier can be rotated relative to the first tool carrier around the bending head axis by means of a second drive and has a second tool holder arranged eccentrically to the bending head axis for receiving a second tool part of the bending tool.
  • the tool carriers are therefore coaxially rotatable and each hold one of the tool parts of a two-part bending tool.
  • the tool set includes several tool components that can be used to configure two-part bending tools with different effective geometries.
  • the tool set comprises at least a first base body, which has a fastening section that fits the first receptacle and a base body axis which runs coaxially to the bending head axis when the first base body is fastened in the first receptacle.
  • the first base body also has an insert carrier section on which, eccentric to the base body axis, a first insert receptacle for receiving a first tool insert and angularly offset from the first insert receptacle, also eccentric to the base body axis, a second insert receptacle, which is designed to receive a second tool insert.
  • the first base body can be a one-piece tool component, so that the fastening section and the insert carrier section are formed on the same piece of material, for example made of tool steel.
  • a multi-part structure is also possible.
  • the tool set further comprises a second base body which has a fastening section matching the second receptacle and an insert carrier section on which a third insert receptacle is designed to accommodate a third tool insert.
  • the second base body can be designed in one piece or in several parts. He preferably only has exactly one third use shot.
  • the tool set comprises at least three tool inserts, each of which has a fastening section for fastening the tool insert to one of the insert receptacles and an engagement section with a peripheral surface for engaging a wire or pipe to be bent, the peripheral surface having an effective radius based on an engagement section axis.
  • the tool set preferably includes significantly more than three tool inserts in order to be able to configure many differently sized two-part bending tools.
  • the tool set can, for example, comprise at least ten or at least twenty or at least thirty or at least forty or more tool inserts of different geometries.
  • the tool set can also have two or more first tool inserts with identical geometry and/or contain two or more second tool inserts with identical geometry and / or two or more third tool inserts with identical geometry. There are often at least two differently sized first and second base bodies.
  • the base body forms the supporting component of a tool part.
  • the first base body carries a first and a second tool insert and thus forms the first tool part, while the second base body carries a third tool insert and together with this forms the second tool part of the bending tool.
  • the two eccentric engagement sections of the first tool part are sometimes referred to as “bending mandrels”, while the engagement section of the second tool part is sometimes referred to as a "bending pin”.
  • a first tool insert is fastened in the first insert receptacle, which has a first engagement section with a peripheral surface for engaging the wire or tube to be bent, the peripheral surface having an effective first radius based on a first attack section axis.
  • a second tool insert is fastened in the second insert receptacle and has a second engagement section with a peripheral surface for engaging the wire or tube to be bent, the peripheral surface having an effective second radius based on a second engagement section axis.
  • a third tool insert is fastened in the third insert receptacle, which has a third engagement section with a peripheral surface for engaging the wire or tube to be bent, the peripheral surface having an effective third radius based on a third engagement section axis.
  • the inventors have recognized that it can be advantageous to adhere to certain selection criteria, which are based, on the one hand, on the diameter of the wire or tube to be bent and, on the other hand, on the desired bending geometry.
  • the bending tool is designed for bending a wire or tube with a diameter DD and the base bodies (first and second base bodies) as well as the tool inserts (first, second and third tool inserts) are selected or are coordinated with one another in such a way that in the assembled state a first light Distance A1 between the peripheral surfaces of the first and second engagement sections corresponds to at least twice the diameter DD, so that A1 ⁇ 2 * DD (first condition) applies.
  • a second clear distance A2 between an outer tangent circle on the first and second engagement portions and the circumferential surface of the third engagement portion should be greater than the diameter DD.
  • Favorable values can be in the range of 110% to 150% of the diameter DD.
  • the radius R1 of the first attack section and the radius R2 of the second attack section should each be at least half of the diameter DD.
  • the first condition (clear distance A1) is met, it can be achieved that the desired diameter of the semi-finished product fits between the first and second attack sections and at the beginning of the bending intervention the attack points of the first and second attack sections on opposite sides of the semi-finished product are so far apart that a A sufficiently long lever arm is available for the bending operation and the bending force can be applied reliably.
  • the clear distance should not be significantly smaller than the minimum distance, otherwise the force on the attack sections (bending mandrels) can become too high and there is a risk of breakage. In addition, this can reduce marks on the wire or pipe caused by excessive forces.
  • the lower limit is exceeded in the second condition (for the second clear distance A2), it may be that the wire or pipe is clamped between a bending mandrel and the bending pin (third attack section) during the bending operation. If, on the other hand, the second clear distance is too large, the force introduced via the bending pin (third attack section) can, under certain circumstances, lead to a bending of the semi-finished product between the actually desired bending point and the point of application of the third attack section on the semi-finished product, so that the bending geometry becomes inaccurate .
  • the third condition (regarding the radii R1 and R2) takes into account that the diameter also determines the smallest bending radii that can be reliably generated.
  • the radius of a bending mandrel should then correspond to at least half of the diameter of the semi-finished product to be bent in order to ensure sufficient security against breakage of the bending mandrel (attack section).
  • Compliance with the conditions ensures reliable function of the bending tool, whereby on the one hand the bent part can achieve the desired geometry with high precision and on the other hand the components of the bending tool can function reliably over the long term and are not damaged.
  • the first insert receptacle and the second insert receptacle on the first base body are each angularly offset from one another and eccentric to the base body axis.
  • the first insert receptacle and the second insert receptacle are arranged on diametrically opposite sides of the insert carrier section. This results in a particularly large first clear distance A1 depending on the selected radii R1 and R2, so that great flexibility is created with regard to the processable diameter of the semi-finished product.
  • an angular offset of the two insert holders of less than 180° or more than 180° is also possible.
  • the first insert receptacle and the second insert receptacle are designed in the form of receiving recesses that are open to the radial outside.
  • Such receiving recesses can be easily manufactured, for example, in the form of milling pockets using milling operations.
  • the side attachment allows for easy replacement and easy attachment with a tight fit of the tool inserts in the insert holders.
  • the distance range for the first clear distance between the eccentric engagement sections on the first base body can be easily determined via the distance between the receiving recesses.
  • the first insert receptacle and the second insert receptacle are designed to be functionally identical, so that each first or second tool insert can be received in each of the first and second insert receptacles with a tight fit.
  • the insert holders can have identical geometry. The functional identity of the insert holders increases the flexibility in the selection of tool components and thus the flexibility in the possible tool geometries.
  • first and second tool inserts are incompatible with the third insert holder and that every third tool insert is incompatible with the first and second insert holders. This means that confusion is constructively excluded.
  • first and second tool inserts are adapted to the insert carrier section and the first and second insert holders in such a way that a radially outer region of the circumferential surface of each engagement section always has the same radial distance from the base body axis, regardless of the effective radius of the engagement section a tool insert is fastened in an insert holder.
  • the radially outer regions of the circumferential surface each touch a tangent circle coaxial with the base body axis. This means that the “circle of flight” that defines the radially outer areas of the engagement sections on the first tool part is the same for all tool configurations that can be achieved with a specific first base body. This creates the same geometric relationship to the third attack section, which is located radially further out.
  • the assembled bending tools become particularly stable when the first and second tool inserts are adapted to the insert carrier and the first and second insert holders in such a way that radial outer surfaces of the insert carrier section and the inserted tool inserts complement each other to form a substantially circular cylindrical outer surface. This can also ensure that the bending mandrels are positioned as far out as possible and that the distance A2 and thus the distance between successive bends can be kept as small as possible.
  • the tool set preferably has several first base bodies.
  • the tool set preferably comprises exactly three differently sized first base bodies.
  • almost all possible bending geometries can be configured in fine divisions in the working area of most bending machines. A good compromise has been created between manufacturing costs, manageability for an operator and flexibility in the configurable effective geometries.
  • All base bodies preferably have the same (equally sized) receiving recesses, e.g. milling pockets, so that the tool inserts can be used universally on all base bodies.
  • Some embodiments are particularly user-friendly in that a tool configuration assistance system is provided to support an operator in selecting tool components for configuring the bending tool, wherein for each diameter of the semi-finished product from a predetermined group of different diameters from a working area of the bending machine, depending on the desired first radius and second radius, exactly an assigned first base body from a group with several first base bodies can be identified.
  • This operator assistance can be implemented in different ways. One possibility is to provide an operator with a table in paper form and/or electronically in which a user is shown the correct first base body to be selected depending on the desired diameter of the semi-finished product and the bending radii. It is also possible to integrate the tool configuration help system into the bending machine control.
  • the user can then enter the desired combination of bending radii and diameter on the control unit and receives a display showing the correct size of the first basic holder.
  • constellations of diameters of the semi-finished product and bending radii that cannot be selected or should not be selected, for example due to excessive forces or insufficient distances are clearly marked in the table or another form of representation of the tool configuration aid system, for example by a red marking in a table or a warning display on the control unit display unit.
  • the invention also relates to a method for setting up a bending head of a bending machine by attaching separate tool parts of a two-part bending tool to a first and a second tool carrier of the bending head.
  • the bending tool is a modular bending tool of the type described in this application. The tool components required to assemble the two-part bending tool can be found in the tool set.
  • the invention also relates to a method for configuring a two-part bending tool with a first and a second tool part for use on a bending head of a bending machine.
  • Tool components of the bending tool are selected in a suitable combination of tool components of the tool set and the bending tool is assembled with them.
  • FIG. 1 An exemplary embodiment of a wire forming machine in the form of a bending machine 100 for producing two-dimensional or three-dimensional bent parts made of wire 190 is shown.
  • the bending machine has a rectangular machine coordinate system MK, marked with lowercase letters x, y and z, with a vertical z-axis and horizontal x and y axes.
  • the x-axis runs parallel to a feed direction in which the material to be bent is fed to a downstream bending device 150 using a feed device 160.
  • the starting material to be formed (wire 190) is pulled through the bending machine using a feed device 160.
  • the feed device is used to feed the wire from a material supply.
  • the feed device can be designed, for example, as a roller feed or belt feed.
  • the retraction device is guided on guide rails running parallel to the x-direction and can be axially displaced parallel to the x-direction by means of a displacement drive (V-axis). This displaceability can also be omitted in other embodiments.
  • the wire Before the wire 190 enters the feed device, the wire passes a straightening unit, which in the example has a number of staggered rollers.
  • the feed device 160 is rotatable about the feed axis in both directions of rotation. This makes it easy to change between bending levels between individual bending operations.
  • a numerically controlled bending device 150 is provided to create bends on the wire 190 by forming. In the bending area, the wire is bent into the desired shape using a CNC-controlled bending head 200 of the bending device.
  • a CNC-controlled support table 180 can be provided to support longer sections of material during bending.
  • the components of the bending device 150 move away perpendicular to the x-direction in the bending head axis direction (Z axis) in order to be able to engage in the wire again after the bending plane has changed.
  • the Z axis has an angular offset to the z direction by approx. 20°.
  • the feed device 160 and the upstream straightening device are rotated using a servo motor on a corresponding machine axis (A-axis).
  • a cutting device 170 is mounted, which is intended to cut the finished bent part (after completion of all bending operations) and, if necessary, one or more twisting operations to be separated from the supplied material.
  • the diving movement using the Z-axis can also be provided to carry out the cut.
  • the bending head 200 of the bending device 150 is in Fig. 2 particularly easy to see.
  • the bending head 200 has two independently rotatable tool carriers.
  • the first tool carrier 210 can be rotated about the bending head axis 202 using a drive, not shown (for example a servo drive).
  • the first tool carrier 210 includes a rotatable shaft, sometimes referred to as a "mandrel shaft.”
  • a first tool holder 215 is designed such that a first tool part 300 of a two-part bending tool 500 can be accommodated therein in a rotationally fixed manner and with a defined axial position and fastened there.
  • the second tool carrier 220 is essentially formed by a hollow shaft, which can be rotated coaxially with the first tool carrier about the bending head axis 202 using a second drive (for example servo drive), not shown, and is sometimes also referred to as a “flexible shaft”.
  • the tool carriers can be rotated independently of one another in both directions of rotation around the bending head axis 202 indefinitely.
  • On the circumference of the second tool carrier 220 three second tool holders 225 are formed, which are arranged at a circumferential distance of 120° from one another.
  • Each of the second tool holders 225 is designed such that a second tool part 400 of the bending tool 500 can be accommodated therein in an axially and radially defined position and fastened there.
  • the second tool holders are eccentric to the bending head axis 202 at a radial distance from it and allow the second tool part 400 to move around the first tool part 300 on a circular path.
  • the first tool part 300 and the second tool part 400 are each constructed modularly from several tool components that are designed to fit one another and can be fastened to one another in a geometrically defined manner using fastening screws. Details are provided, among other things, in connection with the 3 and 4 explained in more detail.
  • the first tool part 300 has a first base body 310 made of tool steel, which has a circular cylindrical fastening section 313 at the lower end and an insert carrier section 315 formed in one piece with it at the upper part.
  • the longitudinal center axis of the cylindrical fastening section 313 defines the base body axis 312, which runs coaxially to the bending head axis 202 when the first tool part is installed.
  • two insert receptacles are formed on sides diametrically opposite the base body axis for receiving a tool insert, namely a first insert receptacle 320-1 and, diametrically opposite, a second insert receptacle 320-2.
  • the insert holders are each designed in the form of laterally or radially open milling pockets with a receiving cross-section that is essentially limited at right angles (cf. Fig. 4 ).
  • a first tool insert 330-1 is fastened in the first insert receptacle 320-1 by means of screws, while a second tool insert 330-2 is fastened in the second insert receptacle 320-2 by means of fastening screws.
  • the tool inserts each have an outer contour that matches the insert receptacles, so that the tool inserts can be inserted into the insert receptacles essentially without side play and with a defined radial position and fastened there with screws.
  • the two tool inserts 330-1, 330-2 of the first tool part 300 are particularly good Fig. 5A, Fig. 5B to recognize.
  • Each of the tool inserts is made in one piece from a piece of steel and essentially has a fastening section 312-1, 312-2, on the top of which a cylindrical engagement section (first engagement section 315-1, second engagement section 315-2) is formed.
  • the fastening sections each have a contour delimited by three flat surfaces, which fits into the insert holders without play, as well as a cylindrically curved outside to be attached radially on the outside, the radius of curvature of which corresponds to the radius of curvature of the upper part of the insert carrier section of the smallest base carrier. In this case, this ensures that when tool inserts are used, the upper part of the first tool part has a circular cylindrical outer contour with a radius R5 that is coaxial with the base body axis (cf. Fig. 4 ).
  • each of the tool inserts there is an upwardly projecting, circular cylindrical extension, which serves as an engagement section of the respective tool insert, with which the tool insert comes into engagement with the wire to be bent.
  • the attack sections 315-1, 315-2 have different radii (radiators) R1 and R2. Regardless of the radius of the attack sections, the attack sections are located in such a way that the radially outer areas are at a distance R5 from the base body axis, i.e. they touch a common tangent circle, the radius of which corresponds to the radius R5.
  • the second tool part 400 has a second base body 410, the cuboid lower section of which serves as a fastening section 413 in order to be able to fasten the second tool part in a rotationally fixed and axially precisely positioned manner in one of the second receptacles 225.
  • an insert carrier section 415 which is larger in cross section and also limited at right angles, in which a laterally open milling pocket is formed, which serves as a third insert holder 420-3 in order to be able to accommodate a third tool insert 430-3.
  • Fig. 6 shows a third tool insert 430-3 in a ready-to-use state.
  • This includes a base body 433 with a hole on the top.
  • a bending pin 415-3 is inserted into the hole using a press fit.
  • the base body has a substantially cuboid fastening section that fits exactly into the third insert receptacle 420-3.
  • the bending pin 415-3 is inserted on the top, which serves as the third engagement section 415-3 of the two-part bending tool and has an effective third radius R3.
  • the outer contour of the bending pin is concave to ensure a non-slip grip on the wire to be bent. In favorable cases, the concavity corresponds at least approximately to the radius of the semi-finished product to be processed.
  • the third radius R3 corresponds to the radius at the narrowest point. For reasons of stability, it should generally be at least as large as the diameter of the wire.
  • a rotatably mounted roller can also be used as a third attack section.
  • the top view in Fig. 4 shows particularly clearly the geometric relationships on the assembled bending tool.
  • the outer areas facing away from each other lie on a common circle with radius R5.
  • the third engagement section (bending pin) 415-3, with its side facing the bending head axis, has a distance A2 from the tangent circle with radius R5, so that in the collinear arrangement of the bending mandrels with the bending pin shown, there is a minimum distance A2 between the bending pin and the bending mandrel facing it (second Attack section 315-2) remains.
  • a tool set 700 for configuring differently sized two-part bending tools can have numerous first and second tool inserts, each of which has engagement sections (bending mandrels) with different effective radii R1 and R2, respectively.
  • Each of these tool inserts can be used either as a first tool insert or as a second tool insert
  • Tool insert can be used when assembling a first tool part 300.
  • Each of these tool inserts for the first tool part 300 can be inserted into each of the insert receptacles attached thereto and secured there. This means there are a variety of different radius combinations of R1 and R2.
  • initial tool parts in which the two effective radii R1 and R2 are identical. These can be assembled using two initial tool inserts of identical geometry, which can be part of a correspondingly equipped tool set.
  • the tool set 700 of the exemplary embodiment has three differently sized base bodies, which are shown schematically in Figures 7A, 7B and 7C are shown.
  • the base bodies each have identically dimensioned cylindrical fastening sections.
  • the insert holders 320-1, 320-2 are identically dimensioned to accommodate the first and second tool inserts.
  • the diametrical distance A4 between the insides of the insert receptacles 320-1, 320-2 increases from the smallest base body G1 to the largest base body G3, with this distance A4 in the middle base body G2 being approximately three times as large as in the smallest base body G1 and in the largest base body G3 is approximately five times larger than the smallest base body G1. Deviations from these proportions are of course possible.
  • the radii R5 of the cylindrical outer sides are also different sizes.
  • different second tool carriers are also provided in the tool set 700, in particular in three different sizes. These each have identical fastening sections, but the insert support sections are dimensioned differently in such a way that when the third tool insert is inserted, the radial distance to the bending head axis or to the outer tangent circle of the base body selected is different.
  • the distance A5 between the outer diameter of the base bodies (or the tangent circle of the outer sides of the bending mandrels attached to them) and the rear (removed) edge of the respective third insert holders 420-3 is identical, so that the same third tool inserts 430-3 are in all base bodies. 3 can be used.
  • the different dimensions of the first and second base bodies and the tool inserts are adapted to one another in such a way that suitable combinations of selected tool components for a finely graded number Different wire diameters from the working area of the bending machine fit one of the base bodies in order to configure a two-part bending tool in combination with the bending mandrels required for the desired bending radii.
  • a tool configuration help system 800 which makes it easier for an inexperienced operator to select the correct components.
  • Fig. 8 An example of a tool configuration assistance system 800 is shown schematically in the form of a table. An operator therefore only needs to know which wire diameter DD the bent part is to be produced with.
  • the table contains numerous possible wire diameters d 1 , d 2 , d 3 etc. from the working area of the bending machine in close gradation on its y-axis.
  • the graduation can be selected according to the requirements, for example in steps of 1/10 mm.
  • the operator should know which bending radii should be created on the bent part.
  • the radius (radiator) of the attack section (bending mandrel) around which the bend is made determines the bending radius of a bend.
  • a first tool part can thus be prepared for two different bending radii at the same time.
  • the operator is given a size G1, G2 or G3 of the first base body using table 800.
  • the table automatically takes into account the aim of keeping the distance between the two bending mandrels (first and second attack sections) as small as possible by using the smallest possible base holder in order to be able to achieve the smallest possible distance between two consecutive bends along the wire if necessary.
  • it is still ensured that a minimum distance between permitted combinations of at least twice the wire diameter DD is not exceeded, otherwise the force on the bending mandrels can become too high and there is a risk of breakage.
  • the wire diameter DD as an input size also determines the smallest bending radius that can be selected.
  • the table is designed so that the radius (radius) of the bending mandrel around which the bend is to be made corresponds to at least half of the wire diameter in order to ensure sufficient security against breakage of the bending mandrel.
  • the ranges permitted for the base bodies G1, G2 and G3 depending on the wire diameter and the sum of the bending radii are shown in the table Fig. 8 in shown in different shades of gray. A lower left area of the table is hatched. The value combinations in this range are not recommended for the tool set.
  • tool sets can be used depending on the work area of the bending machines they use. For example, tool sets with just two differently sized basic holders can be sufficient. According to the inventors' experience, with three differently sized base holders, most of the practically relevant cases can be covered with a suitable staggering of the base holder sizes.
  • the invention is not limited to the bending of round wire (wire with a round cross-section).
  • Modular two-part bending tools of the type described here can also be used, if necessary with slight modifications, for bending semi-finished products (wire or pipe) with other cross-sectional profiles, so that, for example, polygonal cross-sections, such as flat wire, can also be bent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Claims (14)

  1. Ensemble d'outil (700) avec une pluralité de composants d'outil pour configurer des outils de cintrage en deux parties (500) de différentes géométries actives à utiliser dans une tête de cintrage (200) d'une machine de cintrage (100),
    la tête de cintrage (200) présentant un premier porte-outil (210) et un deuxième porte-outil (220), le premier porte-outil (210) pouvant être tourné autour d'un axe de tête de cintrage (202) au moyen d'un premier entraînement et présentant un premier logement d'outil (215) pour recevoir une première partie d'outil (300) d'un outil de cintrage (500) et le deuxième porte-outil (310) pouvant être tourné autour de l'axe de tête de cintrage (202) au moyen d'un deuxième entraînement par rapport au premier porte-outil et présentant un deuxième logement d'outil (225) agencé de manière excentrée par rapport à l'axe de tête de cintrage pour recevoir une deuxième partie d'outil (400) de l'outil de cintrage ; l'ensemble d'outil (700) comprenant :
    au moins un premier corps de base (310) qui présente une section de fixation (313) adaptée au premier logement d'outil et un axe de corps de base (312) qui, lorsque le premier corps de base est fixé dans le premier logement d'outil, s'étend coaxialement à l'axe de tête de cintrage (202), le premier corps de base (310) présentant en outre une section de support d'insert (315) sur laquelle sont réalisés, de manière excentrée par rapport à l'axe de corps de base (312), un premier logement d'insert (320-1) pour recevoir un premier insert d'outil (330-1) et, décalé angulairement par rapport à celui-ci, un deuxième logement d'insert (320-2) pour recevoir un deuxième insert d'outil (330-2) ;
    au moins un deuxième corps de base (410), qui présente une section de fixation (413) adaptée au deuxième logement d'outil (225) et une section de support d'insert (415), sur laquelle est réalisé un troisième logement d'insert (420-3) pour recevoir un troisième insert d'outil (430-3) ;
    au moins trois inserts d'outil (330-1, 330-2, 430-3), chacun présentant une section de fixation pour fixer l'insert d'outil à l'un des logements d'insert et une section d'engagement (315-1, 315-2, 415-3) avec une surface périphérique pour engager un fil ou un tube à cintrer, la surface périphérique présentant un rayon effectif (R1, R2, R3) par rapport à un axe de section d'engagement.
  2. Ensemble d'outil selon la revendication 1, caractérisé en ce que le premier logement d'insert (320-1) et le deuxième logement d'insert (320-2) sont agencés sur des côtés diamétralement opposés de la section de support d'insert (315).
  3. Ensemble d'outil selon la revendication 1 ou 2, caractérisé en ce que le premier logement d'insert (320-1) et le deuxième logement d'insert (320-2) sont réalisés sous forme d'évidements de logement ouverts vers le côté extérieur radial.
  4. Ensemble d'outil selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier logement d'insert (320-1) et le deuxième logement d'insert (320-2) sont conçus sous forme identique, de telle sorte que chaque premier ou deuxième insert d'outil peut être reçu dans chaque logement d'insert.
  5. Ensemble d'outil selon l'une quelconque des revendications précédentes, caractérisé en ce que les premier et deuxième inserts d'outil (330-1, 330-2) sont incompatibles avec le troisième logement d'insert (420-3) et en ce que chaque troisième insert d'outil (430-3) est incompatible avec le premier logement d'insert (320-1) et le deuxième logement d'insert (320-2).
  6. Ensemble d'outil selon l'une quelconque des revendications précédentes, caractérisé en ce que les premier et deuxième inserts d'outil (330-1, 330-2) sont adaptés à la section de support d'insert (315) et aux premier et deuxième logements d'insert (320-1, 320-2) de telle sorte qu'une zone radialement extérieure de la surface périphérique de chaque section d'engagement (315-1, 315-2) présente toujours la même distance radiale par rapport à l'axe de corps de base (312), indépendamment du rayon effectif de la section d'engagement, lorsqu'un insert d'outil est fixé dans un logement d'insert.
  7. Ensemble d'outil selon l'une quelconque des revendications précédentes, caractérisé en ce que les premier et deuxième inserts d'outil (330-1, 330-2) sont adaptés à la section de support d'insert (315) et aux premier et deuxième logements d'insert (320-1, 320-2) de telle sorte que des surfaces extérieures radiales de la section de support d'insert et des inserts d'outil insérés se complètent pour former une surface extérieure essentiellement cylindrique circulaire.
  8. Ensemble d'outil selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ensemble d'outil (700) présente exactement trois premiers corps de base (G1, G2, G3) de dimensions différentes et/ou en ce que l'ensemble d'outil (700) présente exactement trois deuxièmes corps de base (410) de dimensions différentes.
  9. Ensemble d'outil selon l'une quelconque des revendications précédentes, caractérisé par un système d'aide à la configuration d'outil (800) pour aider un opérateur à sélectionner des composants d'outil pour configurer l'outil de cintrage ; pour chaque diamètre (DD) d'un groupe prédéterminé de différents diamètres provenant d'une zone de travail de la machine de cintrage, en fonction du premier rayon (R1) et du deuxième rayon (R2) souhaités, exactement un premier corps de base (G1, G2, G3) associé pouvant être identifié dans un groupe comprenant plusieurs premiers corps de base.
  10. Ensemble d'outil selon l'une quelconque des revendications précédentes, caractérisé en ce qu'en fonction du diamètre DD du fil ou du tube, les corps de base (G1, G2, G3) et les inserts d'outil sont adaptés les uns aux autres de telle sorte qu'à l'état monté
    une première distance libre A1 entre les surfaces périphériques de la première et de la deuxième section d'engagement correspond au moins à deux fois le diamètre DD ;
    une deuxième distance libre A2 entre un cercle extérieur tangent à la première et à la deuxième section d'engagement et la surface périphérique de la troisième section d'engagement est supérieure au diamètre du fil ; et
    le rayon R1 de la première section d'engagement et le rayon R2 de la deuxième section d'engagement sont chacun au moins la moitié du diamètre DD.
  11. Outil de cintrage en deux parties (500) avec une première partie d'outil (300) et une deuxième partie d'outil séparée (400) à utiliser dans une tête de cintrage (200) d'une machine de cintrage (100),
    la tête de cintrage (200) présentant un premier porte-outil (210) et un deuxième porte-outil (220), le premier porte-outil (210) pouvant être tourné autour d'un axe de tête de cintrage (202) au moyen d'un premier entraînement et présentant un premier logement d'outil (215) pour recevoir une première partie d'outil (300) d'un outil de cintrage (500) et le deuxième porte-outil (310) pouvant être tourné autour de l'axe de tête de cintrage (202) au moyen d'un deuxième entraînement par rapport au premier porte-outil et présentant un deuxième logement d'outil (225) agencé de manière excentrée par rapport à l'axe de tête de cintrage pour recevoir une deuxième partie d'outil (400) de l'outil de cintrage ;
    la première partie d'outil (300) étant réalisée pour être fixée dans le premier logement d'outil (215) et présentant, sur un côté supérieur, deux sections d'engagement (315-1, 315-2) pour engager des côtés opposés d'un fil à cintrer, et
    la deuxième partie d'outil (400) étant réalisée pour être fixée dans le deuxième logement d'outil et présentant, sur un côté supérieur, une section d'engagement (415-3) pour engager un fil à cintrer,
    caractérisé en ce que
    la première partie d'outil (300) présente un premier corps de base (310) qui présente une section de fixation (313) adaptée au premier logement d'outil et un axe de corps de base (312) qui, lorsque le premier corps de base est fixé dans le premier logement d'outil, s'étend coaxialement à l'axe de tête de cintrage (202), le premier corps de base présentant en outre une section de support d'insert (315) sur laquelle sont réalisés, de manière excentrée par rapport à l'axe de corps de base, un premier logement d'insert (320-1) pour recevoir un premier insert d'outil (330-1) et, décalé angulairement par rapport à celui-ci, un deuxième logement d'insert (320-2) pour recevoir un deuxième insert d'outil (330-2) ;
    la deuxième partie d'outil (400) présentant un deuxième corps de base (410) qui présente une section de fixation (413) adaptée au deuxième logement d'outil (225) et une section de support d'insert (415) sur laquelle est réalisé un troisième logement d'insert (420-3) pour recevoir un troisième insert d'outil (430-3) ;
    un premier insert d'outil (330-1) étant fixé dans ledit premier logement d'insert (320-1), lequel insert d'outil présentant une première section d'engagement (315-1) avec une surface périphérique pour engager le fil ou le tube à cintrer, la surface périphérique présentant un premier rayon effectif (R1) par rapport à un premier axe de section d'engagement ;
    un deuxième insert d'outil (330-2) étant fixé dans le deuxième logement d'insert (320-2), lequel deuxième insert d'outil présentant une deuxième section d'engagement (315-2) avec une surface périphérique pour engager le fil ou le tube à cintrer, la surface périphérique présentant un deuxième rayon effectif (R2) par rapport à un deuxième axe de section d'engagement ;
    un troisième insert d'outil (430-3) étant fixé dans le troisième logement d'insert (420-3), lequel troisième insert d'outil présentant une troisième section d'engagement (415-3) avec une surface périphérique pour engager le fil ou le tube à cintrer, la surface périphérique présentant un troisième rayon effectif (R3) par rapport à un troisième axe de section d'engagement.
  12. Outil de cintrage selon la revendication 11, caractérisé en ce que l'outil de cintrage (500) est conçu pour cintrer un fil ou un tube d'un diamètre DD et en ce que les corps de base et les inserts d'outil sont adaptés les uns aux autres de telle sorte qu'à l'état monté
    une première distance libre Al entre les surfaces périphériques de la première et de la deuxième section d'engagement (315-1, 315-2) correspond à au moins deux fois le diamètre DD ;
    une deuxième distance libre A2 entre un cercle extérieur tangent à la première et à la deuxième section d'engagement (315-1, 315-2) et la surface périphérique de la troisième section d'engagement (415-3) est supérieure au diamètre DD ; et
    le rayon R1 de la première section d'engagement (315-1) et le rayon R2 de la deuxième section d'engagement (315-2) sont chacun au moins la moitié du diamètre DD.
  13. Procédé pour monter une tête de cintrage (200) d'une machine de cintrage (100) en fixant des parties d'outil séparées d'un outil de cintrage en deux parties (500) à un premier support d'outil (210) et à un deuxième support d'outil (220) de la tête de cintrage ; pour configurer l'outil de cintrage en deux parties (500), des composants d'outil provenant d'un ensemble d'outil selon l'une quelconque des revendications 1 à 10 étant utilisés.
  14. Procédé pour configurer un outil de cintrage en deux parties (500) avec une première partie d'outil (300) et une deuxième partie d'outil (400) à utiliser sur une tête de cintrage (200) d'une machine de cintrage (100),
    des composants d'outil de l'outil de cintrage (500) étant sélectionnés dans une combinaison appropriée de composants d'outil de l'ensemble d'outil selon l'une quelconque des revendications 1 à 10, et l'outil de cintrage étant assemblé avec les composants d'outil sélectionnés.
EP21169811.3A 2020-05-08 2021-04-22 Ensemble d'outils pourvu de composants d'outil permettant de configurer des outils de cintrage Active EP3907016B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020205845.8A DE102020205845A1 (de) 2020-05-08 2020-05-08 Werkzeugset mit Werkzeugkomponenten zum Konfigurieren von Biegewerkzeugen

Publications (2)

Publication Number Publication Date
EP3907016A1 EP3907016A1 (fr) 2021-11-10
EP3907016B1 true EP3907016B1 (fr) 2024-03-06

Family

ID=75639756

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21169811.3A Active EP3907016B1 (fr) 2020-05-08 2021-04-22 Ensemble d'outils pourvu de composants d'outil permettant de configurer des outils de cintrage

Country Status (2)

Country Link
EP (1) EP3907016B1 (fr)
DE (1) DE102020205845A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2626202C2 (de) 1976-06-11 1992-10-29 Rigobert Dipl.-Ing. 5000 Köln Schwarze Rohrbiegemaschine
US8631674B2 (en) * 2008-12-17 2014-01-21 Aim, Inc. Devices, systems and methods for automated wire bending
ATE495837T1 (de) 2009-02-26 2011-02-15 Wafios Ag Werkzeugbausatz zum ausbilden von an einer werkzeugeinheit einer biegemaschine ankoppelbaren biegewerkzeugen zum biegen oder wickeln strangförmiger werkstücke
DE202017002608U1 (de) 2017-05-05 2017-07-13 Wafios Aktiengesellschaft Werkzeugset mit Werkzeugkomponenten zum Konfigurieren von Biegewerkzeugen

Also Published As

Publication number Publication date
EP3907016A1 (fr) 2021-11-10
DE102020205845A1 (de) 2021-11-11

Similar Documents

Publication Publication Date Title
DE102006049044B4 (de) Werkzeug zum Schneiden von plattenartigen Werkstücken
AT506486A1 (de) Aufspannvorrichtung für eine rechnergesteuerte, spanabhebende bearbeitungsmaschine
EP2712702B1 (fr) Dispositif de finition de bande, système de finition de bande et procédé de fabrication d'un dispositif de finition de bande
AT397053B (de) Blechbiegemaschine
DE102005018655A1 (de) Spannvorrichtung
DE102018108632A1 (de) Vorrichtung zur Anfasbearbeitung eines Werkstücks
EP3375555A1 (fr) Procédé de traitement des flancs de dent de pièces de roue dentée conique
DE10322762B4 (de) Halter für einen Rohling und Verfahren zur Vermessung der Lage und Orientierung des Halters
DE4137451C2 (de) Verfahren und Vorrichtung zum Einstellen von drei, eine gemeinsame Kaliberöffnung bildende Walzen oder Führungsrollen
EP3907016B1 (fr) Ensemble d'outils pourvu de composants d'outil permettant de configurer des outils de cintrage
EP3401036B1 (fr) Ensemble d'outils à composants d'outil permettant de configurer des outils de cintrage
DE951845C (de) Kopereinrichtung fuer Werkzeugmaschinen, insbesondere fuer Nachformdrehbaenke
DE202007018838U1 (de) Werkzeugmaschine und Bearbeitungswerkzeug für eine Werkzeugmaschine
DE19534077A1 (de) Vorrichtung und Verfahren zum Formen eines Federschuhs
DE3734734A1 (de) Nachlaufsetzstock fuer schleifmaschinen
EP2698218A1 (fr) Outil, gabarit, cassette et procédé destinés à canneler un cylindre
WO2011089190A1 (fr) Procédé et dispositif de production de structures de doigt
EP0549821B1 (fr) Procédé pour opérer le pierrage de forages et tête de pierrage pour la mise en oeuvre du procédé
DE102018114138A1 (de) Tieflochbohrer mit mehreren Spanformern und Mulden in der Spanfläche
DE102013106628A1 (de) Verfahren zur Herstellung eines Presswerkzeuges
EP0489708B1 (fr) Dispositif de meulage
LU101236B1 (de) Verfahren zur Herstellung eines Bauteils für den Werkzeugbau und Haltewerkzeug zur Halterung eines Rohlings und eines Bauteils
DE102017129651A1 (de) Verfahren zur Verzahnbearbeitung eines Werkstücks
DE102010031607C5 (de) Gleitflächenbearbeitung einer elastisch verformten Gleitlagerschale
DE69726857T2 (de) Maschine zur herstellung von mit schlitzen versehenen bauteilen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20211001

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GRIFFIN, JOHN

Inventor name: HACKER, FRANK

Inventor name: SCHOENFELD, RAINER

Inventor name: LAAB, TIMO

Inventor name: EISSLER, MICHAEL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220323

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231004

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002861

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN