EP3899281B1 - Drive device for a motor vehicle - Google Patents

Drive device for a motor vehicle Download PDF

Info

Publication number
EP3899281B1
EP3899281B1 EP19816301.6A EP19816301A EP3899281B1 EP 3899281 B1 EP3899281 B1 EP 3899281B1 EP 19816301 A EP19816301 A EP 19816301A EP 3899281 B1 EP3899281 B1 EP 3899281B1
Authority
EP
European Patent Office
Prior art keywords
coolant
spindle
drive
pump
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19816301.6A
Other languages
German (de)
French (fr)
Other versions
EP3899281A1 (en
Inventor
Thomas Hoffmann
Sebastian Wawersig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of EP3899281A1 publication Critical patent/EP3899281A1/en
Application granted granted Critical
Publication of EP3899281B1 publication Critical patent/EP3899281B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/16Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/24Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating

Definitions

  • the invention relates to a drive device for a motor vehicle, having at least one drive unit and a coolant circuit for controlling the temperature of the at least one drive unit, with at least one coolant pump for circulating an aqueous coolant in the coolant circuit being arranged in the coolant circuit.
  • the object of the invention is to propose a drive device for a motor vehicle which has advantages over known drive devices, in particular enables the coolant circuit to be adapted quickly to an operating point of the drive unit, has a very high degree of efficiency and is also characterized by very good acoustic behavior.
  • the coolant pump is designed as a screw pump.
  • the drive device is used to drive the motor vehicle, ie to provide a drive torque aimed at driving the motor vehicle.
  • the drive torque is generated with the aid of the drive unit, the drive unit being designed, for example, as an internal combustion engine or—preferably—as an electric machine or having one.
  • the drive unit can additionally or alternatively have a fuel cell.
  • the drive assembly is a heat-generating drive assembly, so that during operation of the drive device, heat accumulates in or on the drive assembly, which heat has to be dissipated by it.
  • a dissipation of the heat can also be provided additionally or alternatively. If both the dissipation and the supply of heat are intended, this can be referred to as tempering. If heat is dissipated in the context of this description, this always represents the dissipation and/or supply of heat or, generally speaking, temperature control.
  • the temperature control of the heat takes place in particular in such a way that a temperature of the drive unit adjusts to an operating temperature of the drive unit or falls below this.
  • the temperature of the drive unit is preferably regulated to its operating temperature.
  • the heat is removed and/or supplied with the aid of the coolant circuit or by means of the coolant present in the coolant circuit, which coolant contains water.
  • the coolant circuit is preferably adjusted in such a way that it provides a cooling capacity for cooling the drive unit, which keeps the temperature of the drive unit at or below the operating temperature.
  • the cooling capacity of the coolant circuit is brought about by adjusting the coolant pump, for example by adjusting the speed of the coolant pump. je the higher the speed of the coolant pump, the greater the coolant volume flow that is circulated in the coolant circuit.
  • the cooling capacity of the coolant circuit usually increases with the speed of the coolant pump, at least when the boundary conditions remain the same. If the cooling capacity is mentioned in this description, it should be pointed out that this term means the capacity of the coolant circuit, regardless of whether it is used to remove or supply heat. Instead of the term cooling capacity, one can speak more generally of temperature control capacity.
  • the coolant pump should be in the form of a screw pump.
  • a screw pump works according to the positive displacement principle or is present as a positive displacement pump.
  • a high level of dynamics in the coolant circuit is achieved. This means that the coolant circuit can be adjusted much more quickly to a changed operating point of the drive unit by changing the speed of the coolant pump than is the case with other types of pumps.
  • screw pump offers a higher degree of efficiency compared to other pump types and has very good acoustic behavior.
  • Screw pumps have not heretofore been used as coolant pumps, among other reasons because they have weaknesses in the normal operating ranges of normal driving devices. For example, screw pumps are less suitable for high volume flows and low back pressures, such as those that occur in coolant circuits in internal combustion engines. For this reason, centrifugal pumps have mainly been used up to now.
  • Coolant pump is in JP2002 129958 shown.
  • the screw pump is also excellently suited for circulating the aqueous coolant at the same time, the advantages mentioned can be realized compared to other types of pumps.
  • the screw pump also has the advantage that the direction of flow can be reversed without further ado. Provision can therefore be made for the screw pump to be operated at times with a first flow direction or delivery direction and at times with a second flow direction or delivery direction opposite to the first flow direction.
  • the reversal of the direction of flow is achieved in a simple manner, for example, by reversing the direction of rotation.
  • the coolant circuit described can only be used once within the scope of the drive device, but can be used several times.
  • the drive device therefore has either exactly one coolant circuit as described, or alternatively several.
  • the several coolant circuits can be used to cool different drive units. It is also possible that one of the coolant circuits is used to cool the drive unit and at least one other of the coolant circuits is used to cool an additional unit which is necessary for the operation of the drive unit.
  • the drive unit is an electric machine
  • the additional unit can be in the form of a fuel cell, energy store, voltage converter, control unit, inverter, in particular a pulse-controlled inverter or the like, which are electrically connected to the electric machine and serve to operate it.
  • a further embodiment of the invention provides that the coolant pump has a drive spindle coupled to a drive and at least one idler spindle interacting with the drive spindle to circulate the coolant.
  • the drive spindle is coupled to the drive, for example, rigidly and permanently or switchable via a clutch.
  • the drive unit itself serves as the drive, for example, with the drive spindle being mechanically coupled or at least capable of being coupled to the drive unit.
  • the drive spindle can be coupled to an electric motor, preferably rigidly and permanently, which also represents the drive or is present in addition to it.
  • the drive spindle meshes with the at least one idler spindle to circulate the coolant.
  • a single running spindle is part of the screw pump.
  • at least two running spindles can be present, which are arranged, for example, on opposite sides of the drive spindle and each mesh with it.
  • the axes of rotation of the plurality of idler spindles and the drive spindle preferably lie in a common plane.
  • the drive unit has at least one of the following devices or is designed as such: internal combustion engine, electric machine and fuel cell.
  • the drive assembly serves to provide the drive torque, either directly or indirectly.
  • the direct provision can take place, for example, using the internal combustion engine or the electric machine, whereas the indirect provision can take place using the fuel cell.
  • electrical energy is preferably provided with the aid of the fuel cell, which energy is then used to operate an electrical machine in order to generate the drive torque.
  • the drive unit can include both the electric machine and the fuel cell.
  • An embodiment of the drive unit, in which both the internal combustion engine and the electric machine are present, is conceivable.
  • the drive unit is in the form of a hybrid drive unit. Such a configuration of the drive device can be used extremely flexibly.
  • the coolant circuit can also be used for cooling or tempering at least one or more of the following devices: energy store, in particular high-voltage battery, voltage converter, control unit and inverter, in particular pulse-controlled inverter. Additionally or alternatively, the coolant circuit can be used to cool charge air.
  • the coolant pump has an outlet pressure of at most 10 bar, at most 7.5 bar or at most 5 bar.
  • the outlet pressure is to be understood as that pressure which is present at a coolant outlet of the coolant pump.
  • the outlet pressure corresponds to the pressure on a pressure side of the coolant pump.
  • the outlet pressure is preferably the highest pressure present in the coolant circuit.
  • the coolant pump is provided and designed for a comparatively low outlet pressure.
  • the outlet pressure should be no more than 10 bar or less.
  • the starting pressure is particularly preferably less than 5 bar, for example at most 4 bar or at most 3 bar.
  • An outlet pressure of at most 2.5 bar or at most 2 bar can also be provided.
  • outlet pressure is at least 1.5 bar, at least 2 bar or more.
  • At least one or precisely one of the following spindles has a coating: drive spindle and idler spindle.
  • the drive spindle and/or the idler spindle have the coating to ensure a long service life of the screw spindle pump. It can be provided that several of the spindles or all of the spindles each have the coating. However, the coating is particularly preferably applied to only part of the spindles, in particular to exactly one of the spindles. If there is only exactly one idler spindle, the coating can be present either on the drive spindle or on the idler spindle. If, on the other hand, several running spindles are provided, then preferably only the drive spindle has the coating.
  • the coating is particularly preferably designed in such a way that it is transferred from the spindle having the coating to the other spindle or the other spindles during operation of the coolant pump.
  • the coating is thus delivered from the spindle having the coating to the other spindle or the other spindles.
  • the coating can be transferred from the respective spindle to a housing of the coolant pump. Providing the coating for only part of the spindles or precisely one of the spindles prevents the spindles from jamming with one another and/or with the housing, which could otherwise occur due to narrow tolerances.
  • the coating can be used to create an extremely durable screw pump that is well protected against corrosion.
  • a further embodiment of the invention provides that the coating is applied to a base body of the spindle in such a way that the spindle is designed with a transition fit or clearance fit to a housing of the coolant pump in which the spindle is rotatably mounted.
  • the spindle has both the base body and the coating applied to the base body.
  • the base body is designed with undersize or with a transition fit to the housing.
  • the coating is applied to the base body in such a way that the spindle as a whole is still present with a transition fit or clearance fit to the housing.
  • the spindle in particular the coating
  • the coating is particularly preferably applied to the base body with such a thickness or layer thickness that at least part of the coating remains on the base body after the spindle has run in.
  • an embodiment of the base body with undersize to the housing is particularly preferred.
  • the coating is preferably applied to the base body with a small tolerance, in particular with regard to roundness and cylindrical shape. Additionally or alternatively, it can have a very small layer thickness, in particular a layer thickness of at most 10 ⁇ m, at most 1 ⁇ m or less. Due to the abrasion of the coating during the running-in of the coolant pump, particularly small tolerances of the coolant pump and thus a particularly high efficiency or delivery capacity are achieved.
  • a further preferred embodiment of the invention provides that the base body consists of plastic or metal or has plastic or metal.
  • the base body can consist of either plastic or metal throughout. However, it can also be provided that it only has plastic or metal or contains it. In this case, for example, the main body consists predominantly, that is to say more than 50%, of the plastic or metal.
  • an embodiment of the base body made of plastic is particularly preferred. Basically, a corrosion-resistant material is preferred, which is permanently resistant to the coolant.
  • a corrosion-resistant material is also preferably used for the housing, for example the same material as for the base body. Of course, however, the housing can be made of a different material.
  • the coating consists of carbon or has carbon.
  • the coating is in the form of amorphous carbon, especially diamond-like carbon (DLC).
  • DLC diamond-like carbon
  • the coating is particularly preferred applied to the base body by gas phase deposition.
  • the carbon coating enables the coolant pump to have a particularly long service life.
  • the coating reduces friction, resulting in higher efficiency.
  • a further embodiment of the invention provides that the coolant mainly contains water.
  • the coolant consists of at least 50% water.
  • the proportion of water in the coolant is particularly preferably at least 90% or at least 99%.
  • the remainder of the coolant is preferably composed of at least one additive and unavoidable impurities, with the impurities accounting for at most 1% of the coolant.
  • Water is characterized by a particularly high heat capacity and thus a particularly high cooling effect.
  • At least one additive in particular glycol, is added to the water.
  • the additive serves in particular to lubricate the coolant pump, to make the coolant frost-proof and/or to provide protection against corrosion.
  • the figure shows a very schematic representation of a drive device 1 for a motor vehicle.
  • the drive device 1 has a drive unit 2, to which a coolant circuit 3 is assigned for its temperature control.
  • the coolant circuit 3 has a cooler 4, i.e. ultimately a heat exchanger, and a coolant pump 5 for circulating an aqueous coolant in the coolant circuit 3.
  • the coolant pump 5 is designed as a screw pump within the scope of the drive devices 1 shown here.
  • Such a pump has numerous advantages compared to other pump types, in particular it works according to the displacement principle, so that a high dynamic of the coolant circuit 3 can be realized. In addition, it has a very high degree of efficiency and extremely good acoustic behavior. Surprisingly, these advantages can also be realized within the framework of the coolant circuit 3 presented here. Up to now, screw pumps have not been used for such coolant circuits 3 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft eine Antriebseinrichtung für ein Kraftfahrzeug, mit wenigstens einem Antriebsaggregat und einem Kühlmittelkreislauf zur Temperierung des wenigstens einen Antriebsaggregats, wobei in dem Kühlmittelkreislauf wenigstens eine Kühlmittelpumpe zur Umwälzung eines wasserhaltigen Kühlmittels in dem Kühlmittelkreislauf angeordnet ist.The invention relates to a drive device for a motor vehicle, having at least one drive unit and a coolant circuit for controlling the temperature of the at least one drive unit, with at least one coolant pump for circulating an aqueous coolant in the coolant circuit being arranged in the coolant circuit.

Aus dem Stand der Technik ist beispielsweise die Druckschrift DE 10 2010 011 477 A1 bekannt. Diese betrifft eine Brennkraftmaschine mit Trockensumpfschmierung, die ein Zylinderkurbelgehäuse und eine von der Brennkraftmaschine angetriebene Ölpumpe mit mindestens einer Saugpumpenstufe und einer Druckpumpenstufe umfasst, wobei die mindestens eine Saugpumpenstufe und die Druckpumpenstufe innerhalb des Zylinderkurbelgehäuses in einem gemeinsamen Pumpengehäuse angeordnet sind. Um das Gewicht der Ölpumpe zu verringern, wird vorgeschlagen, dass das Pumpengehäuse ein integraler Teil einer Ölwanne oder eines Unterteil des Zylinderkurbelgehäuses ist.From the prior art, for example, the publication DE 10 2010 011 477 A1 known. This relates to an internal combustion engine with dry sump lubrication, which includes a cylinder crankcase and an oil pump driven by the internal combustion engine with at least one suction pump stage and one pressure pump stage, the at least one suction pump stage and the pressure pump stage being arranged inside the cylinder crankcase in a common pump housing. In order to reduce the weight of the oil pump, it is proposed that the pump housing is an integral part of an oil pan or a lower part of the engine block.

Es ist Aufgabe der Erfindung, eine Antriebseinrichtung für ein Kraftfahrzeug vorzuschlagen, welche gegenüber bekannten Antriebseinrichtungen Vorteile aufweist, insbesondere ein rasches Anpassen des Kühlmittelkreislaufs an einen Betriebspunkt des Antriebsaggregats ermöglicht, einen sehr hohen Wirkungsgrad aufweist und sich zu dem durch ein sehr gutes akustisches Verhalten auszeichnet.The object of the invention is to propose a drive device for a motor vehicle which has advantages over known drive devices, in particular enables the coolant circuit to be adapted quickly to an operating point of the drive unit, has a very high degree of efficiency and is also characterized by very good acoustic behavior.

Dies führt erfindungsgemäß mit einer Antriebseinrichtung für ein Kraftfahrzeug mit den Merkmalen des Anspruchs 1 erreicht. Dabei ist vorgesehen, dass die Kühlmittelpumpe als Schraubenspindelpumpe ausgestaltet ist.According to the invention, this is achieved with a drive device for a motor vehicle having the features of claim 1 . It is provided that the coolant pump is designed as a screw pump.

Die Antriebseinrichtung dient dem Antreiben des Kraftfahrzeugs, insoweit also dem Bereitstellen eines auf das Antreiben des Kraftfahrzeugs gerichteten Antriebsdrehmoments. Das Antriebsdrehmoment wird mit Hilfe des Antriebsaggregats erzeugt, wobei das Antriebsaggregat beispielsweise als Brennkraftmaschine oder - bevorzugt - als elektrische Maschine ausgestaltet ist oder eine solche aufweist. Das Antriebsaggregat kann zusätzlich oder alternativ eine Brennstoffzelle aufweisen. In jedem Fall ist das Antriebsaggregat ein wärmeerzeugendes Antriebsaggregat, sodass während eines Betriebs der Antriebseinrichtung in beziehungsweise an dem Antriebsaggregat Wärme anfällt, welche von diesem abgeführt werden muss.The drive device is used to drive the motor vehicle, ie to provide a drive torque aimed at driving the motor vehicle. The drive torque is generated with the aid of the drive unit, the drive unit being designed, for example, as an internal combustion engine or—preferably—as an electric machine or having one. The drive unit can additionally or alternatively have a fuel cell. In any case, the drive assembly is a heat-generating drive assembly, so that during operation of the drive device, heat accumulates in or on the drive assembly, which heat has to be dissipated by it.

Auch ein Abführen der Wärme kann zusätzlich oder alternativ vorgesehen sein. Ist sowohl das Abführen als auch das Zuführen von Wärme vorgesehen, so kann dies als Temperieren bezeichnet werden. Sofern im Rahmen dieser Beschreibung von einem Abführen von Wärme gesprochen wird, so steht dies stets stellvertretend für ein Abführen und/oder Zuführen von Wärme oder allgemein gesprochen für ein Temperieren. Das Temperieren der Wärme erfolgt insbesondere derart, dass sich eine Temperatur des Antriebsaggregats auf eine Betriebstemperatur des Antriebsaggregats einstellt oder diese unterschreitet. Bevorzugt wird die Temperatur des Antriebsaggregats auf seine Betriebstemperatur geregelt.A dissipation of the heat can also be provided additionally or alternatively. If both the dissipation and the supply of heat are intended, this can be referred to as tempering. If heat is dissipated in the context of this description, this always represents the dissipation and/or supply of heat or, generally speaking, temperature control. The temperature control of the heat takes place in particular in such a way that a temperature of the drive unit adjusts to an operating temperature of the drive unit or falls below this. The temperature of the drive unit is preferably regulated to its operating temperature.

Das Abführen und/oder Zuführen der Wärme erfolgt mithilfe des Kühlmittelkreislaufs beziehungsweise mittels des in dem Kühlmittelkreislauf vorliegenden Kühlmittels, welches wasserhaltig ist. Vorzugsweise wird der Kühlmittelkreislauf derart eingestellt, dass er eine Kühlleistung zur Kühlung des Antriebsaggregats bereitstellt, die die Temperatur des Antriebsaggregats auf oder unter der Betriebstemperatur hält. Beispielsweise wird die Kühlleistung des Kühlmittelkreislaufs durch ein Einstellen der Kühlmittelpumpe bewirkt, beispielsweise durch ein Einstellen der Drehzahl der Kühlmittelpumpe. Je höher die Drehzahl der Kühlmittelpumpe ist, umso größer ist der Kühlmittelvolumenstrom, der in dem Kühlmittelkreislauf umgewälzt wird. Entsprechend steigt mit der Drehzahl der Kühlmittelpumpe üblicherweise die Kühlleistung des Kühlmittelkreislaufs, zumindest bei gleichbleibenden Randbedingungen. Sofern im Rahmen dieser Beschreibung von der Kühlleistung gesprochen wird, so sei darauf hingewiesen, dass unter diesem Begriff die Leistung des Kühlmittelkreislaufs verstanden wird, unabhängig davon, ob er zum Abführen oder Zuführen von Wärme verwendet wird. Anstelle des Begriffs Kühlleistung kann insoweit allgemeiner von Temperierleistung gesprochen werden.The heat is removed and/or supplied with the aid of the coolant circuit or by means of the coolant present in the coolant circuit, which coolant contains water. The coolant circuit is preferably adjusted in such a way that it provides a cooling capacity for cooling the drive unit, which keeps the temperature of the drive unit at or below the operating temperature. For example, the cooling capacity of the coolant circuit is brought about by adjusting the coolant pump, for example by adjusting the speed of the coolant pump. je the higher the speed of the coolant pump, the greater the coolant volume flow that is circulated in the coolant circuit. Correspondingly, the cooling capacity of the coolant circuit usually increases with the speed of the coolant pump, at least when the boundary conditions remain the same. If the cooling capacity is mentioned in this description, it should be pointed out that this term means the capacity of the coolant circuit, regardless of whether it is used to remove or supply heat. Instead of the term cooling capacity, one can speak more generally of temperature control capacity.

Um die bereits genannten Vorteile zu erzielen, soll die Kühlmittelpumpe als Schraubenspindelpumpe vorliegen. Eine solche Schraubenspindelpumpe arbeitet nach dem Verdrängerprinzip beziehungsweise liegt als Verdrängerpumpe vor. Hierdurch wird im Vergleich mit anderen Pumpenarten, beispielsweise Strömungspumpen, welche in diesem Bereich üblicherweise zum Einsatz kommen, eine hohe Dynamik des Kühlmittelkreislaufs erzielt. Das bedeutet, dass der Kühlmittelkreislauf durch eine Drehzahländerung der Kühlmittelpumpe wesentlich rascher auf einen veränderten Betriebspunkt des Antriebsaggregats einstellbar ist, als dies bei anderen Pumpenarten der Fall ist.In order to achieve the advantages already mentioned, the coolant pump should be in the form of a screw pump. Such a screw pump works according to the positive displacement principle or is present as a positive displacement pump. In this way, in comparison with other types of pumps, for example flow pumps, which are usually used in this area, a high level of dynamics in the coolant circuit is achieved. This means that the coolant circuit can be adjusted much more quickly to a changed operating point of the drive unit by changing the speed of the coolant pump than is the case with other types of pumps.

Zudem bietet die Schraubenspindelpumpe im Vergleich mit den anderen Pumpenarten einen höheren Wirkungsgrad an und weist ein sehr gutes akustisches Verhalten auf. Schraubenspindelpumpen werden bislang nicht als Kühlmittelpumpen verwendet, unter anderen, weil bei den üblichen Betriebsbereichen normaler Antriebseinrichtungen Schwächen aufweisen. So sind Schraubenspindelpumpen für hohe Volumenströme und geringen Gegendrücken, wie sie beispielsweise in Kühlmittelkreisläufen von Brennkraftmaschinen auftreten, weniger geeignet. Daher kommen dort bislang vor allem Kreiselpumpen zum Einsatz. Eine als Schraubenspindelpumpe ausgestalteteIn addition, the screw pump offers a higher degree of efficiency compared to other pump types and has very good acoustic behavior. Screw pumps have not heretofore been used as coolant pumps, among other reasons because they have weaknesses in the normal operating ranges of normal driving devices. For example, screw pumps are less suitable for high volume flows and low back pressures, such as those that occur in coolant circuits in internal combustion engines. For this reason, centrifugal pumps have mainly been used up to now. One designed as a screw pump

Kühlmittelpumpe wird in JP 2002 129958 gezeigt.Coolant pump is in JP2002 129958 shown.

Die Anmelderin hat jedoch im Rahmen von Versuchen überraschenderweise festgestellt, dass sich die Schraubenspindelpumpe auch zur Umwälzung des wasserhaltigen Kühlmittels auf hervorragende Art und Weise eignet, wobei gleichzeitig die genannten Vorteile gegenüber anderen Pumpenarten realisiert werden. Dies gilt insbesondere für Antriebseinrichtungen, bei welchen die Schraubenspindelpumpe als Zusatzpumpe zusätzlich zu einer Hauptpumpe vorliegt, die beispielsweise als Kreiselpumpe ausgestaltet ist, oder bei welchen der Kühlmittelkreislauf lediglich der Temperierung beziehungsweise Kühlung eines als elektrische Maschine ausgestalteten Antriebsaggregats, also insbesondere nicht der Temperierung beziehungsweise Kühlung einer Brennkraftmaschine, dient.However, the applicant has surprisingly found during tests that the screw pump is also excellently suited for circulating the aqueous coolant at the same time, the advantages mentioned can be realized compared to other types of pumps. This applies in particular to drive devices in which the screw pump is present as an additional pump in addition to a main pump, which is designed, for example, as a centrifugal pump, or in which the coolant circuit is only used for temperature control or cooling of a drive unit designed as an electric machine, i.e. in particular not for temperature control or cooling Internal combustion engine is used.

Die Schraubenspindelpumpe hat zudem den Vorteil, dass eine Durchflussrichtung ohne weiteres umgekehrt werden kann. Es kann also vorgesehen sein, dass die Schraubenspindelpumpe zeitweise mit einer ersten Durchflussrichtung beziehungsweise Förderrichtung und zeitweise mit einer der ersten Durchflussrichtung entgegengesetzten zweiten Durchflussrichtung beziehungsweise Förderrichtung betrieben wird. Die Umkehr der Durchflussrichtung wird beispielsweise durch eine Umkehr der Drehrichtung auf einfache Art und Weise erzielt.The screw pump also has the advantage that the direction of flow can be reversed without further ado. Provision can therefore be made for the screw pump to be operated at times with a first flow direction or delivery direction and at times with a second flow direction or delivery direction opposite to the first flow direction. The reversal of the direction of flow is achieved in a simple manner, for example, by reversing the direction of rotation.

Selbstverständlich kann der beschriebene Kühlmittelkreislauf im Rahmen der Antriebseinrichtung nur lediglich einfach, sondern mehrfach zum Einsatz kommen. Die Antriebseinrichtung weist also entweder genau einen Kühlmittelkreislauf wie beschrieben auf oder alternativ mehrere. Die mehreren Kühlmittelkreislaufe können zur Kühlung unterschiedlicher Antriebsaggregate Verwendung finden. Ebenso ist es möglich, dass einer der Kühlmittelkreisläufe zur Kühlung des Antriebsaggregat verwendet wird und wenigstens ein weiterer der Kühlmittelkreisläufe zur Kühlung eines Zusatzaggregats, welches zum Betrieb des Antriebsaggregats notwendig ist. Liegt das Antriebsaggregat beispielsweise als elektrische Maschine vor, so kann das Zusatzaggregat als Brennstoffzelle, Energiespeicher, Spannungswandler, Steuergerät, Wechselrichter, insbesondere Pulswechselrichter oder dergleichen ausgestaltet sein, die elektrisch an die elektrische Maschine angeschlossen sind und ihrem Betreiben dienen.Of course, the coolant circuit described can only be used once within the scope of the drive device, but can be used several times. The drive device therefore has either exactly one coolant circuit as described, or alternatively several. The several coolant circuits can be used to cool different drive units. It is also possible that one of the coolant circuits is used to cool the drive unit and at least one other of the coolant circuits is used to cool an additional unit which is necessary for the operation of the drive unit. If the drive unit is an electric machine, for example, the additional unit can be in the form of a fuel cell, energy store, voltage converter, control unit, inverter, in particular a pulse-controlled inverter or the like, which are electrically connected to the electric machine and serve to operate it.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Kühlmittelpumpe eine mit einem Antrieb gekoppelte Antriebsspindel und wenigstens eine mit der Antriebsspindel zur Umwälzung des Kühlmittels zusammenwirkende Laufspindel aufweist. Die Antriebsspindel ist mit dem Antrieb gekoppelt, beispielsweise starr und permanent oder schaltbar über eine Schaltkupplung. Als Antrieb dient beispielsweise das Antriebsaggregat selbst, wobei die Antriebsspindel mechanisch mit dem Antriebsaggregat gekoppelt oder zumindest koppelbar ist. Zusätzlich oder alternativ kann die Antriebsspindel mit einem Elektromotor gekoppelt sein, vorzugsweise starr und permanent, welcher ebenfalls den Antrieb darstellt oder ergänzend zu diesem vorliegt.A further embodiment of the invention provides that the coolant pump has a drive spindle coupled to a drive and at least one idler spindle interacting with the drive spindle to circulate the coolant. The drive spindle is coupled to the drive, for example, rigidly and permanently or switchable via a clutch. The drive unit itself serves as the drive, for example, with the drive spindle being mechanically coupled or at least capable of being coupled to the drive unit. Additionally or alternatively, the drive spindle can be coupled to an electric motor, preferably rigidly and permanently, which also represents the drive or is present in addition to it.

Die Antriebsspindel kämmt zur Umwälzung des Kühlmittels mit der wenigstens einen Laufspindel. Vorteilhafterweise ist lediglich eine einzige Laufspindel Bestandteil der Schraubenspindelpumpe. Alternativ können jedoch wenigstens zwei Laufspindeln vorliegen, welche beispielsweise auf gegenüberliegenden Seiten der Antriebsspindel angeordnet sind und jeweils mit ihr kämmen. In diesem Fall liegen Drehachsen der mehreren Laufspindeln und der Antriebsspindel vorzugsweise in einer gemeinsamen Ebene. Mit einer derartigen Ausgestaltung der Kühlmittelpumpe werden die bereits angegebenen Vorteile auf einfacher Art und Weise realisiert.The drive spindle meshes with the at least one idler spindle to circulate the coolant. Advantageously, only a single running spindle is part of the screw pump. Alternatively, however, at least two running spindles can be present, which are arranged, for example, on opposite sides of the drive spindle and each mesh with it. In this case, the axes of rotation of the plurality of idler spindles and the drive spindle preferably lie in a common plane. With such a configuration of the coolant pump, the advantages already mentioned are realized in a simple manner.

Eine weitere Ausführungsform der Erfindung sieht vor, dass das Antriebsaggregat wenigsten eine der folgenden Einrichtungen aufweist oder als eine solche ausgebildet ist: Brennkraftmaschine, elektrische Maschine und Brennstoffzelle. In jedem Fall dient das Antriebsaggregat dem Bereitstellen des Antriebsdrehmoments, entweder unmittelbar oder mittelbar. Das unmittelbare Bereitstellen kann beispielsweise mithilfe der Brennkraftmaschine oder der elektrischen Maschine erfolgen, wohingegen das mittelbare Bereitstellen unter Verwendung der Brennstoffzelle erfolgen kann. In letzterem Fall wird mit Hilfe der Brennstoffzelle bevorzugt elektrische Energie bereitgestellt, welche nachfolgend zum Betreiben einer elektrischen Maschine Verwendung findet, um das Antriebsdrehmoment zu erzeugen. Insoweit kann das Antriebsaggregat sowohl die elektrische Maschine als auch die Brennstoffzelle umfassen. Auch eine Ausgestaltung des Antriebsaggregats, bei welcher sowohl die Brennkraftmaschine als auch die elektrische Maschine vorliegen, ist denkbar. In diesem Falle liegt das Antriebsaggregat als Hybridantriebsaggregat vor. Eine solche Ausgestaltung der Antriebseinrichtung ist äußerst flexibel einsetzbar.A further embodiment of the invention provides that the drive unit has at least one of the following devices or is designed as such: internal combustion engine, electric machine and fuel cell. In any case, the drive assembly serves to provide the drive torque, either directly or indirectly. The direct provision can take place, for example, using the internal combustion engine or the electric machine, whereas the indirect provision can take place using the fuel cell. In the latter case, electrical energy is preferably provided with the aid of the fuel cell, which energy is then used to operate an electrical machine in order to generate the drive torque. In this respect, the drive unit can include both the electric machine and the fuel cell. An embodiment of the drive unit, in which both the internal combustion engine and the electric machine are present, is conceivable. In this case, the drive unit is in the form of a hybrid drive unit. Such a configuration of the drive device can be used extremely flexibly.

Selbstverständlich kann der Kühlmittelkreislauf zusätzlich der Kühlung beziehungsweise Temperierung wenigstens einer oder mehrerer der folgenden Einrichtungen dienen: Energiespeicher, insbesondere Hochvoltbatterie, Spannungswandler, Steuergerät und Wechselrichter, insbesondere Pulswechselrichter. Zusätzlich oder alternativ kann der Kühlmittelkreislauf zur Kühlung von Ladeluft verwendet werden.Of course, the coolant circuit can also be used for cooling or tempering at least one or more of the following devices: energy store, in particular high-voltage battery, voltage converter, control unit and inverter, in particular pulse-controlled inverter. Additionally or alternatively, the coolant circuit can be used to cool charge air.

Eine Weiterbildung der Erfindung sieht vor, dass die Kühlmittelpumpe einen Ausgangsdruck von höchstens 10 bar, höchstens 7,5 bar oder höchstens 5 bar aufweist. Unter dem Ausgangsdruck ist derjenige Druck zu verstehen, welcher an einem Kühlmittelausgang der Kühlmittelpumpe vorliegt. In anderen Worten entspricht der Ausgangsdruck dem Druck auf einer Druckseite der Kühlmittelpumpe. Der Ausgangsdruck ist vorzugsweise der höchste in dem Kühlmittelkreislauf vorliegende Druck. Im Vergleich mit anderen Pumpen der Antriebseinrichtung ist die Kühlmittelpumpe für einen vergleichsweise geringen Ausgangsdruck vorgesehen und ausgelegt. So soll der Ausgangsdruck höchstens 10 bar oder weniger betragen. Besonders bevorzugt beträgt der Ausgangsdruck weniger als 5 bar, beispielsweise höchstens 4 bar oder höchstens 3 bar. Auch ein Ausgangsdruck von höchstens 2,5 bar oder höchstens 2 bar kann vorgesehen sein. Ein solch niedriger Ausgangsdruck ist bis Hilfe der Schraubenspindelpumpe überraschenderweise gut zu realisieren, wobei die Ausgestaltung der Kühlmittelpumpe als Schraubenspindelpumpe aufgrund ihrer hohen Effizienz eine deutliche Energieeinsparung ermöglicht. Beispielsweise beträgt der Ausgangsdruck mindestens 1,5 bar, mindestens 2 bar oder mehr.A development of the invention provides that the coolant pump has an outlet pressure of at most 10 bar, at most 7.5 bar or at most 5 bar. The outlet pressure is to be understood as that pressure which is present at a coolant outlet of the coolant pump. In other words, the outlet pressure corresponds to the pressure on a pressure side of the coolant pump. The outlet pressure is preferably the highest pressure present in the coolant circuit. In comparison with other pumps of the drive device, the coolant pump is provided and designed for a comparatively low outlet pressure. The outlet pressure should be no more than 10 bar or less. The starting pressure is particularly preferably less than 5 bar, for example at most 4 bar or at most 3 bar. An outlet pressure of at most 2.5 bar or at most 2 bar can also be provided. Surprisingly, such a low outlet pressure can be achieved with the help of the screw pump, the design of the coolant pump as a screw pump enabling significant energy savings due to its high efficiency. For example, the outlet pressure is at least 1.5 bar, at least 2 bar or more.

Laut der Erfindung ist vorgesehen, dass wenigstens eine oder genau eine der folgenden Spindeln eine Beschichtung aufweist: Antriebsspindel und Laufspindel. Zur Erzielung einer hohen Lebensdauer der Schraubenspindelpumpe weist die Antriebsspindel und/oder die Laufspindel die Beschichtung auf. Es kann vorgesehen sein, dass mehrere der Spindeln oder alle der Spindeln jeweils über die Beschichtung verfügen. Besonders bevorzugt ist die Beschichtung jedoch auf lediglich einen Teil der Spindeln, insbesondere auf genau eine der Spindel aufgebracht. Liegt lediglich genau eine Laufspindel vor, so kann die Beschichtung entweder auf der Antriebsspindel oder der Laufspindel vorliegen. Sind hingegen mehrere Laufspindeln vorgesehen, so verfügt vorzugsweise ausschließlich die Antriebsspindel über die Beschichtung.According to the invention, at least one or precisely one of the following spindles has a coating: drive spindle and idler spindle. To achieve a The drive spindle and/or the idler spindle have the coating to ensure a long service life of the screw spindle pump. It can be provided that several of the spindles or all of the spindles each have the coating. However, the coating is particularly preferably applied to only part of the spindles, in particular to exactly one of the spindles. If there is only exactly one idler spindle, the coating can be present either on the drive spindle or on the idler spindle. If, on the other hand, several running spindles are provided, then preferably only the drive spindle has the coating.

Die Beschichtung ist besonders bevorzugt derart ausgebildet, dass sie während des Betriebs der Kühlmittelpumpe von der die Beschichtung aufweisenden Spindel auf die andere Spindel beziehungsweise die anderen Spindeln übertragen wird. Die Beschichtung wird also von der die Beschichtung aufweisenden Spindel an die andere Spindel beziehungsweise die anderen Spindeln abgegeben. Zusätzlich oder alternativ kann die Beschichtung von der jeweiligen Spindel auf ein Gehäuse der Kühlmittelpumpe übergehen. Durch das Vorsehen der Beschichtung für nur einen Teil der Spindeln oder genau eine der Spindeln wird ein Verklemmen der Spindeln untereinander und/oder mit dem Gehäuse vermieden, welches ansonsten aufgrund von engen Toleranzen auftreten könnte. Mithilfe der Beschichtung kann eine äußerst langlebige Schraubenspindelpumpe realisiert werden, die gut gegen Korrosion geschützt ist.The coating is particularly preferably designed in such a way that it is transferred from the spindle having the coating to the other spindle or the other spindles during operation of the coolant pump. The coating is thus delivered from the spindle having the coating to the other spindle or the other spindles. Additionally or alternatively, the coating can be transferred from the respective spindle to a housing of the coolant pump. Providing the coating for only part of the spindles or precisely one of the spindles prevents the spindles from jamming with one another and/or with the housing, which could otherwise occur due to narrow tolerances. The coating can be used to create an extremely durable screw pump that is well protected against corrosion.

Eine weitere Ausführungsform der Erfindung sieht vor, dass die Beschichtung derart auf einen Grundkörper der Spindel aufgebracht ist, dass die Spindel mit Übergangspassung oder Spielpassung zu einem Gehäuse der Kühlmittelpumpe ausgebildet ist, in dem die Spindel drehbar gelagert ist. Die Spindel weist sowohl den Grundkörper als auch die auf den Grundkörper aufgebrachte Beschichtung auf. Beispielsweise ist der Grundkörper mit Untermaß oder mit Übergangspassung zu dem Gehäuse ausgestaltet. Auf den Grundkörper ist die Beschichtung derart aufgebracht, dass die Spindel insgesamt weiterhin mit Übergangspassung oder Spielpassung zu dem Gehäuse vorliegt.A further embodiment of the invention provides that the coating is applied to a base body of the spindle in such a way that the spindle is designed with a transition fit or clearance fit to a housing of the coolant pump in which the spindle is rotatably mounted. The spindle has both the base body and the coating applied to the base body. For example, the base body is designed with undersize or with a transition fit to the housing. The coating is applied to the base body in such a way that the spindle as a whole is still present with a transition fit or clearance fit to the housing.

Insbesondere im Falle der Übergangspassung bedeutet dies, dass es bei einem Betreiben der Kühlmittelpumpe zumindest anfänglich zu einem Abrieb der Spindel, insbesondere der Beschichtung kommt. Besonders bevorzugt ist die Beschichtung mit einer derartigen Dicke beziehungsweise Schichtdicke auf den Grundkörper aufgebracht, dass nach dem Einlaufen der Spindel zumindest ein Teil der Beschichtung auf dem Grundkörper verbleibt. Insoweit ist eine Ausgestaltung des Grundkörpers mit Untermaß zu dem Gehäuse besonders bevorzugt. Die Beschichtung wird bevorzugt mit einer geringen Toleranz, insbesondere hinsichtlich Rundheit und Zylinderform, auf den Grundkörper aufgebracht. Zusätzlich oder alternativ kann sie eine sehr geringe Schichtdicke, insbesondere eine Schichtdicke von höchstens 10 µm, höchstens 1 µm oder weniger aufweisen. Durch den Abrieb der Beschichtung während des Einlaufens der Kühlmittelpumpe werden besonders geringe Toleranzen der Kühlmittelpumpe und somit eine besonders hohe Effizienz beziehungsweise Förderleistung erzielt.In particular in the case of the transition fit, this means that when the coolant pump is operated, the spindle, in particular the coating, is at least initially abraded. The coating is particularly preferably applied to the base body with such a thickness or layer thickness that at least part of the coating remains on the base body after the spindle has run in. In this respect, an embodiment of the base body with undersize to the housing is particularly preferred. The coating is preferably applied to the base body with a small tolerance, in particular with regard to roundness and cylindrical shape. Additionally or alternatively, it can have a very small layer thickness, in particular a layer thickness of at most 10 μm, at most 1 μm or less. Due to the abrasion of the coating during the running-in of the coolant pump, particularly small tolerances of the coolant pump and thus a particularly high efficiency or delivery capacity are achieved.

Eine weitere bevorzugte Ausführungsform der Erfindung sieht vor, dass der Grundkörper aus Kunststoff oder Metall besteht oder Kunststoff oder Metall aufweist. Der Grundkörper kann durchgehend entweder aus Kunststoff oder aus Metall bestehen. Es kann jedoch auch vorgesehen sein, dass er lediglich Kunststoff oder Metall ausweist, beziehungsweise enthält. Beispielsweise besteht in diesem Fall der Grundkörper zu einem überwiegenden Teil, also zu mehr als 50%, aus dem Kunststoff oder Metall. Aus Gewichtsgründen wird eine Ausgestaltung des Grundkörpers aus Kunststoff besonders bevorzugt. Grundsätzlich wird ein korrosionsbeständiges Material bevorzugt, welches gegenüber dem Kühlmittel dauerhaft beständig ist. Auch für das Gehäuse wird bevorzugt ein korrosionsbeständiges Material verwendet, beispielsweise dasselbe Material wie für das Grundkörper. Selbstverständlich kann das Gehäuse jedoch aus einem anderen Material bestehen.A further preferred embodiment of the invention provides that the base body consists of plastic or metal or has plastic or metal. The base body can consist of either plastic or metal throughout. However, it can also be provided that it only has plastic or metal or contains it. In this case, for example, the main body consists predominantly, that is to say more than 50%, of the plastic or metal. For reasons of weight, an embodiment of the base body made of plastic is particularly preferred. Basically, a corrosion-resistant material is preferred, which is permanently resistant to the coolant. A corrosion-resistant material is also preferably used for the housing, for example the same material as for the base body. Of course, however, the housing can be made of a different material.

Eine Weiterbildung der Erfindung sieht vor, dass die Beschichtung aus Kohlenstoff besteht oder Kohlenstoff aufweist. Beispielsweise liegt die Beschichtung in Form von amorphem Kohlenstoff vor, insbesondere als Diamond-like Carbon (DLC). In diesem Fall wird die Beschichtung besonders bevorzugt durch Gasphasenabscheidung auf den Grundkörper aufgebracht. Die Beschichtung aus Kohlenstoff ermöglicht eine besonders hohe Lebensdauer der Kühlmittelpumpe. Zudem wird durch die Beschichtung eine Reibungsreduzierung erzielt, sodass sich ein höherer Wirkungsgrad ergibt.A development of the invention provides that the coating consists of carbon or has carbon. For example, the coating is in the form of amorphous carbon, especially diamond-like carbon (DLC). In this case, the coating is particularly preferred applied to the base body by gas phase deposition. The carbon coating enables the coolant pump to have a particularly long service life. In addition, the coating reduces friction, resulting in higher efficiency.

Eine weitere Ausführungsform der Erfindung sieht vor, dass das Kühlmittel überwiegend Wasser enthält. Das bedeutet, dass das Kühlmittel zu mindestens 50% aus Wasser besteht. Besonders bevorzugt entspricht der Wasseranteil an dem Kühlmittel mindestens 90% oder mindestens 99%. Der Rest des Kühlmittels setzt sich vorzugsweise aus wenigstens einem Zusatzstoff und unvermeidbaren Verunreinigungen zusammen, wobei die Verunreinigungen einen Anteil von höchstens 1 % an dem Kühlmittel haben. Wasser zeichnet sich durch eine besonders hohe Wärmekapazität und damit durch eine besonders hohe Kühlwirkung aus.A further embodiment of the invention provides that the coolant mainly contains water. This means that the coolant consists of at least 50% water. The proportion of water in the coolant is particularly preferably at least 90% or at least 99%. The remainder of the coolant is preferably composed of at least one additive and unavoidable impurities, with the impurities accounting for at most 1% of the coolant. Water is characterized by a particularly high heat capacity and thus a particularly high cooling effect.

Schließlich kann im Rahmen einer weiteren Ausführungsform der Erfindung vorgesehen sein, dass dem Wasser wenigstens ein Zusatzstoff, insbesondere Glykol, beigemengt ist. Der Zusatzstoff dient insbesondere einer Schmierung der Kühlmittelpumpe, der Herstellung von Frostsicherheit des Kühlmittels und/oder zur Realisierung eines Korrosionsschutzes.Finally, within the scope of a further embodiment of the invention, it can be provided that at least one additive, in particular glycol, is added to the water. The additive serves in particular to lubricate the coolant pump, to make the coolant frost-proof and/or to provide protection against corrosion.

Die Erfindung wird nachfolgend anhand der Zeichnung dargestellten Ausführungsbeispiele näher erläutert, ohne dass eine Beschränkung der Erfindung erfolgt. Dabei zeigt die einzige

Figur
eine schematische Darstellung einer Antriebseinrichtung für ein Kraftfahrzeug.
The invention is explained in more detail below with reference to the exemplary embodiments illustrated in the drawings, without restricting the invention. It shows the only
figure
a schematic representation of a drive device for a motor vehicle.

Die Figur zeigt eine sehr schematische Darstellung einer Antriebseinrichtung 1 für ein Kraftfahrzeug. Die Antriebseinrichtung 1 weist ein Antriebsaggregat 2 auf, welchem zu seiner Temperierung ein Kühlmittelkreislauf 3 zugeordnet ist. Der Kühlmittelkreislauf 3 verfügt über einen Kühler 4, also schlussendlich einen Wärmeübertrager, sowie über eine Kühlmittelpumpe 5 zur Umwälzung eines wasserhaltigen Kühlmittels in dem Kühlmittelkreislauf 3.The figure shows a very schematic representation of a drive device 1 for a motor vehicle. The drive device 1 has a drive unit 2, to which a coolant circuit 3 is assigned for its temperature control. The coolant circuit 3 has a cooler 4, i.e. ultimately a heat exchanger, and a coolant pump 5 for circulating an aqueous coolant in the coolant circuit 3.

Es ist erkennbar, dass die Kühlmittelpumpe 5 im Rahmen der hier gezeigten Antriebseinrichtungen 1 als Schraubenspindelpumpe ausgestaltet ist. Eine solche weist gegenüber anderen Pumpentypen zahlreiche Vorteile auf, insbesondere arbeitet sie nach dem Verdrängerprinzip, sodass eine hohe Dynamik des Kühlmittelkreislaufs 3 realisierbar ist. Zudem weist sie einen sehr hohen Wirkungsgrad und ein äußerst gutes akustisches Verhalten auf. Diese Vorteile können überaschenderweise auch im Rahmen des hier vorgestellten Kühlmittelkreislaufs 3 realisiert werden. Für solche Kühlmittelkreisläufe 3 werden Schraubenspindelpumpen bislang nicht eingesetzt.It can be seen that the coolant pump 5 is designed as a screw pump within the scope of the drive devices 1 shown here. Such a pump has numerous advantages compared to other pump types, in particular it works according to the displacement principle, so that a high dynamic of the coolant circuit 3 can be realized. In addition, it has a very high degree of efficiency and extremely good acoustic behavior. Surprisingly, these advantages can also be realized within the framework of the coolant circuit 3 presented here. Up to now, screw pumps have not been used for such coolant circuits 3 .

BEZUGSZEICHENLISTE:REFERENCE LIST:

11
Antriebseinrichtungdrive device
22
Antriebsaggregatsdrive unit
33
Kühlmittelkreislaufcoolant circuit
44
Kühlercooler
55
Kühlmittelpumpecoolant pump

Claims (7)

  1. Drive device (1) for a motor vehicle, having at least one drive unit (2) and a coolant circuit (3) for controlling the temperature of the at least one drive unit (2), at least one coolant pump (5) being arranged in the coolant circuit (3) for circulating a coolant containing water in the coolant circuit (3), the coolant pump (5) being designed as a screw pump and having a drive spindle coupled to a drive and at least one running spindle cooperating with the drive spindle for circulating the coolant, wherein at least one or precisely one of the following spindles has a coating: drive spindle and running spindle, characterised in that a base body of the spindle is made of plastic or comprises plastic, and in that the coating is designed in such a way that it is transferred from the spindle having the coating to the other spindle during operation of the coolant pump (5).
  2. Drive unit according to claim 1, characterised in that the drive unit (2) has at least one of the following devices or is designed as such: internal combustion engine, electric machine and fuel cell.
  3. Drive device according to one of the previous claims, characterised in that the coolant pump (5) has an output pressure of at most 10 bar, at most 7.5 bar or at most 5 bar.
  4. Drive device according to one of the previous claims, characterised in that the coating is applied to the base body of the spindle in such a way that the spindle is formed with a transition fit or clearance fit to a housing of the coolant pump (5) in which the spindle is rotatably mounted.
  5. Drive device according to one of the previous claims, characterised in that the coating consists of or comprises carbon.
  6. Drive device according to one of the previous claims, characterised in that the coolant contains predominantly water.
  7. Drive device according to one of the previous claims, characterised in that at least one additive, in particular glycol, is mixed with the water.
EP19816301.6A 2018-12-20 2019-12-05 Drive device for a motor vehicle Active EP3899281B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018222516.8A DE102018222516A1 (en) 2018-12-20 2018-12-20 Drive device for a motor vehicle
PCT/EP2019/083763 WO2020126515A1 (en) 2018-12-20 2019-12-05 Drive device for a motor vehicle

Publications (2)

Publication Number Publication Date
EP3899281A1 EP3899281A1 (en) 2021-10-27
EP3899281B1 true EP3899281B1 (en) 2023-03-08

Family

ID=68806772

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19816301.6A Active EP3899281B1 (en) 2018-12-20 2019-12-05 Drive device for a motor vehicle

Country Status (5)

Country Link
US (1) US11401932B2 (en)
EP (1) EP3899281B1 (en)
CN (1) CN114026327A (en)
DE (1) DE102018222516A1 (en)
WO (1) WO2020126515A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019118086A1 (en) * 2019-07-04 2021-01-07 Nidec Gpm Gmbh Integrated screw spindle coolant pump
EP3816446A1 (en) * 2019-10-31 2021-05-05 Illinois Tool Works Inc. Cooling circuit of a vehicule

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1306169A (en) * 1919-06-10 Screw-pump
DE2905824A1 (en) 1979-02-15 1980-11-13 Alfred 4300 Essen Scholten Rotary piston IC engine - has contoured piston in cylindrical housing with inlet and exhaust valves operating transfer valves
JP2001355057A (en) * 2000-04-17 2001-12-25 Netzsch Mohnopumpen Gmbh Pump part made of plastic and having protected surface
DE10051731A1 (en) * 2000-10-18 2002-05-02 Mannesmann Rexroth Ag Screw pump esp. for low pressure operation consists partially of plastic with glass/carbon fiber reinforcement
JP2002129958A (en) * 2000-10-20 2002-05-09 Koyo Seiko Co Ltd Electric motor-driven water pump device
DE10126482A1 (en) 2001-05-31 2002-12-05 Thyssen Nordseewerke Gmbh Water management system for closed cycle Diesel engines for submarines consists of two displacement pumps connected opposite to each other
DE20318594U1 (en) 2003-07-10 2004-04-08 Allweiler Ag Screw pump for pumping a flow medium
JP4737021B2 (en) * 2006-09-29 2011-07-27 トヨタ自動車株式会社 Power transmission device and vehicle
DE102006049663A1 (en) 2006-10-18 2008-05-08 Willy Vogel Ag Screw spindle pump for conveying working fluid, particularly lubricant or cooling lubricant, has pump spindles, which are rotatably mounted in housing, where pump spindles are supported in axial direction by axial bearing in housing
EP2216501A1 (en) * 2009-02-10 2010-08-11 BP Exploration Operating Company Limited Pump
DE102009012916A1 (en) * 2009-03-12 2010-09-16 Robert Bosch Gmbh Hydraulic gear machine
EP2336590A3 (en) * 2009-12-15 2011-06-29 Leistritz Pumpen GmbH Pump aggregate for a double clutch transmission of a motor vehicle
DE102010011477A1 (en) 2010-03-16 2011-09-22 Audi Ag Dry sump lubrication-integrated internal combustion engine i.e. V-type 8-cylinder internal combustion engine, for motor car, has pump with stage arranged in common pump casing, which is formed as integral part of sump or part of crankcase
DE102011003206A1 (en) 2011-01-26 2012-07-26 Bayerische Motoren Werke Aktiengesellschaft Device for driving high pressure pump e.g. rotary piston pump of motor car, has polygon outer profile and polygon ring profile which are interconnected by resilient connecting element
US20170074121A1 (en) * 2014-03-03 2017-03-16 Eaton Corporation Coolant energy and exhaust energy recovery system
WO2016028474A1 (en) 2014-08-21 2016-02-25 Imo Industries, Inc. Intelligent seawater cooling system
DE102017200878A1 (en) * 2016-11-14 2018-05-17 Mahle International Gmbh motor vehicle

Also Published As

Publication number Publication date
DE102018222516A1 (en) 2020-06-25
US20210388833A1 (en) 2021-12-16
EP3899281A1 (en) 2021-10-27
US11401932B2 (en) 2022-08-02
CN114026327A (en) 2022-02-08
WO2020126515A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
EP2683956B1 (en) Sliding bearing shell comprising a collecting groove
EP2140114B1 (en) Axial bearing particularly for a turbocharger
EP2323771B1 (en) Heavy-duty drive arrangement and mill driven by the same
DE10296802T5 (en) Improved power transmission control
EP3899281B1 (en) Drive device for a motor vehicle
EP3504433B1 (en) Motor pump device
DE112007000991T5 (en) capacitor module
DE112014007108T5 (en) Electric rotary machine
DE102013226851A1 (en) Rotary dynamoelectric machine with a cooling system
EP2559879B1 (en) Drive unit with two couple-able cooling circuits to preheat a combustion engine and method
DE102009051377A1 (en) Drive for a hybrid vehicle
DE102016207992A1 (en) Electric compressor
DE102010051266A1 (en) Hermetically sealed coolant compressor for use in e.g. refrigerator, has roller connected with eccentric crankshaft journal at end turned toward compressor block, where compressor block is axially supported at support point at stator
DE112012000043T5 (en) generator motor
DE102016111112A1 (en) MOTOR OIL SUPPLY SYSTEM
DE602005002575T2 (en) Camshaft adjusting device for an internal combustion engine
DE60122992T2 (en) System and method for cooling a hybrid vehicle
DE112018005927T5 (en) ELECTRIC MOTOR, ROTARY DRIVE SYSTEM AND HYDRAULIC SHOVEL
DE102018104131A1 (en) Cooling arrangement for a rotor, rotor with the cooling arrangement and electrical axis with the rotor and / or the cooling arrangement
DE102019209115A1 (en) Coolant circuit for a drive device and a method for operating a coolant circuit
DE102014221667A1 (en) Hybrid drive arrangement of a motor vehicle
DE102004044654B4 (en) Fuel cell system and its use
DE102013020426A1 (en) Active cooling of an electric machine in the drive train of a vehicle
DE10150598A1 (en) Clutch system for automobile drive train, has pressure medium for operation of clutch device provided by two electric pumps
DE202008017994U1 (en) Heavy duty drive assembly and driven mill

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220922

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1552729

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019007183

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230609

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230710

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019007183

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231218

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 5

Ref country code: DE

Payment date: 20231231

Year of fee payment: 5

26N No opposition filed

Effective date: 20231211