EP3896190A1 - Installation and method for producing a metallic coating on a borehole wall - Google Patents
Installation and method for producing a metallic coating on a borehole wall Download PDFInfo
- Publication number
- EP3896190A1 EP3896190A1 EP20169797.6A EP20169797A EP3896190A1 EP 3896190 A1 EP3896190 A1 EP 3896190A1 EP 20169797 A EP20169797 A EP 20169797A EP 3896190 A1 EP3896190 A1 EP 3896190A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coating
- bore
- plasma
- rpm
- gas mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 71
- 239000011248 coating agent Substances 0.000 title claims abstract description 70
- 238000004519 manufacturing process Methods 0.000 title description 2
- 238000009434 installation Methods 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 23
- 239000000843 powder Substances 0.000 claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims abstract description 15
- 238000007750 plasma spraying Methods 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 239000011247 coating layer Substances 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 239000010410 layer Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 238000001816 cooling Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B13/00—Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
- B05B13/06—Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 specially designed for treating the inside of hollow bodies
- B05B13/0627—Arrangements of nozzles or spray heads specially adapted for treating the inside of hollow bodies
- B05B13/0636—Arrangements of nozzles or spray heads specially adapted for treating the inside of hollow bodies by means of rotatable spray heads or nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/16—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
- B05B7/22—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/14—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
- C23C4/16—Wires; Tubes
Definitions
- the invention relates to a method for metallic coating, wherein a coating lance with an anode and a cathode is axially inserted into the bore and rotated about its longitudinal axis, an arc is generated between the anode and the cathode, into which a plasma gas mixture is introduced and ionized , wherein a plasma flow is generated, a coating powder is fed into the plasma flow and the plasma flow with the particles is sprayed onto the bore wall and a coating is formed on the bore wall, according to the preamble of claim 1.
- the invention also relates to a system for the metallic coating of a bore wall of a bore of a coating lance with an anode and a cathode, the coating lance being axially retractable into the bore and thereby rotatable about its longitudinal axis, a power source through which between the anode and the cathode Arc can be generated, in which a plasma gas mixture can be introduced via an introduction device, which is ionized in the arc to generate a plasma flow, a feed device for feeding a coating powder into the plasma flow and an injection nozzle which is aligned with the bore wall, with the plasma flow causing a coating is formed on the bore wall, according to the preamble of claim 13.
- a bore wall with a special coating.
- Various methods are known for such a coating, such as so-called flame spraying, laser spraying, plasma powder build-up welding or arc spraying with a melting wire electrode.
- flame spraying laser spraying
- plasma powder build-up welding or arc spraying with a melting wire electrode.
- a particularly efficient application of a coating is what is known as atmospheric plasma spraying.
- a plasma stream with a high temperature of up to 2000 K or more is generated in a burner lance by means of an arc and the introduction of a conveying gas. Fine coating particles can be introduced into this hot plasma flow, which particles melt in the plasma flow and are applied to the bore wall with the plasma flow at high speed.
- the invention is based on the task of specifying a method and a system with which a metallic coating can be efficiently applied to a bore wall.
- the object is achieved according to the invention on the one hand by a method with the features of claim 1 and on the other hand by a system with the features of claim 13.
- Preferred embodiments of the invention are given in the dependent claims.
- the method according to the invention is characterized in that the coating lance with an axial feed speed in the bore is retracted and rotated at a rotational speed of 420 rpm to 520 rpm and with a volume flow of conveying gas of 30 l / min to 70 l / min coating powder is injected at a feed rate of 90 g / min to 130 g / min will.
- the degree between melting and rapid cooling is particularly advantageous, so that a desired microporous layer structure results. This is supported by setting the delivery gas in a range from 30 l / min to 70 l / min.
- a preferred embodiment of the method consists in setting an axial feed rate of 3.8 mm / rev to 4.5 mm / rev, in particular from 4.1 mm / rev to 4.2 mm / rev. This results in a particularly stable layer structure with the desired structure. It is particularly preferred if the axial feed rate is 4.13 mm / rev.
- particularly good heating of the plasma current is brought about by setting a discharge current of 300 A to 400 A, in particular 360 A, between the anode and the cathode.
- a good surface application on the bore wall is also achieved in that the plasma flow with the particles is sprayed with an injection nozzle which has a diameter of 1 mm to 2 mm, preferably 1.5 mm.
- the lance is located in the middle of the hole, which preferably has a diameter of 7 cm to 15 cm.
- a flat nozzle with the same or a similar opening area can also be used, which for example can have a size of 1 mm by 3 mm.
- the injection nozzle is inclined upwards by 5 ° to 20 °, in particular between 8 ° to 12 °, particularly preferably 10 °, relative to the longitudinal axis. In this way, a largely radially directed material application can be achieved, since a deviation due to the axial advance can be compensated for by the inclination.
- the coating can be carried out in a single axial application.
- a particularly stable structure of the coating can be achieved according to a method variant according to the invention in that the coating is built up by several coating layers, in particular three to six coating layers, with one coating layer being formed by an axial overflow of the coating lance. It is particularly advantageous if there are four axial overflows with the coating lance over the bore wall.
- a particularly stable coating results in particular from the fact that a layer thickness of 150 ⁇ m to 300 ⁇ m, in particular 250 ⁇ m, is formed. With four overflows, a layer thickness between 60 ⁇ m and 70 ⁇ m can be applied.
- the plasma gas mixture can in principle be designed in any suitable manner. According to a further development of the invention, it is particularly advantageous that the plasma gas mixture is formed using argon, hydrogen, nitrogen and / or helium. These elements lead to a particularly effective plasma flow for the coating process.
- the coating powder can be supplied by a carrier gas.
- a rotational speed of the coating lance it is particularly advantageous that a rotational speed of 450 rpm to 465 rpm, in particular 459 rpm, is set. According to one finding of the invention, a particularly good and stable application of material results in this speed range.
- a preferred setting range is that a volume flow of the plasma gas mixture of 40 l / min to 50 l / min, preferably 44 l / min, is set. In this way, a good conveying effect for the coating powder can be achieved, with a necessary but not excessive cooling of the plasma flow resulting at the same time.
- Argon at 40 l / min and hydrogen at 4 l / min can preferably be used to form the plasma gas mixture.
- the feed rate of the coating powder is set to 110 g / min.
- commercially available coating powder for plasma spraying can be used for the coating.
- a coating powder with iron particles and / or other metals is used, the average size of the particles being between 100 nanometers and 100 ⁇ m. It is particularly preferred that these particles melt completely or not completely in the heated plasma stream, that is to say only on their upper side, and thus have a drop shape when they strike the coating wall.
- a coating can be composed of approximately spherical elements which, through targeted cooling, form a coating structure with micro-free spaces in between. In particular, there is no continuous solid connection, but rather the melted and cooling coating particles are only partially connected to one another, with preferably between 2% to 20% of the coating volume being formed by pore cavities.
- the system according to the invention is characterized in that a control is provided and designed so that the coating lance can be retracted into the bore at a uniform axial feed rate and rotated at a rotational speed of 420 rpm to 520 rpm and a volume flow of conveying gas of 30 l / min to 70 l / min and a feed rate of coating powder in a plasma flow of 90 g / min to 130 g / min.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Die Erfindung betrifft ein Verfahren und eine Anlage zur metallischen Beschichtung einer Bohrungswand einer Bohrung in einem Werkstück, mittels atmosphärischem Plasmaspritzens, wobei eine Beschichtungslanze mit einer Anode und einer Kathode axial in die Bohrung eingefahren und dabei um ihre Längsachse gedreht wird, zwischen der Anode und der Kathode ein Lichtbogen erzeugt wird, in welchen ein Plasmagasgemisch eingeleitet und ionisiert wird, wobei ein Plasmastrom erzeugt wird, ein Beschichtungspulver in den Plasmastrom zugeführt wird und der Plasmastrom mit den Partikeln auf die Bohrungswand gedüst wird und an der Bohrungswand eine Beschichtung gebildet wird. Gemäß der Erfindung ist vorgesehen, dass die Beschichtungslanze mit einer axialen Vorschubgeschwindigkeit in die Bohrung eingefahren und mit einer Drehgeschwindigkeit von 420 U/min bis 520 U/min gedreht wird und bei einem Volumenstrom an Plasmagasgemisch von 30 l/min bis 70 l/min Beschichtungspulver mit einer Zuführrate von 90 g/min bis 130 g/min eingedüst wird.The invention relates to a method and a system for the metallic coating of a bore wall of a bore in a workpiece, by means of atmospheric plasma spraying, wherein a coating lance with an anode and a cathode is axially inserted into the bore and is rotated about its longitudinal axis, between the anode and the Cathode an arc is generated, in which a plasma gas mixture is introduced and ionized, a plasma stream is generated, a coating powder is fed into the plasma stream and the plasma stream with the particles is sprayed onto the bore wall and a coating is formed on the bore wall. According to the invention it is provided that the coating lance is retracted into the bore at an axial feed rate and rotated at a rotational speed of 420 rpm to 520 rpm and coating powder with a volume flow of plasma gas mixture of 30 l / min to 70 l / min is injected at a feed rate of 90 g / min to 130 g / min.
Description
Die Erfindung betrifft ein Verfahren zur metallischen Beschichtung, wobei eine Beschichtungslanze mit einer Anode und einer Kathode axial in die Bohrung eingefahren und dabei um ihre Längsachse gedreht wird, zwischen der Anode und der Kathode ein Lichtbogen erzeugt wird, in welchen ein Plasmagasgemisch eingeleitet und ionisiert wird, wobei ein Plasmastrom erzeugt wird, ein Beschichtungspulver in den Plasmastrom zugeführt wird und der Plasmastrom mit den Partikeln auf die Bohrungswand gedüst wird und an der Bohrungswand eine Beschichtung gebildet wird, gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a method for metallic coating, wherein a coating lance with an anode and a cathode is axially inserted into the bore and rotated about its longitudinal axis, an arc is generated between the anode and the cathode, into which a plasma gas mixture is introduced and ionized , wherein a plasma flow is generated, a coating powder is fed into the plasma flow and the plasma flow with the particles is sprayed onto the bore wall and a coating is formed on the bore wall, according to the preamble of claim 1.
Weiterhin betrifft die Erfindung eine Anlage zur metallischen Beschichtung einer Bohrungswand einer Bohrung einer Beschichtungslanze mit einer Anode und einer Kathode, wobei die Beschichtungslanze axial in die Bohrung einfahrbar und dabei um ihre Längsachse drehbar ist, einer Stromquelle, durch welche zwischen der Anode und der Kathode ein Lichtbogen erzeugbar ist, in welchen über eine Einleiteinrichtung ein Plasmagasgemisch einleitbar ist, welches in dem Lichtbogen zur Erzeugung eines Plasmastromes ionisiert wird, einer Zuführeinrichtung zum Zuführen eines Beschichtungspulvers in den Plasmastrom und einer Injektionsdüse, welche auf die Bohrungswand ausgerichtet ist, wobei durch den Plasmastrom auf der Bohrungswand eine Beschichtung gebildet wird, gemäß dem Oberbegriff des Anspruchs 13.The invention also relates to a system for the metallic coating of a bore wall of a bore of a coating lance with an anode and a cathode, the coating lance being axially retractable into the bore and thereby rotatable about its longitudinal axis, a power source through which between the anode and the cathode Arc can be generated, in which a plasma gas mixture can be introduced via an introduction device, which is ionized in the arc to generate a plasma flow, a feed device for feeding a coating powder into the plasma flow and an injection nozzle which is aligned with the bore wall, with the plasma flow causing a coating is formed on the bore wall, according to the preamble of claim 13.
Insbesondere im Motorenbau ist es erforderlich, die Laufflächen von Zylinderbohrungen mit einer speziellen metallischen Beschichtung zu versehen, damit hinreichende Reibungs- und Schmierbedingungen zwischen der Zylinderlauffläche und einem Zylinderkolben gewährleistet sind. Dies gilt vor allem dann, wenn sowohl das Motorengehäuse als auch der Zylinderkolben aus demselben Metall, etwa aus Aluminium, gefertigt sind.In engine construction in particular, it is necessary to provide the running surfaces of cylinder bores with a special metallic coating, so that sufficient friction and lubrication conditions between the cylinder running surface and a cylinder piston are guaranteed. This is especially true when both the engine housing and the cylinder piston are made of the same metal, such as aluminum.
Hierzu ist es bekannt, eine Bohrungswand mit einer speziellen Beschichtung zu versehen. Für eine derartige Beschichtung sind verschiedene Verfahren bekannt, so etwa das sogenannten Flammspritzen, das Laserspritzen, das Plasma-Pulver-Auftragsschweißen oder ein Lichtbogenspritzen mit aufschmelzender Drahtelektrode. Ein besonders effizientes Aufbringen einer Beschichtung stellt das sogenannte atmosphärische Plasmaspritzen dar. In einer Brennerlanze wird dabei mittels eines Lichtbogens und Einleiten eines Fördergases ein Plasmastrom mit einer hohen Temperatur von bis zu 2000 K oder mehr erzeugt. In diesen heißen Plasmastrom können feine Beschichtungspartikel eingeleitet werden, welche in dem Plasmastrom aufschmelzen und mit dem Plasmastrom mit hoher Geschwindigkeit auf die Bohrungswand aufgebracht werden.For this purpose, it is known to provide a bore wall with a special coating. Various methods are known for such a coating, such as so-called flame spraying, laser spraying, plasma powder build-up welding or arc spraying with a melting wire electrode. A particularly efficient application of a coating is what is known as atmospheric plasma spraying. A plasma stream with a high temperature of up to 2000 K or more is generated in a burner lance by means of an arc and the introduction of a conveying gas. Fine coating particles can be introduced into this hot plasma flow, which particles melt in the plasma flow and are applied to the bore wall with the plasma flow at high speed.
Ein gattungsgemäßes Verfahren und eine gattungsgemäße Anlage gehen beispielsweise aus der
Beim Aufbringen der Beschichtung ist es maßgeblich, dass diese stabil ausgebildet wird. Dies muss insbesondere bei einem Einsatz im Motorenbau eine lange Lebensdauer von vielen Jahren aufweisen, wobei die Beschichtung hohen thermischen, mechanischen und chemischen Beanspruchungen ausgesetzt ist. Dabei kann bereites ein Lösen selbst kleinerer Bestandteile der Beschichtung zu schweren Motorschäden führen.When applying the coating, it is essential that it is made stable. This must have a long service life of many years, especially when used in engine construction, with the coating being exposed to high thermal, mechanical and chemical loads. Solving even small components of the coating can lead to serious engine damage.
Der Erfindung liegt die Augabe zugrunde, ein Verfahren und eine Anlage anzugeben, mit welchen eine metallische Beschichtung auf eine Bohrungswand effizient aufbringbar ist.The invention is based on the task of specifying a method and a system with which a metallic coating can be efficiently applied to a bore wall.
Die Aufgabe wird nach der Erfindung zum einen durch ein Verfahren mit den Merkmalen des Anspruchs 1 und zum anderen durch eine Anlage mit den Merkmalen des Anspruchs 13 gelöst. Bevorzugte Ausführungen der Erfindung sind in den abhängigen Ansprüchen angegeben. Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, dass die Beschichtungslanze mit einer axialen Vorschubgeschwindigkeit in die Bohrung eingefahren und mit einer Drehgeschwindigkeit von 420 U/min bis 520 U/min gedreht wird und bei einem Volumenstrom an Fördergas von 30 l/min bis 70 l/min Beschichtungspulver mit einer Zufuhrrate von 90 g/min bis 130 g/min eingedüst wird.The object is achieved according to the invention on the one hand by a method with the features of claim 1 and on the other hand by a system with the features of claim 13. Preferred embodiments of the invention are given in the dependent claims. The method according to the invention is characterized in that the coating lance with an axial feed speed in the bore is retracted and rotated at a rotational speed of 420 rpm to 520 rpm and with a volume flow of conveying gas of 30 l / min to 70 l / min coating powder is injected at a feed rate of 90 g / min to 130 g / min will.
Nach der Erfindung wurde erkannt, dass für das Erzeugen einer besonders vorteilhaften Beschichtung es maßgeblich auf ein Verhältnis zwischen der Rotationsgeschwindigkeit der Brennerlanze in der Bohrung zu einer Zuführrate an Beschichtungspulver ankommt. Dabei wird bei dem erfindungsgemäßen Verfahren eine relativ hohe Förderrate von 90 g/min bis 130 g/min vorgesehen, während eine mäßige Drehgeschwindigkeit von 420 U/min bis 520 U/min vorgesehen werden. Es erfolgt so ein relativ starker Materialauftrag pro Umdrehung, wobei nach einer Erkenntnis der Erfindung dies vorteilhaft für einen mikroporösen Aufbau der Beschichtung ist. Gleichzeitig werden die Beschichtungspartikel zumindest an ihrer Außenseite so hinreichend aufgeschmolzen, dass diese einen festen Verbund bilden. Bei einer erhöhten Zuführrate pro Umdrehung in dem angegebenen Einstellbereich ist der Grad zwischen Aufschmelzung und schneller Erkaltung besonders vorteilhaft, so dass sich ein gewünschter mikroporöser Schichtaufbau ergibt. Dieser wird noch durch die Einstellung des Fördergases in einem Bereich von 30 l/min bis 70 l/min unterstützt.According to the invention, it was recognized that for the production of a particularly advantageous coating, a relationship between the speed of rotation of the burner lance in the bore and a feed rate of coating powder is decisive. In the process according to the invention, a relatively high delivery rate of 90 g / min to 130 g / min is provided, while a moderate rotational speed of 420 rpm to 520 rpm is provided. There is thus a relatively large amount of material applied per revolution, which, according to a finding of the invention, is advantageous for a microporous structure of the coating. At the same time, the coating particles are sufficiently melted, at least on their outside, that they form a firm bond. With an increased feed rate per revolution in the specified setting range, the degree between melting and rapid cooling is particularly advantageous, so that a desired microporous layer structure results. This is supported by setting the delivery gas in a range from 30 l / min to 70 l / min.
Eine bevorzugte Ausführungsform des Verfahrens besteht darin, dass eine axiale Vorschubgeschwindigkeit von 3,8 mm/U bis 4,5 mm/U, insbesondere von 4,1 mm/U bis 4,2 mm/U eingestellt wird. Hierbei ergibt sich ein besonders stabiler Schichtaufbau mit der gewünschten Struktur. Besonders bevorzugt ist es, wenn die axiale Vorschubgeschwindigkeit 4,13 mm/U beträgt.A preferred embodiment of the method consists in setting an axial feed rate of 3.8 mm / rev to 4.5 mm / rev, in particular from 4.1 mm / rev to 4.2 mm / rev. This results in a particularly stable layer structure with the desired structure. It is particularly preferred if the axial feed rate is 4.13 mm / rev.
Eine besonders gute Aufheizung des Plasmastroms wird nach einer Weiterbildung der Erfindung dadurch bewirkt, dass zwischen der Anode und der Kathode ein Entladungsstrom von 300 A bis 400 A, insbesondere von 360 A, eingestellt wird.According to a further development of the invention, particularly good heating of the plasma current is brought about by setting a discharge current of 300 A to 400 A, in particular 360 A, between the anode and the cathode.
Ein guter Flächenauftrag auf die Bohrungswand wird weiterhin dadurch erzielt, dass der Plasmastrom mit den Partikeln mit einer Injektionsdüse aufgedüst wird, welche einen Durchmesser von 1 mm bis 2 mm, vorzugsweise von 1, 5 mm aufweist. Die Lanze befindet sich dabei in der Mitte der Bohrung, welche vorzugsweise einen Durchmesser von 7 cm bis 15 cm aufweist. Neben einer zylindrischen Düse kann auch eine Flachdüse mit gleicher oder ähnlicher Öffnungsfläche zum Einsatz kommen, welche beispielsweise eine Größe von 1 mm mal 3 mm haben kann.A good surface application on the bore wall is also achieved in that the plasma flow with the particles is sprayed with an injection nozzle which has a diameter of 1 mm to 2 mm, preferably 1.5 mm. The lance is located in the middle of the hole, which preferably has a diameter of 7 cm to 15 cm. In addition to a cylindrical nozzle can a flat nozzle with the same or a similar opening area can also be used, which for example can have a size of 1 mm by 3 mm.
Für einen gezielten Materialauftrag ist es im Hinblick auf den relativ großen axialen Vorschub vorteilhaft, dass die Injektionsdüse gegenüber der Längsachse um 5° bis 20°, insbesondere zwischen 8° bis 12°, besonders bevorzugt um 10° nach oben geneigt wird. Hierdurch kann ein weitgehend radial gerichteter Materialauftrag erreicht werden, da durch die Neigung eine Abweichung durch den axialen Vorschub kompensiert werden kann.For a targeted application of material, it is advantageous with regard to the relatively large axial advance that the injection nozzle is inclined upwards by 5 ° to 20 °, in particular between 8 ° to 12 °, particularly preferably 10 °, relative to the longitudinal axis. In this way, a largely radially directed material application can be achieved, since a deviation due to the axial advance can be compensated for by the inclination.
Grundsätzlich kann die Beschichtung in einem einzigen axialen Auftrag erfolgen. Eine besonders stabile Struktur der Beschichtung kann nach einer erfindungsgemäßen Verfahrensvariante dadurch erzielt werden, dass die Beschichtung durch mehrere Beschichtungslagen, insbesondere drei bis sechs Beschichtungslagen, aufgebaut wird, wobei eine Beschichtungslage jeweils durch einen axialen Überlauf der Beschichtungslanze gebildet wird. Besonders vorteilhaft ist es, wenn vier axiale Überläufe mit der Beschichtungslanze über die Bohrungswand erfolgen.In principle, the coating can be carried out in a single axial application. A particularly stable structure of the coating can be achieved according to a method variant according to the invention in that the coating is built up by several coating layers, in particular three to six coating layers, with one coating layer being formed by an axial overflow of the coating lance. It is particularly advantageous if there are four axial overflows with the coating lance over the bore wall.
Eine besonders stabile Beschichtung ergibt sich insbesondere dadurch, dass eine Schichtdicke von 150 µm bis 300 µm, insbesondere von 250 µm gebildet wird. Bei vier Überläufen kann so insbesondere eine Schichtdicke zwischen 60 µm bis 70 µm aufgebracht werden.A particularly stable coating results in particular from the fact that a layer thickness of 150 μm to 300 μm, in particular 250 μm, is formed. With four overflows, a layer thickness between 60 µm and 70 µm can be applied.
Das Plasmagasgemisch kann in grundsätzlich jeder geeigneten Weise ausgebildet sein. Besonders vorteilhaft ist es nach einer Weiterbildung der Erfindung, dass das Plasmagasgemisch unter Verwendung von Argon, Wasserstoff, Stickstoff und/oder Helium gebildet wird. Diese Elemente führen zu einem besonders wirksamen Plasmastrom für das Beschichtungsverfahren. Das Beschichtungspulver kann durch ein Trägergas zugefördert werden.The plasma gas mixture can in principle be designed in any suitable manner. According to a further development of the invention, it is particularly advantageous that the plasma gas mixture is formed using argon, hydrogen, nitrogen and / or helium. These elements lead to a particularly effective plasma flow for the coating process. The coating powder can be supplied by a carrier gas.
Hinsichtlich der Drehzahl der Beschichtungslanze ist es besonders vorteilhaft, dass eine Drehgeschwindigkeit von 450 U/min bis 465 U/min, insbesondere von 459 U/min, eingestellt wird. Nach einer Erkenntnis der Erfindung ergibt sich in diesem Drehzahlbereich ein besonders guter und stabiler Materialauftrag.With regard to the rotational speed of the coating lance, it is particularly advantageous that a rotational speed of 450 rpm to 465 rpm, in particular 459 rpm, is set. According to one finding of the invention, a particularly good and stable application of material results in this speed range.
Hinsichtlich des Plasmagasgemisches liegt ein bevorzugter Einstellbereich darin, dass ein Volumenstrom des Plasmagasgemisches von 40 l/min bis 50 l/min, vorzugsweise von 44 l/min, eingestellt wird. Hierdurch kann eine gute Förderwirkung für das Beschichtungspulver erzielt werden, wobei sich gleichzeitig eine notwendige aber nicht zu hohe Abkühlung des Plasmastromes ergibt. Vorzugsweise kann dabei Argon mit 40 l/min und Wasserstoff mit 4 l/min zum Bilden des Plasmagasgemisches zum Einsatz kommen.With regard to the plasma gas mixture, a preferred setting range is that a volume flow of the plasma gas mixture of 40 l / min to 50 l / min, preferably 44 l / min, is set. In this way, a good conveying effect for the coating powder can be achieved, with a necessary but not excessive cooling of the plasma flow resulting at the same time. Argon at 40 l / min and hydrogen at 4 l / min can preferably be used to form the plasma gas mixture.
Weiterhin ist es besonders zweckmäßig, dass die Zuführrate des Beschichtungspulvers auf 110 g/min eingestellt wird. Für die Beschichtung kann grundsätzlich handelsübliches Beschichtungspulver zum Plasmaspritzen eingesetzt werden.Furthermore, it is particularly useful that the feed rate of the coating powder is set to 110 g / min. In principle, commercially available coating powder for plasma spraying can be used for the coating.
Besonders vorteilhaft ist es dabei, dass ein Beschichtungspulver mit Eisenpartikeln und/oder weiteren Metallen verwendet wird, wobei eine durchschnittliche Größe der Partikel zwischen 100 Nanometer bis 100 µm liegt. Besonders bevorzugt ist es dabei, dass diese Partikel in dem aufgeheizten Plasmastrom vollständig oder nicht vollständig aufschmelzen, also nur an ihrer Oberseite, und so eine Tropfenform beim Auftreffen auf die Beschichtungswand aufweisen. Hierdurch kann sich eine Beschichtung aus etwa kugelförmigen Elementen zusammensetzen, welche durch ein gezieltes Erkalten eine Beschichtungsstruktur mit dazwischen liegenden Mikrofreiräumen bilden. Insbesondere ergibt sich keine durchgehende feste Verbindung, sondern die aufgeschmolzenen und erkaltenden Beschichtungspartikel sind nur bereichsweise miteinander verbunden, wobei vorzugsweise zwischen 2 % bis 20 % des Beschichtungsvolumens durch Porenhohlräume gebildet sind.It is particularly advantageous that a coating powder with iron particles and / or other metals is used, the average size of the particles being between 100 nanometers and 100 μm. It is particularly preferred that these particles melt completely or not completely in the heated plasma stream, that is to say only on their upper side, and thus have a drop shape when they strike the coating wall. As a result, a coating can be composed of approximately spherical elements which, through targeted cooling, form a coating structure with micro-free spaces in between. In particular, there is no continuous solid connection, but rather the melted and cooling coating particles are only partially connected to one another, with preferably between 2% to 20% of the coating volume being formed by pore cavities.
Die erfindungsgemäße Anlage ist dadurch gekennzeichnet, dass eine Steuerung vorgesehen und ausgelegt ist, so dass die Beschichtungslanze mit einer gleichmäßigen axialen Vorschubgeschwindigkeit in die Bohrung einfahrbar und mit einer Drehgeschwindigkeit von 420 U/min bis 520 U/min drehbar ist und ein Volumenstrom an Fördergas von 30 l/min bis 70 l/min und einer Zuführrate an Beschichtungspulver in einen Plasmastrom von 90 g/min bis 130 g/min eingestellt ist.The system according to the invention is characterized in that a control is provided and designed so that the coating lance can be retracted into the bore at a uniform axial feed rate and rotated at a rotational speed of 420 rpm to 520 rpm and a volume flow of conveying gas of 30 l / min to 70 l / min and a feed rate of coating powder in a plasma flow of 90 g / min to 130 g / min.
Claims (13)
dass die Partikel des Beschichtungspulvers in dem Plasmastrom aufgeschmolzen werden und eine mit Mikroporen versehene Beschichtung erzeugt wird, wobei die Beschichtungslanze mit einer axialen Vorschubgeschwindigkeit in die Bohrung eingefahren und mit einer Drehgeschwindigkeit von 420 U/min bis 520 U/min gedreht wird und bei einem Volumenstrom an Plasmagasgemisch von 30 l/min bis 70 l/min Beschichtungspulver mit einer Zuführrate von 90 g/min bis 130 g/min eingedüst wird.Method for metallic coating of a bore wall of a bore in a workpiece, in particular a running surface of a cylinder bore in an engine block, by means of atmospheric plasma spraying, wherein
that the particles of the coating powder are melted in the plasma flow and a coating provided with micropores is produced, the coating lance being retracted into the bore at an axial feed rate and being rotated at a rotational speed of 420 rpm to 520 rpm and at a volume flow of a plasma gas mixture of 30 l / min to 70 l / min coating powder is injected at a feed rate of 90 g / min to 130 g / min.
dadurch gekennzeichnet,
dass eine axiale Vorschubgeschwindigkeit von 3,8 mm/U bis 4,5 mm/U, insbesondere von 4,1 mm/U bis 4,2 mm/U, eingestellt wird.Method according to claim 1,
characterized,
that an axial feed rate of 3.8 mm / rev to 4.5 mm / rev, in particular from 4.1 mm / rev to 4.2 mm / rev, is set.
dadurch gekennzeichnet,
dass zwischen der Anode und der Kathode ein Entladungsstrom von 300 A bis 400 A, insbesondere von 360 A, eingestellt wird.Method according to claim 1 or 2,
characterized,
that a discharge current of 300 A to 400 A, in particular 360 A, is set between the anode and the cathode.
dadurch gekennzeichnet,
dass der Plasmastrom mit den Partikeln mit einer Injektionsdüse aufgedüst wird, welche einen Durchmesser von 1 mm bis 2 mm, vorzugsweise von 1,5 mm aufweist.Method according to one of Claims 1 to 3,
characterized,
that the plasma stream with the particles is sprayed with an injection nozzle which has a diameter of 1 mm to 2 mm, preferably 1.5 mm.
dadurch gekennzeichnet,
dass die Injektionsdüse gegenüber der Längsachse um 5° bis 20°, insbesondere zwischen 8° bis 12°, nach oben geneigt wird.Method according to claim 1 to 4,
characterized,
that the injection nozzle is inclined upwards by 5 ° to 20 °, in particular between 8 ° to 12 °, with respect to the longitudinal axis.
dadurch gekennzeichnet,
dass die Beschichtung durch mehrere Beschichtungslagen, insbesondere drei bis sechs Beschichtungslagen, aufgebaut wird, wobei eine Beschichtungslage jeweils durch einen axialen Überlauf der Beschichtungslanze gebildet wird.Method according to one of Claims 1 to 5,
characterized,
that the coating is built up by a plurality of coating layers, in particular three to six coating layers, with each coating layer being formed by an axial overflow of the coating lance.
dadurch gekennzeichnet,
dass eine Schichtdicke von 150 µm bis 300 µm, insbesondere von 250 µm gebildet wird.Method according to one of Claims 1 to 6,
characterized,
that a layer thickness of 150 µm to 300 µm, in particular 250 µm, is formed.
dadurch gekennzeichnet,
dass das Plasmagasgemisch unter Verwendung von Argon, Wasserstoff, Stickstoff und/oder Helium gebildet wird.Method according to one of Claims 1 to 7,
characterized,
that the plasma gas mixture is formed using argon, hydrogen, nitrogen and / or helium.
dadurch gekennzeichnet,
dass eine Drehgeschwindigkeit von 450 U/min bis 465 U/min, insbesondere von 459 U/min, eingestellt wird.Method according to one of Claims 1 to 8,
characterized,
that a rotational speed of 450 rpm to 465 rpm, in particular 459 rpm, is set.
dadurch gekennzeichnet,
dass ein Volumenstrom des Plasmagasgemisches von 40 l/min bis 50 l/min, vorzugsweise von 44 l/min, eingestellt wird.Method according to one of Claims 1 to 9,
characterized,
that a volume flow of the plasma gas mixture of 40 l / min to 50 l / min, preferably 44 l / min, is set.
dadurch gekennzeichnet,
dass die Förderrate des Beschichtungspulvers auf 110 g/min eingestellt wird.Method according to one of Claims 1 to 10,
characterized,
that the feed rate of the coating powder is set to 110 g / min.
dadurch gekennzeichnet,
dass ein Beschichtungspulver mit Eisenpartikeln und/oder weiteren Metallen verwendet wird, wobei eine durchschnittliche Größe der Partikel zwischen 100 nm bis 100 µm liegt.Method according to one of Claims 1 to 11,
characterized,
that a coating powder with iron particles and / or other metals is used, the average size of the particles being between 100 nm and 100 μm.
dass eine Steuerung vorgesehen und ausgelegt ist, so dass die Beschichtungslanze mit einer gleichmäßigen axialen Vorschubgeschwindigkeit in die Bohrung einfahrbar und mit einer Drehgeschwindigkeit von 420 U/min bis 520 U/min drehbar ist und ein Volumenstrom an Plasmagasgemisch von 30 l/min bis 70 l/min und einer Zuführrate an Beschichtungspulver in den Plasmastrom von 90 g/min bis 130 g/min eingestellt ist.Plant for the metallic coating of a bore wall of a bore in a workpiece by means of atmospheric plasma spraying, in particular with a method according to one of Claims 1 to 12
that a control is provided and designed so that the coating lance can be moved into the bore at a constant axial feed rate and rotated at a rotational speed of 420 rpm to 520 rpm and a volume flow of plasma gas mixture of 30 l / min to 70 l / min and a feed rate of coating powder in the plasma flow of 90 g / min to 130 g / min are set.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20169797.6A EP3896190B1 (en) | 2020-04-16 | 2020-04-16 | Installation and method for producing a metallic coating on a borehole wall |
CN202180011888.7A CN115003850A (en) | 2020-04-16 | 2021-03-04 | Method and apparatus for metal coating of bore walls |
PCT/EP2021/055470 WO2021209190A1 (en) | 2020-04-16 | 2021-03-04 | Method and system for applying a metal coating to a bore wall |
US17/904,363 US20230056126A1 (en) | 2020-04-16 | 2021-03-04 | Method and system for the metal coating of a bore wall |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20169797.6A EP3896190B1 (en) | 2020-04-16 | 2020-04-16 | Installation and method for producing a metallic coating on a borehole wall |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3896190A1 true EP3896190A1 (en) | 2021-10-20 |
EP3896190C0 EP3896190C0 (en) | 2024-06-05 |
EP3896190B1 EP3896190B1 (en) | 2024-06-05 |
Family
ID=70292836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20169797.6A Active EP3896190B1 (en) | 2020-04-16 | 2020-04-16 | Installation and method for producing a metallic coating on a borehole wall |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230056126A1 (en) |
EP (1) | EP3896190B1 (en) |
CN (1) | CN115003850A (en) |
WO (1) | WO2021209190A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2444516A1 (en) * | 2010-10-25 | 2012-04-25 | United Technologies Corporation | Thermal spray coating process for compressor shafts |
DE102012003306A1 (en) * | 2012-02-18 | 2013-08-22 | Amt Ag | Device for performing plasma coating on surface of substrate, for use in manufacturing of e.g. cylinder bore, has wire-shaped or powder material that is selectively processed in region of electrode which generates auxiliary voltage arc |
EP2933352A1 (en) | 2014-04-17 | 2015-10-21 | Sturm Maschinen- & Anlagenbau GmbH | Installation and method for producing a metallic coating on a borehole wall |
WO2017202852A1 (en) * | 2016-05-27 | 2017-11-30 | Oerlikon Metco Ag, Wohlen | Coating method, thermal coating, and cylinder having a thermal coating |
EP3575435A1 (en) * | 2018-05-29 | 2019-12-04 | Volkswagen AG | Plasma spray method for coating a cylinder a cylinder liner of a cylinder crankcase of a reciprocating piston combustion engine |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3958097A (en) * | 1974-05-30 | 1976-05-18 | Metco, Inc. | Plasma flame-spraying process employing supersonic gaseous streams |
DE10256460B4 (en) * | 2001-12-03 | 2006-10-26 | Nissan Motor Co., Ltd., Yokohama | Process for producing a product with a sprayed coating film and spray gun device |
EP2784171B1 (en) * | 2011-11-22 | 2018-05-09 | Nissan Motor Company, Limited | Manufacturing method for cylinder block |
US20160130691A1 (en) * | 2014-11-07 | 2016-05-12 | GM Global Technology Operations LLC | Surface activation by plasma jets for thermal spray coating on cylinder bores |
CN107400847B (en) * | 2017-09-07 | 2023-05-26 | 中国人民解放军陆军装甲兵学院 | Remanufacturing system and process for waste cylinder assembly of aviation piston engine |
TWI674334B (en) * | 2018-11-13 | 2019-10-11 | 國立臺灣科技大學 | Manufacturing method of high entropy alloy coating |
CN109778104A (en) * | 2019-03-06 | 2019-05-21 | 扬州大学 | A kind of cylinder liner internal wall heat insulation and wear resistance composite coating and preparation method |
CN110643924A (en) * | 2019-09-19 | 2020-01-03 | 成都正恒动力股份有限公司 | Metal-based ceramic reinforced inner hole coating and preparation method and spraying method thereof |
-
2020
- 2020-04-16 EP EP20169797.6A patent/EP3896190B1/en active Active
-
2021
- 2021-03-04 CN CN202180011888.7A patent/CN115003850A/en active Pending
- 2021-03-04 US US17/904,363 patent/US20230056126A1/en active Pending
- 2021-03-04 WO PCT/EP2021/055470 patent/WO2021209190A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2444516A1 (en) * | 2010-10-25 | 2012-04-25 | United Technologies Corporation | Thermal spray coating process for compressor shafts |
DE102012003306A1 (en) * | 2012-02-18 | 2013-08-22 | Amt Ag | Device for performing plasma coating on surface of substrate, for use in manufacturing of e.g. cylinder bore, has wire-shaped or powder material that is selectively processed in region of electrode which generates auxiliary voltage arc |
EP2933352A1 (en) | 2014-04-17 | 2015-10-21 | Sturm Maschinen- & Anlagenbau GmbH | Installation and method for producing a metallic coating on a borehole wall |
WO2017202852A1 (en) * | 2016-05-27 | 2017-11-30 | Oerlikon Metco Ag, Wohlen | Coating method, thermal coating, and cylinder having a thermal coating |
EP3575435A1 (en) * | 2018-05-29 | 2019-12-04 | Volkswagen AG | Plasma spray method for coating a cylinder a cylinder liner of a cylinder crankcase of a reciprocating piston combustion engine |
Also Published As
Publication number | Publication date |
---|---|
WO2021209190A1 (en) | 2021-10-21 |
EP3896190C0 (en) | 2024-06-05 |
EP3896190B1 (en) | 2024-06-05 |
US20230056126A1 (en) | 2023-02-23 |
CN115003850A (en) | 2022-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2130421C3 (en) | Method of making a composite metal strip | |
DE10262198B4 (en) | Process for the preparation of a product | |
DE3942050B4 (en) | Apparatus for laser plasma spraying with axial flow | |
DE4321673C2 (en) | Process for producing a component by means of arc spraying, and applications of this process | |
DE19943110B4 (en) | Process for injection molding of easily sweatable and workable metal deposits | |
DE102006044906A1 (en) | Plasma burner used in the production of coatings on surfaces comprises a secondary gas stream partially flowing around a material feed to focus the material injection into the center of the plasma produced | |
WO2021047821A1 (en) | Material deposition unit having a multiple material focus zone and method for build-up welding | |
WO2016120016A1 (en) | Method for layered production and/or coating of a workpiece by means of gas metal arc welding using an additional counter-electrode | |
EP2009132A1 (en) | Method for manufacturing a functional layer, coating material, method for its manufacture and functional layer | |
DE112019005544T5 (en) | Device for the production of three-dimensional objects | |
EP3896190B1 (en) | Installation and method for producing a metallic coating on a borehole wall | |
EP3559301B1 (en) | Nozzle construction for thermal spraying by means of a suspension or a precursor solution | |
DE102012108919A1 (en) | Device and method for producing a layer system | |
EP2468914B1 (en) | Method and device for arc spraying | |
EP0458018A2 (en) | Process and device for high speed flame spraying of refractory filler material in form of powder or wire for coating surfaces | |
EP2816135B1 (en) | Plasma powder spray method for coating of panels for boiler walls in connection with a laser beam apparatus | |
EP3909699A1 (en) | Method and apparatus for manufacturing a nozzle for additive manufacturing | |
EP3877108A1 (en) | Burner module and method for the additive manufacture of a burner module of this kind | |
DE102009004201A1 (en) | Process useful for wire arc spraying of workpieces, especially hollow bodies using wires made from different materials gives improved coating quality combined with shorter coating time | |
DE3247792A1 (en) | METHOD AND SPRAYING HEAD FOR SPRAYING ON METAL COATINGS, ESPECIALLY FOR SURFACES WITH DIFFICULT ACCESS | |
EP1557236B1 (en) | Method of manufacturing a connecting rod with an internally coated bore | |
EP0647497B1 (en) | Process for alloying a workpiece, using laser beam | |
DE102021113514A1 (en) | Device and method for producing a metal spray | |
DE102023110357A1 (en) | Device and method for directed gas exposure of a construction space for additive manufacturing | |
EP3511108A1 (en) | Method for producing a soldering agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20201029 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
B565 | Issuance of search results under rule 164(2) epc |
Effective date: 20200903 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B05B 13/06 20060101ALI20231219BHEP Ipc: B05B 7/22 20060101ALI20231219BHEP Ipc: C23C 4/12 20160101ALI20231219BHEP Ipc: C23C 4/134 20160101AFI20231219BHEP |
|
INTG | Intention to grant announced |
Effective date: 20240109 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020008183 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20240625 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240906 |