EP3895246A1 - Verfahren zum betreiben eines elektrischen energiespeichers - Google Patents

Verfahren zum betreiben eines elektrischen energiespeichers

Info

Publication number
EP3895246A1
EP3895246A1 EP19816670.4A EP19816670A EP3895246A1 EP 3895246 A1 EP3895246 A1 EP 3895246A1 EP 19816670 A EP19816670 A EP 19816670A EP 3895246 A1 EP3895246 A1 EP 3895246A1
Authority
EP
European Patent Office
Prior art keywords
electrical energy
aging
energy store
quick
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19816670.4A
Other languages
English (en)
French (fr)
Inventor
Jens Becker
Triantafyllos Zafiridis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3895246A1 publication Critical patent/EP3895246A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Die vorgestellte Erfindung betrifft ein Verfahren zum Betreiben eines elektrischen Energiespeichers, dessen Alterungsverhalten mittels eines erwarteten Alterungsverlaufs abgeschätzt ist, wobei ein zu verwendendes Schnellladeprofil des elektrischen Energiespeichers in Abhängigkeit eines Vergleichs zwischen einem erfassten Alterungszustand des elektrischen Energiespeichers und einem mittels des erwarteten Alterungsverlaufs bestimmten Soll-Alterungszustand des elektrischen Energiespeichers ermittelt wird.

Description

Beschreibung
Titel
Verfahren zum Betreiben eines elektrischen Energiespeichers
Stand der Technik
Elektrische Energiespeicher wie beispielsweise Batterien, die u. a. in Elektro- oder Hybridfahrzeugen zur Anwendung kommen, unterliegen einer gewissen Alterung. Diese Alterung lässt sich im Allgemeinen durch zwei Anteile
beschreiben, nämlich einen kalendarischen und einen zyklischen Anteil. Die zyklische Alterung wird hervorgerufen durch Ladungsdurchsatz, also durch Benutzung des elektrischen Energiespeichers. Im Beispiel einer Lithium-Ionen- Batterie ist der Ladevorgang ein maßgeblicher Faktor bei der Alterung. Gerade hier gilt zusätzlich der Zusammenhang, je schneller ein Ladevorgang
durchgeführt wird, desto größer ist die Alterung der Lithium-Ionen-Batterie in diesem Zeitraum.
Für den Betrieb von Lithium-Ionen-Batterien, wie sie derzeit in Elektrofahrzeugen zum Einsatz kommen, werden sogenannte Schnellladeprofile hinterlegt, die eine Schnellladung in einer definierten Zeit mit einer definierten Alterung ermöglichen. Die Schnellladeprofile werden mittels Versuchsreihen im Labor erstellt. Im Allgemeinen werden die Batterien so designt, dass nur eine vorgegebene Anzahl der über die gesamte Lebensdauer geplanten Ladezyklen ein
Schnellladevorgang sein darf. So kann eine Batterie beispielsweise auf 200 Schnellladezyklen bei 1000 Ladezyklen insgesamt ausgegeigt sein. Wird dieser Anteil überschritten, so altert die Batterie schneller als vorgesehen. Ebenfalls können zusätzliche Einflüsse wie z. B. aggressive Entladevorgänge oder hohe Temperaturen die Alterung beschleunigen. Altert eine Batterie schneller als vorgesehen, muss diese gegebenenfalls vor Erreichen des geplanten
Lebensendes ersetzt werden. Relevanter Stand der Technik ist aus der US 2016/0172886 und der US
2016/0006286 bekannt.
Offenbarung der Erfindung
Das erfindungsgemäße Verfahren zum Betreiben eines elektrischen
Energiespeichers, dessen Alterungsverhalten mittels eines erwarteten
Alterungsverlaufs abgeschätzt ist, hat demgegenüber den Vorteil, dass ein zu verwendendes Schnellladeprofil des elektrischen Energiespeichers in
Abhängigkeit eines Vergleichs zwischen einem erfassten Alterungszustand des elektrischen Energiespeichers und eines mittels des erwarteten Alterungsverlaufs bestimmten Soll-Alterungszustand des elektrischen Energiespeichers ermittelt wird. Bei dem elektrischen Energiespeicher kann es sich insbesondere um eine Batterie, insbesondere um eine Lithium-Ionen-Batterie handeln.
Vorteilhaft ist, dass die Ermittlung des zu verwendenden Schnellladeprofils erfolgt, indem das zu verwendende Schnellladeprofil aus einer Vielzahl von hinterlegten Schnellladeprofilen, die sich bezüglich ihres Einflusses auf das Alterungsverhalten des elektrischen Energiespeichers unterscheiden, ausgewählt wird. Somit kann das Verfahren in besonders einfacher Weise implementiert werden.
Vorteilhaft ist, dass das zu verwendende Schnellladeprofil derart ermittelt wird, dass eine zukünftige Abweichung zwischen dem erfassten Alterungszustand des elektrischen Energiespeichers und dem mittels des erwarteten Alterungsverlaufs bestimmten Soll-Alterungszustand des elektrischen Energiespeichers geringer ist als eine zugehörige Abweichung zwischen dem erfassten Alterungszustand des elektrischen Energiespeichers und dem mittels des erwarteten Alterungsverlaufs bestimmten Soll-Alterungszustand des elektrischen Energiespeichers, die bei Verwendung eines Standard-Schnellladeprofils zu erwarten wäre. Bei dem Standard-Schnellladeprofil kann es sich insbesondere um ein Schnellladeprofil handeln, das eine schnellstmögliche Aufladung des elektrischen
Energiespeichers, beispielsweise einer Batterie, ermöglicht. Unter einer zugehörigen Abweichung ist dabei insbesondere die Abweichung zum Zeitpunkt der prädizierten zukünftigen Abweichung gemeint.
Vorteilhaft ist, dass das zu verwendende Schnellladeprofil derart ermittelt wird, dass der zu einem in der Zukunft liegenden Horizontzeitpunkt erfasste
Alterungszustand des elektrischen Energiespeichers mit einem zugehörigen, aus dem erwarteten Alterungsverlauf ermittelten Alterungszustand übereinstimmt. Mit anderen Worten wird das zu verwendende Schnellladeprofil derart ausgewählt, dass nach einer oder mehrerer unter Verwendung des zu verwendenden
Schnellladeprofils durchgeführten Schnellladevorgängen der erfasste
Alterungszustand des elektrischen Energiespeichers wieder mit dem erwarteten Alterungszustand übereinstimmt. Sollte der elektrische Energiespeicher schneller als geplant altern, ist es somit vorteilhafter Weise möglich, korrigierend in den Alterungsverlauf des elektrischen Energiespeichers einzugreifen und somit ein Soll-Alterungsverhalten des elektrischen Energiespeichers wiederherzustellen. Unter Horizontzeitpunkt kann dabei jeder in der Zukunft liegende Zeitpunkt verstanden werden, der mindestens für die Dauer eines Schnellladevorgangs in der Zukunft liegt. Vorteilhafter Weise liegt der Horizontzeitpunkt derart weit in der Zukunft, dass bis zum Erreichen des Horizontzeitpunkts mehrere
Schnellladevorgänge unter Verwendung des zu verwendenden Schnellladeprofils durchgeführt werden können.
Vorteilhaft ist, dass ein Anwender des elektrischen Energiespeichers,
insbesondere ein Anwender eines Elektrofahrzeugs, indem eine Batterie verbaut ist, das zu verwendende Schnellladeprofil aus einer Auswahl an zur Verfügung stehenden Schnellladeprofilen auswählen kann. Somit hat der Anwender vorteilhafter Weise die Möglichkeit, selbst zu bestimmen, wie weit der
Horizontzeitpunkt in der Zukunft liegen soll. Mit anderen Worten kann der Anwender des elektrischen Energiespeichers selbst bestimmen, wie viele Schnellladezyklen unter Verwendung des zu verwendenden Schnellladeprofils durchgeführt werden müssen, bis der erfasste Alterungszustand des elektrischen Energiespeichers wieder mit dem aus dem erwarteten Alterungsverlauf ermittelten Alterungszustand übereinstimmt. Durch die Auswahl der Anzahl an zu verwendeten Schnellladezyklen hat der Anwender des elektrischen
Energiespeichers somit direkt die Möglichkeit auszuwählen, wie lange Schnellladevorgange unter Verwendung des zu verwendenden Schnellladeprofils in Zukunft dauern, da ein direkter Zusammenhang zwischen einer Dauer eines Schnellladevorgangs und einem positiven Effekt auf den Alterungszustand des elektrischen Energiespeichers gegeben ist. Die zur Verfügung stehenden Schnellladeprofile können dabei in vorteilhafter Ausgestaltung identisch mit der Vielzahl von hinterlegten Schnellladeprofilen sein.
Vorteilhaft ist, dass dem Anwender des elektrischen Energiespeichers vor der Auswahl des zu verwendenden Schnellladeprofils der Horizontzeitpunkt oder eine mit dem Horizontzeitpunkt korrelierende Auswahlinformation der zur Verfügung stehenden Schnellladeprofile angezeigt wird. Der Horizontzeitpunkt der zur Verfügung stehenden Schnellladeprofile ist dabei der Zeitpunkt, zu dem davon auszugehen ist, dass der erfasste Alterungszustand des elektrischen Energiespeichers durch Anwendung der zu verwendenden Schnellladeprofile wieder dem mittels des erwarteten Alterungsverlaufs bestimmten Soll- Alterungszustand des elektrischen Energiespeichers entspricht. Eine
korrelierende Auswahlinformation kann dabei jede Größe sein, die mit dem Horizontzeitpunkt korreliert, beispielsweise der individuelle Einfluss eines Schnellladeprofils auf den Alterungszustand des elektrischen Energiespeichers oder, da hier eine physikalische Korrelation gegeben ist, die Dauer eines vollständigen Schnellladevorgangs unter Verwendung des jeweiligen
Schnellladeprofils.
Vorteilhafter Weise umfasst der elektrische Energiespeicher eine Batterie eines Elektrofahrzeugs, da das vorgestellte Verfahren insbesondere zum Betrieb einer Lithium-Ionen-Batterie eines Elektrofahrzeugs geeignet ist.
Vorteilhaft ist eine Vorrichtung, die eingerichtet ist, jeden Schritt des
erfindungsgemäßen Verfahrens durchzuführen. Vorteilhaft ist außerdem ein Computerprogramm, das eingerichtet ist, jeden Schritt des erfindungsgemäßen Verfahrens durchzuführen, wenn das Computerprogramm auf einer
Recheneinheit abläuft. Bei der Recheneinheit kann es sich beispielsweise um eine Steuereinheit des elektrischen Energiespeichers wie beispielsweise ein Batteriemanagementsystem (BMS) einer Batterie handeln. Vorteilhafter Weise werden im Rahmen des vorgestellten Verfahrens
Schnellladeprofile verwendet, die zuvor in einem Labor ermittelt wurden.
Alternativ zur Betrachtung des Alterungszustands des elektrischen
Energiespeichers kann auch ein Alterungsgradient, also auch eine Änderung des Alterungszustands pro Zeiteinheit des elektrischen Energiespeichers betrachtet und als Grundlage des vorgestellten Verfahrens verwendet werdet werden.
Ebenso ist es denkbar, das vorgestellte Verfahren nicht unter Verwendung von definierten Zeitpunkten wie beispielsweise einem Horizontzeitpunkt
durchzuführen, sondern als Bezugssystem eine Gesamtladungsmenge zu verwenden, die durch den elektrischen Energiespeicher geflossen ist. Ebenso kann als Bezugssystem eine Gesamtanzahl von Ladevorgängen des elektrischen Energiespeichers verwendet werden.
Bei dem Alterungszustand des elektrischen Energiespeichers kann es sich beispielsweise um einen State-of-Health-of-Capacity (SOHc) handeln, insbesondere dann, wenn es sich bei dem elektrischen Energiespeicher um eine Batterie handelt. Verfahren zur Bestimmung des SOHc sind hinreichend aus dem Stand der Technik bekannt.
Vorteilhafter Weise wird das vorgestellte Verfahren unter Verwendung eines Alterungscontrollers durchgeführt, wobei es sich bei dem Alterungscontroller beispielsweise um ein Softwaremodul handeln kann. Mit Hilfe des
Alterungscontrollers kann ein Degradationsfaktor (DegFac) bestimmt werden, der zur Reduktion der Alterung des elektrischen Energiespeichers verwendet wird. Der Degradationsfaktor berechnet sich dabei wie folgt:
DegFac =
SOH bezeichnet dabei den Stat-of- Health, also ein Maß für die Alterung des elektrischen Energiespeichers. QHOR bezeichnet einen Ladungsdurchsatz, der während der gesamten Lebensdauer des elektrischen Energiespeichers konstant ist. Der Ladungsdurchsatz QHOR ist das Produkt aus Alterungsgradient und einem Alterungshorizont. Der Alterungshorizont ist die Differenz zweier State-of- Health Werte zu verschiedenen Zeitpunkten. Mit dem Index mess sind Messgrößen bezeichnet. Mit dem Index esf sind Schätzgrößen bezeichnet. AGsoii bezeichnet einen für den elektrischen Energiespeicher zu erwartenden Alterungsgradienten, wobei gilt:
Qmax ist der Ladungsdurchsatz über die Lebensdauer des elektrischen
Energiespeichers, beispielsweise einer Batterie vom Begin der erwarteten Lebensadauer (BOL) bis zum Ende der erwarteten Lebensdauer (EOL). Ein aktueller Alterungsgradient AGest bestimmt sich als Quotine t aus gemessenem Ladungsdurchsatz und gemessenem Kapazitätsverlust gemäß:
Nachfolgend wird ein Ausführungsbeispiel der Erfindung näher vorgestellt. Dabei zeigen:
Kurze Beschreibung der Zeichnungen
Figur 1 eine schematische Darstellung eines Elektrofahrzeugs;
Figur 2 eine schematische Darstellung des jeweiligen Einflusses von verschiedenen Schnellladeprofilen auf das Alterungsverhalten eines elektrischen Energiespeichers;
Figur 3 eine schematische Darstellung der Wirkung der Anwendung eines zu verwendenden Schnellladeprofils auf den Alterungs zustand des elektrischen Energiespeichers;
Figur 4 ein schematischer Ablauf eines Ausführungsbeispiels des
erfindungsgemäßen Verfahrens. Figur 1 zeigt eine schematische Darstellung eines Elektrofahrzeugs (10), das einen Elektromotor (17) sowie einen elektrischen Energiespeicher (12) umfasst. Der elektrische Energiespeicher (12) umfasst eine Speicherzelle (14) sowie eine Steuereinheit (16). Bei dem elektrischen Energiespeicher kann es sich insbesondere um eine Lithium-Ionen-Batterie handeln. Das vorgestellte
Verfahren eignet sich insbesondere zum Betrieb einer Batterie eines
Elektrofahreugs.
Figur 2 zeigt eine schematische Darstellung des jeweiligen Einflusses von verschiedenen Schnellladeprofilen auf das Alterungsverhalten des elektrischen Energiespeichers (12). Mit dem Bezugszeichen 20 ist dabei eine
Alterungszustandsachse bzw. eine State-of-Health-Achse bezeichnet, wobei ein niedriger Wert auf der Alterungszustandsachse einer hohen Alterung entspricht. Mit dem Bezugszeichen 22 ist eine Zeitachse bezeichnet. Alternativ kann es sich bei der Achse 22 auch um eine Ladungsachse, auf der eine kumulierte
Gesamtladung, die im Laufe der Lebensdauer durch den elektrischen
Energiespeicher (12) fließt, aufgetragen ist. Alternativ kann es sich bei der Achse 22 um eine Ladezyklenachse handeln, auf der eine Summe von durchgeführten bzw. durchzuführenden Ladezyklen des elektrischen Energiespeichers (12) aufgetragen ist.
Ein erstes Schnellladeprofil (24) hat einen ersten Einfluss auf das
Alterungsverhalten des elektrischen Energiespeichers (12). Wie in Figur 2 gezeigt, verringert sich der State-of- Health im Laufe der Zeit. Ein zweites Schnellladeprofil (25) hat einen zweiten Einfluss auf das Alterungsverhalten des elektrischen Energiespeichers (12). Ein drittes Schnellladeprofil (26) hat einen dritten Einfluss auf das Alterungsverhalten des elektrischen Energiespeichers (12). Ein viertes Schnellladeprofil, das einem Standardschnellladeprofil entspricht, hat einen vierten Einfluss auf das Alterungsverhalten des elektrischen Energiespeichers (12). Wie in Figur 2 zu sehen ist, ist der Einfluss des Standard- Schnellladeprofils (27) so, dass unter Verwendung des Standard- Schnellladeprofils für Schnellladevorgänge des elektrischen Energiespeichers (12) ein niedriger State-of- Health (SOH) zu einem relativ frühen Zeitpunkt erreicht wird, wohingegen unter Verwendung beispielsweise des ersten Schnellladeprofils (24) der gleiche State-of- Health (SOH) zu einem späteren Zeitpunkt erreicht werden würde.
Figur 3 zeigt eine schematische Darstellung der Wirkung der Anwendung eines zu verwendenden Schnellladeprofils auf den Alterungszustand des elektrischen Energiespeichers (12). Mit dem Bezugszeichen 30 ist wieder eine Alterungszustandsachse bzw. eine State-of-Health-Achse bezeichnet. Mit dem Bezugszeichen 32 ist wieder eine Zeitachse bzw. eine Ladungsachse bzw. eine Ladezyklenachse bezeichnet. Die Funktion 34 illustriert einen erwarteten Alterungsverlauf, d. h. eine Abnahme des State-of- Health des elektrischen Energiespeichers (12) bei fortschreitender Zeit. Zu einem ersten Zeitpunkt (38) wird im in Figur 3 illustrierten Beispiel der tatsächliche Alterungszustand des elektrischen Energiespeichers (12) erfasst. Hierbei wird ein State-of- Health ermittelt, der dem Ausgangspunkt der mit den Bezugszeichen 35 und 36 versehenen Pfeile entspricht. Der zum ersten Zeitpunkt (38) ermittelte State-of- Health des elektrischen Energiespeichers (12) liegt dabei unterhalb des anhand des erwarteten Alterungsverlaufs (34) bestimmten Soll-Alterungszustand des elektrischen Energiespeichers (12), die dem Wert des erwarteten
Alterungsverlaufs (34) zum ersten Zeitpunkt (38) entspricht.
Ein weiterer Betrieb des elektrischen Energiespeichers unter Verwendung des Standard-Schnellladeprofils (27) würde zu einem erfassten Alterungszustand des elektrischen Energiespeichers (12) zum Horizontzeitpunkt (39) führen, der einem Endpunkt des mit Bezugszeichen 35 bezeichneten Pfeiles entspricht. D. h. ein Weiterbetrieb des elektrischen Energiespeichers (12) unter Verwendung des Standard-Schnellladeprofils (27) würde dazu führen, dass zum Horizontzeitpunkt (39) immer noch eine Abweichung zwischen erfasstem Alterungszustand und Soll-Alterungszustand, der dem Wert des erwarteten Alterungsverlaufs (34) zum Horizontzeitpunkt (39) entspricht, vorhanden ist. Unter Verwendung eines zu verwendenden Schnellladeprofils, bei dem es sich beispielsweise um das erste Schnellladeprofil (24) handeln kann, kann sichergestellt werden, dass zum Horizontzeitpunkt (39) der erfasste Alterungszustand des elektrischen
Energiespeichers (12) wieder dem erwarteten Alterungsverlauf (34) zum
Horizontzeitpunkt (39) entspricht. Dies ist möglich, da der Einfluss des zu verwendenden Schnellladeprofils, z.B. des ersten Schnellladeprofils (24) auf das Alterungsverhalten des elektrischen Energiespeichers (12) geringer ist als der Einfluss des Standard-Schnellladeprofils (27).
Figur 4 zeigt einen schematischen Ablauf eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens. Das Ausführungsbeispiel startet mit Schritt 100, in dem ein Schnellladevorgang initiiert wird. Die Initiierung eines
Schnellladevorgangs des elektrischen Energiespeichers (12), bei dem es sich insbesondere um eine Lithium-Ionen-Batterie eines Elektrofahrzeugs (10) handeln kann, kann beispielsweise durch Verbindung des elektrischen
Energiespeichers (12) mit einer Schnellladesäule oder durch Betätigung eines entsprechenden Betätigungselements erfolgen. Im Anschluss an Schritt 100 folgt Schritt 110.
In Schritt 110 wird überprüft, ob das zu verwendende Schnellladeprofil kürzlich geändert wurde. Bei einer kürzlichen Änderung kann es sich beispielsweise um eine Änderung handeln, die innerhalb eines zurückliegenden Intervalls von wenigen, vorgebbaren Schnellladezyklen erfolgt ist. Beispielsweise kann überprüft werden, ob ein aktuell hinterlegtes Schnellladeprofil bereits zehn Mal für einen Schnellladevorgang verwendet wurde. Ergibt die Prüfung im Rahmen von Schritt 110, dass das Schnellladeprofil kürzlich geändert wurde, folgt Schritt 150 auf Schritt 110. Ergibt die Prüfung im Rahmen von Schritt 110, dass das Schnellladeprofil kürzlich nicht geändert wurde, also beispielsweise, dass ein hinterlegtes Schnellladeprofil bereits für zehn Schnellladezyklen verwendet wurde, so folgt Schritt 120.
In Schritt 120 wird der Alterungszustand des elektrischen Energiespeichers (12) erfasst. Hierfür kann beispielsweise der State-of- Health des elektrischen
Energiespeichers (12) gemäß einem aus dem Stand der Technik bekannten Verfahren ermittelt werden. Im Rahmen von Schritt 120 wird außerdem der Soll- Alterungszustand des elektrischen Energiespeichers (12) zum aktuellen
Zeitpunkt bestimmt. Hierfür wird der erwartete Alterungsverlauf (34) des elektrischen Energiespeichers (12) zum aktuellen Zeitpunkt ausgewertet. Im Anschluss an Schritt 120 folgt Schritt 130. In Schritt 130 erfolgt ein Vergleich des in Schritt 120 erfassten Alterungszustands des elektrischen Energiespeichers (12) und des in Schritt 120 bestimmten Soll- Alterungszustands des elektrischen Energiespeichers (12). Ergibt dieser
Vergleich eine Abweichung, die größer als eine vorgebbare Toleranz ist, folgt Schritt 140 auf Schritt 130. Ergibt der Vergleich keine Abweichung, die größer als eine vorgebbare Toleranz ist, so folgt Schritt 100 auf Schritt 130.
In Schritt 140 werden einem Anwender des elektrischen Energiespeichers (12), bei dem es sich insbesondere um die Lithium-Ionen-Batterie eines
Elektrofahrzeugs (10) handeln kann, verschiedene Schnellladeprofile sowie mit dem Horizontzeitpunkt korrelierende Auswahlinformationen für die verschiedenen Schnellladeprofile zur Anzeige gebracht. Bei den mit dem Horizontzeitpunkt korrelierenden Auswahlinformationen kann es sich insbesondere um eine Anzahl an Schnellladevorgängen handeln, die mit dem jeweiligen Schnellladeprofil durchgeführt werden müssen, um den erfassten Alterungszustand des elektrischen Energiespeichers (12) wieder mit dem Soll-Alterungszustand des elektrischen Energiespeichers (12) in Deckung zu bringen. Bei den mit dem Horizontzeitpunkt (39) korrelierenden Auswahlinformationen kann es sich beispielsweise auch um die Dauer eines Schnellladevorgangs handeln, die unter Verwendung eines jeden Schnellladeprofils für ein Aufladen des elektrischen Energiespeichers (12) benötigt wird. Der Anwender des elektrischen
Energiespeichers (12) wählt anschließend ein ihm angezeigtes Schnell- Ladeprofil aus. In alternativer Ausgestaltung erfolgt die Auswahl des
Schnellladeprofils im Rahmen von Schritt 140 nicht durch einen Anwender, sondern durch eine Recheneinheit, die das Ausführungsbeispiel des
erfindungsgemäßen Verfahrens ausführt. Im Anschluss an Schritt 140 folgt Schritt 150.
In Schritt 150 wird das in Schritt 140 ausgewählte Schnellladeprofil in einem Speicher hinterlegt und anschließend ein Schnellladevorgang unter Verwendung des neu hinterlegten Schnellladeprofils durchgeführt. Wurde im Rahmen von Schritt 150 kein Schnellladeprofil neu hinterlegt, so wird unter Anwendung eines bereits gespeicherten Schnellladeprofils der Schnellladevorgang durchgeführt. Durch das vorgestellte Ausführungsbeispiel des erfindungsgemäßen Verfahrens kann die Lebensdauer des elektrischen Energiespeichers (12), bei dem es sich insbesondere um eine Lithium-Ionen-Batterie handeln kann, erhöht werden. Eine Überbeanspruchung des elektrischen Energiespeichers (12) durch zu häufiges Schnellladen wird mittels des vorgestellten Ausführungsbeispiels des
erfindungsgemäßen Verfahrens erkannt und durch Verwendung eines geeigneten Schnellladeprofils kompensiert. Eine spezifizierte Lebenserwartung des elektrischen Energiespeichers (12) wird somit eingehalten. Besonders vorteilhaft ist, dass das vorgestellte Ausführungsbeispiel des erfindungsgemäßen Verfahrens keine zusätzliche Hardware erfordert, sondern lediglich durch
Verwendung geeigneter Software implementiert werden kann.

Claims

Ansprüche
1. Verfahren zum Betreiben eines elektrischen Energiespeichers (12), dessen Alterungsverhalten mittels eines erwarteten Alterungsverlaufs (34) abgeschätzt ist, dadurch gekennzeichnet, dass ein zu verwendendes Schnellladeprofil des elektrischen Energiespeichers (12) in Abhängigkeit eines Vergleichs zwischen einem erfassten Alterungszustand des elektrischen Energiespeichers und einem mittels des erwarteten Alterungsverlaufs bestimmten Soll-Alterungszustand des elektrischen
Energiespeichers ermittelt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Ermittlung des zu verwendenden Schnellladeprofils erfolgt, indem das zu verwendende
Schnellladeprofil aus einer Vielzahl von hinterlegten Schnellladeprofilen, die sich bezüglich ihres Einflusses auf das Alterungsverhalten des elektrischen
Energiespeichers unterscheiden, ausgewählt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das zu verwendende Schnellladeprofil derart ermittelt wird, dass eine zukünftige Abweichung zwischen dem erfassten Alterungszustand des elektrischen Energiespeichers (12) und dem mittels des erwarteten Alterungsverlaufs (34) bestimmten Soll-Alterungszustand des elektrischen Energiespeichers (12) geringer ist, als eine zugehörige Abweichung zwischen dem erfassten Alterungszustand des elektrischen Energiespeichers (12) und dem mittels des erwarteten Alterungsverlaufs (34) bestimmten Soll-Alterungszustand des elektrischen Energiespeichers (12), die bei Verwendung eines Standard- Schnellladeprofils (27) zu erwarten ist.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das zu verwendende Schnellladeprofil derart ermittelt wird, dass der zu einem in der Zukunft liegenden Horizontzeitpunkt (39) erfasste Alterungszustand des elektrischen Energiespeichers mit einem zugehörigen, aus dem erwarteten Alterungsverlauf (34) ermittelten Alterungszustand übereinstimmt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass ein Anwender des elektrischen Energiespeichers (12) das zu verwendende Schnellladeprofil aus einer Auswahl an zur Verfügung stehenden Schnellladeprofilen auswählen kann.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass dem Anwender des elektrischen Energiespeichers (12) vor der Auswahl des zu verwendenden Schnellladeprofils der Horizontzeitpunkt (39) oder eine mit dem Horizontzeitpunkt (39) korrelierende Auswahlinformation der zur Verfügung stehenden Schnellladeprofile angezeigt wird.
7. Verfahren nach einem der vorangegangenen Ansprüche, dadurch
gekennzeichnet, dass der elektrischen Energiespeicher (12) eine Batterie eines Elektrofahrzeugs (10) umfasst.
8. Vorrichtung, eingerichtet, jeden Schritt des Verfahrens nach einem der Ansprüche 1 bis 7 durchzuführen.
9. Computerprogramm, das eingerichtet ist, jeden Schritt des Verfahrens nach einem der Ansprüche 1 bis 7 durchzuführen, wenn das Computerprogramm auf einer
Recheneinheit abläuft.
EP19816670.4A 2018-12-12 2019-12-06 Verfahren zum betreiben eines elektrischen energiespeichers Pending EP3895246A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018221501.4A DE102018221501A1 (de) 2018-12-12 2018-12-12 Verfahren zum Betreiben eines elektrischen Energiespeichers
PCT/EP2019/083966 WO2020120311A1 (de) 2018-12-12 2019-12-06 Verfahren zum betreiben eines elektrischen energiespeichers

Publications (1)

Publication Number Publication Date
EP3895246A1 true EP3895246A1 (de) 2021-10-20

Family

ID=68808390

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19816670.4A Pending EP3895246A1 (de) 2018-12-12 2019-12-06 Verfahren zum betreiben eines elektrischen energiespeichers

Country Status (6)

Country Link
US (1) US20220059879A1 (de)
EP (1) EP3895246A1 (de)
KR (1) KR20210099103A (de)
CN (1) CN113169386A (de)
DE (1) DE102018221501A1 (de)
WO (1) WO2020120311A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019214407A1 (de) * 2019-09-20 2021-03-25 Robert Bosch Gmbh Verfahren zur Ermittlung einer ersten Spannungskennlinie einer ersten elektrischen Energiespeichereinheit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042656A1 (de) * 2009-09-23 2011-03-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung bzw. Regelung mindestens eines den Alterungszustand eines elektrischen Energiespeichers beeinflussenden Betriebsparameters
DE102014212451B4 (de) * 2014-06-27 2023-09-07 Vitesco Technologies GmbH Vorrichtung und Verfahren zur Regelung eines Ladezustands eines elektrischen Energiespeichers
US9997944B2 (en) 2014-07-07 2018-06-12 Samsung Electronics Co., Ltd. Method and system of charging a battery
US9853471B2 (en) * 2014-12-16 2017-12-26 Intel Corporation Mechanism for extending cycle life of a battery
US20180321730A1 (en) * 2017-05-04 2018-11-08 Samsung Electronics Co., Ltd. Methods for adaptive battery charging and electronic device thereof

Also Published As

Publication number Publication date
CN113169386A (zh) 2021-07-23
KR20210099103A (ko) 2021-08-11
DE102018221501A1 (de) 2020-06-18
WO2020120311A1 (de) 2020-06-18
US20220059879A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
DE102009005218B4 (de) Schneller Suchalgorithmus zum Auffinden einer Anfangs-Diffusionsspannung bei elektrochemischen Sytemen
EP3017496B1 (de) Verfahren zum batteriemanagement und batteriemanagementsystem
WO2012143253A1 (de) Verfahren und vorrichtung zur ermittlung der innentemperatur eines energiespeichers
DE102010031337A1 (de) Verfahren zur Ermittlung der voraussichtlichen Lebensdauer wenigstens einer Batteriezelle, Batterie mit einer Mehrzahl von Batteriezellen und Kraftfahrzeug
WO2004070407A1 (de) Verfahren und vorrichtung zum ermitteln der aus einem energiespeicher entnehmbaren ladung
DE102012204957A1 (de) Verfahren zur Bestimmung eines maximal verfügbaren Konstantstroms einer Batterie, Anordnung zur Ausführung eines solchen Verfahrens, Batterie in Kombination mit einer solchen Anordnung und Kraftfahrzeug mit einer solchen Batterie
EP3118639B1 (de) Verfahren und vorrichtung zum überwachen eines zustandes wenigstens einer vorbestimmten batteriezelle einer batterie
WO2018141638A1 (de) Verfahren zum betrieb eines energiespeichersystems und energiespeichersystem
DE102011007884A1 (de) Verfahren zur Bestimmung eines maximal verfügbaren Konstantstroms einer Batterie
DE102013217752B4 (de) Bestimmung der Kapazität einer Batterie
EP3475713A1 (de) Verfahren zur bestimmung des alters eines elektrochemischen energiespeichers
EP4123321A1 (de) Verfahren, vorrichtung und computerprogrammprodukt zur restwertbestimmung von batteriespeichern
EP3895246A1 (de) Verfahren zum betreiben eines elektrischen energiespeichers
DE102015221807A1 (de) Verfahren zum Betrieb einer Batterie und Batterie
DE102017200548B4 (de) Verfahren zur Ermittlung einer aktuellen Kennlinie für einen ein Kraftfahrzeug versorgenden elektrochemischen Energiespeicher, Kraftfahrzeug und Server
WO2019072488A1 (de) Energiespeichereinrichtung sowie vorrichtung und verfahren zur bestimmung einer kapazität einer energiespeichereinrichtung
DE112019007176T5 (de) Kennlinien-schätzeinrichtung für speicherbatterie und kennlinien-schätzverfahren für speicherbatterie
EP4123319B1 (de) Verfahren, vorrichtung und computerprogrammprodukt zur lebensdauerabschätzung von batteriespeichern
DE102021203390B3 (de) Verfahren zum spannungsgeführten Betrieb eines Batteriesystems während eines Ladevorgangs
EP3866300A1 (de) Verfahren zur bestimmung des alterungszustandes mindestens einer elektrischen energiespeichereinheit
DE102011007895A1 (de) Verfahren zur Bestimmung einer maximal verfügbaren Konstantleistung einer Batterie
DE102020104984A1 (de) Unregelmäßigkeitsdiagnosevorrichtung für Leistungsversorgungsvorrichtung
DE102018103059A1 (de) Verfahren zum Abschätzen einer restlichen Lebensdauer einer aufladbaren Batterie
DE102018214984A1 (de) Verfahren zur Ermittlung einer Umgebungstemperatur einer ersten elektrischen Energiespeichereinheit im Verbund mit zweiten elektrischen Energiespeichereinheiten sowie entsprechende Vorrichtung, Computerprogramm und maschinenlesbares Speichermedium
DE102015006254A1 (de) Verfahren zum Laden einer Batterie

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)