EP3885694B1 - Verfahren und vorrichtung zur kontrollierten befüllung und inspektion von sprenglöchern - Google Patents

Verfahren und vorrichtung zur kontrollierten befüllung und inspektion von sprenglöchern Download PDF

Info

Publication number
EP3885694B1
EP3885694B1 EP20165157.7A EP20165157A EP3885694B1 EP 3885694 B1 EP3885694 B1 EP 3885694B1 EP 20165157 A EP20165157 A EP 20165157A EP 3885694 B1 EP3885694 B1 EP 3885694B1
Authority
EP
European Patent Office
Prior art keywords
radar
blasting borehole
radar head
explosive
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20165157.7A
Other languages
English (en)
French (fr)
Other versions
EP3885694A1 (de
Inventor
Reik Winkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Indurad GmbH
Original Assignee
Indurad GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Indurad GmbH filed Critical Indurad GmbH
Priority to EP20165157.7A priority Critical patent/EP3885694B1/de
Priority to US17/210,708 priority patent/US11988086B2/en
Priority to CL2021000735A priority patent/CL2021000735A1/es
Priority to AU2021201833A priority patent/AU2021201833A1/en
Publication of EP3885694A1 publication Critical patent/EP3885694A1/de
Application granted granted Critical
Publication of EP3885694B1 publication Critical patent/EP3885694B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/08Measuring diameters or related dimensions at the borehole
    • E21B47/085Measuring diameters or related dimensions at the borehole using radiant means, e.g. acoustic, radioactive or electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/08Tamping methods; Methods for loading boreholes with explosives; Apparatus therefor
    • F42D1/10Feeding explosives in granular or slurry form; Feeding explosives by pneumatic or hydraulic pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/04Measuring depth or liquid level
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/04Measuring depth or liquid level
    • E21B47/047Liquid level
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/08Measuring diameters or related dimensions at the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/26Storing data down-hole, e.g. in a memory or on a record carrier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques
    • F42D3/04Particular applications of blasting techniques for rock blasting
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/20Computer models or simulations, e.g. for reservoirs under production, drill bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/024Determining slope or direction of devices in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/09Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/007Drilling by use of explosives

Definitions

  • the invention relates to a method and a device for the controlled filling of blast holes with a free-flowing or pourable explosive, in particular in open-pit mining for the blasting of mining volumes.
  • the US 2011/0006585 A1 a method of inspecting blast holes in open pit mines to determine the condition of the blast hole so that depending on the condition, it can be decided whether to charge explosives into the blast hole.
  • the condition relates in particular to the temperature of the blast hole, especially in deeper areas, in order to avoid that the blast hole has too high a temperature, especially in the lower half, thereby increasing the danger the premature and uncontrolled ignition of the explosive occurs when it is filled.
  • the temperature in the lower area of the blast hole is to be measured with a sensor by lowering the sensor on a cable into the blast hole in order to finally determine the temperature.
  • the sensor should be designed to be simplified with the actual detonator, which is lowered into the blast hole anyway.
  • the CN 105 300 206 A discloses a filling robot for filling a blast hole with explosives.
  • the autonomously driving filling robot has a robot arm and a navigation system with a radar sensor.
  • a filling tube for filling the blast hole is arranged on the robot arm.
  • the robot arm is positioned using the radar sensor.
  • a laser measuring instrument for measuring a depth and deformation of the blast hole is arranged on the filling pipe.
  • a method for the controlled filling of blast holes with a flowable or pourable explosive takes place in multiple arrangements in open pit mining in order to blast larger mining areas with a large number of blast holes and then remove them.
  • a device which comprises a vehicle, and on the vehicle there is a means for filling the blast hole with a cantilever arm, and at the end of the cantilever arm there is a filling nozzle, which is arranged, for example, under the vehicle, and which can be driven close to the mouth of the blast hole.
  • the flowable or pourable explosives such as ammonium nitrate and diesel, so-called ANC or ANO explosives, can then be transferred directly into the blast hole via the filler neck.
  • a sensor is located on the filling spout itself, which is intended for measuring the depth of the speech hole.
  • the sensor can also be used to determine whether there is water in the blast hole.
  • the sensor is in a fixed arrangement on the filler neck and can include a laser sensor or a radar sensor, for example. Disadvantageously, however, typical blast hole depths and curvatures are so large that a reliable radar measurement due to the Fresnel zone necessary for the propagation of radar waves is no longer possible.
  • blast holes with explosives are a relevant work step for opencast mining, which is crucial for a desired blasting result. If, for example, the blast hole does not have the desired approximately cylindrical geometry, caused by lateral ruptures in the shell profile of the blast hole, which is caused by debris falling into the blast hole or by the inflow of water, filling often cannot take place in such a way that how this is necessary for a desired blasting result.
  • the object of the invention is to further improve a method for the controlled filling of blast holes with a flowable or pourable explosive and to provide a device for this purpose, with the method even very deep holes with a small diameter can be filled in the required manner in order to to ensure the required distribution of the explosive over the vertical extent of the blast hole.
  • the following steps are provided according to the invention: providing a radar head with at least one radar unit that is operated in the non-rock-penetrating frequency range, arranging the radar head on a traction means, inserting the radar head into the blast hole by placing the radar head on the traction means of an upper mouth opening of the blast hole is lowered into this and detecting at least one measured value a bottom distance of the radar head to the bottom of the blast hole and/or a filling level distance for determining the filling level of the explosives in the blast hole and/or comprising the shape of the jacket profile over at least part of the depth of the blast hole by means of the operation of at least one of the radar units.
  • the core idea of the invention is the detection of the absolute fill level of the explosives in the blast hole, in particular above the bottom of the blast hole, and since the device for filling the blast hole with explosives detects the filling flow of explosives from the device, in particular a corresponding container of the device, into the blast hole anyway is recorded or monitored, the level of explosives in the blast hole recorded or monitored during the filling can be determined, namely at what level what quantity of explosives is located above the bottom of the blast hole in the blast hole.
  • the fill level is determined by measuring the essentially vertical distance of the radar head above the fill level of the explosive, and it can consequently be calculated back to the fill level of the explosive in the blast hole.
  • the frequency range in which the at least one radar unit is operated is preferably above 3 GHz.
  • a significant advantage in avoiding the use of a georadar is the higher frequency, since this means that the structural dimensions of the radar unit with the associated antenna can be designed smaller, which benefits the use of a radar according to the invention, since this is preferable is to be lowered into the borehole and thus small dimensions are advantageous.
  • the radar head is designed to only detect the fill level, for example, which results in a one-dimensional (1D) distance measurement, for example in the Z axis (vertical axis).
  • the shell profile of the blast hole is recorded using a 1D point measurement or one or more 2D profile measurements, this results in a two-dimensional (2D) measurement (X and Y axis), and with the combined recording of the elevation position, a three-dimensional ( 3D) Measurement (X, Y and Z axis).
  • the size of the radar head is such that it can be inserted into a blast hole of normal diameter for blasting in opencast mines.
  • the blast hole runs perpendicularly or at an angle of inclination to the vertical.
  • the radar head is lowered into the blast hole on the traction device due to gravity, either through the center of the blast hole or the radar head slides along the borehole wall and into the blast hole if this is created at an angle of inclination.
  • Customary blast hole diameters are in the range between 10 cm and 50 cm and have a depth of up to 100 m, for example.
  • the radar head consequently has a diameter which is smaller than the smallest diameter of a blast hole which is to be examined.
  • the traction means can be formed by means of a cable, in particular a steel cable, a belt, a chain or a rod, the traction means preferably also comprising an electrical cable to operate the at least one radar unit on the radar head and to transfer data from the To transmit radar unit, for example, to a computer unit, which is arranged on the device for performing the method, for example on a vehicle that also stores the explosives.
  • the traction means consequently forms the entirety of the electric cable and a force-absorbing part.
  • the radar head is moved in a vertical axis either from bottom to top or from top to bottom during the detection of the at least one measured value between a lower blast hole bottom and the mouth opening of the blast hole. If the blast hole is filled with explosives, the radar head is preferably moved upwards from the bottom of the blast hole to the muzzle opening.
  • the movement can take place by pulling in the traction means, for example using a winch or the like.
  • the winch or the like is located in or on the device, in particular the vehicle that is driven up to the blast hole to carry out the method for controlled filling of the blast hole with explosives.
  • the traction means is guided at least indirectly via at least one rotary encoder or length encoder, with the position of the radar head along the vertical axis being detected by the rotary encoder or length encoder and output as height information.
  • the height information can then be transmitted to the computer unit and set in relation to the amount of explosives already entered in the blast hole, since the height information that is output by the rotary or length encoder can be traced back to the filling level of the explosives in the blast hole, in particular since it is known in which position the radar head starting at the bottom of the blast hole has already been raised and how much of the absolute amount of explosives has already been entered.
  • measured values are recorded with reference to the shape of the shell profile of the blast hole, these measured values can also be correlated with the height information output by the encoder or length encoder, so that the blast hole can be fully displayed with regard to the topography of the inner shell profile, for example as a model on a screen the computing unit.
  • the radar head can have at least one radar unit with which path information can be provided using a radar-based position determination method, with the position of the radar head being recorded along the vertical axis using the radar-based position determination method and with the radar head as height information.
  • the position determination method can, for example, relate to a simultaneous localization and mapping method, with the possibility also of using a radar-based Doppler method.
  • the height information is picked up in particular from the inner surface of the shell profile of the blast hole, in that the radar head has at least one corresponding radar unit for this purpose.
  • the at least one radar unit arranged on the radar head can relate to an autonomously operating radar unit or, in the sense of the invention, can also already be formed by just a radar antenna.
  • a gyroscope as part of the radar head.
  • Gyroscopes are used to determine the pose of an object in space, and when the gyroscope is in Structural unit is performed with the radar head, then there is advantageously the possibility of detecting the pose of the radar head in the blast hole with the gyroscope.
  • This data can then be documented together with the data recorded with the radar units, for example, and transmitted to a computer unit by cable or wirelessly.
  • the gyroscope may provide elevation information or detect lateral deviation from plumb by providing a directional vector that is combined with information from one or more radar units to form a topography of the wellbore's skin profile.
  • the measured values recorded with the radar head including the fill level of the explosive in the blast hole and/or the shape of the casing profile over at least part of the depth of the blast hole, are preferably transmitted to a computer unit, with the computer unit calculating a filling quantity or a filling flow of the Explosive is determined, which is entered into the blast hole.
  • information can either be conveyed to an operator as to how and in what quantity at what time the explosive must be introduced into the blast hole, for example through additional quantities or through reduced quantities.
  • the method can also be carried out automatically in that the computer unit controls a corresponding delivery rate of the explosives, for example via a delivery module in the vehicle of the device.
  • the radar head has a radar unit with which the distance between the radar head and the fill level of the explosive is measured, from which, in conjunction with a determined position of the radar head along the vertical axis, the height information of the fill level in the blast hole is determined and output.
  • the radar unit is located on the underside of the radar head, which points in the direction of the explosives that have already been filled. It can also be provided that the radar head has a rotation unit for a 2D profile measurement, with which at least one radar beam of at least one 1D radar unit can be rotated about the vertical axis, so that an X/Y profile is imaged, on which the vertical axis Z in particular forms a surface normal.
  • the filling level of the explosive in the blast hole is detected with particular advantage during the filling of the blast hole with explosive. Consequently, the explosives can be entered into the blast hole in real time and thus simultaneously, and the entered amount of explosives is monitored with the method according to the invention so that it is known at any time what amount of explosives is at what depth of the blast hole.
  • the blast hole is at least partially filled with water
  • there can be at least one ultrasonic sensor on the radar head which works in particular as an echo sounder, so that the fill level of the explosive in the blast hole and/or the shape of the jacket profile of the Blast hole can be done over at least part of the depth of the blast hole.
  • at least one radar unit or all radar units can be replaced by at least one ultrasonic sensor or echo sounder on the radar head.
  • the rate of fall of the particles forming the explosive or of a liquid when using a liquid explosive can be detected with the radar head while the explosive hole is being filled with explosive. From this, more Information can be derived, for example whether the particles are in free fall or, for example, what compression the filled explosive has.
  • the detection of the rate of fall of the particles forming the explosive by means of the at least one radar unit is based in particular on the use of the Doppler effect.
  • the method particularly advantageously includes the step of using the computer unit to generate a 3D blast hole model based on the measured values determined, including the shape of the casing profile over at least part of the depth of the blast hole.
  • the measurement values relating to the shape of the casing profile can preferably be recorded before the blast hole is filled with explosives, so that a blast hole model is first created in order to then determine at what speed over the filling time and in what quantity explosives can be introduced into the blast hole .
  • the object of the invention is further achieved by a device for the controlled filling of blast holes with a free-flowing or pourable explosive, particularly in open-pit mining, the device having means for filling the blast hole.
  • the device also has a radar head with at least one radar unit that can be operated in the non-rock-penetrating frequency range, and the device also includes a traction device on which the radar head is arranged and can be lowered into the blast hole, and the radar head includes the following: at least a radar unit for detecting a fill level of the explosive in the blast hole along a vertical axis and/or at least one radar unit for detecting the shape of the casing profile over at least part of the depth of the blast hole.
  • the means for filling the blast hole can comprise a duct, with the pulling means being routed through the duct and the radar head being led out of a lower end of the duct and being lowerable into the blast hole.
  • the traction means is formed with the enveloping tube itself, so that the radar head is attached to the enveloping tube and is let into the blast hole with the enveloping tube. The enveloping tube can then be let out and drawn in with variable length, through which the explosive can be passed at the same time.
  • the means for filling the blast hole can also have a rotary encoder or length encoder, with the traction mechanism being guided at least indirectly via the rotary encoder or length encoder, so that the position of the radar head along the vertical axis can be detected with the rotary encoder or length encoder.
  • the device can have a computer unit with which, based on the measured values determined, a filling quantity of the explosive can be determined and/or a 3D model of the blast hole can be created, which is entered into the blast hole.
  • a 3D model is created, this can be done before the actual filling of the blast hole in order to decide whether it is generally suitable for later filling of the blast hole, for example if it is too big or too small or whether the blast hole needs to be reworked, for example, when substrate detaches from the wall of the hole and falls to the bottom of the hole and unintentionally at least partially fills it up again.
  • a simulation program that can be operated on a computing unit can consequently be fed with data that are obtained with the inspection of blast holes according to the invention.
  • a 3D hole model can be generated, for example, which can be used as a basis for the subsequent filling of the blast hole with explosives, in particular with regard to the filling quantity, filling speed and the like.
  • the holes can be filled with the right amount of explosive without the blast holes remaining too small after filling, so that the rock formations to be loosened are not crushed. It can also be avoided that blast holes are not too large, since the explosive power is too strong and the risk of flying stones increases.
  • the radar head has a base body on which a connecting means for a traction mechanism is formed on an upper side and on which a radar unit with a radar element and a radar lens is formed on a lower side.
  • the base body has at least one radar unit in a lateral arrangement with respect to a vertical axis, with which the shape of the lateral profile of the blast hole can be detected or with which a position of the radar head can be determined, in particular along a vertical axis in the blast hole.
  • the radar head has a bell-like protective cover, which is preferably made of plastic and through which radar waves can be radiated.
  • the protective cover prevents contact of the base body with the radar units arranged on the base body with the inner surface of the blast hole and in particular with the granular falling explosives, since the radar head is pulled through the blast hole from bottom to top during filling in the vertical direction.
  • You protective cover can, for example, towards the top be closed and open like a bell towards the underside and/or the protective cover closes tightly with a radar lens on the underside of the radar head.
  • the radar head has a centralizer with which the radar head is kept approximately in the middle of the cross-section of the blast hole.
  • the centralizer may include a haptic designed as spring arms that press against the inside of the blast hole.
  • three, four or more spring arms can be distributed over the circumference of the radar head.
  • FIG. 12 shows in a schematic manner a cross-sectional view of a blast hole 1 extending vertically downward in a blast field, for example, starting from a top-side muzzle opening 14 on a bottom surface of the blast field down to a blast hole bottom 16.
  • the blast hole 1 can be filled with explosive 10 starting from the bottom 16 of the blast hole.
  • the explosive 10 is filled into the blast hole 1 via means 20 for filling the latter, the means 20 being arranged on a vehicle, for example.
  • the traction means 13 runs within the means 20 via a rotary or length transmitter 17 or encoder, so that the rotary or length transmitter 17 or encoder provides height information relating to the immersion depth I of the radar head 11 in the blast hole 10 .
  • the radar head 11 is consequently located within the filling stream 19 of the explosive 10.
  • a volume can arise as a function of the vertical axis z, which deviates from a simple cylinder volume of a cylinder if the bore for forming the explosive hole 1 with a jacket profile 15 deviates from the pure cylindrical shape.
  • the deviations can result, for example, from material breakouts that occur during the drilling process to create the explosive hole 1, so that side pockets, bulges and the like create additional volumes that are also filled with explosive 10, resulting in a filling height h that results simply measuring the amount of explosives 10 entered into the blast hole 1 cannot be directly determined.
  • the radar head 11 has radar units 12, 12′ and 12′′, the radar unit 12 being used to determine the level h of the explosive 10 in the blast hole 1 starting from the bottom 16 of the blast hole. and with the filling of explosive 10, the filling level distance d' to the filling level h can be detected with the radar unit 12, with the filling level distance d' of the radar head 11 being able to be regulated via the filling level h of the explosive 10 via a corresponding control device, so that the filling level distance d' of the radar head 11 remains constant above the fill level h.
  • the current height position of the radar head 11 along the vertical axis z can then be determined via the rotary or length encoder 17, in order finally to the input quantity of explosives 10 depending on the determined height position of the radar head 11 close.
  • the other radar units 12 'and 12 "are in connection with of the following figure 2 explained in more detail.
  • FIG 2 shows a further cross-sectional view of a blast hole 1 with a radar head 11, which is lowered into the blast hole 1 before the filling of the blast hole 1 with explosives.
  • the height position of the radar head 11 be determined by guiding the traction means 13 over the rotary or length transmitter 17, the rotary or length transmitter 17 being integrated in the means 20 for filling the blast hole 1, and from the rotary or length transmitter 17 the traction means 13 is, for example, the middle of the enveloping tube 21 finally led into the blast hole 1.
  • the radar head 11 is first lowered into the blast hole 1 as far as the bottom 16 of the blast hole.
  • the radar head 11 is then pulled through the traction device 13 with a constant movement from bottom to top up to the mouth opening 14 of the blast hole 1 .
  • the radar means 12′ By activating the radar means 12′, the topography of the surface profile 15 of the blast hole 1 can be recorded and the recorded topography can be correlated with the vertical axis z in order finally to obtain height-dependent volume information of the blast hole 1 from this measurement.
  • the other radar units 12" shown can be used, for example, to also derive height information from the radar head 11 in the blast hole 1 using the SLAM method (Simultaneous Localization and Mapping method), so that the information from the rotary encoder or length encoder 17 is either redundantly supported or replaced
  • SLAM method Simultaneous Localization and Mapping method
  • a blast hole model can be generated by means of a computer unit in order to subsequently carry out the controlled filling of the blast hole 1 with explosive 10 .
  • FIG 3 shows a schematic detailed view of the radar head 11 in arrangement with a blast hole 10, which is filled with explosives 10 up to a height shown.
  • the radar head 11 has a base body 22 which is connected to the traction means 13 by a connecting means 23, and the position of the radar head 11 can be changed on the traction means 13 along the vertical axis z.
  • the radar head 11 has, for example, several radar units 12, 12′ and 12′′.
  • the radar unit 12 is arranged on the underside opposite the traction mechanism 13 and can be used to determine the distance from the filling level of the explosive 10.
  • the radar unit 12 comprises a radar element 24 arranged behind a Radar lens 25, so that the filling level of the explosive 10 can be determined, the filling level being derived from the known distance of the radar head 11 to the filling level and from the information about the height of the radar head 11 within the blast hole 1, for example output by the rotary or length transmitter 17 according to figure 1 or figure 2 .
  • the other radar units 12' have radar elements 24' with which the topography of the inner surface profile 15 of the blast hole 1 can be determined. In this way, in particular bulges, side pockets and additional volumes in the blast hole 1 can be detected.
  • the further radar unit 12" has radar elements 24", and the further radar units 12" are used to record the height information of the radar head 11 along the vertical axis z in the blast hole 1.
  • the measurement by the radar units 12' is based, for example, on a preferably radar-based position determination method, in particular on the use of the SLAM method with radar images or the Doppler radar method.
  • the radar head 11 is used while explosives 10 are being introduced into the blast hole 1, the radar head 11 is protected by a protective cover 27 as part of the radar head 11, which encloses the base body 22 with the radar units 12, 12', 12" on the outside and thus protects it .
  • FIG 4 shows a schematic view of a device 100 with a vehicle 28, and the vehicle 28 know as an essential part of a container not shown in detail, in which the explosives are stored.
  • Means 20 for filling a blast hole 1 with explosives 10 from the container in vehicle 28 are also arranged on vehicle 28 .
  • the representation also shows a radar head 11 which is arranged at the end on a traction mechanism 13 .
  • the traction means 13 is guided through the means 20 for filling the blast hole 1, in particular through a protective hose 21, and the radar head 11 can be raised and lowered in a manner not shown in detail, for example with a winch in or on the vehicle 28.
  • the height of the radar head 11 within the blast hole 1 can thus be changed, with the height position of the radar head 11 in the blast hole 1 being able to be detected via a rotary or length transmitter 17 which is located on the means 20 for filling a blast hole 1 .
  • the traction device 13 can also include an electrical line in addition to a mechanical traction device.
  • information from the rotary encoder or length encoder 17 can be transmitted to the computer unit 18 in order to also transmit the height position of the radar head 11 to the computer unit 18 .
  • FIG 5 is another view of a radar head 11 is shown schematically, wherein the representation shows an embodiment of a radar head 11 in its advantageously selected components, the list of components is not exhaustive and according to further exemplary embodiments, the components listed below can also be omitted individually without impairing the function of the radar head 11 according to the invention.
  • the exemplary embodiment shows the radar head 11 arranged on the traction means 13 with a data memory 30 in which measurement data can be stored which, for example, were recorded by the radar units 12, 12', 12". which is designed, for example, as a battery or as an accumulator.Another component is an interface 32 for data communication, for example to the computer unit 18. A gyroscope 29 is also shown, with which the pose of the radar head 11 within the blast hole can be recorded. The data of the gyroscope 29 as well as the data that can be recorded with the radar units 12, 12', 12'' can be stored in the data memory 30.
  • Radar electronics 33 are also shown, which are required to operate the radar units 12, 12', 12".
  • the radar units 12, 12', 12" located on the outside of the radar head 11 only form the radar antennas and the electronics for operating the Radar antennas are housed centrally in the radar head 11.
  • the radar head 11 can only have one or two of the three radar units 12, 12', 12" described, so that it also only carries out a corresponding partial measurement, e.g. either determining the fill level h of the explosive 10 in the blast hole 1 or the topography of the inner casing profile 15 of the blast hole 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geophysics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur kontrollierten Befüllung von Sprenglöchern mit einem fließ- oder schüttfähigen Sprengstoff, insbesondere im offenen Tagebau zur Sprengung von Abbauvolumina.
  • STAND DER TECHNIK
  • Beispielsweise offenbart die US 2011/0006585 A1 ein Verfahren zur Inspektion von Sprenglöchern im offenen Tagebau, um den Zustand des Sprengloches zu erfassen, sodass abhängig vom Zustand entschieden werden kann, ob Sprengstoff in das Sprengloch eingefüllt wird. Der Zustand betrifft dabei insbesondere die Temperatur des Sprengloches, vor allem in tieferen Bereichen, um zu vermeiden, dass das Sprengloch insbesondere in der unteren Hälfe eine zu hohe Temperatur aufweist, wodurch die Gefahr der vorzeitigen und unkontrollierten Zündung des Sprengstoffes entsteht, wenn dieser eingefüllt wird. Hierbei soll mit einem Sensor die Temperatur im unteren Bereich des Sprengloches gemessen werden, indem der Sensor an einem Kabel in das Sprengloch hinabgelassen wird, um schließlich die Temperatur zu bestimmen. Der Sensor soll dabei vereinfachend ausgeführt sein mit dem eigentlichen Zünder, der ohnehin in das Sprengloch hinabgelassen wird.
  • Die CN 105 300 206 A offenbart einen Befüllungsroboter zum Befüllen eines Sprengloches mit Sprengmittel. Der autonom fahrende Befüllungsroboter weist einen Roboterarm und ein Navigationssystem mit einem Radarsensor auf. An dem Roboterarm ist ein Befüllrohr zur Befüllung des Sprengloches angeordnet. Eine Positionierung des Roboterarms erfolgt mittels des Radarsensors. Weiterhin ist auf dem Befüllrohr ein Lasermessinstrument zur Messung einer Tiefe und Deformation des Sprengloches angeordnet.
  • Aus der WO 2014/063188 A1 ist ein Verfahren zur kontrollierten Befüllung von Sprenglöchern mit einem fließ- oder schüttfähigen Sprengstoff bekannt, was im Bereich des offenen Tagebaus in vielfacher Anordnung stattfindet, um mit einer Vielzahl von Sprenglöchern größere Abbaubereiche zu sprengen und um diese anschließend abzutragen. Um das Sprengloch zu befüllen, ist eine Vorrichtung vorgesehen, die ein Fahrzeug umfasst, und am Fahrzeug befindet sich ein Mittel zum Befüllen des Sprengloches mit einem Auslegerarm, und am Ende des Auslegerarms befindet sich ein Befüllstutzen, der beispielhaft unter dem Fahrzeug angeordnet ist, und der dicht über die Mündungsöffnung des Sprengloches gefahren werden kann. Anschließend kann der fließ- oder schüttfähige Sprengstoff, etwa Ammoniumnitrat und Diesel, sogenannte ANC- oder ANO-Sprengstoffe, über den Ausfüllstutzen direkt in das Sprengloch überführt werden.
  • Am Ausfüllstutzen selbst befindet sich ein Sensor, der zur Tiefenmessung des Sprechloches bestimmt ist, insbesondere kann mit dem Sensor auch ermittelt werden, ob sich Wasser im Sprengloch befindet. Der Sensor befindet sich dabei in fester Anordnung an dem Einfüllstutzen und kann beispielsweise einen Lasersensor oder einen Radarsensor umfassen. Nachteilhafterweise sind jedoch typische Sprenglochtiefen und Krümmungen so groß, dass eine zuverlässige Radarmessung aufgrund der für die Ausbreitung der Radarwellen notwendigen Fresnel-Zone nicht mehr möglich ist.
  • Die Befüllung von Sprenglöchern mit Sprengstoff ist für den offenen Tagebau ein relevanter Arbeitsschritt, der für ein gewünschtes Sprengergebnis ausschlaggebend ist. Weist das Sprengloch beispielsweise nicht die gewünschte etwa zylinderförmige Geometrie auf, verursacht durch sich ergebende seitliche Ausbrüche im Mantelprofil des Sprengloches, was durch das Einfallen von Bruchmaterial in das Sprengloch oder durch das Einlaufen von Wasser verursacht wird, so kann die Befüllung häufig nicht so erfolgen, wie diese für ein gewünschtes Sprengergebnis notwendig ist.
  • Befinden sich beispielsweise größere Materialvolumina im unteren Bereich des Sprengloches, beispielsweise durch Ausbrüche aus den Seitenwänden, so wird bei einer Befüllung des Sprengloches mit einer vorgegebenen, konstanten Menge an Sprengstoff zu viel Sprengstoff in einer zu großen Tiefe des Sprengloches vorhanden sein und der oberflächennahere Bereich des Sprengloches weist keinen oder zu wenig Sprengstoff auf. Im Ergebnis ergeben sich große, ungelöste Materialstücke aus dem Volumenverband, die aufwendig nachzerkleinert werden müssen, beispielswese mit Auflegersprengungen oder mit einem Hydraulikhammer.
  • Ebenso kann es vorkommen, dass durch das Hineinfallen von Bruchmaterial in das Sprengloch zu wenig Sprengstoff im tieferen Bereich des Sprengloches eingefüllt wird, und zu viel Sprengstoff wird bei konstanter Füllmenge in den oberen Bereich des Sprengloches eingefüllt. Im Ergebnis ergibt sich bei einer Zündung ein Entweichen der Sprengenergie aus der oberseitigen Mündungsöffnung heraus, sodass schließlich auch in diesem Fall kein zufriedenstellendes Sprengergebnis erreicht wird, da zu große ungelöste Materialbereiche in größerer Tiefe des Sprengfeldes verbleiben. Auch hier ist eine aufwendige Nachzerkleinerung notwendig, die kosten- und zeitintensiv ist.
  • Im Ergebnis ist somit eine genaue, für eine optimale Sprengung exakte Befüllung des Sprengloches insbesondere in einer geforderten Verteilung über der Tiefe des Sprengloches notwendig, was mit bisherigen Mitteln nicht optimal gewährleistet werden kann.
  • OFFENBARUNG DER ERFINDUNG
  • Die Aufgabe der Erfindung ist die weitere Verbesserung eines Verfahrens zur kontrollierten Befüllung von Sprenglöchern mit einem fließ- oder schüttfähigem Sprengstoff sowie die Bereitstellung einer Vorrichtung hierzu, wobei mit dem Verfahren auch sehr tiefe Löcher mit einem kleinen Durchmesser in geforderter Weise befüllt werden können, um die geforderte Verteilung des Sprengstoffes über der vertikalen Erstreckung des Sprengloches sicherzustellen.
  • Diese Aufgabe wird ausgehend von einem Verfahren gemäß dem Oberbegriff des Anspruchs 1, ausgehend von einer Vorrichtung gemäß dem Oberbegriff des Anspruches 9 mit den jeweils kennzeichnenden Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
  • Mit Bezug auf das Verfahren sind erfindungsgemäß folgende Schritte vorgesehen: Bereitstellen eines Radarkopfes mit wenigstens einer Radareinheit, die im nicht-gesteinsdurchdringenden Frequenzbereich betrieben wird, Anordnen des Radarkopfes an ein Zugmittel, Einführen des Radarkopfes in das Sprengloch, indem der Radarkopf in Anordnung am Zugmittel von einer oberen Mündungsöffnung des Sprengloches in dieses hinabgelassen wird und Erfassen wenigstens eines Messwertes umfassend einen Bodenabstand des Radarkopfes zum Sprenglochboden und/oder einen Füllhöhenabstand zur Bestimmung der Füllhöhe des Sprengstoffes im Sprengloch und/oder umfassend die Form des Mantelprofils über wenigstens einem Teil der Tiefe des Sprengloches mittels des Betriebes wenigstens eines der Radareinheiten.
  • Kerngedanke der Erfindung ist die Erfassung der absoluten Füllhöhe des Sprengstoffes im Sprengloch insbesondere über dem Sprenglochboden, und da durch die Vorrichtung zum Befüllen des Sprengloches mit Sprengstoff die Erfassung des Füllstroms des Sprengstoffes von der Vorrichtung, insbesondere einem entsprechendem Behältnis der Vorrichtung, in das Sprengloch ohnehin erfasst bzw. überwacht wird, kann die während der Befüllung erfasste oder überwachte Füllhöhe des Sprengstoffes im Sprengloch bestimmt werden, nämlich über welcher Höhe sich welche Menge an Sprengstoff über dem Sprenglochboden im Sprengloch befindet. Die Bestimmung der Füllhöhe erfolgt darüber, dass der im Wesentlichen vertikale Abstand des Radarkopfes über der Füllhöhe des Sprengstoffes gemessen wird, und es kann folglich auf die Füllhöhe des Sprengstoffes im Sprengloch zurückgerechnet werden. Der Frequenzbereich, in dem die wenigstens eine Radareinheit betrieben wird, liegt vorzugsweise oberhalb von 3GHz. Ein wesentlicher Vorteil bei der Vermeidung der Nutzung eines Georadars (GPR-Ground Penetration Radar) ist die höhere Frequenz, da damit auch die baulichen Abmessungen der Radareinheit mit der zugehörigen Antenne kleiner ausgelegt werden kann, was dem erfindungsgemäßen Einsatz eines Radars zugutekommt, da dieses vorzugsweise in das Bohrloch hinabgelassen werden soll und damit kleine Abmessungen vorteilhaft sind.
  • Damit können für eine kontrollierte Befüllung von Sprenglöchern mit Sprengstoff entsprechende Daten erfasst und bereitgestellt werden, insbesondere um die Vorrichtung zum Befüllen des Sprengloches zu kontrollieren, und um im Ergebnis die geforderte Verteilung von Sprengstoff über der Höhe im Sprengloch herzustellen, sodass die anschließende Sprengung mit entsprechend gutem Ergebnis ausgeführt werden kann. Der Radarkopf ist erfindungsgemäß dazu ausgebildet, beispielsweise nur die Füllhöhe zu erfassen, woraus sich eine eindimensionale (1D) Distanzmessung ergibt, etwa in der Z-Achse (Hochachse). Wird das Mantelprofil des Sprengloches mittels einer 1D-Punktmessung oder ein- oder mehreren 2D-Profilemssungen erfasst, so ergibt sich eine zweidimensionale (2D) Messung (X- und Y- Achse), und mit der kombinierten Erfassung der Höhenposition ergibt sich eine dreidimensionale (3D) Messung (X-, Y- und Z- Achse).
  • Der Radarkopf ist in seiner Größe so ausgeführt, dass dieser in ein Sprengloch üblichen Durchmessers für Sprengungen im offenen Tagebau eingeführt werden kann. Das Sprengloch verläuft zur Ausführung des erfindungsgemäßen Verfahrens senkrecht oder unter einem Neigungswinkel zur Senkrechten. So wird der Radarkopf erfindungsgemäß am Zugmittel schwerkraftbedingt in das Sprengloch hinabgelassen, entweder mittig durch das Sprengloch oder der Radarkopf gleitet an der Bohrlochwand entlang und in das Sprengloch hinein, wenn dieses unter einem Neigungswinkel angelegt ist. Übliche Sprenglochdurchmesser liegen im Bereich zwischen 10 cm bis 50 cm und weisen eine Tiefe von beispielsweise bis zu 100m auf. Der Radarkopf weist folglich einen Durchmesser auf, der kleiner ist als der kleinste Durchmesser eines Sprengloches, welches untersucht werden soll.
  • Das Zugmittel kann mittels eines Seiles, insbesondere Stahlseil, eines Bandes, einer Kette oder einer Stange gebildet sein, wobei das Zugmittel vorzugsweise ferner ein elektrisches Kabel umfasst, um die wenigstens eine Radareinheit am Radarkopf zu betreiben und um Daten von der Radareinheit beispielsweise an eine Rechnereinheit zu übertragen, die an der Vorrichtung zur Ausführung des Verfahrens angeordnet ist, beispielsweise an einem Fahrzeug, das auch den Sprengstoff bevorratet. Im Sinne der Erfindung bildet das Zugmittel folglich die Gesamtheit aus dem elektrischen Kabel und einem kraftaufnehmenden Teil.
  • Erfindungsgemäß wird der Radarkopf während des Erfassens des wenigstens einen Messwertes zwischen einem unteren Sprenglochboden und der Mündungsöffnung des Sprengloches in einer Hochachse entweder von unten nach oben oder von oben nach unten bewegt. Wird das Sprengloch mit Sprengstoff befüllt, so wird vorzugsweise der Radarkopf von unten nach oben beginnend vom Sprenglochboden bis zur Mündungsöffnung bewegt.
  • Die Bewegung kann über ein Einziehen des Zugmittels beispielsweise über eine Winde oder dergleichen erfolgen. Die Winde oder dergleichen befindet sich dabei in oder an der Vorrichtung, insbesondere dem Fahrzeug, das zur Ausführung des Verfahrens zum kontrollieren Befüllen des Sprengloches mit Sprengstoff an das Sprengloch herangefahren wird.
  • Für die Erfassung der Füllhöhe des Sprengstoffes im Sprengloch, jedoch auch für die Erfassung der Form des Mantelprofils des Sprengloches, ist es wichtig, die Höhenposition des Radarkopfes entlang der Hochachse zu ermitteln. Hierfür ist beispielsweise vorgesehen, dass das Zugmittel zumindest indirekt über wenigstens einen Dreh- oder Längengeber geführt wird, wobei die Position des Radarkopfes entlang der Hochachse mit dem Dreh- oder Längengeber erfasst und als Höheninformation ausgegeben wird. Die Höheninformation kann dann der Rechnereinheit übermittelt werden und mit der Menge an bereits eingegebenem Sprengstoff in das Sprengloch in ein Verhältnis gesetzt werden, da die Höheninformation, die durch den Dreh- oder Längengeber ausgegeben wird, zurückführbar ist auf die Füllhöhe des Sprengstoffes im Sprengloch, insbesondere da bekannt ist, in welcher Position der Radarkopf beginnend am Sprenglochboden bereits hochgezogen worden ist und wieviel an absoluter Menge des Sprengstoffes bereits eingegeben wurde.
  • Werden Messwerte mit Bezug auf die Form des Mantelprofils des Sprengloches erfasst, können diese Messwerte ebenfalls mit der mit dem Dreh- oder Längengeber ausgegebenen Höheninformation korreliert werden, sodass das Sprengloch hinsichtlich der Topographie des inneren Mantelprofils vollständig dargestellt werden kann, beispielsweise als Modell auf einem Bildschirm der Rechnereinheit.
  • Alternativ oder zusätzlich zu einem Dreh- oder Längengeber, über den das Zugmittel geführt ist, kann der Radarkopf wenigstens eine Radareinheit aufweisen, mit der mittels eines radarbasierten Positionsbestimmungsverfahrens eine Weginformation bereitstellbar ist, wobei die Position des Radarkopfes entlang der Hochachse mit dem radarbasierten Positionsbestimmungsverfahren erfasst und mit dem Radarkopf als Höheninformation ausgegeben wird. Das Positionsbestimmungsverfahren kann beispielsweise ein simultanes Lokalisierungs- und Mappingverfahren betreffen, wobei auch die Möglichkeit besteht, ein radarbasiertes Dopplerverfahren zu nutzen. Die Höheninformation wird dabei insbesondere von der Innenfläche des Mantelprofils des Sprengloches abgegriffen, indem der Radarkopf hierfür wenigstens eine entsprechende Radareinheit aufweist.
  • Die wenigstens eine Radareinheit in Anordnung am Radarkopf kann eine autark arbeitende Radareinheit betreffen oder im Sinne der Erfindung auch bereits nur durch eine Radarantenne gebildet sein.
  • Im Rahmen der Erfindung besteht vorteilhaft die Möglichkeit, ein Gyroskop als Bestandteil des Radarkopfes einzusetzen. Gyroskope dienen der Bestimmung der Pose eines Objektes im Raum, und wenn das Gyroskop in baulicher Einheit mit dem Radarkopf ausgeführt ist, dann ergibt sich vorteilhaft die Möglichkeit, die Pose des Radarkopfes im Sprengloch mit dem Gyroskop zu erfassen. Diese Daten können dann gemeinsam mit den mit den Radareinheiten erfassten Daten beispielsweise dokumentiert und kabelgebunden oder kabellos an eine Rechnereinheit übermittelt werden. Dabei besteht im Rahmen einer Weiterbildung eines erfindungsgemäßen Radarkopfes mit einem integrierten Gyroskop die vorteilhafte Möglichkeit, die mit den Radareinheiten erfassten Daten mit den Daten zu kombinieren, die mit dem Gyroskop erfasst werden. Beispielsweise kann das Gyroskop eine Höheninformation bereitstellen oder eine seitliche Abweichung aus der Lotrechten unter Bereitstellung eines Richtungsvektors erfassen, die mit der Information einer oder mehrerer Radareinheiten zu einer Topographie des Mantelprofils des Bohrloches kombiniert wird.
  • Die mit dem Radarkopf erfassten Messwerte umfassend die Füllhöhe des Sprengstoffes im Sprengloch und/oder die Form des Mantelprofils über wenigstens einem Teil der Tiefe des Sprengloches wird vorzugsweise an eine Rechnereinheit übermittelt, wobei mit der Rechnereinheit basierend auf den ermittelten Messwerten eine Füllmenge oder einen Füllstrom des Sprengstoffes ermittelt wird, die oder der in das Sprengloch eingegeben wird. Damit kann entweder einem Bediener eine Information vermittelt werden, wie und in welcher Menge zu welchem Zeitpunkt der Sprengstoff in das Sprengloch eingegeben werden muss, beispielsweise durch Zusatzmengen oder durch Mindermengen. Das Verfahren kann auch automatisiert ausgeführt werden, indem die Rechnereinheit eine entsprechende Förderrate des Sprengstoffes beispielsweise über ein Fördermodul im Fahrzeug der Vorrichtung steuert.
  • Der Radarkopf weist zur Ausführung des Verfahrens eine Radareinheit auf, mit der der Abstand des Radarkopfes über der Füllhöhe des Sprengstoffes gemessen wird, woraus in Verbindung mit einer ermittelten Position des Radarkopfes entlang der Hochachse die Höheninformation der Füllhöhe im Sprengloch bestimmt und ausgegeben wird. Hierfür befindet sich die Radareinheit an der Unterseite des Radarkopfes, die in Richtung zum bereits eingefüllten Sprengstoff weist. Auch kann vorgesehen sein, dass der Radarkopf für eine 2D-Profilmessung eine Rotationseinheit aufweist, mit der wenigstens ein Radarstrahl zumindest einer 1D- Radareinheit um die Hochachse rotierbar ist, sodass ein X-/Y- Profil abgebildet wird, auf das die Hochachse Z insbesondere eine Flächennormale bildet.
  • Das Erfassen der Füllhöhe des Sprengstoffes im Sprengloch erfolgt mit besonderem Vorteil während der Befüllung des Sprengloches mit Sprengstoff. Folglich kann in Echtzeit und damit simultan der Sprengstoff in das Sprengloch eingegeben werden, und die eingegebene Menge an Sprengstoff wird mit dem erfindungsgemäßen Verfahren so überwacht, dass zu jedem Zeitpunkt bekannt ist, welche Menge an Sprengstoff sich in welcher Tiefe des Sprengloches befindet.
  • Ist das Sprengloch zumindest teilweise mit Wasser gefüllt, so kann gemäß einer vorteilhaften Weiterbildung der Erfindung wenigstens ein Ultraschallsensor am Radarkopf vorhanden sein, der insbesondere als Echolot arbeitet, sodass eine Erfassung der Füllhöhe des Sprengstoffes im Sprengloch und/oder eine Erfassung der Form des Mantelprofils des Sprengloches über wenigstens einem Teil der Tiefe des Sprengloches erfolgen kann. Gemäß einer Alternative kann damit auch wenigstens eine Radareinheit oder alle Radareinheiten durch wenigstens einen Ultraschallsensor bzw. Echolot am Radarkopf ersetzt werden.
  • Mit weiterem Vorteil kann mit dem Radarkopf während der Befüllung des Sprengloches mit Sprengstoff die Fallgeschwindigkeit von den den Sprengstoff bildenden Partikeln oder einer Flüssigkeit bei Verwendung eines Flüssigsprengstoffes erfasst werden. Daraus können weitere Informationen abgeleitet werden, beispielsweise ob sich die Partikel im freien Fall befinden oder beispielsweise welche Verdichtung der eingefüllte Sprengstoff aufweist. Die Erfassung der Fallgeschwindigkeit von den den Sprengstoff bildenden Partikeln mittels der wenigstens einen Radareinheit basiert insbesondere auf der Nutzung des Dopplereffektes.
  • Mit besonderem Vorteil umfasst das Verfahren den Schritt, mit der Rechnereinheit basierend auf den ermittelten Messwerten umfassend die Form des Mantelprofils über wenigstens einem Teil der Tiefe des Sprengloches ein 3D-Sprenglochmodell zu erzeugen. Die Erfassung der Messwerte bezüglich der Form des Mantelprofils kann dabei vorzugsweise vor dem Befüllen des Sprengloches mit Sprengstoff erfolgen, sodass zunächst ein Sprenglochmodell erstellt wird, um anschließend zu bestimmen, in welcher Geschwindigkeit über der Füllzeit und in welcher Menge Sprengstoff in das Sprengloch eingegeben werden kann.
  • Die Aufgabe der Erfindung wird weiterhin gelöst durch eine Vorrichtung zur kontrollierten Befüllung von Sprenglöchern mit einem fließ- oder schüttfähigen Sprengstoff, insbesondere im offenen Tagebau, wobei die Vorrichtung Mittel zum Befüllen des Sprengloches aufweist. Erfindungsgemäß weist dabei die Vorrichtung weiterhin einen Radarkopf mit wenigstens einer Radareinheit auf, die im nicht-gesteinsdurchdringenden Frequenzbereich betreibbar ist, ferner umfasst die Vorrichtung ein Zugmittel, an dem der Radarkopf angeordnet und in das Sprengloch hinablassbar ist, und wobei der Radarkopf Folgendes umfasst: wenigstens eine Radareinheit zur Erfassung einer Füllhöhe des Sprengstoffes im Sprengloch entlang einer Hochachse und/oder wenigstens eine Radareinheit zur Erfassung der Form des Mantelprofils über wenigstens einem Teil der Tiefe des Sprengloches.
  • Die Mittel zum Befüllen des Sprengloches können einen Hüllschlauch umfassen, wobei das Zugmittel durch den Hüllschlauch geführt ist und der Radarkopf aus einem unteren Ende des Hüllschlauches herausgeführt und in das Sprengloch hinablassbar ist. Gemäß einer vorteilhaften Ausführungsform ist es auch denkbar, dass das Zugmittel mit dem Hüllschlauch selbst gebildet ist, sodass der Radarkopf an dem Hüllschlauch befestigt ist und mit dem Hüllschlauch in das Sprengloch hinein gelassen wird. Der Hüllschlauch kann dann längenvariabel ausgelassen und eingezogen werden, durch den zugleich der Sprengstoff hindurchführbar ist.
  • Die Mittel zum Befüllen des Sprengloches können überdies einen Dreh- oder Längengeber aufweisen, wobei das Zugmittel zumindest indirekt über den Dreh- oder Längengeber geführt ist, sodass mit dem Dreh- oder Längengeber die Position des Radarkopfes entlang der Hochachse erfassbar ist.
  • Weiterhin kann die Vorrichtung eine Rechnereinheit aufweisen, mit der basierend auf den ermittelten Messwerten eine Füllmenge des Sprengstoffes bestimmbar und/oder ein 3D-Modell des Sprengloches erstellbar ist, die in das Sprengloch eingegeben wird.
  • Wird ein 3D-Modell erstellt, so kann dieses vor dem eigentlichen Befüllen des Sprengloches erfolgen, um für eine spätere Befüllung des Sprengloches zu entscheiden, ob dieses generell geeignet ist, beispielsweise also zu groß oder zu klein ist oder ob das Sprengloch nachgearbeitet werden muss, beispielsweise wenn sich Substrat aus der Lochwand löst und bis auf den Boden des Loches fällt und dieses ungewollt zumindest teilweise wieder verfüllt.
  • Ein auf einer Recheneinheit betreibbares Simulationsprogramm kann folglich mit Daten gespeist werden, die mit der erfindungsgemäßen Inspektion von Sprenglöchern gewonnen werden. Im Ergebnis ist damit beispielsweise ein 3D Lochmodell generierbar, das der späteren Befüllung des Sprengloches mit Sprengstoff zugrunde gelegt werden kann, insbesondere hinsichtlich der Füllmenge, Füllgeschwindigkeit und dergleichen. So kann im Vorfeld sichergestellt werden, dass die Löcher mit der passenden Menge an Sprengstoff befüllt werden können, ohne dass Sprenglöcher auch nach der Befüllung zu klein bleiben, sodass sich der zu lösende Gebirgsverband nicht zerkleinert. Ebenso kann vermieden werden, dass Sprenglöcher nicht zu groß werden, da damit die Sprengkraft zu stark ist und die Gefahr von Steinflug steigt.
  • Mit weiterem Vorteil weist der Radarkopf einen Grundkörper auf, an dem an einer oberen Seite ein Verbindungsmittel für ein Zugmittel ausgebildet ist und an dem an einer unteren Seite eine Radareinheit mit einem Radarelement und einer Radarlinse ausgebildet ist. Gemäß einer weiteren bevorzugten Ausführungsform weist der Grundkörper in einer mit Bezug auf eine Hochachse seitlichen Anordnung wenigstens eine Radareinheit auf, mit der die Form des Mantelprofils des Sprengloches erfassbar ist oder mit der eine Positionsbestimmung des Radarkopfes insbesondere entlang einer Hochachse im Sprengloch ermittelbar ist.
  • Der Radarkopf weist mit weiterem Vorteil eine glockenartige Schutzhülle auf, die vorzugsweise aus Kunststoff hergestellt ist und die mit Radarwellen durchstrahlbar ist. Die Schutzhülle verhindert dabei einen Kontakt des Grundkörpers mit den am Grundkörper angeordneten Radareinheiten mit der Innenfläche des Sprengloches und insbesondere mit dem granulatartigen, fallenden Sprengstoff, da der Radarkopf während der Befüllung in Höhenrichtung von unten nach oben durch das Sprengloch gezogen wird. Sie Schutzhülle kann beispielsweise zur Oberseite hin geschlossen und zur Unterseite hin glockenartig geöffnet ausgeführt sein und/oder die Schutzhülle schließt dicht ab mit einer Radarlinse an der Unterseite des Radarkopfes.
  • Mit weiterem Vorteil weist der Radarkopf einen Zentralisierer auf, mit dem der Radarkopf in etwa in der Mitte des Sprenglochquerschnittes gehalten wird. Der Zentralisierer kann beispielsweise eine Haptik umfassen, die als Federarme ausgeführt ist und gegen die Innenseite des Sprengloches drückt. Beispielsweise können auf dem Umfang des Radarkopfes verteilt drei, vier oder mehr Federarme vorhanden sein.
  • BEVORZUGTES AUSFÜHRUNGSBEISPIEL DER ERFINDUNG
  • Weitere, die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher dargestellt. Es zeigt:
  • Figur 1
    eine Querschnittsansicht durch ein Sprengloch mit einem in das Sprengloch eingelassenen Radarkopf, während das Sprengloch mit Sprengstoff gefüllt wird,
    Figur 2
    eine Querschnittsansicht eines Sprenglochs mit einem in das Sprengloch eingelassenen Radarkopf zur Erfassung des Mantelprofils des Sprengloches,
    Figur 3
    eine schematische Detailansicht des Radarkopfes in Anordnung im Sprengloch und
    Figur 4
    eine schematische Ansicht der Vorrichtung mit einem Fahrzeug, mit Mitteln zum Befüllen des Sprengloches mit Sprengstoff und mit einem Radarkopf, der in das Sprengloch hinabgelassen ist.
  • Figur 1 stellt in einer schematischen Weise eine Querschnittsansicht eines Sprengloches 1 dar, das sich beispielsweise in einem Sprengfeld beginnend von einer oberseitigen Mündungsöffnung 14 auf einer Bodenoberfläche des Sprengfeldes bis hinab zu einem Sprenglochboden 16 in vertikaler Richtung nach unten erstreckt. Das Sprengloch 1 kann beginnend vom Sprenglochboden 16 an mit Sprengstoff 10 befüllt werden, wobei die Darstellung einen unteren Teilereich des Sprengloches 1 bereits eingefüllten Sprengstoff 10 mit der Füllhöhe h zeigt. Der Sprengstoff 10 wird über Mittel 20 zum Befüllen des Sprengloches 1 in dieses eingefüllt, wobei die Mittel 20 beispielsweise an einem Fahrzeug angeordnet sind.
  • Ein Radarkopf 11, der mit einer Tauchtiefe I in das Sprengloch 1 hinabgelassen werden kann, ist hierfür an einem Zugmittel 13 befestigt, und das Zugmittel 13 wird durch einen Hüllschlauch 21 geführt, der einen unteren Teil der Mittel 20 zum Befüllen des Sprengloches 1 mit Sprengstoff 10 bildet. Dabei verläuft das Zugmittel 13 innerhalb der Mittel 20 über einen Dreh- oder Längengeber 17 oder Encoder, sodass mit dem Dreh- oder Längengeber 17 oder Encoder eine Höheninformation betreffend die Tauchtiefe I des Radarkopfes 11 im Sprengloch 10 bereitgestellt wird. Der Radarkopf 11 befindet sich folglich innerhalb des Füllstromes 19 des Sprengstoffes 10.
  • Wird das Sprengloch 1 mit Sprengstoff 10 befüllt, so kann bei einer bekannten, konstanten Füllrate des Sprengloches 1 mit Sprengstoff 10 aufgrund des von einer Zylinderform abweichenden Mantelprofils 15 des Sprengloches 1 ein Volumen in Abhängigkeit der Hochachse z entstehen, das abweicht von einem einfachen Zylindervolumen eines Zylinders, wenn die Bohrung zur Bildung des Sprengloches 1 mit einem Mantelprofil 15 von der reinen Zylinderform abweicht. Die Abweichungen können sich beispielsweise ergeben durch Materialausbrüche, die während des Bohrprozesses zur Erzeugung des Sprengloches 1 entstehen, sodass bei seitlichen Taschen, Ausbuchtungen und dergleichen zusätzliche Volumina entstehen, die ebenfalls mit Sprengstoff 10 gefüllt werden, wodurch sich eine resultierende Füllhöhe h ergibt, die durch einfaches Messen der Menge an eingegebenem Sprengstoff 10 in das Sprengloch 1 nicht direkt ermittelbar ist.
  • Der Radarkopf 11 weist Radareinheiten 12, 12' und 12" auf, wobei die Radareinheit 12 zur Bestimmung der Füllhöhe h des Sprengstoffes 10 im Sprengloch 1 beginnend vom Sprenglochboden 16 dient. Hierzu kann der Radarkopf 11 ohne eingefüllten Sprengstoff 10 zunächst den Bodenabstand d erfassen, und mit dem Einfüllen von Sprengstoff 10 kann der Füllhöhenabstand d' zur Füllhöhe h mit der Radareinheit 12 erfasst werden, wobei über eine entsprechende Regeleinrichtung die Füllhöhenabstand d' des Radarkopfes 11 über der Füllhöhe h des Sprengstoffes 10 eingeregelt werden kann, sodass der Füllhöhenabstand d' des Radarkopfes 11 über der Füllhöhe h konstant bleibt. Über den Dreh- oder Längengeber 17 kann sodann die aktuelle Höhenposition des Radarkopfes 11 entlang der Hochachse z ermittelt werden, um schließlich auf die eingegebene Menge an Sprengstoff 10 in Abhängigkeit der ermittelten Höhenposition des Radarkopfes 11 zu schließen. Die weiteren Radareinheiten 12' und 12" werden in Zusammenhang mit der folgenden Figur 2 näher erläutert.
  • Figur 2 zeigt eine weitere Querschnittsansicht eines Sprengloches 1 mit einem Radarkopf 11, der vor der Befüllung des Sprengloches 1 mit Sprengstoff in das Sprengloch 1 hinabgelassen wird. Über den Dreh- oder Längengeber 17 kann dabei die Höhenposition des Radarkopfes 11 ermittelt werden, indem das Zugmittel 13 über den Dreh- oder Längengeber 17 geführt ist, wobei der Dreh- oder Längengeber 17 in dem Mittel 20 zum Befüllen des Sprengloches 1 integriert ist, und vom Dreh- oder Längengeber 17 aus wird das Zugmittel 13 beispielsweise durch die Mitte des Hüllschlauches 21 schließlich in das Sprengloch 1 geführt.
  • Beispielsweise wird der Radarkopf 11 zunächst bis zum Sprenglochboden 16 in das Sprengloch 1 hinabgelassen. Anschließend wird der Radarkopf 11 am Zugmittel 13 mit konstanter Bewegung von unten nach oben bis zur Mündungsöffnung 14 des Sprengloches 1 durch dieses hindurchgezogen. Durch Aktivieren der Radarmittel 12' kann dabei die Topographie des Mantelprofils 15 des Sprengloches 1 erfasst werden, und die erfasste Topographie kann mit der Hochachse z in Korrelation gebracht werden, um schließlich aus dieser Messung eine höhenabhängige Volumeninformation des Sprengloches 1 zu erhalten. Die weiteren dargestellten Radareinheiten 12" können dabei dazu dienen, beispielsweise im SLAM-Verfahren (Simultaneous Localization and Mapping-Verfahren) ebenfalls eine Höheninformation des Radarkopfes 11 im Sprengloch 1 abzuleiten, sodass die Information vom Dreh- oder Längengeber 17 entweder redundant unterstützt oder ersetzt wird. Insbesondere kann mit den gewonnenen Daten ein Sprenglochmodell mittels einer Rechnereinheit erzeugt werden, um darauffolgend die kontrollierte Befüllung des Sprengloches 1 mit Sprengstoff 10 auszuführen.
  • Figur 3 zeigt eine schematisierte Detailansicht des Radarkopfes 11 in Anordnung mit einem Sprengloch 10, das bis zu einer gezeigten Höhe mit Sprengstoff 10 gefüllt ist. Der Radarkopf 11 weist einen Grundkörper 22 auf, der mit einem Verbindungsmittel 23 mit dem Zugmittel 13 verbunden ist, und an dem Zugmittel 13 kann der Radarkopf 11 entlang der Hochachse z in der Position verändert werden.
  • Der Radarkopf 11 weist beispielhaft mehrere Radareinheit 12, 12' und 12" auf. Die Radareinheit 12 ist gegenüberliegend vom Zugmittel 13 unterseitig angeordnet und kann zur Ermittlung des Abstandes zur Füllhöhe des Sprengstoffes 10 dienen. Die Radareinheit 12 umfasst ein Radarelement 24 in Anordnung hinter einer Radarlinse 25, sodass die Füllhöhe des Sprengstoffes 10 ermittelt werden kann, wobei die Füllhöhe abgeleitet wird durch den bekannten Abstand des Radarkopfes 11 zur Füllhöhe und aus der Information der Höhe des Radarkopfes 11 innerhalb des Sprengloches 1, beispielsweise ausgegeben durch den Dreh- oder Längengeber 17 gemäß Figur 1 oder Figur 2.
  • Die weiteren Radareinheiten 12' weisen Radarelemente 24' auf, mit denen die Topographie des inneren Mantelprofils 15 des Sprengloches 1 ermittelt werden kann. Dadurch können insbesondere Ausbuchtungen, seitliche Taschen und zusätzliche Volumina im Sprengloch 1 erfasst werden.
  • Die weitere Radareinheit 12" weist Radarelemente 24" auf, und die weiteren Radareinheiten 12" dienen zur Erfassung der Höheninformation des Radarkopfes 11 entlang der Hochachse z im Sprengloch 1. Die Messung durch die Radareinheiten 12' basiert dabei beispielsweise auf einem vorzugsweise radarbasierten Positionsbestimmungsverfahren, insbesondere auf der Anwendung des SLAM-Verfahrens mit Radarbildern oder des Doppler-Radarverfahrens.
  • Wird der Radarkopf 11 eingesetzt, während Sprengstoff 10 in das Sprengloch 1 eingegeben wird, wird der Radarkopf 11 geschützt durch eine Schutzhülle 27 als Bestandteil des Radarkopfes 11, die den Grundkörper 22 mit den Radareinheiten 12, 12', 12" außenseitig umschließt und damit schützt.
  • Figur 4 zeigt eine schematische Ansicht einer Vorrichtung 100 mit einem Fahrzeug 28, und das Fahrzeug 28 weißt als wesentlichen Bestandteil ein nicht näher gezeigtes Behältnis auf, in dem der Sprengstoff bevorratet ist. An Fahrzeug 28 sind darüber hinaus Mittel 20 zum Befüllen eines Sprengloches 1 mit Sprengstoff 10 aus dem Behältnis im Fahrzeug 28 angeordnet. Die Darstellung zeigt weiterhin einen Radarkopf 11, der endseitig an einem Zugmittel 13 angeordnet ist. Das Zugmittel 13 ist durch die Mittel 20 zum Befüllen des Sprengloches 1 geführt, insbesondere durch einen Hüllschlauch 21, und der Radarkopf 11 kann in nicht näher dargestellter Weise mit beispielsweise einer Winde in oder am Fahrzeug 28 hochgezogen und heruntergelassen werden. Damit kann die Höhe des Radarkopfes 11 innerhalb des Sprengloches 1 verändert werden, wobei die Höhenposition des Radarkopfes 11 im Sprengloch 1 über einen Dreh- oder Längengeber 17 erfasst werden kann, der sich an den Mitteln 20 zum Befüllen eines Sprengloches 1 befindet.
  • Im oder am Fahrzeug befindet sich beispielhaft eine Rechnereinheit 18, an die vom Radarkopf 11 erfasste Messwerte übermittelt werden, insbesondere indem das Zugmittel 13 neben einem mechanischen Zugmittel auch eine elektrische Leitung umfassen kann. Weiterhin kann eine Information des Dreh- oder Längengeber 17 an die Rechnereinheit 18 übermittelt werden, um die Höhenposition des Radarkopfes 11 ebenfalls an die Rechnereinheit 18 zu übermitteln. Mit der gezeigten Vorrichtung 1 kann das vorstehend beschriebene Verfahren zur kontrollierten Befüllung von Sprenglöchern 1 mit einem fließ- oder schüttfähigem Sprengstoff 10 ausgeführt werden.
  • In der Figur 5 ist eine weitere Ansicht eines Radarkopfes 11 schematisch dargestellt, wobei die Darstellung ein Ausführungsbeispiel eines Radarkopfes 11 in seinen vorteilhaft ausgewählten Bestandteilen zeigt, wobei die Aufführung der Bestandteile nicht abschließend ist und gemäß weiterer Ausführungsbeispiele die nachfolgend aufgeführten Bestandteile auch einzeln entfallen können, ohne die erfindungsgemäße Funktion des Radarkopfes 11 zu beeinträchtigen.
  • Das Ausführungsbeispiel zeigt den Radarkopf 11 in Anordnung am Zugmittel 13 mit einem Datenspeicher 30, in dem Messdaten gespeichert werden können, die beispielsweise von den Radareinheiten 12, 12', 12" erfasst wurden. Weiterhin ist ein Energiespeicher 31 als Bestandteil des Radarkopfes 11 gezeigt, der beispielsweise als Batterie oder als Akkumulator ausgeführt ist. Ein weiterer Bestandteil ist eine Schnittstelle 32 zur Datenkommunikation, beispielsweise zur Rechnereinheit 18. Zudem ist ein Gyroskop 29 gezeigt, mit dem die Pose des Radarkopfes 11 innerhalb des Sprengloches erfasst werden kann. Die Daten des Gyroskopes 29 wie auch die Daten, die mit den Radareinheiten 12, 12', 12" erfasst werden können, können im Datenspeicher 30 abgelegt werden.
  • Weiterhin ist eine Radarelektrik 33 gezeigt, die zum Betrieb der Radareinheiten 12, 12', 12" erforderlich ist. Die sich außen am Radarkopf 11 befindenden Radareinheiten 12, 12', 12" bilden dabei beispielsweise lediglich die Radarantennen, und die Elektronik zum Betrieb der Radarantennen ist zentral im Radarkopf 11 untergebracht.
  • Die Erfindung beschränkt sich in ihrer Ausführung nicht auf das vorstehend angegebene bevorzugte Ausführungsbeispiel. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei grundsätzlich anders gearteten Ausführungen Gebrauch macht. Sämtliche aus den Ansprüchen, der Beschreibung oder den Zeichnungen hervorgehenden Merkmale und/oder Vorteile, einschließlich konstruktiver Einzelheiten oder räumlicher Anordnungen, können sowohl für sich als auch in den verschiedensten Kombinationen erfindungswesentlich sein. Insbesondere kann der Radarkopf 11 auch nur eines oder zwei der drei beschriebenen Radareinheiten 12, 12', 12" aufweisen, sodass dieser auch nur eine entsprechende Teilmessung durchführt, z.B. entweder die Bestimmung der Füllhöhe h des Sprengstoffes 10 im Sprengloch 1 oder die Topographie des inneren Mantelprofils 15 des Sprengloches 1.
  • Bezugszeichenliste:
  • 1
    Sprengloch
    10
    Sprengstoff
    11
    Radarkopf
    12
    Radareinheit
    12'
    Radareinheit
    12"
    Radareinheit
    13
    Zugmittel
    14
    Mündungsöffnung
    15
    Mantelprofil
    16
    Sprenglochboden
    17
    Dreh- oder Längengeber
    18
    Rechnereinheit
    19
    Füllstrom
    20
    Mittel zum Befüllen
    21
    Hüllschlauch
    22
    Grundkörper
    23
    Verbindungsmittel
    24
    Radarelement
    24'
    Radarelement
    24"
    Radarelement
    25
    Radarlinse
    26
    Hochachse
    27
    Schutzhülle
    28
    Fahrzeug
    29
    Gyroskop
    30
    Datenspeicher
    31
    Energiespeicher
    32
    Schnittstelle
    33
    Radarelektrik
    100
    Vorrichtung
    d
    Bodenabstand
    d'
    Füllhöhenabstand
    h
    Füllhöhe
    I
    Tauchtiefe
    t
    Sprenglochtiefe
    z
    Hochachse

Claims (14)

  1. Verfahren zur kontrollierten Befüllung von Sprenglöchern (1) mit einem fließ- oder schüttfähigen Sprengstoff (10) im offenen Tagebau, mit den folgenden schritten:
    - Bereitstellen eines Radarkopfes (11) mit wenigstens einer Radareinheit (12, 12', 12"), die im nicht-gesteinsdurchdringenden Frequenzbereich betrieben wird,
    - Anordnen des Radarkopfes (11) an ein Zugmittel (13),
    - Einführen des Radarkopfes (11) in das Sprengloch (1), indem der Radarkopf (11) in Anordnung am Zugmittel (13) von einer oberen Mündungsöffnung (14) des Sprengloches (1) in dieses schwerkraftbedingt hinabgelassen wird und
    - Erfassen wenigstens eines Messwertes umfassend einen Bodenabstand (d) des Radarkopfes (11) zum Sprenglochboden (16) und/oder einen Füllhöhenabstand (d') zur Bestimmung der Füllhöhe (h) des Sprengstoffes (10) im Sprengloch (1) und/oder umfassend die Form des Mantelprofils (15) über wenigstens einem Teil der Tiefe des Sprengloches (1) mittels des Betriebes wenigstens eines der Radareinheiten (12, 12', 12"), wobei
    - der Radarkopf (11) während des Erfassens des wenigstens einen Messwertes zwischen einem unteren Sprenglochboden (16) und der Mündungsöffnung (14) des Sprengloches (1) in einer Hochachse (z) von unten nach oben oder von oben nach unten am Zugmittel (13) hängend bewegt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das Zugmittel (13) zumindest indirekt über wenigstens einen Dreh- oder Längengeber (17) geführt wird, wobei die Position des Radarkopfes (11) entlang der Hochachse (z) mit dem Dreh- oder Längengeber (17) erfasst und als Höheninformation ausgegeben wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass der Radarkopf (11) wenigstens eine Radareinheit (12") aufweist, mit der mittels eines radarbasierten Positionsbestimmungsverfahrens eine Weginformation bereitgestellt wird, wobei die Position des Radarkopfes (11) entlang der Hochachse (z) mit dem radarbasierten Positionsbestimmungsverfahren erfasst und mittels der Radareinheit (12") als Höheninformation ausgegeben wird.
  4. Verfahren nach einem der vorgenannten Ansprüche,
    dadurch gekennzeichnet,
    dass die mit dem Radarkopf (11) erfassten Messwerte umfassend die Füllhöhe (h) des Sprengstoffes (10) im Sprengloch (1) und/oder die Form des Mantelprofils (15) über wenigstens einem Teil der Tiefe des Sprengloches (1) an eine Rechnereinheit (18) übermittelt werden, wobei mit der Rechnereinheit (18) basierend auf den ermittelten Messwerten eine Füllmenge oder einen Füllstrom (19) des Sprengstoffes (10) ermittelt wird, die in das Sprengloch (1) eingegeben wird.
  5. Verfahren nach einem der vorgenannten Ansprüche,
    dadurch gekennzeichnet,
    dass der Radarkopf (11) eine Radareinheit (12) aufweist, mit der der Abstand des Radarkopfes (11) über der Füllhöhe (h) des Sprengstoffes (1) gemessen wird, woraus in Verbindung mit einer ermittelten Position des Radarkopfes (11) entlang der Hochachse (z) die Höheninformation der Füllhöhe (h) im Sprengloch (1) bestimmt und ausgegeben wird und/oder dass der Radarkopf (12', 12") eine Rotationseinheit aufweist, mit der wenigstens ein Radarstrahl zumindest einer Radareinheit um die Hochachse (z) rotierbar ist.
  6. Verfahren nach einem der vorgenannten Ansprüche,
    dadurch gekennzeichnet,
    dass das Erfassen der Füllhöhe (h) des Sprengstoffes (10) im Sprengloch (1) während der Befüllung des Sprengloches (1) mit Sprengstoff (10) erfolgt, Und/oder wobei mit dem Radarkopf (11) während der Befüllung des Sprengloches (1) mit Sprengstoff (10) die Fallgeschwindigkeit der den Sprengstoff (10) bildenden Partikel erfasst wird
  7. Verfahren nach einem der vorgenannten Ansprüche,
    dadurch gekennzeichnet,
    dass der Radarkopf (11) mit einem Gyroskop (29) ausgeführt wird, wobei mit dem Gyroskop (29) die Pose des Radarkopfes (11) im Sprengloch (1) ermittelt wird.
  8. Verfahren nach einem der vorgenannten Ansprüche,
    dadurch gekennzeichnet,
    dass mit der Rechnereinheit (18) basierend auf den ermittelten Messwerten umfassend die Form des Mantelprofils (15) über wenigstens einem Teil der Tiefe des Sprengloches (1) ein Sprenglochmodell erzeugt wird.
  9. Vorrichtung (100) zur kontrollierten Befüllung von Sprenglöchern (1) mit einem fließ- oder schüttfähigen Sprengstoff (10) im offenen Tagebau, wobei die Vorrichtung (100) Mittel (20) zum Befüllen des Sprengloches (1) aufweist,
    wobei die Vorrichtung weiterhin umfasst:
    - einen Radarkopf (11) mit wenigstens einer Radareinheit (12, 12', 12"), die im nicht-gesteinsdurchdringenden Frequenzbereich betreibbar ist, zum Erfassen wenigstens eines Messwertes umfassend einen Bodenabstand (d) des Radarkopfes zum Sprenglochboden und/oder einen Füllhöhenabstand (d') zur Bestimmung der Füllhöhe (h) des Sprengstoffes im Sprengloch und/ oder umfassend die Form des Mantelprofils über wenigstens einem Teil der Tiefe des Sprengloches mittels des Betriebes wenigstens eines der Radareinheiten,
    - ein Zugmittel (13), an dem der Radarkopf (11) angeordnet und in das Sprengloch (1) schwerkraftbedingt hinablassbar ist, sodass
    - der Radarkopf (11) während des Erfassens des wenigstens einen Messwertes zwischen einem unteren Sprenglochboden (16) und der Mündungsöffnung (14) des Sprengloches (1) in einer Hochachse (z) von unten nach oben oder von oben nach unten am Zugmittel (13) hängend bewegbar ist und wobei
    - der Radarkopf (11) umfasst:
    - wenigstens eine Radareinheit (12) zur Erfassung der Füllhöhe (h) des Sprengstoffes (10) im Sprengloch (1) entlang einer Hochachse (z) und/oder
    - wenigstens eine Radareinheit (12) zur Erfassung der Form des Mantelprofils (15) über wenigstens einen Teil der Tiefe des Sprengloches (1).
  10. Vorrichtung (100) nach Anspruch 9,
    dadurch gekennzeichnet,
    dass die Mittel (20) zum Befüllen des Sprengloches (1) einen Hüllschlauch (21) umfassen, wobei das Zugmittel (13) durch den Hüllschlauch (21) geführt ist und der Radarkopf (11) aus einem unteren Ende des Hüllschlauches (21) herausgeführt und in das Sprengloch (1) hinablassbar ist.
  11. Vorrichtung (100) nach Anspruch 9 oder 10,
    dadurch gekennzeichnet,
    dass die Mittel (20) zum Befüllen des Sprengloches (1) wenigstens einen Dreh- oder Längengeber (17) aufweisen und wobei das Zugmittel (13) zumindest indirekt über den Dreh- oder Längengeber (17) geführt ist, sodass mit dem Dreh- oder Längengeber (17) die Position des Radarkopfes (11) entlang der Hochachse (z) erfassbar ist.
  12. Vorrichtung (100) nach einem der Ansprüche 9 bis 11,
    dadurch gekennzeichnet,
    dass eine Rechnereinheit (18) vorhanden ist, mit der basierend auf den ermittelten Messwerten eine Füllmenge oder ein Füllvolumen des Sprengstoffes (10) bestimmbar und/oder ein 3D-Modell des Sprengloches (1) erstellbar ist, die in das Sprengloch (1) eingegeben wird.
  13. Vorrichtung (100) nach einem der Ansprüche 9 bis 12,
    dadurch gekennzeichnet,
    dass der Radarkopf (11) ein Gyroskop (29) aufweist und/oder dass der Radarkopf (11) einen Grundkörper (22) aufweist, an dem an einer oberen Seite ein Verbindungsmittel (23) für ein Zugmittel (13) ausgebildet ist und an dem an einer unteren Seite eine Radareinheit (12) mit einem Radarelement (24) und einer Radarlinse (25) ausgebildet ist.
  14. Vorrichtung (100) nach Anspruch 13,
    dadurch gekennzeichnet,
    dass der Grundkörper (22) in einer mit Bezug auf eine Hochachse (26) seitlichen Anordnung wenigstens eine Radareinheit (12', 12") aufweist, mit der die Form des Mantelprofils (15) des Sprengloches (1) erfassbar ist oder mit der eine Positionsbestimmung des Radarkopfes (11) insbesondere entlang einer Hochachse (z) im Sprengloch (1) ermittelbar ist.
EP20165157.7A 2020-03-24 2020-03-24 Verfahren und vorrichtung zur kontrollierten befüllung und inspektion von sprenglöchern Active EP3885694B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20165157.7A EP3885694B1 (de) 2020-03-24 2020-03-24 Verfahren und vorrichtung zur kontrollierten befüllung und inspektion von sprenglöchern
US17/210,708 US11988086B2 (en) 2020-03-24 2021-03-24 Method and device for controlled filling and inspection of blast holes
CL2021000735A CL2021000735A1 (es) 2020-03-24 2021-03-24 Método y dispositivo para controlar llenado e inspección de barrenos
AU2021201833A AU2021201833A1 (en) 2020-03-24 2021-03-24 Method and Apparatus for the Controlled Charging and Inspection of Blasting Boreholes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20165157.7A EP3885694B1 (de) 2020-03-24 2020-03-24 Verfahren und vorrichtung zur kontrollierten befüllung und inspektion von sprenglöchern

Publications (2)

Publication Number Publication Date
EP3885694A1 EP3885694A1 (de) 2021-09-29
EP3885694B1 true EP3885694B1 (de) 2022-11-09

Family

ID=69960371

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20165157.7A Active EP3885694B1 (de) 2020-03-24 2020-03-24 Verfahren und vorrichtung zur kontrollierten befüllung und inspektion von sprenglöchern

Country Status (4)

Country Link
US (1) US11988086B2 (de)
EP (1) EP3885694B1 (de)
AU (1) AU2021201833A1 (de)
CL (1) CL2021000735A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116710728A (zh) * 2020-11-10 2023-09-05 戴诺诺贝尔亚太股份有限公司 用于确定炮眼中的水深和炸药深度的系统和方法
WO2023096583A1 (en) * 2021-11-25 2023-06-01 Orica International Pte Ltd Monitoring system and method
CN114719698B (zh) * 2022-05-13 2023-11-03 中铁四局集团有限公司 基于爆破精细化分析的超长下台阶爆破施工方法
CN115083254B (zh) * 2022-07-22 2024-02-02 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种用于长期实时监测矿井填充层动态演化的模拟装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010200612B2 (en) 2009-03-06 2013-09-19 Ael Mining Services Limited Mining method
CA2868602A1 (en) * 2012-04-05 2013-10-10 Geosonde Pty Ltd Short range borehole radar
WO2014063188A1 (en) 2012-10-23 2014-05-01 Technological Resources Pty Ltd A system for, and a method of, controlling charging of a blast hole with explosives
US10690805B2 (en) * 2013-12-05 2020-06-23 Pile Dynamics, Inc. Borehold testing device
CN105300206B (zh) * 2015-10-26 2017-03-29 北方爆破科技有限公司 一种现场混装炸药作业机器人的控制方法
NO342803B1 (en) * 2016-06-16 2018-08-06 Well Id As Downhole calliper tool
CN107992098B (zh) * 2017-11-27 2020-09-08 北京北矿亿博科技有限责任公司 控制工作臂末端输药管对准炮孔的方法和设备
CA3108706A1 (en) * 2018-08-08 2020-02-13 Four Flags Pty Ltd Blast hole measurement and logging

Also Published As

Publication number Publication date
EP3885694A1 (de) 2021-09-29
CL2021000735A1 (es) 2021-09-10
US11988086B2 (en) 2024-05-21
US20210310780A1 (en) 2021-10-07
AU2021201833A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
EP3885694B1 (de) Verfahren und vorrichtung zur kontrollierten befüllung und inspektion von sprenglöchern
DE60006647T2 (de) Automatisiertes bohrplanungsverfahren und vorrichtung zum horizontalen richtungsbohren
DE19828355C2 (de) Pneumatisch-Dynamische-Sonde und Verfahren zur Erkundung und Beurteilung kollabiler, nichtbindiger Böden
DE102008026456B4 (de) Bohrkopf
DE19704080C2 (de) Minensuchgerät
DE102005057049A1 (de) System, Vorrichtung und Verfahren zum Ausführen von Vermessungen eines Bohrlochs
EP2392768B1 (de) Verfahren und Vorrichtung zur Erhöhung einer Ausbeute einer Lagerstätte
DE60109894T2 (de) System und verfahren zur flüssigkeitsströmungsoptimierung in einer gasliftölbohrung
DE19941197C2 (de) Steuerung für ein Horizontalbohrgerät
DE112015006191T5 (de) Gammaerfassungssensoren in einem lenkbaren Drehwerkzeug
DE60103457T2 (de) Vorrichtung und Verfahren zum Messen im Bohrloch
EP2392772A1 (de) Verfahren und Vorrichtung zur Erhöhung einer Ausbeute einer Lagerstätte
DE102005038313B4 (de) Verfahren zur Messung der geologischen Lagerungsdichte und zur Detektion von Hohlräumen im Bereich eines Vortriebstunnels
EP2806070B1 (de) Vorrichtung und Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörpers
DE602004003161T2 (de) Verfahren und Vorrichtung zur Datenübertragung zwischen Übertage und einem untertägigen Salzhohlraum
WO2018115334A1 (de) Orten eines bohrkopfs einer erdbohrvorrichtung
DE112017007034T5 (de) System, Verfahren und Vorrichtung zum Überwachen eines Parameters in einem Bohrloch
DE1623111B2 (de) Geophysikalische vorrichtung zur vermessung von unterirdischen kavernen
EP3252234B1 (de) Verfahren und vorrichtung zum entfernen eines pfahlelements aus einem boden
EP2662499B1 (de) Qualitätssicherungsverfahren zum Erstellen von Pfählen sowie offenes Profil dafür
EP3819433A1 (de) Bodenabtragsvorrichtung und verfahren zum erstellen eines loches im boden
DE19648547A1 (de) Vorrichtung zur Qualitätsüberwachung des Düsenstrahlverfahrens im Baugrund
WO2024130306A1 (en) Apparatus and methods for drilled hole locating and assessing, and payload delivery into a hole
CN114199089A (zh) 安全爆破根底的方法
DE19807060A1 (de) Verfahren und Vorrichtung zur Einbringung eines fließfähigen Mittels in den Erdboden

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20201203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220706

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1530635

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020001943

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020001943

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230324

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230324

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240105

Year of fee payment: 5

Ref country code: GB

Payment date: 20240321

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240328

Year of fee payment: 5