EP3885694B1 - Procédé et dispositif de remplissage contrôlé et d'inspection des trous de mine - Google Patents

Procédé et dispositif de remplissage contrôlé et d'inspection des trous de mine Download PDF

Info

Publication number
EP3885694B1
EP3885694B1 EP20165157.7A EP20165157A EP3885694B1 EP 3885694 B1 EP3885694 B1 EP 3885694B1 EP 20165157 A EP20165157 A EP 20165157A EP 3885694 B1 EP3885694 B1 EP 3885694B1
Authority
EP
European Patent Office
Prior art keywords
radar
blasting borehole
radar head
explosive
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20165157.7A
Other languages
German (de)
English (en)
Other versions
EP3885694A1 (fr
Inventor
Reik Winkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Indurad GmbH
Original Assignee
Indurad GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Indurad GmbH filed Critical Indurad GmbH
Priority to EP20165157.7A priority Critical patent/EP3885694B1/fr
Priority to CL2021000735A priority patent/CL2021000735A1/es
Priority to AU2021201833A priority patent/AU2021201833A1/en
Priority to US17/210,708 priority patent/US11988086B2/en
Publication of EP3885694A1 publication Critical patent/EP3885694A1/fr
Application granted granted Critical
Publication of EP3885694B1 publication Critical patent/EP3885694B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/08Measuring diameters or related dimensions at the borehole
    • E21B47/085Measuring diameters or related dimensions at the borehole using radiant means, e.g. acoustic, radioactive or electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/08Tamping methods; Methods for loading boreholes with explosives; Apparatus therefor
    • F42D1/10Feeding explosives in granular or slurry form; Feeding explosives by pneumatic or hydraulic pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/04Measuring depth or liquid level
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/04Measuring depth or liquid level
    • E21B47/047Liquid level
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/08Measuring diameters or related dimensions at the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/26Storing data down-hole, e.g. in a memory or on a record carrier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques
    • F42D3/04Particular applications of blasting techniques for rock blasting
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/20Computer models or simulations, e.g. for reservoirs under production, drill bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/024Determining slope or direction of devices in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/09Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/007Drilling by use of explosives

Definitions

  • the invention relates to a method and a device for the controlled filling of blast holes with a free-flowing or pourable explosive, in particular in open-pit mining for the blasting of mining volumes.
  • the US 2011/0006585 A1 a method of inspecting blast holes in open pit mines to determine the condition of the blast hole so that depending on the condition, it can be decided whether to charge explosives into the blast hole.
  • the condition relates in particular to the temperature of the blast hole, especially in deeper areas, in order to avoid that the blast hole has too high a temperature, especially in the lower half, thereby increasing the danger the premature and uncontrolled ignition of the explosive occurs when it is filled.
  • the temperature in the lower area of the blast hole is to be measured with a sensor by lowering the sensor on a cable into the blast hole in order to finally determine the temperature.
  • the sensor should be designed to be simplified with the actual detonator, which is lowered into the blast hole anyway.
  • the CN 105 300 206 A discloses a filling robot for filling a blast hole with explosives.
  • the autonomously driving filling robot has a robot arm and a navigation system with a radar sensor.
  • a filling tube for filling the blast hole is arranged on the robot arm.
  • the robot arm is positioned using the radar sensor.
  • a laser measuring instrument for measuring a depth and deformation of the blast hole is arranged on the filling pipe.
  • a method for the controlled filling of blast holes with a flowable or pourable explosive takes place in multiple arrangements in open pit mining in order to blast larger mining areas with a large number of blast holes and then remove them.
  • a device which comprises a vehicle, and on the vehicle there is a means for filling the blast hole with a cantilever arm, and at the end of the cantilever arm there is a filling nozzle, which is arranged, for example, under the vehicle, and which can be driven close to the mouth of the blast hole.
  • the flowable or pourable explosives such as ammonium nitrate and diesel, so-called ANC or ANO explosives, can then be transferred directly into the blast hole via the filler neck.
  • a sensor is located on the filling spout itself, which is intended for measuring the depth of the speech hole.
  • the sensor can also be used to determine whether there is water in the blast hole.
  • the sensor is in a fixed arrangement on the filler neck and can include a laser sensor or a radar sensor, for example. Disadvantageously, however, typical blast hole depths and curvatures are so large that a reliable radar measurement due to the Fresnel zone necessary for the propagation of radar waves is no longer possible.
  • blast holes with explosives are a relevant work step for opencast mining, which is crucial for a desired blasting result. If, for example, the blast hole does not have the desired approximately cylindrical geometry, caused by lateral ruptures in the shell profile of the blast hole, which is caused by debris falling into the blast hole or by the inflow of water, filling often cannot take place in such a way that how this is necessary for a desired blasting result.
  • the object of the invention is to further improve a method for the controlled filling of blast holes with a flowable or pourable explosive and to provide a device for this purpose, with the method even very deep holes with a small diameter can be filled in the required manner in order to to ensure the required distribution of the explosive over the vertical extent of the blast hole.
  • the following steps are provided according to the invention: providing a radar head with at least one radar unit that is operated in the non-rock-penetrating frequency range, arranging the radar head on a traction means, inserting the radar head into the blast hole by placing the radar head on the traction means of an upper mouth opening of the blast hole is lowered into this and detecting at least one measured value a bottom distance of the radar head to the bottom of the blast hole and/or a filling level distance for determining the filling level of the explosives in the blast hole and/or comprising the shape of the jacket profile over at least part of the depth of the blast hole by means of the operation of at least one of the radar units.
  • the core idea of the invention is the detection of the absolute fill level of the explosives in the blast hole, in particular above the bottom of the blast hole, and since the device for filling the blast hole with explosives detects the filling flow of explosives from the device, in particular a corresponding container of the device, into the blast hole anyway is recorded or monitored, the level of explosives in the blast hole recorded or monitored during the filling can be determined, namely at what level what quantity of explosives is located above the bottom of the blast hole in the blast hole.
  • the fill level is determined by measuring the essentially vertical distance of the radar head above the fill level of the explosive, and it can consequently be calculated back to the fill level of the explosive in the blast hole.
  • the frequency range in which the at least one radar unit is operated is preferably above 3 GHz.
  • a significant advantage in avoiding the use of a georadar is the higher frequency, since this means that the structural dimensions of the radar unit with the associated antenna can be designed smaller, which benefits the use of a radar according to the invention, since this is preferable is to be lowered into the borehole and thus small dimensions are advantageous.
  • the radar head is designed to only detect the fill level, for example, which results in a one-dimensional (1D) distance measurement, for example in the Z axis (vertical axis).
  • the shell profile of the blast hole is recorded using a 1D point measurement or one or more 2D profile measurements, this results in a two-dimensional (2D) measurement (X and Y axis), and with the combined recording of the elevation position, a three-dimensional ( 3D) Measurement (X, Y and Z axis).
  • the size of the radar head is such that it can be inserted into a blast hole of normal diameter for blasting in opencast mines.
  • the blast hole runs perpendicularly or at an angle of inclination to the vertical.
  • the radar head is lowered into the blast hole on the traction device due to gravity, either through the center of the blast hole or the radar head slides along the borehole wall and into the blast hole if this is created at an angle of inclination.
  • Customary blast hole diameters are in the range between 10 cm and 50 cm and have a depth of up to 100 m, for example.
  • the radar head consequently has a diameter which is smaller than the smallest diameter of a blast hole which is to be examined.
  • the traction means can be formed by means of a cable, in particular a steel cable, a belt, a chain or a rod, the traction means preferably also comprising an electrical cable to operate the at least one radar unit on the radar head and to transfer data from the To transmit radar unit, for example, to a computer unit, which is arranged on the device for performing the method, for example on a vehicle that also stores the explosives.
  • the traction means consequently forms the entirety of the electric cable and a force-absorbing part.
  • the radar head is moved in a vertical axis either from bottom to top or from top to bottom during the detection of the at least one measured value between a lower blast hole bottom and the mouth opening of the blast hole. If the blast hole is filled with explosives, the radar head is preferably moved upwards from the bottom of the blast hole to the muzzle opening.
  • the movement can take place by pulling in the traction means, for example using a winch or the like.
  • the winch or the like is located in or on the device, in particular the vehicle that is driven up to the blast hole to carry out the method for controlled filling of the blast hole with explosives.
  • the traction means is guided at least indirectly via at least one rotary encoder or length encoder, with the position of the radar head along the vertical axis being detected by the rotary encoder or length encoder and output as height information.
  • the height information can then be transmitted to the computer unit and set in relation to the amount of explosives already entered in the blast hole, since the height information that is output by the rotary or length encoder can be traced back to the filling level of the explosives in the blast hole, in particular since it is known in which position the radar head starting at the bottom of the blast hole has already been raised and how much of the absolute amount of explosives has already been entered.
  • measured values are recorded with reference to the shape of the shell profile of the blast hole, these measured values can also be correlated with the height information output by the encoder or length encoder, so that the blast hole can be fully displayed with regard to the topography of the inner shell profile, for example as a model on a screen the computing unit.
  • the radar head can have at least one radar unit with which path information can be provided using a radar-based position determination method, with the position of the radar head being recorded along the vertical axis using the radar-based position determination method and with the radar head as height information.
  • the position determination method can, for example, relate to a simultaneous localization and mapping method, with the possibility also of using a radar-based Doppler method.
  • the height information is picked up in particular from the inner surface of the shell profile of the blast hole, in that the radar head has at least one corresponding radar unit for this purpose.
  • the at least one radar unit arranged on the radar head can relate to an autonomously operating radar unit or, in the sense of the invention, can also already be formed by just a radar antenna.
  • a gyroscope as part of the radar head.
  • Gyroscopes are used to determine the pose of an object in space, and when the gyroscope is in Structural unit is performed with the radar head, then there is advantageously the possibility of detecting the pose of the radar head in the blast hole with the gyroscope.
  • This data can then be documented together with the data recorded with the radar units, for example, and transmitted to a computer unit by cable or wirelessly.
  • the gyroscope may provide elevation information or detect lateral deviation from plumb by providing a directional vector that is combined with information from one or more radar units to form a topography of the wellbore's skin profile.
  • the measured values recorded with the radar head including the fill level of the explosive in the blast hole and/or the shape of the casing profile over at least part of the depth of the blast hole, are preferably transmitted to a computer unit, with the computer unit calculating a filling quantity or a filling flow of the Explosive is determined, which is entered into the blast hole.
  • information can either be conveyed to an operator as to how and in what quantity at what time the explosive must be introduced into the blast hole, for example through additional quantities or through reduced quantities.
  • the method can also be carried out automatically in that the computer unit controls a corresponding delivery rate of the explosives, for example via a delivery module in the vehicle of the device.
  • the radar head has a radar unit with which the distance between the radar head and the fill level of the explosive is measured, from which, in conjunction with a determined position of the radar head along the vertical axis, the height information of the fill level in the blast hole is determined and output.
  • the radar unit is located on the underside of the radar head, which points in the direction of the explosives that have already been filled. It can also be provided that the radar head has a rotation unit for a 2D profile measurement, with which at least one radar beam of at least one 1D radar unit can be rotated about the vertical axis, so that an X/Y profile is imaged, on which the vertical axis Z in particular forms a surface normal.
  • the filling level of the explosive in the blast hole is detected with particular advantage during the filling of the blast hole with explosive. Consequently, the explosives can be entered into the blast hole in real time and thus simultaneously, and the entered amount of explosives is monitored with the method according to the invention so that it is known at any time what amount of explosives is at what depth of the blast hole.
  • the blast hole is at least partially filled with water
  • there can be at least one ultrasonic sensor on the radar head which works in particular as an echo sounder, so that the fill level of the explosive in the blast hole and/or the shape of the jacket profile of the Blast hole can be done over at least part of the depth of the blast hole.
  • at least one radar unit or all radar units can be replaced by at least one ultrasonic sensor or echo sounder on the radar head.
  • the rate of fall of the particles forming the explosive or of a liquid when using a liquid explosive can be detected with the radar head while the explosive hole is being filled with explosive. From this, more Information can be derived, for example whether the particles are in free fall or, for example, what compression the filled explosive has.
  • the detection of the rate of fall of the particles forming the explosive by means of the at least one radar unit is based in particular on the use of the Doppler effect.
  • the method particularly advantageously includes the step of using the computer unit to generate a 3D blast hole model based on the measured values determined, including the shape of the casing profile over at least part of the depth of the blast hole.
  • the measurement values relating to the shape of the casing profile can preferably be recorded before the blast hole is filled with explosives, so that a blast hole model is first created in order to then determine at what speed over the filling time and in what quantity explosives can be introduced into the blast hole .
  • the object of the invention is further achieved by a device for the controlled filling of blast holes with a free-flowing or pourable explosive, particularly in open-pit mining, the device having means for filling the blast hole.
  • the device also has a radar head with at least one radar unit that can be operated in the non-rock-penetrating frequency range, and the device also includes a traction device on which the radar head is arranged and can be lowered into the blast hole, and the radar head includes the following: at least a radar unit for detecting a fill level of the explosive in the blast hole along a vertical axis and/or at least one radar unit for detecting the shape of the casing profile over at least part of the depth of the blast hole.
  • the means for filling the blast hole can comprise a duct, with the pulling means being routed through the duct and the radar head being led out of a lower end of the duct and being lowerable into the blast hole.
  • the traction means is formed with the enveloping tube itself, so that the radar head is attached to the enveloping tube and is let into the blast hole with the enveloping tube. The enveloping tube can then be let out and drawn in with variable length, through which the explosive can be passed at the same time.
  • the means for filling the blast hole can also have a rotary encoder or length encoder, with the traction mechanism being guided at least indirectly via the rotary encoder or length encoder, so that the position of the radar head along the vertical axis can be detected with the rotary encoder or length encoder.
  • the device can have a computer unit with which, based on the measured values determined, a filling quantity of the explosive can be determined and/or a 3D model of the blast hole can be created, which is entered into the blast hole.
  • a 3D model is created, this can be done before the actual filling of the blast hole in order to decide whether it is generally suitable for later filling of the blast hole, for example if it is too big or too small or whether the blast hole needs to be reworked, for example, when substrate detaches from the wall of the hole and falls to the bottom of the hole and unintentionally at least partially fills it up again.
  • a simulation program that can be operated on a computing unit can consequently be fed with data that are obtained with the inspection of blast holes according to the invention.
  • a 3D hole model can be generated, for example, which can be used as a basis for the subsequent filling of the blast hole with explosives, in particular with regard to the filling quantity, filling speed and the like.
  • the holes can be filled with the right amount of explosive without the blast holes remaining too small after filling, so that the rock formations to be loosened are not crushed. It can also be avoided that blast holes are not too large, since the explosive power is too strong and the risk of flying stones increases.
  • the radar head has a base body on which a connecting means for a traction mechanism is formed on an upper side and on which a radar unit with a radar element and a radar lens is formed on a lower side.
  • the base body has at least one radar unit in a lateral arrangement with respect to a vertical axis, with which the shape of the lateral profile of the blast hole can be detected or with which a position of the radar head can be determined, in particular along a vertical axis in the blast hole.
  • the radar head has a bell-like protective cover, which is preferably made of plastic and through which radar waves can be radiated.
  • the protective cover prevents contact of the base body with the radar units arranged on the base body with the inner surface of the blast hole and in particular with the granular falling explosives, since the radar head is pulled through the blast hole from bottom to top during filling in the vertical direction.
  • You protective cover can, for example, towards the top be closed and open like a bell towards the underside and/or the protective cover closes tightly with a radar lens on the underside of the radar head.
  • the radar head has a centralizer with which the radar head is kept approximately in the middle of the cross-section of the blast hole.
  • the centralizer may include a haptic designed as spring arms that press against the inside of the blast hole.
  • three, four or more spring arms can be distributed over the circumference of the radar head.
  • FIG. 12 shows in a schematic manner a cross-sectional view of a blast hole 1 extending vertically downward in a blast field, for example, starting from a top-side muzzle opening 14 on a bottom surface of the blast field down to a blast hole bottom 16.
  • the blast hole 1 can be filled with explosive 10 starting from the bottom 16 of the blast hole.
  • the explosive 10 is filled into the blast hole 1 via means 20 for filling the latter, the means 20 being arranged on a vehicle, for example.
  • the traction means 13 runs within the means 20 via a rotary or length transmitter 17 or encoder, so that the rotary or length transmitter 17 or encoder provides height information relating to the immersion depth I of the radar head 11 in the blast hole 10 .
  • the radar head 11 is consequently located within the filling stream 19 of the explosive 10.
  • a volume can arise as a function of the vertical axis z, which deviates from a simple cylinder volume of a cylinder if the bore for forming the explosive hole 1 with a jacket profile 15 deviates from the pure cylindrical shape.
  • the deviations can result, for example, from material breakouts that occur during the drilling process to create the explosive hole 1, so that side pockets, bulges and the like create additional volumes that are also filled with explosive 10, resulting in a filling height h that results simply measuring the amount of explosives 10 entered into the blast hole 1 cannot be directly determined.
  • the radar head 11 has radar units 12, 12′ and 12′′, the radar unit 12 being used to determine the level h of the explosive 10 in the blast hole 1 starting from the bottom 16 of the blast hole. and with the filling of explosive 10, the filling level distance d' to the filling level h can be detected with the radar unit 12, with the filling level distance d' of the radar head 11 being able to be regulated via the filling level h of the explosive 10 via a corresponding control device, so that the filling level distance d' of the radar head 11 remains constant above the fill level h.
  • the current height position of the radar head 11 along the vertical axis z can then be determined via the rotary or length encoder 17, in order finally to the input quantity of explosives 10 depending on the determined height position of the radar head 11 close.
  • the other radar units 12 'and 12 "are in connection with of the following figure 2 explained in more detail.
  • FIG 2 shows a further cross-sectional view of a blast hole 1 with a radar head 11, which is lowered into the blast hole 1 before the filling of the blast hole 1 with explosives.
  • the height position of the radar head 11 be determined by guiding the traction means 13 over the rotary or length transmitter 17, the rotary or length transmitter 17 being integrated in the means 20 for filling the blast hole 1, and from the rotary or length transmitter 17 the traction means 13 is, for example, the middle of the enveloping tube 21 finally led into the blast hole 1.
  • the radar head 11 is first lowered into the blast hole 1 as far as the bottom 16 of the blast hole.
  • the radar head 11 is then pulled through the traction device 13 with a constant movement from bottom to top up to the mouth opening 14 of the blast hole 1 .
  • the radar means 12′ By activating the radar means 12′, the topography of the surface profile 15 of the blast hole 1 can be recorded and the recorded topography can be correlated with the vertical axis z in order finally to obtain height-dependent volume information of the blast hole 1 from this measurement.
  • the other radar units 12" shown can be used, for example, to also derive height information from the radar head 11 in the blast hole 1 using the SLAM method (Simultaneous Localization and Mapping method), so that the information from the rotary encoder or length encoder 17 is either redundantly supported or replaced
  • SLAM method Simultaneous Localization and Mapping method
  • a blast hole model can be generated by means of a computer unit in order to subsequently carry out the controlled filling of the blast hole 1 with explosive 10 .
  • FIG 3 shows a schematic detailed view of the radar head 11 in arrangement with a blast hole 10, which is filled with explosives 10 up to a height shown.
  • the radar head 11 has a base body 22 which is connected to the traction means 13 by a connecting means 23, and the position of the radar head 11 can be changed on the traction means 13 along the vertical axis z.
  • the radar head 11 has, for example, several radar units 12, 12′ and 12′′.
  • the radar unit 12 is arranged on the underside opposite the traction mechanism 13 and can be used to determine the distance from the filling level of the explosive 10.
  • the radar unit 12 comprises a radar element 24 arranged behind a Radar lens 25, so that the filling level of the explosive 10 can be determined, the filling level being derived from the known distance of the radar head 11 to the filling level and from the information about the height of the radar head 11 within the blast hole 1, for example output by the rotary or length transmitter 17 according to figure 1 or figure 2 .
  • the other radar units 12' have radar elements 24' with which the topography of the inner surface profile 15 of the blast hole 1 can be determined. In this way, in particular bulges, side pockets and additional volumes in the blast hole 1 can be detected.
  • the further radar unit 12" has radar elements 24", and the further radar units 12" are used to record the height information of the radar head 11 along the vertical axis z in the blast hole 1.
  • the measurement by the radar units 12' is based, for example, on a preferably radar-based position determination method, in particular on the use of the SLAM method with radar images or the Doppler radar method.
  • the radar head 11 is used while explosives 10 are being introduced into the blast hole 1, the radar head 11 is protected by a protective cover 27 as part of the radar head 11, which encloses the base body 22 with the radar units 12, 12', 12" on the outside and thus protects it .
  • FIG 4 shows a schematic view of a device 100 with a vehicle 28, and the vehicle 28 know as an essential part of a container not shown in detail, in which the explosives are stored.
  • Means 20 for filling a blast hole 1 with explosives 10 from the container in vehicle 28 are also arranged on vehicle 28 .
  • the representation also shows a radar head 11 which is arranged at the end on a traction mechanism 13 .
  • the traction means 13 is guided through the means 20 for filling the blast hole 1, in particular through a protective hose 21, and the radar head 11 can be raised and lowered in a manner not shown in detail, for example with a winch in or on the vehicle 28.
  • the height of the radar head 11 within the blast hole 1 can thus be changed, with the height position of the radar head 11 in the blast hole 1 being able to be detected via a rotary or length transmitter 17 which is located on the means 20 for filling a blast hole 1 .
  • the traction device 13 can also include an electrical line in addition to a mechanical traction device.
  • information from the rotary encoder or length encoder 17 can be transmitted to the computer unit 18 in order to also transmit the height position of the radar head 11 to the computer unit 18 .
  • FIG 5 is another view of a radar head 11 is shown schematically, wherein the representation shows an embodiment of a radar head 11 in its advantageously selected components, the list of components is not exhaustive and according to further exemplary embodiments, the components listed below can also be omitted individually without impairing the function of the radar head 11 according to the invention.
  • the exemplary embodiment shows the radar head 11 arranged on the traction means 13 with a data memory 30 in which measurement data can be stored which, for example, were recorded by the radar units 12, 12', 12". which is designed, for example, as a battery or as an accumulator.Another component is an interface 32 for data communication, for example to the computer unit 18. A gyroscope 29 is also shown, with which the pose of the radar head 11 within the blast hole can be recorded. The data of the gyroscope 29 as well as the data that can be recorded with the radar units 12, 12', 12'' can be stored in the data memory 30.
  • Radar electronics 33 are also shown, which are required to operate the radar units 12, 12', 12".
  • the radar units 12, 12', 12" located on the outside of the radar head 11 only form the radar antennas and the electronics for operating the Radar antennas are housed centrally in the radar head 11.
  • the radar head 11 can only have one or two of the three radar units 12, 12', 12" described, so that it also only carries out a corresponding partial measurement, e.g. either determining the fill level h of the explosive 10 in the blast hole 1 or the topography of the inner casing profile 15 of the blast hole 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (14)

  1. Procédé de remplissage contrôlé de trous de mine (1) avec une matière explosive (10) fluide ou déversable, dans l'exploitation minière à ciel ouvert, comprenant les étapes suivantes :
    - mise à disposition d'une tête de radar (11) avec au moins une unité radar (12, 12', 12"), qui est exploitée dans la plage de fréquence ne pénétrant pas dans la roche,
    - disposition de la tête de radar (11) sur un moyen de traction (13),
    - introduction de la tête de radar (11) dans le trou de mine (1), en faisant descendre la tête de radar (11), disposée sur le moyen de traction (13), par la force de gravité depuis une ouverture d'embouchure (14) supérieure du trou de mine (1) dans celui-ci et
    - acquisition d'au moins une valeur de mesure comprenant une distance par rapport au fond (d) de la tête de radar (11) au fond du trou de mine (16) et/ou une distance par rapport à la hauteur de remplissage (d') pour déterminer la hauteur de remplissage (h) de la matière explosive (10) dans le trou de mine (1) et/ou comprenant la forme du profil de surface latérale (15) sur au moins une partie de la profondeur du trou de mine (1) au moyen de l'exploitation d'au moins une des unités radar (12, 12', 12"), dans lequel
    - pendant l'acquisition de l'au moins une valeur de mesure, la tête de radar (11) est déplacée, suspendue au moyen de traction (13), de bas en haut ou de haut en bas sur un axe vertical (z) entre un fond de trou de mine (16) inférieur et l'ouverture d'embouchure (14) du trou de mine (1).
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    le moyen de traction (13) est guidé au moins indirectement par le biais d'au moins un codeur rotatif ou détecteur de longueur (17), la position de la tête de radar (11) le long de l'axe vertical (z) étant acquise à l'aide du codeur rotatif ou détecteur de longueur (17) et fournie en sortie comme information de hauteur.
  3. Procédé selon l'une des revendications 1 ou 2,
    caractérisé en ce que
    la tête de radar (11) comporte au moins une unité radar (12"), à l'aide de laquelle une information de course est fournie au moyen d'un procédé de détermination de position basé sur la technologie radar, la position de la tête de radar (11) le long de l'axe vertical (z) étant acquise à l'aide du procédé de détermination de position basé sur la technologie radar et fournie en sortie comme information de hauteur au moyen de l'unité radar (12").
  4. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    les valeurs de mesure acquises à l'aide de la tête de radar (11), comprenant la hauteur de remplissage (h) de la matière explosive (10) dans le trou de mine (1) et/ou la forme du profil de surface latérale (15) sur au moins une partie de la profondeur du trou de mine (1), sont transmises à une unité de calcul (18),
    une quantité de remplissage ou un flux de remplissage (19) de la matière explosive (10) qui est introduite dans le trou de mine (1) étant déterminé(e) à l'aide de l'unité de calcul (18) sur la base des valeurs de mesure déterminées.
  5. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    la tête de radar (11) comporte une unité radar (12), à l'aide de laquelle la distance de la tête de radar (11) au-dessus de la hauteur de remplissage (h) de la matière explosive (1) est mesurée, à partir de quoi, en liaison avec une position déterminée de la tête de radar (11) le long de l'axe vertical (z), l'information de hauteur de la hauteur de remplissage (h) dans le trou de mine (1) est déterminée et fournie en sortie et/ou en ce que la tête de radar (12', 12") comporte une unité de rotation, à l'aide de laquelle au moins un faisceau radar d'au moins une unité radar peut tourner autour de l'axe vertical (z).
  6. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    l'acquisition de la hauteur de remplissage (h) de la matière explosive (10) dans le trou de mine (1) est effectuée pendant le remplissage du trou de mine (1) avec de la matière explosive (10), et/ou dans lequel, pendant le remplissage du trou de mine (1) avec de la matière explosive (10), la vitesse de chute des particules formant la matière explosive (10) est acquise à l'aide de la tête de radar (11).
  7. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    la tête de radar (11) est exécutée avec un gyroscope (29), la position et orientation de la tête de radar (11) dans le trou de mine (1) étant déterminée à l'aide du gyroscope (29).
  8. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    un modèle de trou de mine est généré à l'aide de l'unité de calcul (18) sur la base des valeurs de mesure déterminées comprenant la forme du profil de surface latérale (15) sur au moins une partie de la profondeur du trou de mine (1).
  9. Dispositif (100) de remplissage contrôlé de trous de mine (1) avec une matière explosive (10) fluide ou déversable dans l'exploitation minière à ciel ouvert, le dispositif (100) comportant des moyens (20) destinés au remplissage du trou de mine (1),
    le dispositif comprenant en outre :
    - une tête de radar (11) avec au moins une unité radar (12, 12', 12"), qui peut être exploitée dans la plage de fréquence ne pénétrant pas dans la roche, destinée à acquérir au moins une valeur de mesure comprenant une distance par rapport au fond (d) de la tête de radar au fond du trou de mine et/ou une distance par rapport à la hauteur de remplissage (d') pour déterminer la hauteur de remplissage (h) de la matière explosive dans le trou de mine et/ou comprenant la forme du profil de surface latérale sur au moins une partie de la profondeur du trou de mine au moyen de l'exploitation d'au moins une des unités radar,
    - un moyen de traction (13), sur lequel est disposée la tête de radar (11) et pouvant être descendu par la force de gravité dans le trou de mine (1), de telle sorte que
    - pendant l'acquisition de l'au moins une valeur de mesure, la tête de radar (11) peut être déplacée, suspendue au moyen de traction (13), de bas en haut ou de haut en bas sur un axe vertical (z) entre un fond de trou de mine (16) inférieur et l'ouverture d'embouchure (14) du trou de mine (1) et dans lequel
    - la tête de radar (11) comprend :
    - au moins une unité radar (12) destinée à acquérir la hauteur de remplissage (h) de la matière explosive (10) dans le trou de mine (1) le long d'un axe vertical (z) et/ou
    - au moins une unité de radar (12) destinée à acquérir la forme du profil de surface latérale (15) sur au moins une partie de la profondeur du trou de mine (1).
  10. Dispositif (100) selon la revendication 9,
    caractérisé en ce que
    les moyens (20) destinés au remplissage du trou de mine (1) comprennent un tuyau enveloppant (21), le moyen de traction (13) étant guidé dans le tuyau enveloppant (21) et la tête de radar (11) étant menée hors d'une extrémité inférieure du tuyau enveloppant (21) et pouvant être descendue dans le trou de mine (1).
  11. Dispositif (100) selon la revendication 9 ou 10,
    caractérisé en ce que
    les moyens (20) destinés au remplissage du trou de mine (1) comportent au moins un codeur rotatif ou détecteur de longueur (17) et dans lequel le moyen de traction (13) est guidé au moins indirectement par le biais du codeur rotatif ou détecteur de longueur (17), de telle sorte que la position de la tête de radar (11) le long de l'axe vertical (z) peut être acquise à l'aide du codeur rotatif ou détecteur de longueur (17).
  12. Dispositif (100) selon l'une des revendications 9 à 11,
    caractérisé en ce que
    une unité de calcul (18) est présente, à l'aide de laquelle, sur la base des valeurs de mesure déterminées, une quantité de remplissage ou un volume de remplissage de la matière explosive (10), qui est introduite dans le trou de mine (1), peut être déterminé(e) et/ou un modèle 3D du trou de mine (1) peut être établi.
  13. Dispositif (100) selon l'une des revendications 9 à 12,
    caractérisé en ce que
    la tête de radar (11) comporte un gyroscope (29) et/ou en ce que la tête de radar (11) comporte un corps de base (22), sur lequel, sur un côté supérieur, un moyen de liaison (23) pour un moyen de traction (13) est réalisé et sur lequel, sur un côté inférieur, une unité radar (12) avec un élément radar (24) et une lentille de radar (25) est réalisée.
  14. Dispositif (100) selon la revendication 13,
    caractérisé en ce que
    le corps de base (22) comporte au moins une unité radar (12', 12") dans une disposition latérale par rapport à un axe vertical (26), à l'aide de laquelle la forme du profil de surface latérale (15) du trou de mine (1) peut être acquise ou à l'aide de laquelle une détermination de position de la tête de radar (11), en particulier le long d'un axe vertical (z), dans le trou de mine (1) peut être déterminée.
EP20165157.7A 2020-03-24 2020-03-24 Procédé et dispositif de remplissage contrôlé et d'inspection des trous de mine Active EP3885694B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20165157.7A EP3885694B1 (fr) 2020-03-24 2020-03-24 Procédé et dispositif de remplissage contrôlé et d'inspection des trous de mine
CL2021000735A CL2021000735A1 (es) 2020-03-24 2021-03-24 Método y dispositivo para controlar llenado e inspección de barrenos
AU2021201833A AU2021201833A1 (en) 2020-03-24 2021-03-24 Method and Apparatus for the Controlled Charging and Inspection of Blasting Boreholes
US17/210,708 US11988086B2 (en) 2020-03-24 2021-03-24 Method and device for controlled filling and inspection of blast holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20165157.7A EP3885694B1 (fr) 2020-03-24 2020-03-24 Procédé et dispositif de remplissage contrôlé et d'inspection des trous de mine

Publications (2)

Publication Number Publication Date
EP3885694A1 EP3885694A1 (fr) 2021-09-29
EP3885694B1 true EP3885694B1 (fr) 2022-11-09

Family

ID=69960371

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20165157.7A Active EP3885694B1 (fr) 2020-03-24 2020-03-24 Procédé et dispositif de remplissage contrôlé et d'inspection des trous de mine

Country Status (4)

Country Link
US (1) US11988086B2 (fr)
EP (1) EP3885694B1 (fr)
AU (1) AU2021201833A1 (fr)
CL (1) CL2021000735A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116710728A (zh) * 2020-11-10 2023-09-05 戴诺诺贝尔亚太股份有限公司 用于确定炮眼中的水深和炸药深度的系统和方法
WO2023096583A1 (fr) * 2021-11-25 2023-06-01 Orica International Pte Ltd Système et procédé de surveillance
CN114719698B (zh) * 2022-05-13 2023-11-03 中铁四局集团有限公司 基于爆破精细化分析的超长下台阶爆破施工方法
CN115083254B (zh) * 2022-07-22 2024-02-02 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种用于长期实时监测矿井填充层动态演化的模拟装置
CN116464429B (zh) * 2023-04-18 2024-07-05 哈尔滨工业大学(深圳) 一种岩土钻孔内水位测量设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010200612B2 (en) 2009-03-06 2013-09-19 Ael Mining Services Limited Mining method
AU2013243242A1 (en) * 2012-04-05 2014-10-30 Geosonde Pty Ltd Short range borehole radar
WO2014063188A1 (fr) 2012-10-23 2014-05-01 Technological Resources Pty Ltd Système pour, et procédé de, commande de chargement d'un trou de mine avec des explosifs
US10690805B2 (en) * 2013-12-05 2020-06-23 Pile Dynamics, Inc. Borehold testing device
CN106382869B (zh) * 2015-10-26 2018-01-23 北方爆破科技有限公司 现场混装炸药作业机器人的控制方法
NO342803B1 (en) * 2016-06-16 2018-08-06 Well Id As Downhole calliper tool
CN107992098B (zh) * 2017-11-27 2020-09-08 北京北矿亿博科技有限责任公司 控制工作臂末端输药管对准炮孔的方法和设备
AU2019317631B2 (en) * 2018-08-08 2021-02-18 Four Flags Pty Ltd Blast hole measurement and logging

Also Published As

Publication number Publication date
AU2021201833A1 (en) 2021-10-21
EP3885694A1 (fr) 2021-09-29
CL2021000735A1 (es) 2021-09-10
US11988086B2 (en) 2024-05-21
US20210310780A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
EP3885694B1 (fr) Procédé et dispositif de remplissage contrôlé et d'inspection des trous de mine
DE69636054T2 (de) Drehbohrsystem in geschlossener schleife
DE60006647T2 (de) Automatisiertes bohrplanungsverfahren und vorrichtung zum horizontalen richtungsbohren
DE602004010306T2 (de) Verfahren und vorrichtung zur verbesserung der richtungsgenauigkeit und -steuerung unter verwendung von grundbohrungsanordnungsbiegemessungen
DE19828355C2 (de) Pneumatisch-Dynamische-Sonde und Verfahren zur Erkundung und Beurteilung kollabiler, nichtbindiger Böden
DE102008026456B4 (de) Bohrkopf
DE102005057049A1 (de) System, Vorrichtung und Verfahren zum Ausführen von Vermessungen eines Bohrlochs
EP2392768B1 (fr) Procédé et dispositif d'augmentation du rendement d'un site de stockage
DE60109894T2 (de) System und verfahren zur flüssigkeitsströmungsoptimierung in einer gasliftölbohrung
DE19941197C2 (de) Steuerung für ein Horizontalbohrgerät
DE112015006191T5 (de) Gammaerfassungssensoren in einem lenkbaren Drehwerkzeug
DE60103457T2 (de) Vorrichtung und Verfahren zum Messen im Bohrloch
DE69936940T2 (de) Verfahren und bohrvorrichtung zur kontrolle des gesteinbohrens
EP2392772A1 (fr) Procédé et dispositif d'augmentation du rendement d'un site de stockage
DE102005038313B4 (de) Verfahren zur Messung der geologischen Lagerungsdichte und zur Detektion von Hohlräumen im Bereich eines Vortriebstunnels
EP2806070B1 (fr) Dispositif et procédé de fabrication surveillée d'un corps d'injection haute pression
DE602004003161T2 (de) Verfahren und Vorrichtung zur Datenübertragung zwischen Übertage und einem untertägigen Salzhohlraum
WO2018115334A1 (fr) Localisation d'une tête de forage d'un engin de forage du sol
DE112017007034T5 (de) System, Verfahren und Vorrichtung zum Überwachen eines Parameters in einem Bohrloch
DE1623111B2 (de) Geophysikalische vorrichtung zur vermessung von unterirdischen kavernen
EP3252234B1 (fr) Procédé et dispositif d'élimination d'un élément de pieu hors d'un sol
EP2662499B1 (fr) Procédé d'assurance-qualité pour la réalisation de pieux et profil ouvert prévu à cet effet
WO2021089627A1 (fr) Dispositif d'enlèvement de terre et procédé de réalisation d'un trou dans la terre
DE19648547A1 (de) Vorrichtung zur Qualitätsüberwachung des Düsenstrahlverfahrens im Baugrund
WO2024130306A1 (fr) Appareil et procédés pour localisation et évaluation de trou de forage, et distribution de charge utile dans un trou

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20201203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220706

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1530635

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020001943

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020001943

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230324

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230324

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240105

Year of fee payment: 5

Ref country code: GB

Payment date: 20240321

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240328

Year of fee payment: 5