EP3881362A1 - Procede de remplissage selectif, par un liquide de remplissage, d'un groupe de cavites parmi une pluralite de cavites - Google Patents

Procede de remplissage selectif, par un liquide de remplissage, d'un groupe de cavites parmi une pluralite de cavites

Info

Publication number
EP3881362A1
EP3881362A1 EP19835709.7A EP19835709A EP3881362A1 EP 3881362 A1 EP3881362 A1 EP 3881362A1 EP 19835709 A EP19835709 A EP 19835709A EP 3881362 A1 EP3881362 A1 EP 3881362A1
Authority
EP
European Patent Office
Prior art keywords
cavities
filling
liquid
cavity
filling liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19835709.7A
Other languages
German (de)
English (en)
Inventor
Emmanuel OLLIER
Fabrice Emieux
Frédéric Roux
Ulrich SOUPREMANIEN
Sylvia SCARINGELLA
Tiphaine Dupont
Clémence TALLET
Abdelhay ABOULAICH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aledia
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Aledia
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Aledia, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3881362A1 publication Critical patent/EP3881362A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0041Devices characterised by their operation characterised by field-effect operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a method for selective filling of cavities.
  • the present invention relates to a method of selective filling, with a filling material, of cavities housing, at their bottom, light-emitting diodes.
  • the filling method according to the present invention is advantageously implemented for the manufacture of color pixels of displays or projection devices.
  • the filling process is advantageously implemented for the manufacture of electronic, optoelectronic, electromechanical (MEMS) or opto-electromechanical (MOEMS) devices.
  • MEMS electronic, optoelectronic, electromechanical
  • MOEMS opto-electromechanical
  • the methods of manufacturing microelectronic, optoelectronic, electromechanical or even optoelectromechanical devices can implement filling of cavities with a filling liquid.
  • Such a filling can be, according to a first technique known to those skilled in the art, a collective filling of a plurality of cavities.
  • collective filling can include spreading the filling liquid on one side, called the front side, at which the cavities open out, in particular using a spinner.
  • this technique does not make it possible to distinguish the cavities from one another, and for example to selectively fill the cavities with different filling liquids.
  • a display device may include light-emitting diodes (“LED” or “Light Emiting Diode” according to Anglo-Saxon terminology), and in particular LEDs arranged to produce several colors.
  • LED light-emitting diodes
  • LEDs arranged to produce several colors.
  • the LEDs can in particular be LEDs with nanowires such as those described in the document [1] cited at the end of the description, and represented in FIG. 1.
  • the LEDs are formed at the bottom of cavities C emerging at a face, called the front face, of a support substrate.
  • the bottom of each cavity is surmounted by a wall P, called the side wall, and delimits with the latter a volume of cavity V.
  • the cavity volume is then filled with a material, called encapsulation material M, charged with phosphors configured to convert the electromagnetic radiation capable of being emitted by an LED into electromagnetic radiation of another wavelength.
  • encapsulation material M a material, called encapsulation material M, charged with phosphors configured to convert the electromagnetic radiation capable of being emitted by an LED into electromagnetic radiation of another wavelength.
  • the cavities provided with their LEDs are arranged in groups of cavities to form pixels.
  • the capacity of a given pixel to display different colors is then obtained by filling each of the cavities of said pixel with an encapsulation material. loaded with phosphors having different light conversion properties from one cavity to another.
  • document [2] proposes to adapt the geometry of the cavities, and in particular implements cavities of different sizes.
  • a liquid phase material such as a molten phase change material (MCP) spread over the surface on which the cavities open, will preferably fill the smallest cavities and in particular the first cavities.
  • MCP molten phase change material
  • An object of the present invention is therefore to propose a process for selective filling of cavities, with a filling liquid, which does not penalize the production rates.
  • Another object of the present invention is also to propose a method for selective filling of cavities, with a filling liquid, which is independent of the size and / or of the geometric shape of the cavities.
  • Another object of the present invention is also to provide a method of selective filling, with a filling liquid, of small cavities, and in particular of cavities having a larger opening less than 20 micrometers.
  • Another object of the present invention is also to propose a method for selective filling, with a filling liquid, of cavities which is simpler to implement than the methods known from the prior art.
  • the aims of the present invention are, at least in part, achieved by a selective filling process, with a filling liquid, of a cavity, called first cavity, of at least one group of cavities each opening at the level of a face, called the front face, of a substrate, each of the cavities comprising an internal surface, the method comprising the following steps:
  • a processing step intended to modify the surface energy of the internal surface of the first cavity, called the first surface, or the surface energy of the internal surfaces, called the second surfaces, of the cavities other than the first cavity, known as second cavities, so that the first surface has a first surface energy and the second surfaces a second surface energy different from the first energy;
  • step b) thus leading to selective filling, by the filling liquid , of the first cavity with regard to the second cavities.
  • the surface energy of a given surface conditions the capacity of a liquid to wet said surface.
  • the ability of a liquid to wet the surface can in particular be obtained by measuring a contact angle when a drop of said liquid rests on the surface considered (a method of measuring a contact angle is described in the document [4] cited at the end of the description).
  • the larger the contact angle the more the surface on which the liquid rests has a repulsive effect on said liquid.
  • the smaller the contact angle the more the surface on which the liquid rests has an attractive effect on said liquid.
  • the filling liquid is an aqueous phase
  • a surface exerting an attractive effect on said liquid is called a hydrophilic surface, while otherwise, it is said to be a hydrophobic surface.
  • the filling method according to the present invention makes it possible to selectively fill a first cavity from a group of cavities regardless of shape and / or size.
  • the cavities can be identical.
  • the method according to the present invention can advantageously be implemented to selectively and collectively fill each of the first cavities with a plurality of groups of cavities arranged on the same substrate.
  • the production rates are not penalized, and therefore remain compatible with the requirements of the industry.
  • the method according to the present invention is not sensitive to the size of the particles, so that it can be envisaged to fill cavities of very small size, and in particular cavities of size less than a few tens of micrometers. , advantageously less than 10 micrometers, even more advantageously less than 5 micrometers, for example equal to 1 micrometer.
  • size of a cavity means the largest dimension of its opening.
  • the processing step a) comprises a plasma treatment or a treatment with ultraviolet radiation selectively executed on the first surface or on the second surfaces.
  • step a) is executed selectively on the first surface or on the second surfaces by means of masking, respectively, of the second surfaces or of the first surface.
  • step a) is preceded by a step al) of forming a layer, called passivation layer, covering the first surface and the second surfaces, the passivation layer being made of a material, called active material, configured to modify its surface energy on the effect of the treatment in step a).
  • the passivation layer comprises at least one of the materials chosen from: a siloxane compound, a fluorosilane, a fluoropolymer, octadecyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, Octadecyltrimethoxysilane), octyltrimethoxysiloxylethane, octyltane (3,3,3-trifluoropropyl) silane, Trichloro (octadecyl) silane, Trichloro (3,3,3-trifluoropropyl) silane, 1H, 1H, 2H, 2H-Perfluorodecyltrimethoxysilane.
  • the passivation layer is formed according to a chemical vapor deposition method, and in particular activated by plasma.
  • the step of spreading the filling liquid implements a doctor blade or a slit die.
  • the filling liquid is a mixture which comprises a solvent, a filling matrix and a filler, called an active filler.
  • step b) comprises several, advantageously two, sequences for spreading the filling liquid, and the execution of a sequence of evaporation of the solvent at the end of each sequence of sprawl.
  • the sequence of evaporation of the filling liquid comprises a heat treatment step intended to evaporate the solvent.
  • the filling matrix is also adapted to solidify during the heat treatment step, and thus trap the active charge in its volume.
  • the solvent comprises a solution of propylene glycol mono methyl ether acetate.
  • the filling matrix comprises a transparent material of the acrylate type, advantageously poly (methyl methacrylate (PMMA), or a silicone or a polymer.
  • PMMA methyl methacrylate
  • the active charge comprises a conversion material, in particular an optical conversion material.
  • the optical conversion material comprises quantum dots (Q.D), nanoplates or phosphors.
  • the bottom of each of the cavities is functionalized.
  • the functionalization of the bottom of each of the cavities comprises the implementation of a light-emitting diode, advantageously the light-emitting diode taking the form of at least one nanowire.
  • the invention also relates to a manufacturing method intended to fill each of the cavities of a group of cavities with a different filling liquid, the manufacturing method comprising successively filling each of the cavities according to the filling method according to the present invention.
  • the group of cavities forms a pixel of a display device, in particular, each of the cavities of the pixel is intended to emit a different color.
  • Figure 1 is a schematic representation of a display device provided with LEDs in the form of nanowires formed at the bottom of cavities, and filled with a filling liquid;
  • Figures 2a, 2b, 2c, 2d are schematic representations of the different steps that can be implemented in the context of the present invention, in particular, Figure 2a shows a step of forming cavities, Figure 2b shows a step a1), FIG. 2c represents a processing step a), and FIG. 2d represents a step b);
  • FIGS. 3A and 3B are graphic representations of the evolution of the contact angle (vertical axis, in “°") of a liquid (in particular water) on a surface as a function of a time d exposure (horizontal axis, in “seconds”), respectively, to a helium plasma and ultraviolet radiation, the surface exposed to the energy flow comprises in particular a material of the siloxane type formed by plasma-assisted vapor deposition, and using octamethylcyclotetrasiloxane (OMCTSO) as a precursor;
  • OMCTSO octamethylcyclotetrasiloxane
  • FIG. 3C is a graphic representation of the evolution of the contact angle (vertical axis, in "°") of a liquid, in particular water, on a surface, as a function of a number of pulses emitted by an excimer laser (horizontal axis, “number of pulses”), the surface comprises in particular siloxane formed by plasma-assisted vapor deposition of OMCTSO;
  • FIG. 3D is an image obtained by optical microscopy of a surface comprising a plurality of cavities having a circular opening of 10 ⁇ m in diameter, and separated from each other by 15 ⁇ m (center to center distance), the surface in particular comprises a passivation layer made of a material of the siloxane SiOC type and with a thickness equal to 110 nm, the passivation layer is formed by plasma assisted vapor deposition (PECVD) of OMCTSO;
  • PECVD plasma assisted vapor deposition
  • FIG. 3E is an image of a surface at the end of the execution of step a) on an area A of said surface, in particular the surface, initially covered with a stack of a passivation layer in overlap a sublayer, has been exposed to laser radiation intended to spray, in its entirety, the passivation layer at the level of zone A;
  • FIGS. 4a and 4b are images obtained by scanning electron microscopy of cavities along a section plane of said cavities perpendicular to the bottom, and obtained after execution of steps a) and b) of the filling method according to the present invention, step b) being carried out only once, FIGS. 4a and 4b represent, in particular, the second cavities and first cavities, respectively;
  • FIGS. 5a and 5b are images obtained by scanning electron microscopy of cavities according to a section plane of said cavities perpendicular to the bottom, and obtained after execution of steps a) and b) of the filling process according to the present invention, step b) being carried out twice, FIGS. 5a and 5b represent, in particular, the second cavities and first cavities, respectively;
  • FIGS. 6a and 6b are images obtained by scanning electron microscopy of cavities according to a cutting plane of said cavities perpendicular to the bottom, and obtained after execution of steps a) and b) of the filling process according to the present invention, step b) being carried out only once, FIGS. 6a and 6b represent, in particular, the second cavities and first cavities, respectively;
  • FIGS. 7a and 7b are images obtained by scanning electron microscopy of cavities according to a section plane of said cavities perpendicular to the bottom, and obtained after execution of steps a) and b) of the filling process according to the present invention, step b) being carried out only once, FIGS. 7a and 7b show, in particular, the second cavities and first cavities, respectively;
  • FIG. 8 is a schematic representation of the effect of an energy flux, and in particular of UV radiation, on a silane compound provided with a hydrophobic carbon chain;
  • FIGS. 9a to 9d are schematic representations of a manufacturing process implementing the successive filling of a plurality of cavities from a group of cavities.
  • the method according to the present invention relates to a method of selective filling, with a filling liquid, of a first cavity chosen from at least one group of cavities. More particularly, the method according to the present invention implements a mechanism for differentiating the surface energy of the cavities which makes it possible to favor the filling, with the filling liquid, of the first cavity with regard to the other cavities.
  • the surface energy of the surface of the first cavity is adapted so that the surface of the first cavity and the surfaces of the other cavities exert on the filling liquid, respectively, an attractive effect and a repellent effect, thus resulting to selective filling, by the filling liquid, of the first cavity with regard to the other cavities.
  • the method according to the present invention can in particular be implemented for successively filling all the cavities of the group of cavities.
  • FIGS. 2a to 2d illustrate a method of filling, with a filling liquid 15, a cavity, called the first cavity 11, from a group of cavities 10.
  • Each of the cavities of the group of cavities 10 opens at a face, called the front face 21, of a support substrate 20.
  • the cavities comprise, in this respect, an internal surface 12.
  • the internal surface 12 may include a bottom surmounted by a wall.
  • the bottom can be concave, convex, flat.
  • the cavities can also take other forms, and for example be conical, pyramidal, U-shaped.
  • the formation of the cavities may involve a step of etching the support substrate 20 from its front face 21, and in particular the etching of a silicon substrate.
  • cavities can be carried out electrochemically. It is also possible to transfer a metal grid or to engrave a grid in a (metallic) material deposited on a silicon support.
  • the walls of the cavities may be orthogonal to the front face 21 of the support substrate 20.
  • a coating may be covering the internal surface 12, for example the coating may comprise at least one of the materials chosen from: a metal, an oxide, a nitride.
  • the internal surface 12 of each of the cavities can be functionalized.
  • the internal surface may include one or more electronic, microelectronic devices.
  • the cavities include a bottom
  • one or more electroluminescent structures can be arranged on the latter.
  • light-emitting structure is generally meant a structure which, as soon as it is crossed by a current, emits light radiation.
  • the light-emitting structures can comprise 2D, namely planar, light-emitting diodes, and thus comprise a stack of semiconductor films.
  • the light-emitting structures can be 3D light-emitting diodes, each comprising a plurality of nanowires, or microfilms or light-emitting pyramids perpendicular to the bottom of the cavity on which they rest.
  • Each light-emitting diode may comprise a stack of a first layer of semiconductor material X, and of a second layer of semiconductor material W of opposite conductivities between which an active layer Y is interposed.
  • the dopings of the first layer of semiconductor material X and the second layer of semiconductor material W are, respectively, of type N and of type P.
  • the active layer Y can comprise means of confinement.
  • the active layer Y can comprise a single quantum well made of a semiconductor material whose forbidden energy band (“energy gap” according to Anglo-Saxon terminology) is less than the band of prohibited energy of either of the semiconductor materials forming, respectively, the first layer X and the second layer W.
  • the active layer Y can comprise a stack of a plurality of quantum wells, and in particular an alternation of quantum wells and barrier layers.
  • the first layer X and the second layer W can comprise GaN, while the active layer Y can comprise InGaN.
  • nanowires or microfils can, in this respect, involve stacks formed, of a GaN-n zone, of an active zone, of a GaN-p zone or of InGaN-p.
  • the filling process then comprises a step a) of modifying the surface energy of the internal surface 12 of the first cavity 11, called the first surface 12i, or the surface energy of the internal surfaces, called second surfaces 122, cavities other than the first cavity 11, called second cavities.
  • the first surface 12i has a first energy
  • the second surfaces 122 have a second energy different from the first energy
  • step a) is intended to modify the surface energy of the first surface.
  • step a) selectively modifies the surface energy of the internal surface 12 of the first cavity 11, and leaves the surface energy of the internal surfaces of the second cavities unchanged.
  • Step a) can in particular implement exposure to an energy flow.
  • Exposure to the flow of energy may include exposure to a plasma, and more particularly to an ozone plasma.
  • the exposure to the flow of energy can include an exposure to an ultraviolet radiation
  • the ultraviolet radiation can in particular include a light emission of wavelength equal to 248 nanometers or 193 nanometers.
  • the exposure to the energy flow can include an exposure to Ultraviolet (UV) laser radiation, in particular emitted by an excimer pulsed laser source.
  • UV radiation can be between 150 nm and 350 nm, for example equal to 248 nm.
  • the laser pulses can have a frequency between 1 Hz and 1000 Hz, for example between 20 Hz and 300 Hz, and a half-height width between 1 ps and 100 ns, for example equal to 25 ns.
  • the fluence of the laser pulses can be between 1 mJ / cm 2 and 1000 mJ / cm 2 , for example between 230 mJ / cm 2 and 330 mJ / cm 2 .
  • Exposure to Ultraviolet laser radiation can also be achieved by maintaining an atmosphere with a strong oxidizing character near the surface to be treated.
  • the atmosphere with a strong oxidizing character can in particular be rich in oxygen (for example the oxygen concentration can be greater than 20%), or include ozone (the ozone concentration can in particular be between 0.1 ppm and 100 ppm, preferably between 1 ppm and 10 ppm).
  • step a The use of an atmosphere with a strong oxidizing character improves the efficiency of step a).
  • step a) can comprise ablation, in particular rapid, of a stack of layers formed on the internal surface of the cavities.
  • the stack of layers may comprise a passivation layer 14 (described in the following description), in particular a hydrophobic passivation layer, resting on another layer, called underlayer 14i made of a material suitable for give said sublayer 14i a hydrophilic character (in other words having an attractive character with respect to water).
  • This material forming the sublayer 14i is also chosen to have a coefficient of thermal expansion (CTE) very different from the passivation layer 14.
  • CTE coefficient of thermal expansion
  • the sublayer 14i may in particular comprise a silicon nitride, or an oxide of this family (Si x N y , Si x O z N y ).
  • the contact angle of water measured on an SiN surface is 40 ° while it is greater than 100 ° on a SiOC siloxane surface.
  • the CTE of SiN is 3.3 10 6 K 1 while it is 3.1 10 4 K 1 for SiOC.
  • the formation of a layer of silicon nitride is known to a person skilled in the art and can in particular be implemented by PECVD.
  • the thickness of the sublayer 14i can be between 10 nm and 5 ⁇ m, preferably equal to 500 nm.
  • Step a) is then implemented with the laser radiation source previously described.
  • the laser radiation is emitted so as to selectively spray the passivation layer of the first surface 12i, and thus uncover the sublayer 14i. It is therefore understood that the stack resting on the second surface 122 is not affected by the laser.
  • Complete removal of the passivation layer at the first surface 12i can be achieved with a single pulse from the laser.
  • the fluence of the laser can, in this regard, be between 100 mJ / cm 2 and 400 mJ / cm 2 , and preferably close to 320 mJ / cm 2 .
  • step a The inventors have also found that the surface energy of the sublayer 14i, once discovered, is not affected during the execution of step a).
  • step a This mode of implementation of step a), because of its ease and speed of implementation, is extremely advantageous.
  • step a) on a layer stack is illustrated in FIG. 3E.
  • the method of selective spraying of the passivation layer 14 makes it possible to spray only certain areas of the stack.
  • zone A has been subjected to laser radiation so as to expose the hydrophilic sublayer 14i
  • zone B protected, comprises the stack formed by the sublayer 14i and the hydrophobic passivation layer 14.
  • the exposure of the first surface 12i to the flow of energy can be carried out by means of a mask, and in particular a mask having an opening facing the first surface. In other words, the mask obstructs the second cavities.
  • the first surface energy is adjusted so that the first surface 12i exerts on the filling liquid 15 an attractive effect.
  • the first surface energy is adjusted so that the contact angle of the filling liquid 15 is small.
  • low wetting angle is meant a contact angle less than 40 °, advantageously less than 30 °, even more advantageously less than 25 °.
  • the second energy is adjusted so that the second surfaces exert a repelling effect on the filling liquid 15.
  • the second surface energy is adjusted so that the contact angle of the filling liquid 15 is large.
  • high contact angle is meant a contact angle greater than 40 °, advantageously greater than 70 °, even more advantageously greater than 90 °.
  • the filling selectivity will be obtained by a difference in surface energy between the so-called low and high surface energy areas which will be characterized by a difference in contact angle of the filling liquid on these two surfaces. at least equal to 30 °, advantageously greater than 50 °.
  • FIGS. 3A and 3B are graphical representations of the evolution of the contact angle (vertical axis) of a liquid, in particular water, on a surface as a function of a time d exposure, respectively, to helium plasma and infrared radiation.
  • the surface exposed to the flow of energy notably comprises a material of the siloxane type, for example formed by plasma-assisted vapor deposition with octamethylcyclotetrasiloxane (OMCTSO) as a precursor.
  • OMCTSO octamethylcyclotetrasiloxane
  • FIG. 3C is another example of the evolution of the contact angle (vertical axis, in "°") of a liquid, in particular water, on a surface, as a function of a number of pulses emitted by an excimer laser (horizontal axis, "number of pulses").
  • the surface comprises in particular siloxane formed by plasma assisted vapor deposition of OMCTSO.
  • Figure 3D is an image obtained by optical microscopy of a surface comprising a plurality of cavities having a circular opening of 10 ⁇ m in diameter, and separated from each other by 15 ⁇ m (center to center distance).
  • the surface notably comprises a passivation layer 14 made of a material of the siloxane SiOC type and of a thickness equal to 110 nm.
  • Layer 14 is formed by plasma assisted vapor deposition (PECVD) of OMCTSO.
  • a treatment which comprises exposure to a flow of energy implemented selectively at the first surface, makes it possible to confer on said first surface a surface energy different from that of the seconds surfaces.
  • FIG. 8 is a schematic representation of the mechanism of modifying the surface energy under the effect of ultraviolet radiation (symbolized by the arrows).
  • the surface of the substrate S intended to be exposed to UV radiation is previously coated with a layer of material of the siloxane type (O).
  • a mask is positioned facing the surface so as to selectively expose a region 1 to UV radiation to UV radiation and mask a region 2.
  • the effect of UV radiation is to reduce the size of the carbon chain of the layer of material of the siloxane type, and to make the latter hydrophilic. Region 2 not exposed to UV radiation retains its hydrophobic character.
  • Step a) according to the present invention can be preceded by a step a1) of forming a layer, called passivation layer 14, overlying the first surface and the second surfaces.
  • the passivation layer 14 is in particular made of a material, called active material, configured to modify its surface energy on the effect of the treatment of step a).
  • the passivation layer 14 can be formed by a plasma assisted chemical phase deposition technique (“PECVD” or “Plasma Enhanced Chemical Vapor Deposition” according to Anglo-Saxon terminology).
  • PECVD plasma assisted chemical phase deposition technique
  • Pasma Enhanced Chemical Vapor Deposition according to Anglo-Saxon terminology.
  • the thickness of the passivation layer 14 can be between 1 nm and 1 micrometer, preferably 50 nm to 300 nm.
  • the active material may comprise at least materials chosen from: a siloxane compound, a fluorosilane, a fluoropolymer, octadecyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, Octadecyltrimethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, Dodecilane, Dodecylane Trichloro (octadecyl) silane, Trichloro (3,3,3-trifluoropropyl) silane, 1H, 1H, 2H, 2H-Perfluorodecyltrimethoxysilane.
  • step b) of spreading the filling liquid 15 may involve the use of a doctor blade or a slot die ("slot die" according to Anglo-Saxon terminology).
  • the filling liquid 15 can be a mixture which comprises a solvent, a filling matrix and a filler, called an active filler.
  • the solvent can comprise a solution of propylene glycol mono methyl ether acetate.
  • the filling matrix can comprise a transparent material of acrylate type such as for example poly (methyl methacrylate (PMMA), a silicone or a polymer.
  • the active charge can comprise a conversion material, in particular an optical conversion material.
  • optical conversion material is meant a material capable of converting radiation of a given wavelength, into radiation of a different wavelength.
  • Such an optical conversion material may in particular comprise luminophores, or also quantum dots (“quantum dots” according to Anglo-Saxon terminology).
  • step b) comprises several, advantageously two, sequences for spreading the filling liquid 15, and the execution of a sequence for evaporating the solvent at the end of each spreading sequence.
  • the cavities of FIGS. 4a and 4b have undergone a differentiated surface treatment.
  • a step b) of spreading a filling liquid made of a PGMEA / PMMA solution (poly methyl methacrylate) loaded with quantum dots was then carried out.
  • the exposure of the passivation layer 14 to a helium plasma makes it possible to modify the contact angle of a drop of the filling liquid 15 on said layer.
  • the exposure of the passivation layer 14 to a helium plasma modifies the capacity of said layer to be wetted by the filling liquid.
  • step b) so as to completely fill the cavities of FIG. 4b.
  • Figures 5a and 5b show cavities having undergone a protocol similar to that of the cavities, respectively, of Figures 4a and 4b, step b) of spreading the filling liquid 15 having however been carried out twice.
  • the cavities of FIG. 5a which have not been exposed to plasma treatment, always exert a repulsive effect against the filling liquid 15, while a complete filling of the cavities of FIG. 5b can be observed .
  • a solvent evaporation sequence (in this case the PGMEA) can be executed at the end of each spreading sequence.
  • the sequence of evaporation of the filling liquid 15 may include a heat treatment step intended to evaporate the solvent.
  • the filling matrix can be adapted to solidify at the end of the filling process according to the present invention, and in particular during the heat treatment step, and thus trap the active charge in its volume.
  • the dilution of the filling liquid 15 in the solvent can be adapted so that the filling of the first cavity 11 is complete, or essentially complete, at the end of the execution of a single step b) d 'sprawl.
  • Figures 6a and 6b illustrate the filling, respectively, of second cavities and first cavities.
  • the cavities of FIGS. 6a and 6b have undergone a differentiated surface treatment.
  • the internal surfaces of the first cavities were exposed to UV radiation from a mercury lamp, while the second cavities were not subjected to any treatment.
  • the filling liquid 15 spread during a single step b) comprises a PGMEA / PMMA (Poly methyl methacrylate) solution loaded with quantum dots diluted to 60% allows complete filling of the first cavities leaving the second cavities empty .
  • PGMEA / PMMA Poly methyl methacrylate
  • the inventors have also demonstrated that it is possible to fill with filling liquid 15 selectively cavities of very small size, and in particular having an opening of 1 ⁇ m.
  • Figures 7a and 7b each show two cavities of 10 micrometers and 1 micrometer respectively on which the selective filling process according to the present invention is implemented.
  • each coated with a passivation layer 14 have undergone a differentiated surface treatment.
  • the internal surfaces of the cavities in FIG. 7b were exposed to UV radiation from a mercury lamp, while the cavities in FIG. 7a were not subjected to any treatment.
  • Step b) spreading a filling liquid made of a PGMEA / PMMA (Poly methyl methacrylate) solution loaded with quantum dots allows the cavities of FIG. 7b to be filled, at least partially, while said liquid does not does not seem to enter the cavities of figure 7a.
  • the images of FIGS. 7a and 7b thus demonstrate that the method according to the present invention makes it possible to selectively fill cavities of very small size, and in particular of a size between 1 micrometer and 10 micrometers.
  • the method according to the present invention can be carried out for successively filling several cavities, in particular all the cavities, of a group of cavities 10, with a different filling liquid 15.
  • FIGS. 9a to 9d illustrate the implementation of the filling process for successively filling 3 cavities 111a, 111b, 111c from a group of 4 cavities 111a, 111b, 111c and IIId formed on a support 20.
  • FIG. 9a illustrates the selective filling, with a first filling liquid, of the cavity 111a among the cavities 111a, 111b, 111c, and IIId.
  • FIG. 9b illustrates the selective filling, with a second filling liquid different from the first filling liquid 15, of the cavity 111b among the cavities 111b, 111c, and IIId.
  • FIG. 9c illustrates the selective filling, by a third filling liquid different from the second filling liquid 15, of the cavity 111c among the cavities 111c, and IIId.
  • the cavity IIId can be left empty or also filled with a filling liquid.
  • the successive filling of cavities of a group of cavities 10 can advantageously be implemented for the manufacture of a color display device.
  • a group of cavities 10 as described above forms a color pixel, each of the cavities being provided with at least one light-emitting diode disposed on their bottom.
  • the light-emitting diode may in particular comprise one or more nanowires, microfils or pyramids.
  • the invention can implement a plurality of pixels, in particular identical pixels, arranged on the front surface 21 of the support substrate 20.
  • the pixels can advantageously be arranged in a matrix form.
  • matrix form By “matrix form”, one understands a mesh with N lines and M columns. Each pixel comprises a cavity 111a intended to emit blue radiation, a cavity 111b intended to emit red radiation and a cavity 111c intended to emit green radiation.
  • the cavity IIId can also be filled according to the filling process.
  • the cavity IIId can be intended to emit yellow or white radiation, or alternatively, blue or green or red.
  • the filling process can be implemented to fill initially (FIG. 9a), and selectively, all of the cavities 111a with a filling liquid 15, called the first liquid.
  • the first liquid may comprise an active charge (optically active) intended to emit radiation of a given wavelength, called the first wavelength.
  • the filling process can then (FIG. 9b) be implemented to fill, and selectively, all of the cavities 111b with a filling liquid 15, called the second liquid.
  • the second liquid may comprise an active charge (optically active) intended to emit radiation of a given wavelength, called the second wavelength different from the first wavelength.
  • the filling process can be implemented a third time (FIG. 9c), to fill, and selectively, all of the cavities 111c with a filling liquid 15, called the third liquid.
  • the third liquid may comprise an active charge (optically active) intended to emit radiation of a given wavelength, called the third wavelength different from the first wavelength and from the second wavelength.
  • the presence of an active charge is not strictly required, in particular when the cavity comprises one or more light-emitting diodes made of GaN and intended to emit blue radiation.
  • the first wavelength, the second wavelength, and the third wavelength may, for example, correspond, respectively, to blue radiation, red radiation, and green radiation.
  • the method according to the present invention then makes it possible to selectively fill cavities without penalizing the production rates.
  • the first cavities of a plurality of groups of cavities can be filled collectively and selectively at the second cavities of said groups of cavities.
  • the shape and size of the cavities do not constitute a limitation on the implementation of the method according to the present invention.
  • the cavities can have identical characteristics without, however, altering the selectivity of the method according to the present invention.
  • the method according to the present invention also allows the filling of small cavities, and in particular of the order of 1 micrometer.

Abstract

S 66194 GR-G–EXT PCT 29 ABRÉGÉ L'invention concerne un procédéde remplissage sélectif, par un liquide de remplissage (15), d'unepremière cavité (11), parmi descavités (10)débouchant chacune au niveau d'une faceavant (21), d'un substrat, chacune des cavités, le procédé comprenant les étapes: a) une étape de traitement destinée à modifier l'énergie de surface de la première surface interne(12 )de la première cavité (11) ou l'énergie de surface des secondes surfaces internes (12 2 ), desautrescavités, de sorte que la première surface (12 ) présente une première énergie de surface et les secondes surfaces une seconde énergie de surface;10 b) une étape comprenantune séquence d'étalement du liquide de remplissage (15); la première et la seconde énergie étant ajustées de sorte que la première et les secondes surfaces exercent sur leditliquide (15), respectivement, un effet attractif et un effet répulsif.1 Figure pour l'abrégé: figure 2d.

Description

Description
Titre : PROCEDE DE REMPLISSAGE SELECTIF, PAR UN LIQUIDE DE REMPLISSAGE, D'UN
GROUPE DE CAVITES PARMI UNE PLURALITE DE CAVITES
DOMAINE TECHNIQUE
La présente invention concerne un procédé de remplissage sélectif de cavités. En particulier, la présente invention concerne un procédé de remplissage sélectif, par un matériau de remplissage, de cavités logeant, au niveau de leur fond, des diodes électroluminescentes.
Le procédé de remplissage selon la présente invention est avantageusement mis en œuvre pour la fabrication de pixels couleur d'afficheurs ou de dispositifs de projection.
Le procédé de remplissage est avantageusement mis en œuvre pour la fabrication de dispositifs électroniques, optoélectroniques, électromécaniques (MEMS) ou opto-electromécaniques (MOEMS).
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Les procédés de fabrication de dispositifs microélectroniques, optoélectroniques, électromécaniques ou encore optoélectromécaniques peuvent mettre en œuvre le remplissage de cavités par un liquide de remplissage.
Un tel remplissage peut être, selon une première technique connue de l'homme du métier, un remplissage collectif d'une pluralité de cavités.
En particulier, le remplissage collectif peut comprendre l'étalement du liquide de remplissage sur une face, dite face avant, au niveau de laquelle débouchent les cavités, notamment à l'aide d'une tournette.
Toutefois, cette technique n'est pas satisfaisante.
En effet, cette technique ne permet pas de distinguer les cavités les unes des autres, et par exemple de remplir de manière sélective les cavités avec des liquides de remplissage différents. Afin de pallier ce problème, il a pu être proposé une méthode de remplissage individuel des cavités, par exemple avec des moyens d'impression, ou encore des moyens de distribution goutte-à-goutte.
Toutefois cette technique n'est pas non plus satisfaisante.
En effet, cette dernière limite de manière sévère les cadences de production.
Par ailleurs, cette technique perd en efficacité dès qu'il s'agit de remplir de manière individuelle des cavités de très petites dimensions.
Enfin, cette technique présente un coût qui n'est pas toujours compatible avec les requis actuels de l'industrie.
Toutefois, le remplissage sélectif de cavités présente un intérêt certain, et notamment pour la fabrication de dispositifs d'affichage (ou écrans) ou de projection.
À titre d'exemple, un dispositif d'affichage peut comprendre des diodes électroluminescentes (« LED » ou « Light Emiting Diode » selon la terminologie Anglo- Saxonne), et notamment des LED agencées pour réaliser plusieurs couleurs.
Les LED peuvent notamment être des LED à nanofils telles que celles décrites dans le document [1] cité à la fin de la description, et représentées à la figure 1.
Dans ce dispositif d'affichage, les LED sont formées au fond de cavités C débouchant au niveau d'une face, dite face avant, d'un substrat support. Le fond de chaque cavité est surmonté d'une paroi P, dite paroi latérale, et délimite avec cette dernière un volume de cavité V.
Le volume de cavité est alors rempli d'un matériau, dit matériau d'encapsulation M, chargé de luminophores configurés pour convertir le rayonnement électromagnétique susceptible d'être émis par une LED en un rayonnement électromagnétique d'une autre longueur d'onde.
Dès lors qu'il s'agit d'un dispositif d'affichage couleur, les cavités pourvues de leurs LEDs sont agencées par groupes de cavités pour former des pixels.
La capacité d'un pixel donné à afficher différentes couleurs est alors obtenue en remplissant chacune des cavités dudit pixel, par un matériau d'encapsulation chargé en luminophores présentant des propriétés de conversion lumineuses différentes d'une cavité à l'autre.
Il est ainsi proposé dans ce document [1] de remplir sélectivement les cavités d'un pixel donné avec un matériau d'encapsulation, par exemple une matrice de silicone chargée en luminophores, par jet d'encre.
Tel que précisé précédemment, la technique de remplissage décrite dans le document [1] n'est pas satisfaisante.
Le document [2] cité à la fin de la description propose un procédé de remplissage sélectif de cavités alternatif.
En particulier, le document [2], en référence à sa figure la, propose d'adapter la géométrie des cavités, et met notamment en œuvre des cavités de tailles différentes.
Plus précisément, il est considéré dans le document [2] un premier type de cavité, de petite taille et de forme cylindrique, et un second type de cavité formant un réseau de canaux interconnectés de plus grande taille.
Ainsi, un matériau en phase liquide, tel qu'un matériau à changement de phase (MCP) fondu, étalé au niveau de la surface sur laquelle débouchent les cavités, remplira de manière préférentielle les plus petites cavités et notamment les premières cavités.
Cette technique de remplissage sélectif n'est toutefois pas satisfaisante.
En effet, cette dernière impose des géométries de cavité particulières, et ne peut pas être mise en œuvre dès lors que toutes les cavités présentent des caractéristiques géométriques identiques.
Un but de la présente invention est alors de proposer un procédé de remplissage sélectif de cavités, par un liquide de remplissage, qui ne pénalise pas les cadences de production.
Un autre but de la présente invention est également de proposer un procédé de remplissage sélectif de cavités, par un liquide de remplissage, qui soit indépendant de la taille et/ou de la forme géométrique des cavités. Un autre but de la présente invention est également de proposer un procédé de remplissage sélectif, par un liquide de remplissage, de cavités de petite taille, et notamment de cavités présentant une ouverture de plus grande dimension inférieure à 20 micromètres.
Un autre but de la présente invention est également de proposer un procédé de remplissage sélectif, par un liquide de remplissage, de cavités qui soit plus simple à mettre en œuvre que les procédés connus de l'état de la technique.
EXPOSÉ DE L'INVENTION
Les buts de la présente invention sont, au moins en partie, atteints par un procédé de remplissage sélectif, par un liquide de remplissage, d'une cavité, dite première cavité, d'au moins un groupe de cavités débouchant chacune au niveau d'une face, dite face avant, d'un substrat, chacune des cavités comprenant une surface interne, le procédé comprenant les étapes suivantes :
a) une étape de traitement destinée à modifier l'énergie de surface de la surface interne de la première cavité, dite première surface, ou l'énergie de surface des surfaces internes, dites secondes surfaces, des cavités autres que la première cavité, dites secondes cavités, de sorte que la première surface présente une première énergie de surface et les secondes surfaces une seconde énergie de surface différente de la première énergie ;
b) une étape qui comprend au moins une séquence d'étalement du liquide de remplissage sur la face avant ;
la première et la seconde énergie étant ajustées de sorte que la première et les secondes surfaces exercent sur le liquide de remplissage, respectivement, un effet attractif et un effet répulsif, l'étape b) aboutissant ainsi au remplissage sélectif, par le liquide de remplissage, de la première cavité au regard des secondes cavités.
L'énergie de surface d'une surface donnée, selon la présente invention, conditionne la capacité d'un liquide à mouiller ladite surface. La capacité d'un liquide à mouiller la surface peut notamment être obtenue par mesure d'un angle de contact lorsqu'une goutte dudit liquide repose sur la surface considérée (une méthode de mesure d'un angle de contact est décrite dans le document [4] cité à la fin de la description).
En particulier, plus l'angle de contact est élevé, plus la surface sur laquelle repose le liquide exerce un effet répulsif sur ledit liquide. À contrario, plus l'angle de contact est faible, plus la surface sur laquelle repose le liquide exerce un effet attractif sur ledit liquide.
Si le liquide de remplissage est une phase aqueuse, une surface exerçant un effet attractif sur ledit liquide est dite surface hydrophile, tandis que dans le cas contraire, elle est dite surface hydrophobe.
Ainsi, le procédé de remplissage selon la présente invention permet de remplir de manière sélective une première cavité parmi un groupe de cavités sans considération de forme et/ou de taille.
En d'autres termes, les cavités peuvent être identiques.
Par ailleurs, le procédé selon la présente invention peut avantageusement être mis en œuvre pour remplir de manière sélective et collective chacune des premières cavités d'une pluralité de groupes de cavités disposées sur un même substrat.
Les cadences de production ne sont alors pas pénalisées, et restent donc compatibles avec les requis de l'industrie.
En outre, le procédé selon la présente invention n'est pas sensible à la taille des particules de sorte qu'il peut être envisagé de remplir des cavités de très petite taille, et notamment des cavités d'une taille inférieure à quelques dizaines de micromètres, avantageusement inférieure à 10 micromètres, encore plus avantageusement inférieure à 5 micromètres, par exemple égale à 1 micromètre.
Par « taille d'une cavité », on entend la plus grande dimension de son ouverture.
Selon un mode de mise en œuvre, l'étape a) de traitement comprend un traitement plasma ou un traitement avec un rayonnement ultraviolet exécuté sélectivement sur la première surface ou sur les secondes surfaces. Selon un mode de mise en œuvre, l'étape a) est exécutée sélectivement sur la première surface ou sur les secondes surfaces au moyen d'un masquage, respectivement, des secondes surfaces ou de la première surface.
Selon un mode de mise en œuvre, l'étape a) est précédée d'une étape al) de formation d'une couche, dite couche de passivation, en recouvrement de la première surface et des secondes surfaces, la couche de passivation étant faite d'un matériau, dit matériau actif, configuré pour modifier son énergie de surface sur l'effet du traitement de l'étape a).
Selon un mode de mise en œuvre, la couche de passivation comprend au moins un des matériaux choisi parmi : un composé siloxane, un fluorosilane, un fluoropolymère, octadecyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, Octadecyltrimethoxysilane), octyltrimethoxysilane, octyltriethoxysilane, Dodecyl triethoxysilane, Dimethoxy-methyl(3,3,3-trifluoropropyl)silane, Trichloro(octadecyl)silane, Trichloro(3,3,3-trifluoropropyl)silane, lH,lH,2H,2H-Perfluorodecyltrimethoxysilane.
Selon un mode de mise en œuvre, la couche de passivation est formée selon une méthode de dépôt chimique en phase vapeur, et notamment activée par plasma.
Selon un mode de mise en œuvre, l'étape d'étalement du liquide de remplissage met en œuvre une racle ou une filière à fente.
Selon un mode de mise en œuvre, le liquide de remplissage est un mélange qui comprend un solvant, une matrice de remplissage et une charge, dite charge active.
Selon un mode de mise en œuvre, l'étape b) comprend plusieurs, avantageusement deux, séquences d'étalement du liquide de remplissage, et l'exécution d'une séquence d'évaporation du solvant à l'issue de chaque séquence d'étalement.
Selon un mode de mise en œuvre, la séquence d'évaporation du liquide de remplissage comprend une étape de traitement thermique destinée à évaporer le solvant.
Selon un mode de mise en œuvre, la matrice de remplissage est également adaptée pour se solidifier lors de l'étape de traitement thermique, et ainsi piéger la charge active dans son volume. Selon un mode de mise en œuvre, le solvant comprend une solution de propylène glycol mono méthyl éther acétate.
Selon un mode de mise en œuvre, la matrice de remplissage comprend un matériau transparent de type acrylate, avantageusement du poly(méthacrylate de méthyle (PMMA), ou un silicone ou un polymère .
Selon un mode de mise en œuvre, la charge active comprend un matériau de conversion, notamment un matériau de conversion optique.
Selon un mode de mise en œuvre, le matériau de conversion optique comprend des boîtes quantiques (Q.D), des nanoplaquettes ou des luminophores.
Selon un mode de mise en œuvre, le fond de chacune des cavités est fonctionnalisé.
Selon un mode de mise en œuvre, la fonctionnalisation du fond de chacune des cavités comprend la mise en œuvre d'une diode électroluminescente, avantageusement la diode électroluminescente prenant la forme d'au moins un nanofil.
L'invention concerne également un procédé de fabrication destiné à remplir chacune des cavités d'un groupe de cavités avec un liquide de remplissage différent, le procédé de fabrication comprenant le remplissage successif de chacune des cavités selon le procédé de remplissage selon la présente invention.
Selon un mode de mise en œuvre, le groupe de cavités forme un pixel d'un dispositif d'affichage, en particulier, chacune des cavités du pixel est destinée à émettre une couleur différente.
BRÈVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages apparaîtront dans la description qui va suivre du procédé de remplissage sélectif de cavités selon l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés dans lesquels :
La figure 1 est une représentation schématique d'un dispositif d'affichage pourvu de LED en forme de nanofils formées au fond de cavités, et remplies d'un liquide de remplissage ; Les figures 2a, 2b, 2c, 2d sont des représentations schématiques des différentes étapes susceptibles d'être mises en œuvre dans le cadre de la présente invention, notamment, la figure 2a représente une étape de formation de cavités, la figure 2b représente une étape al), la figure 2c représente une étape a) de traitement, et la figure 2d représente une étape b) ;
Les figures 3A et 3B sont des représentations graphiques de l'évolution de l'angle de contact (axe vertical, en « ° ») d'un liquide (en particulier de l'eau) sur une surface en fonction d'un temps d'exposition (axe horizontal, en « secondes »), respectivement, à un plasma d'hélium et un rayonnement ultraviolet, la surface exposée au flux d'énergie comprend notamment un matériau de type siloxane formé par dépôt en phase vapeur assistée par plasma, et mettant en œuvre du octaméthylcyclotétrasiloxane (OMCTSO) comme précurseur ;
La figure 3C est une représentation graphique de l'évolution de l'angle de contact (axe vertical, en « ° ») d'un liquide, notamment de l'eau, sur une surface, en fonction d'un nombre d'impulsions émises par un laser excimère (axe horizontal, « nombre d'impulsions »), la surface comprend en particulier du siloxane formé par dépôt en phase vapeur assistée par plasma d'OMCTSO ;
La figure 3D est une image obtenue par microscopie optique d'une surface comprenant une pluralité de cavités présentant une ouverture circulaire de 10 pm de diamètre, et séparées les unes des autres de 15 pm (distance centre à centre), la surface comprend notamment une couche de passivation faite d'un matériau du type siloxane SiOC et d'une épaisseur égale à 110 nm, la couche de passivation est formée par dépôt en phase vapeur assistée par plasma (PECVD) d'OMCTSO ;
La figure 3E est une image d'une surface à l'issue de l'exécution de l'étape a) sur une zone A de ladite surface, notamment la surface, initialement recouverte d'un empilement d'une couche de passivation en recouvrement d'une sous-couche, a été exposée à un rayonnement laser destiné à pulvériser, dans son entièreté, la couche de passivation au niveau de la zone A ;
Les figures 4a et 4b sont des images obtenues par microscopie à balayage électronique de cavités selon un plan de coupe desdites cavités perpendiculaire au fond, et obtenues après exécution des étapes a) et b) du procédé de remplissage selon la présente invention, l'étape b) n'étant réalisée qu'une seule fois, les figures 4a et 4b représentent, notamment, les secondes cavités et des premières cavités, respectivement ;
Les figures 5a et 5b sont des images obtenues par microscopie à balayage électronique de cavités selon un plan de coupe desdites cavités perpendiculaire au fond, et obtenues après exécution des étapes a) et b) du procédé de remplissage selon la présente invention, l'étape b) étant réalisée deux fois, les figures 5a et 5b représentent, notamment, les secondes cavités et des premières cavités, respectivement ;
Les figures 6a et 6b sont des images obtenues par microscopie à balayage électronique de cavités selon un plan de coupe desdites cavités perpendiculaire au fond, et obtenues après exécution des étapes a) et b) du procédé de remplissage selon la présente invention, l'étape b) n'étant réalisée qu'une seule fois, les figures 6a et 6b représentent, notamment, les secondes cavités et des premières cavités, respectivement ;
Les figures 7a et 7b sont des images obtenues par microscopie à balayage électronique de cavités selon un plan de coupe desdites cavités perpendiculaire au fond, et obtenues après exécution des étapes a) et b) du procédé de remplissage selon la présente invention, l'étape b) n'étant réalisée qu'une seule fois, les figures 7a et 7b représentent, notamment, les secondes cavités et des premières cavités, respectivement ;
La figure 8 est une représentation schématique de l'effet d'un flux énergétique, et notamment d'un rayonnement UV, sur un composé silane pourvu d'une chaîne carbonée hydrophobe ;
Les figures 9a à 9d sont des représentations schématiques d'un procédé de fabrication mettant en œuvre le remplissage successif d'une pluralité de cavités parmi un groupe de cavités.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Le procédé selon la présente invention concerne un procédé de remplissage sélectif, par un liquide de remplissage, d'une première cavité choisie parmi au moins un groupe de cavités. Plus particulièrement, le procédé selon la présente invention met en œuvre un mécanisme de différenciation de l'énergie de surface des cavités qui permet de favoriser le remplissage, par le liquide de remplissage, de la première cavité au regard des autres cavités.
Notamment, l'énergie de surface de la surface de la première cavité est adaptée de sorte que la surface de la première cavité et les surfaces des autres cavités exercent sur le liquide de remplissage, respectivement, un effet attractif et un effet répulsif, aboutissant ainsi au remplissage sélectif, par le liquide de remplissage, de la première cavité au regard des autres cavités.
Le procédé selon la présente invention peut notamment être mis en œuvre pour remplir successivement toutes les cavités du groupe de cavités.
Les figures 2a à 2d illustrent un procédé de remplissage, par un liquide de remplissage 15 d'une cavité, dite première cavité 11, parmi un groupe de cavités 10.
Chacune des cavités du groupe de cavités 10 débouche au niveau d'une face, dite face avant 21, d'un substrat support 20.
Les cavités comprennent, à cet égard, une surface interne 12.
La surface interne 12 peut comprendre un fond surmonté d'une paroi. Le fond peut être concave, convexe, plat.
Les cavités peuvent également prendre d'autres formes, et par exemple être de forme conique, pyramidale, en U.
La formation des cavités peut impliquer une étape de gravure du substrat support 20 à partir de sa face avant 21, et notamment la gravure d'un substrat de silicium.
D'autres techniques mettant en œuvre la croissance de matériaux peuvent toutefois être considérées, par exemple et de manière non limitative, la formation de cavités peut être exécutée par voie électrochimique. Il est également possible de reporter une grille métallique ou de graver une grille dans un matériau (métallique) déposé(e) sur un support de silicium.
Les parois des cavités peuvent être orthogonales à la face avant 21 du substrat support 20. Un revêtement peut être en recouvrement de la surface interne 12, par exemple le revêtement peut comprendre au moins un des matériaux choisi parmi : un métal, un oxyde, un nitrure.
La surface interne 12 de chacune des cavités peut être fonctionnalisé. Par exemple, la surface interne peut comprendre un ou plusieurs dispositifs électroniques, microélectroniques.
Par exemple, si les cavités comprennent un fond, une ou plusieurs structures électroluminescentes peuvent être disposées sur ce dernier.
Par « structure électroluminescente », on entend généralement une structure qui, dès lors qu'elle est traversée par un courant, émet un rayonnement lumineux.
Les structures électroluminescentes peuvent comprendre des diodes électroluminescentes 2D, à savoir planaires, et ainsi comprendre un empilement de films semi-conducteurs.
De manière alternative, les structures électroluminescentes peuvent être des diodes électroluminescentes 3D comprenant, chacune, une pluralité de nanofils, ou de microfils ou de pyramides électroluminescents perpendiculaires au fond de la cavité sur laquelle ils reposent.
Chaque diode électroluminescente peut comprendre un empilement d'une première couche de matériau semi-conducteur X, et d'une deuxième couche de matériau semi-conducteur W de conductivités opposées entre lesquelles vient s'intercaler une couche active Y. En particulier les dopages de la première couche de matériau semi- conducteur X et de la deuxième couche de matériau semi-conducteur W sont, respectivement, de type N et de type P.
La couche active Y peut comprendre des moyens de confinement.
À titre d'exemple, la couche active Y peut comprendre un puit quantique unique fait d'un matériau semi-conducteur dont la bande d'énergie interdite (« energy gap » selon la terminologie Anglo-Saxone) est inférieure à la bande d'énergie interdite de l'un et l'autre des matériaux semi-conducteurs formant, respectivement, la première couche X et la deuxième couche W. Toujours à titre d'exemple, la couche active Y peut comprendre un empilement d'une pluralité de puits quantiques, et notamment une alternance de puits quantiques et de couches barrières.
Ainsi, et de manière non-limitative, la première couche X et la deuxième couche W peuvent comprendre du GaN, tandis que la couche active Y peut comprendre de l'InGaN.
La mise en œuvre de nanofils ou microfils peut, à cet égard, impliquer des empilements formés, d'une zone de GaN-n, d'une zone active, d'une zone de GaN-p ou d'InGaN-p.
A cet égard, l'homme du métier peut consulter la demande de brevet [3] citée à la fin de la description, et plus particulièrement, de la page 19 ligne 24 à la page 20 ligne 10.
Le procédé de remplissage comprend alors une étape a) de modification de l'énergie de surface de la surface interne 12 de la première cavité 11, dite première surface 12i, ou de l'énergie de surface des surfaces internes, dites secondes surfaces 122, des cavités autres que la première cavité 11, dites secondes cavités.
Notamment, à l'issue de l'étape a), la première surface 12i présente une première énergie, tandis que les secondes surfaces 122 présentent une seconde énergie différente de la première énergie.
Dans toute la suite de l'énoncé, et par souci de simplification, il sera considéré que l'étape a) est destinée à modifier l'énergie de surface de la première surface
12i.
Toutefois, l'homme du métier, avec ses connaissances générales, et à la lecture de la présente description trouvera les informations nécessaires pour mettre en œuvre une étape a) destinée à modifier l'énergie de surface des secondes surfaces.
Il est entendu au sens de la présente invention que l'étape a) modifie de façon sélective l'énergie de surface de la surface interne 12 de la première cavité 11, et laisse inchangée l'énergie de surface des surfaces internes des secondes cavités.
L'étape a) peut notamment mettre en œuvre une exposition à un flux d'énergie. L'exposition au flux d'énergie peut comprendre une exposition à un plasma, et plus particulièrement un plasma d'ozone.
De manière complémentaire et/ou alternative, l'exposition au flux d'énergie peut comprendre une exposition à un rayonnement ultraviolet, le rayonnement ultraviolet peut notamment comprendre une émission lumineuse de longueur d'onde égale à 248 nanomètres ou 193 nanomètres.
Toujours de manière complémentaire et/ou alternative, l'exposition au flux d'énergie peut comprendre une exposition à un rayonnement laser Ultraviolet (UV), notamment émis par une source laser excimère à impulsions. La longueur d'onde du rayonnement UV peut être comprise entre 150 nm et 350 nm, par exemple égale à 248 nm.
Les impulsions laser peuvent présenter une fréquence comprise entre 1 Hz et 1000 Hz, par exemple entre 20 Hz et 300 Hz, et une largeur à mi-hauteur comprise entre 1 ps et 100 ns, par exemple égale à 25 ns.
La fluence des impulsions laser peut être comprise entre 1 mJ/cm2 et 1000 mJ/cm2, par exemple entre 230 mJ/cm2 et 330 mJ/cm2.
L'exposition au rayonnement laser Ultraviolet peut également être exécutée en maintenant une atmosphère à caractère fortement oxydant à proximité de la surface à traiter.
L'atmosphère à caractère fortement oxydant peut notamment être riche en oxygène (par exemple la concentration en oxygène peut être supérieure à 20%), ou comprendre de l'ozone (la concentration en ozone peut en particulier être comprise entre 0,1 ppm et 100 ppm, préférentiellement entre 1 ppm et 10 ppm).
La mise en œuvre d'une atmosphère à caractère fortement oxydant permet d'améliorer l'efficacité de l'étape a).
Toujours de manière alternative et/ou complémentaire, l'étape a) peut comprendre une ablation, notamment rapide, d'un empilement de couches formé sur la surface interne des cavités. En particulier, l'empilement de couches peut comprendre une couche de passivation 14 (décrite dans la suite de la description), notamment une couche de passivation hydrophobe, reposant sur une autre couche, dite sous-couche 14i faite d'un matériau adapté pour conférer à ladite sous-couche 14i un caractère hydrophile (autrement dit présentant un caractère attractif vis-à-vis de l'eau). Ce matériau formant la sous-couche 14i est également choisi pour présenter un coefficient de dilatation thermique (CTE) très différent de la couche de passivation 14.
La sous-couche 14i peut en particulier comprendre un nitrure de silicium, ou un oxyde de cette famille (SixNy, SixOzNy).
À titre d'exemple, l'angle de contact de l'eau mesuré sur une surface de SiN est de 40° alors qu'il est supérieur à 100° sur une surface de siloxane SiOC. Le CTE du SiN est de 3,3 10 6 K 1 alors qu'il est de 3,1 10 4 K 1 pour du SiOC.
La formation d'une couche de nitrure de silicium est connue de l'homme du métier et peut notamment être mise en œuvre par PECVD. L'épaisseur de la sous- couche 14i peut être comprise entre 10 nm et 5 pm, préférentiellement égale à 500 nm.
L'étape a) est alors mise en œuvre avec la source de rayonnement laser précédemment décrite. En particulier le rayonnement laser est émis de manière à pulvériser, de manière sélective, la couche de passivation de la première surface 12i, et ainsi découvrir la sous-couche 14i. Il est donc entendu que l'empilement reposant sur la seconde surface 122 n'est pas affecté par le laser.
Le retrait complet de la couche de passivation au niveau de la première surface 12i peut être obtenu avec une seule impulsion du laser.
La fluence du laser peut, à cet égard, être comprise entre 100 mJ/cm2 et 400 mJ/cm2, et préférentiellement proche de 320 mJ/cm2.
Les inventeurs ont également constaté que l'énergie de surface de la sous-couche 14i, une fois découverte, n'est pas affectée lors de l'exécution de l'étape a).
Ce mode de mise en œuvre de l'étape a), du fait de sa facilité et sa rapidité de mise en œuvre, est extrêmement avantageux.
Un exemple de mise en œuvre de l'étape a) sur un empilement de couche est illustré à la figure 3E. Notamment le procédé de pulvérisation sélectif de la couche de passivation 14 permet de ne pulvériser que certaines zones de l'empilement. En particulier, sur la figure 3E, seule la zone A a été soumise au rayonnement laser de manière à exposer la sous-couche 14i hydrophile, tandis que la zone B, protégée, comprend l'empilement formé par la sous-couche 14i et la couche de passivation 14 hydrophobe. L'exposition de la première surface 12i au flux d'énergie peut être exécutée au moyen d'un masque, et notamment un masque présentant une ouverture en regard de la première surface. En d'autres termes, le masque obstrue les secondes cavités.
La première énergie de surface, selon la présente invention, est ajustée de sorte que la première surface 12i exerce sur le liquide de remplissage 15 un effet attractif.
En d'autres termes, la première énergie de surface est ajustée de sorte que l'angle de contact du liquide de remplissage 15 soit faible.
Par « angle de mouillage faible », on entend un angle de contact inférieur à 40°, avantageusement inférieur à 30°, encore plus avantageusement inférieur à 25°.
La seconde énergie est ajustée de sorte que les secondes surfaces exercent sur le liquide de remplissage 15 un effet répulsif.
En d'autres termes, la seconde énergie de surface est ajustée de sorte que l'angle de contact du liquide de remplissage 15 soit élevé.
Par « angle de contact élevé », on entend un angle de contact supérieur à 40°, avantageusement supérieur à 70°, encore plus avantageusement supérieur à 90°.
En tout état de cause, la sélectivité de remplissage sera obtenue par une différence d'énergie de surface entre les zones dites de basse et haute énergies de surfaces qui sera caractérisée par une différence d'angle de contact du liquide de remplissage sur ces deux surfaces au moins égale à 30°, avantageusement supérieure à 50°.
À titre d'exemples, les figures 3A et 3B sont des représentations graphiques de l'évolution de l'angle de contact (axe vertical) d'un liquide, notamment de l'eau, sur une surface en fonction d'un temps d'exposition, respectivement, à un plasma d'hélium et un rayonnement infrarouge.
La surface exposée au flux d'énergie comprend notamment un matériau de type siloxane, par exemple formé par dépôt en phase vapeur assistée par plasma avec comme précurseur du octaméthylcyclotétrasiloxane (OMCTSO).
Une diminution de l'angle de contact de l'eau est clairement observée sur chacun de ses graphiques. En d'autres termes, la surface passe d'un état hydrophobe (angle de contact élevé) à un état hydrophile sous l'effet d'une exposition à un flux d'énergie. La figure 3C est un autre exemple de l'évolution de l'angle de contact (axe vertical, en « ° ») d'un liquide, notamment de l'eau, sur une surface, en fonction d'un nombre d'impulsions émises par un laser excimère (axe horizontal, « nombre d'impulsions »). La surface comprend en particulier du siloxane formé par dépôt en phase vapeur assistée par plasma d'OMCTSO.
Une décroissance de l'angle de contact de l'eau est clairement observée à mesure que le nombre d'impulsions laser augmente. Il est ainsi possible de moduler le caractère hydrophile de la surface.
La figure 3D est une image obtenue par microscopie optique d'une surface comprenant une pluralité de cavités présentant une ouverture circulaire de 10 pm de diamètre, et séparées les unes des autres de 15 pm (distance centre à centre). La surface comprend notamment une couche de passivation 14 faite d'un matériau du type siloxane SiOC et d'une épaisseur égale à 110 nm. La couche 14 est formée par dépôt en phase vapeur assistée par plasma (PECVD) d'OMCTSO.
Ainsi, dans le cadre de la présente invention, un traitement, qui comprend une exposition à un flux d'énergie mis en œuvre sélectivement au niveau de la première surface, permet de conférer à ladite première surface une énergie de surface différente de celle des secondes surfaces.
En d'autres termes, l'étalement du liquide de remplissage 15, exécuté lors d'une étape b), sur la face avant 21 du substrat conduira à un remplissage exclusivement de la première cavité 11.
À titre illustration, la figure 8 est une représentation schématique du mécanisme de modifiant l'énergie de surface sous l'effet d'un rayonnement ultraviolet (symbolisé par les flèches).
Notamment, la surface du substrat S destinée à être exposée au rayonnement UV est préalablement revêtue d'une couche de matériau du type siloxane (O). Un masque est positionné en regard de la surface de manière à exposer sélectivement au rayonnement UV une région 1 au rayonnement UV et masquer une région 2. Le rayonnement UV a pour effet de réduire la taille de la chaîne carbonée de la couche de matériau du type siloxane, et de rendre cette dernière hydrophile. La région 2 non exposée au rayonnement UV conserve son caractère hydrophobe.
L'étape a) selon la présente invention peut être précédée d'une étape al) de formation d'une couche, dite couche de passivation 14, en recouvrement de la première surface et des secondes surfaces.
La couche de passivation 14 est notamment faite d'un matériau, dit matériau actif, configuré pour modifier son énergie de surface sur l'effet du traitement de l'étape a).
La couche de passivation 14 peut être formée par une technique de dépôt en phase chimique assistée par plasma (« PECVD » ou « Plasma Enhanced Chemical Vapor Déposition » selon la terminologie Anglo-Saxonne).
L'épaisseur de la couche de passivation 14 peut être comprise entre 1 nm et 1 micromètre, de préférence 50 nm à 300 nm.
Le matériau actif peut comprendre au moins des matériaux choisi parmi : un composé siloxane, un fluorosilane, un fluoropolymère, octadecyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, Octadecyltrimethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, Dodecyltriethoxysilane, Dimethoxy- methyl(3,3,3-trifluoropropyl)silane, Trichloro(octadecyl)silane, Trichloro(3,3,3- trifluoropropyl)silane, lH,lH,2H,2H-Perfluorodecyltrimethoxysilane.
La mise en œuvre de l'étape b) d'étalement du liquide de remplissage 15 peut impliquer l'utilisation d'une racle ou d'une filière à fente (« slot die » selon la terminologie Anglo-Saxonne).
Le liquide de remplissage 15 peut être un mélange qui comprend un solvant, une matrice de remplissage et une charge, dite charge active.
Notamment, le solvant peut comprendre une solution de propylène glycol mono méthyl éther acétate.
La matrice de remplissage peut comprendre un matériau transparent de type acrylate comme par exemple le poly(méthacrylate de méthyle (PMMA), un silicone ou un polymère. La charge active peut comprendre un matériau de conversion, notamment un matériau de conversion optique.
Par « matériau de conversion optique », on entend un matériau susceptible de convertir un rayonnement d'une longueur d'onde donnée, en un rayonnement d'une longueur d'onde différente.
Un tel matériau de conversion optique peut notamment comprendre des luminophores, ou encore des boites quantiques (« quantum dots » selon la terminologie Anglo-Saxonne).
De manière particulièrement avantageuse, l'étape b) comprend plusieurs, avantageusement deux, séquences d'étalement du liquide de remplissage 15, et l'exécution d'une séquence d'évaporation du solvant à l'issue de chaque séquence d'étalement.
Le résultat de la mise en œuvre du procédé selon la présente invention sur des cavités présentant une ouverture d'une largeur de 12 micromètres est représenté aux figures 4a et 4b.
Notamment, les cavités des figures 4a et 4b, dont les surfaces internes sont revêtues d'une couche de passivation 14, et notamment d'une couche de siloxane comprenant une extrémité hydrophobe, ont subi un traitement de surface différencié.
En particulier, les surfaces internes des cavités de la figure 4b ont été exposées à un plasma d'ozone, tandis que les cavités de la figure 4a n'ont subi aucun traitement.
Une étape b) d'étalement d'un liquide remplissage fait d'une solution PGMEA/PMMA (Poly méthacrylate de méthyle) chargée en boites quantiques a ensuite été exécutée.
À l'issue de cette étape b), un remplissage partiel des cavités de la figure 4b est clairement observé, tandis que le liquide de remplissage 15 ne semble pas pénétrer dans les cavités de la figure 4a.
La différenciation en termes d'énergie de surface des cavités de la figure 4a et de la figure 4b vis-à-vis du liquide de remplissage 15 permet d'exécuter un remplissage sélectif, et plus particulièrement de remplir les cavités présentant une affinité avec le liquide de remplissage 15.
Plus particulièrement, l'exposition de la couche de passivation 14 à un plasma d'hélium permet de modifier l'angle de contact d'une goutte du liquide de remplissage 15 sur ladite couche. En d'autres termes, l'exposition de la couche de passivation 14 à un plasma d'hélium modifie la capacité de ladite couche à être mouillée par le liquide remplissage.
Il est toutefois remarquable que, compte tenu du niveau de dilution du PMMA et des boites quantiques dans le solvant PGMEA, le remplissage des cavités de la figure 4b ne soit que partiel.
Il est toutefois possible d'exécuter à nouveau, et autant de fois que nécessaire, l'étape b) de manière à remplir complètement les cavités de la figure 4b.
À cet égard, les figures 5a et 5b représentent des cavités ayant subi un protocole similaire à celui des cavités, respectivement, des figures 4a et 4b, l'étape b) d'étalement du liquide de remplissage 15 ayant toutefois été exécutée deux fois.
Ainsi, les cavités de la figure 5a, qui n'ont pas été exposées au traitement plasma, exercent toujours un effet répulsif à l'encontre du liquide de remplissage 15, tandis qu'un remplissage complet des cavités de la figure 5b peut être observé.
De manière avantageuse, une séquence d'évaporation du solvant (en l'occurrence le PGMEA) peut être exécutée à l'issue de chaque séquence d'étalement.
La séquence d'évaporation du liquide de remplissage 15 peut comprendre une étape de traitement thermique destinée à évaporer le solvant.
De manière avantageuse, la matrice de remplissage peut être adaptée pour se solidifier à l'issue du procédé de remplissage selon la présente invention, et notamment lors de l'étape de traitement thermique, et ainsi piéger la charge active dans son volume.
De manière particulièrement avantageuse, la dilution du liquide de remplissage 15 dans le solvant peut être adaptée pour que le remplissage de la première cavité 11 soit complet, ou essentiellement complet, à l'issue de l'exécution d'une unique étape b) d'étalement. À cet égard, les figures 6a et 6b illustrent le remplissage, respectivement, de secondes cavités et de premières cavités.
Notamment, les cavités des figures 6a et 6b, dont les surfaces internes sont revêtues d'une couche de passivation 14, et notamment d'une couche de siloxane comprenant une extrémité hydrophobe, ont subi un traitement de surface différencié.
En particulier, les surfaces internes des premières cavités ont été exposées au rayonnement UV d'une lampe à mercure, tandis que les secondes cavités n'ont subi aucun traitement.
Le liquide de remplissage 15 étalé lors d'une unique étape b) comprend une solution de PGMEA/PMMA (Poly méthacrylate de méthyle) chargée en boites quantiques diluée à 60% permet d'obtenir un remplissage complet des premières cavités laissant vides les secondes cavités.
En d'autres termes, une diminution de la dilution du liquide de remplissage 15 permet d'obtenir un remplissage quasi complet, voire complet, des premières cavités.
Les inventeurs ont également démontré qu'il est possible de remplir avec un liquide de remplissage 15 de manière sélective des cavités de très petite taille, et notamment présentant une ouverture de 1 pm.
A cet égard, les figures 7a et 7b représentent chacune deux cavités de 10 micromètres et de 1 micromètre respectivement sur lesquelles le procédé de remplissage sélectif selon la présente invention est mis en œuvre.
Notamment, les cavités des figures 7a et 7b, chacune revêtues d'une couche de passivation 14 ont subi un traitement de surface différencié.
En particulier, les surfaces internes des cavités de la figure 7b ont été exposées au rayonnement UV d'une lampe à mercure, tandis que les cavités de la figure 7a n'ont subi aucun traitement.
L'étape b) d'étalement d'un liquide remplissage fait d'une solution PGMEA/PMMA (Poly méthacrylate de méthyle) chargée en boites quantiques permet de remplir, au moins partiellement les cavités de la figure 7b, tandis que ledit liquide ne semble pas pénétrer dans les cavités de la figure 7a. Les images des figures 7a et 7b démontrent ainsi que le procédé selon la présente invention permet de remplir de manière sélective des cavités de très petite taille, et notamment d'une taille comprise entre 1 micromètre et 10 micromètres.
Le procédé selon la présente invention peut être exécuté pour remplir de manière successive plusieurs cavités, notamment toutes les cavités, d'un groupe de cavités 10, avec un liquide de remplissage 15 différent.
Les figures 9a à 9d illustrent la mise en œuvre du procédé de remplissage pour remplir, successivement, 3 cavités 111a, 111b, 111c parmi un groupe de 4 cavités 111a, 111b, 111c et llld formées sur un support 20.
La figure 9a illustre le remplissage sélectif, par un premier liquide remplissage, de la cavité 111a parmi les cavités 111a, 111b, 111c, et llld.
La figure 9b illustre le remplissage sélectif, par un second liquide remplissage différent du premier liquide de remplissage 15, de la cavité 111b parmi les cavités 111b, 111c, et llld.
La figure 9c illustre le remplissage sélectif, par un troisième liquide remplissage différent du second liquide de remplissage 15, de la cavité 111c parmi les cavités 111c, et llld.
La cavité llld peut être laissée vide ou rempli également par un liquide de remplissage.
Le remplissage successif de cavités d'un groupe de cavités 10 peut avantageusement être mis en œuvre pour la fabrication d'un dispositif d'affichage couleur.
Dans ce cas de figure, un groupe de cavités 10 tel que décrit précédemment forme un pixel couleur, chacune des cavités étant pourvue d'au moins une diode électroluminescente disposée sur leur fond. La diode électroluminescente peut en particulier comprendre un ou plusieurs nanofils, microfils ou pyramides.
Plus particulièrement, l'invention peut mettre en œuvre une pluralité de pixels, notamment des pixels identiques, disposés sur la surface avant 21 du substrat support 20.
Les pixels peuvent avantageusement être agencés sous forme matricielle.
Par « forme matricielle », on entend un maillage à N lignes et M colonnes. Chaque pixel comprend une cavité 111a destinée à émettre un rayonnement bleu, une cavité 111b destinée à émettre un rayonnement rouge et une cavité 111c destinée à émettre un rayonnement vert.
La cavité llld peut également être remplie selon le procédé de remplissage. Par exemple, la cavité llld peut être destinée à émettre un rayonnement jaune ou blanc, ou encore, bleu ou vert ou rouge.
Le procédé de remplissage peut être mis en œuvre pour remplir dans un premier temps (figure 9a), et de manière sélective, l'ensemble des cavités 111a avec un liquide de remplissage 15, dit premier liquide. Le premier liquide peut comprendre une charge active (optiquement active) destinée à émettre un rayonnement d'une longueur d'onde donnée, dite première longueur d'onde.
Le procédé de remplissage peut ensuite (figure 9b) être mis en œuvre pour remplir, et de manière sélective, l'ensemble des cavités 111b avec un liquide de remplissage 15, dit second liquide. Le second liquide peut comprendre une charge active (optiquement active) destinée à émettre un rayonnement d'une longueur d'onde donnée, dite seconde longueur d'onde différente de la première longueur d'onde.
Enfin, le procédé de remplissage peut être mis en œuvre une troisième fois (figure 9c), pour remplir, et de manière sélective, l'ensemble des cavités 111c avec un liquide de remplissage 15, dit troisième liquide. Le troisième liquide peut comprendre une charge active (optiquement active) destinée à émettre un rayonnement d'une longueur d'onde donnée, dite troisième longueur d'onde différente de la première longueur d'onde et de la seconde longueur d'onde. La présence d'une charge active n'est pas strictement requise, notamment lorsque la cavité comprend une ou des diodes électroluminescentes faites de GaN et destinées à émettre un rayonnement bleu.
La première longueur d'onde, la seconde longueur d'onde, et la troisième longueur d'onde peuvent, par exemple, correspondre, respectivement, à un rayonnement bleu, un rayonnement rouge, et un rayonnement vert.
Le procédé selon la présente invention permet alors de remplir de manière sélective des cavités sans pénaliser les cadences de production. Notamment, les premières cavités d'une pluralité de groupes de cavités peuvent être remplies collectivement et manière sélective aux secondes cavités desdits groupes de cavités.
La forme et la taille des cavités ne constituent pas une limitation à la mise en œuvre du procédé selon la présente invention. Notamment les cavités peuvent présenter des caractéristiques identiques sans toutefois altérer la sélectivité du procédé selon la présente invention.
Enfin, le procédé selon la présente invention permet également le remplissage de cavités de petite taille, et notamment de l'ordre de 1 micromètre.
REFERENCES
[1] FR 3053530
[2] FR 3046021
[3] FR 3012676 ;
[4] Zhu et al., « Experiments and analysis on self-motion behaviors of liquid droplets on gradient surfaces », Experimental Thermal and Fluid Science, 33, 947-954, (2009).

Claims

REVENDICATIONS
1. Procédé de remplissage sélectif, par un liquide de remplissage (15), d'une cavité, dite première cavité (11), d'au moins un groupe de cavités (10) débouchant chacune au niveau d'une face, dite face avant (21), d'un substrat, chacune des cavités comprenant une surface interne, le procédé comprenant les étapes suivantes :
a) une étape de traitement destinée à modifier l'énergie de surface de la surface interne de la première cavité (11), dite première surface (12i), ou l'énergie de surface des surfaces internes, dites secondes surfaces (122), des cavités autres que la première cavité (11), dites secondes cavités, de sorte que la première surface (12i) présente une première énergie de surface et les secondes surfaces une seconde énergie de surface différente de la première énergie ;
b) une étape qui comprend au moins une séquence d'étalement du liquide de remplissage (15) sur la face avant (21) ;
la première et la seconde énergie étant ajustées de sorte que la première et les secondes surfaces exercent sur le liquide de remplissage (15), respectivement, un effet attractif et un effet répulsif, l'étape b) aboutissant ainsi au remplissage sélectif, par le liquide de remplissage (15), de la première cavité (11) au regard des secondes cavités.
2. Procédé de remplissage selon la revendication 1, dans lequel l'étape b) de traitement comprend un traitement plasma ou un traitement avec un rayonnement ultraviolet exécuté sélectivement sur la première surface ou sur les secondes surfaces.
3. Procédé de remplissage selon la revendication 1 ou 2, dans lequel l'étape a) est exécutée sélectivement sur la première surface ou sur les secondes surfaces au moyen d'un masquage, respectivement, des secondes surfaces ou de la première surface.
4. Procédé de remplissage selon l'une des revendications 1 à 3, dans lequel l'étape a) est précédée d'une étape al) de formation d'une couche, dite couche de passivation (14), en recouvrement de la première surface (12i) et des secondes surfaces (122), la couche de passivation (14) étant faite d'un matériau , dit matériau actif, configuré pour modifier son énergie de surface sur l'effet du traitement de l'étape a).
5. Procédé de remplissage selon la revendication 4, dans lequel la couche de passivation comprend au moins un des matériaux choisi parmi : un composé siloxane, un fluorosilane, un fluoropolymère, octadecyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, Octadecyltrimethoxysilane), octyltrimethoxysilane, octyltriethoxysilane, Dodecyltriethoxysilane, Dimethoxy-methyl(3,3,3- trifluoropropyl)silane, Trichloro(octadecyl)silane, Trichloro(3,3,3-trifluoropropyl)silane, lH,lH,2H,2H-Perfluorodecyltrimethoxysilane.
6. Procédé de remplissage selon la revendication 4 ou 5, dans lequel la couche de passivation (14) est formée selon une méthode de dépôt chimique en phase vapeur, et notamment activée par plasma.
7. Procédé de remplissage selon l'une des revendications 1 à 6, dans lequel l'étape d'étalement du liquide de remplissage (15) met en œuvre une racle ou une filière à fente.
8. Procédé de remplissage selon l'une des revendications 1 à 7, dans lequel le liquide de remplissage (15) est un mélange qui comprend un solvant, une matrice de remplissage et une charge, dite charge active.
9. Procédé de remplissage selon la revendication 8, dans lequel l'étape b) comprend plusieurs, avantageusement deux, séquences d'étalement du liquide de remplissage (15), et l'exécution d'une séquence d'évaporation du solvant à l'issue de chaque séquence d'étalement.
10. Procédé de remplissage selon la revendication 9, dans lequel la séquence d'évaporation du liquide de remplissage (15) comprend une étape de traitement thermique destinée à évaporer le solvant.
11. Procédé de remplissage selon la revendication 10, dans lequel la matrice de remplissage est également adaptée pour se solidifier lors de l'étape de traitement thermique, et ainsi piéger la charge active dans son volume.
12. Procédé de remplissage selon l'une des revendications 8 à 11, dans lequel, le solvant comprend une solution de propylène glycol mono méthyl éther acétate.
13. Procédé de remplissage selon l'une des revendications 8 à 12, dans lequel la matrice de remplissage comprend un matériau transparent de type acrylate, avantageusement du poly(méthacrylate de méthyle (PMMA), ou un silicone ou un polymère.
14. Procédé de remplissage selon l'une des revendications 8 à 13, dans lequel la charge active comprend un matériau de conversion, notamment un matériau de conversion optique.
15. Procédé de remplissage selon la revendication 14, dans lequel le matériau de conversion optique comprend des boites quantiques ou des luminophores.
16. Procédé de remplissage selon l'une des revendications 1 à 15, dans lequel le fond de chacune des cavités est fonctionnalisé.
17. Procédé de remplissage selon la revendication 16, dans lequel la fonctionnalisation du fond de chacune des cavités comprend la mise en œuvre d'une diode électroluminescente, avantageusement la diode électroluminescente prenant la forme d'au moins un nanofil, ou d'au moins un microfil, ou d'au moins une pyramide.
18. Procédé de fabrication destiné à remplir des cavités d'un groupe de cavités (111a, 111b, 111c, llld) avec un liquide de remplissage (15) différent, le procédé de fabrication comprenant le remplissage successif de cavités (111a, 111b, 111c, llld) parmi le groupe de cavités selon le procédé de remplissage selon l'une des revendications l à 17.
19. Procédé selon la revendication 18, dans lequel le groupe de cavités (111a, 111b, 111c, llld) forme un pixel d'un dispositif d'affichage, en particulier, chacune des cavités du pixel est destinée à émettre une couleur différente.
EP19835709.7A 2018-12-20 2019-11-29 Procede de remplissage selectif, par un liquide de remplissage, d'un groupe de cavites parmi une pluralite de cavites Pending EP3881362A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1873500A FR3091006B1 (fr) 2018-12-20 2018-12-20 Procede de remplissage selectif, par un liquide de remplissage, d’un groupe de cavites parmi une pluralite de cavites
PCT/FR2019/052849 WO2020128182A1 (fr) 2018-12-20 2019-11-29 Procede de remplissage selectif, par un liquide de remplissage, d'un groupe de cavites parmi une pluralite de cavites

Publications (1)

Publication Number Publication Date
EP3881362A1 true EP3881362A1 (fr) 2021-09-22

Family

ID=66542417

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19835709.7A Pending EP3881362A1 (fr) 2018-12-20 2019-11-29 Procede de remplissage selectif, par un liquide de remplissage, d'un groupe de cavites parmi une pluralite de cavites

Country Status (6)

Country Link
US (1) US20220029048A1 (fr)
EP (1) EP3881362A1 (fr)
KR (1) KR20210105902A (fr)
CN (1) CN113302752A (fr)
FR (1) FR3091006B1 (fr)
WO (1) WO2020128182A1 (fr)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2430547A (en) * 2005-09-20 2007-03-28 Seiko Epson Corp A method of producing a substrate having areas of different hydrophilicity and/or oleophilicity on the same surface
KR100904588B1 (ko) * 2007-07-05 2009-06-25 삼성전자주식회사 코어/쉘 형태의 나노와이어를 제조하는 방법, 그에 의해제조된 나노와이어 및 이를 포함하는 나노와이어 소자
KR101077424B1 (ko) * 2010-07-23 2011-10-26 삼성전기주식회사 터치패널 및 그 제조방법
CN103562754B (zh) * 2011-05-31 2015-08-19 夏普株式会社 彩色滤光片基板的制造方法、显示装置的制造方法、彩色滤光片基板以及显示装置
KR101335921B1 (ko) * 2011-10-06 2013-12-03 삼성전자주식회사 발광 다이오드 패키지 및 그의 제조방법
KR101957701B1 (ko) * 2012-11-14 2019-03-14 삼성전자주식회사 발광소자 패키지 및 그 제조방법
FR3012676A1 (fr) 2013-10-25 2015-05-01 Commissariat Energie Atomique Diode electroluminescente a puits quantiques separes par des couches barrieres d'ingan a compositions d'indium variables
KR102360957B1 (ko) * 2015-03-27 2022-02-11 삼성디스플레이 주식회사 발광 다이오드 패키지
CN104932136B (zh) * 2015-07-01 2018-01-26 合肥鑫晟光电科技有限公司 彩膜基板及其制作方法、显示面板和显示装置
CN105204104B (zh) * 2015-10-30 2018-05-25 京东方科技集团股份有限公司 滤光片及其制作方法、显示基板及显示装置
FR3046021B1 (fr) 2015-12-17 2017-12-22 Commissariat Energie Atomique Dispositif composite d'absorption thermique et methode d'obtention
FR3053530B1 (fr) * 2016-06-30 2018-07-27 Aledia Dispositif optoelectronique a pixels a contraste et luminance ameliores
KR102291493B1 (ko) * 2016-08-11 2021-08-20 삼성디스플레이 주식회사 컬러 필터 및 이를 포함하는 표시 장치
US20180341055A1 (en) * 2017-05-23 2018-11-29 Intematix Corporation Color Liquid Crystal Displays and Display Backlights
JP2019023579A (ja) * 2017-07-24 2019-02-14 コニカミノルタ株式会社 シンチレータ

Also Published As

Publication number Publication date
WO2020128182A1 (fr) 2020-06-25
US20220029048A1 (en) 2022-01-27
FR3091006A1 (fr) 2020-06-26
FR3091006B1 (fr) 2021-01-15
KR20210105902A (ko) 2021-08-27
CN113302752A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
EP3563420B1 (fr) Procede de fabrication d'un dispositif optoelectronique comportant des plots photoluminescents de photoresine
EP3646392B1 (fr) Dispositif optoélectronique
FR3012345A1 (fr) Dispositif d'encapsulation d'un dispositif sensible et procede de realisation dudit dispositif
FR2897164A1 (fr) Realisation de cavites pouvant etre remplies par un materiau fluidique dans un compose microtechnologique optique
EP2576229B1 (fr) Fabrication de structures en relief par procédés d'impression
FR3040895A1 (fr) Substrat de support d'echantillon liquide, ensemble comportant un tel substrat et son utilisation
EP2192081B1 (fr) Procédé de réalisation d'une matrice de rétention et comprenant un liquide fonctionnel
EP3881362A1 (fr) Procede de remplissage selectif, par un liquide de remplissage, d'un groupe de cavites parmi une pluralite de cavites
EP3720923B1 (fr) Solution destinée a être utilisée pour remplir des cavités de taille micrométrique
WO2020083847A1 (fr) Dispositif optoélectronique, écran d'affichage associé et procédé de fabrication d'un tel dispositif optoélectronique
EP3815141B1 (fr) Dispositifs émetteurs, écran d'affichage associé et procédés de fabrication d'un dispositif émetteur
EP3552254B1 (fr) Procédé de formation d'un empilement et empilement
EP3871273A1 (fr) Procédé de réalisation d'un dispositif optoélectronique comprenant des diodes électroluminescentes homogènes en dimensions
FR3099295A1 (fr) Formulation de resine photosensible pour la conversion de couleurs
EP2832683B1 (fr) Dépôt par enduction centrifuge d'une couche mince structurée sur un substrat
EP4280274A1 (fr) Procédé de réalisation d'une zone d'individualisation d'un circuit intégré
EP4280275A1 (fr) Procédé de réalisation d'une zone d'individualisation d'un circuit intégré
FR3136863A1 (fr) Elément émetteur de lumière à générateur d’onde stationnaire et dispositif optoélectronique associé
EP4280264A1 (fr) Procédé de réalisation d'une zone d'individualisation d'un circuit intégré
EP4205177A1 (fr) Procédé de fabrication d'un dispositif optoélectronique
FR2971065A1 (fr) Dispositif et procede de developpement de motifs a haut rapport de forme
FR2929715A1 (fr) Procede de realisation de cavites microniques ou submicroniques

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)