EP3872937B1 - Connecteur enfichable électrique et procédé de fabrication d'un connecteur enfichable électrique - Google Patents

Connecteur enfichable électrique et procédé de fabrication d'un connecteur enfichable électrique Download PDF

Info

Publication number
EP3872937B1
EP3872937B1 EP20160092.1A EP20160092A EP3872937B1 EP 3872937 B1 EP3872937 B1 EP 3872937B1 EP 20160092 A EP20160092 A EP 20160092A EP 3872937 B1 EP3872937 B1 EP 3872937B1
Authority
EP
European Patent Office
Prior art keywords
conductor contact
contact element
internal conductor
dielectric
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20160092.1A
Other languages
German (de)
English (en)
Other versions
EP3872937A1 (fr
Inventor
Thomas Unterhauser
Georg Christoph Michael Lochner
Martin Arthur Kositza
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosenberger Hochfrequenztechnik GmbH and Co KG
Original Assignee
Rosenberger Hochfrequenztechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosenberger Hochfrequenztechnik GmbH and Co KG filed Critical Rosenberger Hochfrequenztechnik GmbH and Co KG
Priority to EP20160092.1A priority Critical patent/EP3872937B1/fr
Priority to US17/176,556 priority patent/US11545789B2/en
Priority to CN202110221012.7A priority patent/CN113328278A/zh
Publication of EP3872937A1 publication Critical patent/EP3872937A1/fr
Application granted granted Critical
Publication of EP3872937B1 publication Critical patent/EP3872937B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/40Securing contact members in or to a base or case; Insulating of contact members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/646Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00 specially adapted for high-frequency, e.g. structures providing an impedance match or phase match
    • H01R13/6473Impedance matching
    • H01R13/6477Impedance matching by variation of dielectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/002Pair constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/516Means for holding or embracing insulating body, e.g. casing, hoods
    • H01R13/518Means for holding or embracing insulating body, e.g. casing, hoods for holding or embracing several coupling parts, e.g. frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/646Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00 specially adapted for high-frequency, e.g. structures providing an impedance match or phase match
    • H01R13/6473Impedance matching
    • H01R13/6474Impedance matching by variation of conductive properties, e.g. by dimension variations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/646Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00 specially adapted for high-frequency, e.g. structures providing an impedance match or phase match
    • H01R13/6473Impedance matching
    • H01R13/6474Impedance matching by variation of conductive properties, e.g. by dimension variations
    • H01R13/6476Impedance matching by variation of conductive properties, e.g. by dimension variations by making an aperture, e.g. a hole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6581Shield structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
    • H01R24/40Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency
    • H01R24/42Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency comprising impedance matching means or electrical components, e.g. filters or switches
    • H01R24/44Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency comprising impedance matching means or electrical components, e.g. filters or switches comprising impedance matching means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/18Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for manufacturing bases or cases for contact members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
    • H01R24/40Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency
    • H01R24/56Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency specially adapted to a specific shape of cables, e.g. corrugated cables, twisted pair cables, cables with two screens or hollow cables
    • H01R24/568Twisted pair cables

Definitions

  • the invention relates to an electrical connector for differential signal transmission, having an outer conductor contact element, a dielectric and at least one inner conductor contact element pair for differential signal transmission, according to the preamble of claim 1.
  • the invention also relates to a method for producing an electrical connector for differential signal transmission, the electrical connector having an outer conductor contact element, a dielectric and at least one inner conductor contact element pair for differential signal transmission, according to the preamble of claim 14.
  • a plug connector or mating connector can be a plug, a built-in plug, a socket, a coupling, a printed circuit board connector or an adapter.
  • the term "connector” or “mating connector” used in the context of the invention is representative of all variants.
  • a differential signal transmission also known as “balanced signal transmission”
  • asymmetric signal transmission also known as “unbalanced signal transmission” or “single -ended signal transmission” is preferable.
  • inner conductor contact elements with a symmetrical cross-sectional profile are arranged within an outer conductor contact element with a likewise symmetrical cross-sectional profile.
  • the symmetry of the connector is necessary because the electromagnetic wave is increasingly transmitted in the so-called "common mode" with increasing asymmetry and finally common-mode interference signals can negatively affect the signal transmission.
  • the highest field line density of the electromagnetic field is between the two inner conductor contact elements, which form a common differential inner conductor contact element pair.
  • the signal energy of the high-frequency electromagnetic wave is thus bundled in the area between the two inner conductor contact elements. In the best-case scenario, this means that no signal energy is lost to the outside world.
  • the electromagnetic field lines of the electromagnetic wave run outwards in the shape of a parabola from the connecting line between the two inner conductor contact elements.
  • electromagnetic field lines can run as far as the surrounding housing components, for example a motor vehicle body.
  • signal energy can be lost, which affects or worsens the electromagnetic compatibility (EMC) of the entire system and the signal-to-noise ratio (SNR).
  • EMC electromagnetic compatibility
  • SNR signal-to-noise ratio
  • the object of the present invention is to provide an electrical connector which is suitable for differential signal transmission, particularly in high-frequency technology, and which is preferably inexpensive to produce.
  • the present invention is also based on the object of providing an improved method for producing an electrical plug connector for differential signal transmission, in particular for differential signal transmission in high-frequency technology.
  • the object is achieved for the electrical connector with the features listed in claim 1. With regard to the method, the object is achieved by the features of claim 14.
  • An electrical connector for differential signal transmission.
  • the electrical connector has at least one outer conductor contact element, at least one dielectric and at least one inner conductor contact element pair for differential signal transmission.
  • the dielectric extends through the outer conductor contact element along a longitudinal axis.
  • the inner conductor contact element pair comprises a first inner conductor contact element and a second inner conductor contact element which extend through the dielectric along the longitudinal axis.
  • the longitudinal axis is preferably a central axis or axis of symmetry.
  • An inner conductor contact element within the scope of the invention can be designed, for example, as a pin contact or as a socket contact.
  • any inner conductor contact elements can be provided, for example end contacts such as flat contacts or spring contact pins (so-called pogo pins).
  • the electrical connector may also include other connector components, such as an outer housing assembly, such as a plastic outer housing assembly, for receiving one or more outer conductor contact elements.
  • an outer housing assembly such as a plastic outer housing assembly, for receiving one or more outer conductor contact elements.
  • the outer conductor contact element and/or the dielectric have a compensation geometry in order to compensate for an asymmetry (e.g. an asymmetrical arrangement and/or an asymmetrical cross-sectional profile) of the inner conductor contact element pair in relation to the longitudinal axis.
  • asymmetry e.g. an asymmetrical arrangement and/or an asymmetrical cross-sectional profile
  • an asymmetry of the outer conductor contact element and/or the dielectric can also be compensated for by a compensation geometry of the inner conductor contact element pair and/or the dielectric.
  • the inner conductor contact element pair has a compensation geometry in order to compensate for an asymmetry (e.g. an asymmetrical arrangement and/or an asymmetrical cross-sectional profile) of the outer conductor contact element and/or the dielectric in relation to the to balance the longitudinal axis.
  • an asymmetry e.g. an asymmetrical arrangement and/or an asymmetrical cross-sectional profile
  • An asymmetrical cross-sectional profile of the outer conductor contact element can be provided, for example, by recesses (eg windows), spring elements (eg spring tabs) or latching elements (eg latching lugs).
  • an “asymmetry” within the scope of the invention can be understood to mean an asymmetrical geometry or an asymmetrical cross-sectional profile of at least one inner conductor contact element, the outer conductor contact element and/or the dielectric.
  • an “asymmetry” can also be understood to mean an uneven distribution or arrangement, for example an uneven distribution or arrangement of at least one inner conductor contact element within the outer conductor contact element.
  • a rotation for example a relative rotation of the inner conductor contact elements of a common pair of inner conductor contact elements, can also be understood as “asymmetry” within the scope of the invention.
  • asymmetrical inner conductor contact elements that can be produced inexpensively can be used for differential signal transmission, although the asymmetry generally rules out the suitability of such inner conductor contact elements for high-frequency technology.
  • a differential electrical connector with inexpensive and easy to produce standard inner conductor contact elements are assembled.
  • the compensation geometry can be determined by considering two hypothetical single-pole grounded or asymmetric transmission systems formed on the basis of the inner conductor contact element pair.
  • a differential transmission system for example the electrical connector for transmitting a differential signal, in which two inner conductor contact elements are fed by a differential signal, can be broken down into two single-pole grounded transmission systems ("single-ended" transmission systems).
  • single-ended transmission systems only a single inner conductor contact element is fed by the high-frequency signal, while the other inner conductor contact element has a floating potential or is not connected to a fixed potential, while the outer conductor contact element serves as a reference line.
  • the compensating geometry is designed to match the impedance of a first (hypothetical) asymmetric transmission system and a second (hypothetical) asymmetric transmission system to one another.
  • the first asymmetrical transmission system can only have the first inner conductor contact element for the signal line and the outer conductor contact element for the reference line.
  • the second asymmetrical transmission system can only have the second inner conductor contact element for the signal line and the outer conductor contact element for the reference line.
  • a suitable compensation geometry can advantageously be determined or verified by calculations and/or simulations.
  • the compensating geometry extends parallel to the longitudinal axis.
  • the axial area along the longitudinal axis, along which the compensation geometry extends is shorter, has the same length or is longer than the axial area along the longitudinal axis, along which the asymmetry extends.
  • the axial area along which the compensation geometry extends can completely, partially or not overlap with the axial area along which the asymmetry extends.
  • the compensating geometry can preferably extend over the entire axial path parallel to the asymmetry to be compensated for in the outer conductor contact element, the dielectric and/or the inner conductor contact element pair.
  • the compensating geometry can also only extend along an axial section parallel to the asymmetry to be compensated.
  • the compensating geometry is designed as a material recess and/or as a material additive and/or as a material deformation and/or as a material composite of different materials or materials, in particular materials with different permittivities.
  • the compensation geometry is particularly preferably designed as a material recess.
  • the material recess can be formed, for example, by holes, windows or other ablations in the outer conductor contact element and/or in the dielectric.
  • Material deformation can also be advantageous for forming the compensation geometry.
  • a bulge or a cross-section-enlarging material deformation of the outer conductor contact element can be well suited for forming a compensation geometry instead of or in addition to a material recess.
  • a cross-sectionally tapering material deformation, for example of the outer conductor contact element, can also be provided to form the compensation geometry.
  • a compensation geometry as a material composite of different materials can be particularly well suited to compensating for the asymmetry caused by the dielectric.
  • sections of the dielectric can be formed from different dielectric materials with different permittivities.
  • the dielectric is formed from at least one solid body.
  • the dielectric is preferably formed from at least one solid body, for example from a plastic.
  • the dielectric can also be a gas, for example air.
  • the electrical connector has no dielectric.
  • first inner conductor contact element and the second inner conductor contact element have an identical, symmetrical cross-sectional geometry.
  • the inner conductor contact elements are then preferably arranged asymmetrically within the outer conductor contact element and/or within the dielectric, which can result in an asymmetry that has to be compensated for.
  • the inner conductor contact elements can, for example, be completely round.
  • the inner conductor contact elements are each completely symmetrical, they can nevertheless be arranged asymmetrically within the outer conductor contact element and/or within the dielectric.
  • the resulting uneven spacing of the inner conductor contact elements from an inner surface of the outer conductor contact element can finally be compensated according to the invention.
  • first inner conductor contact element and the second inner conductor contact element have an identical, asymmetrical cross-sectional geometry.
  • Both inner conductor contact elements are preferably identical, but are of asymmetrical design. In order to save costs, two identical inner conductor contact elements can be used for the electrical plug connector, which in this combination would basically not be suitable for differential signal transmission. Due to the inventive compensation of the asymmetry by the compensating geometry, an inner conductor contact element pair formed from two identical, asymmetrical inner conductor contact elements can nevertheless be used for differential signal transmission.
  • the invention can be particularly advantageous, for example, for the use of inner conductor contact elements according to the MQS standard ("Micro Quadlok System").
  • inner conductor contact elements according to the MQS standard ("Micro Quadlok System").
  • MQS Micro Quadlok System
  • Such inner conductor contact elements have an asymmetrical cross-sectional profile.
  • the first inner conductor contact element is arranged closer to an adjacent inner surface of the outer conductor contact element is than the second inner conductor contact element. Provision can then be made for the compensation geometry in the outer conductor contact element to run along the inner surface of the outer conductor contact element adjoining the first inner conductor contact element, with the compensation geometry preferably being designed as a material recess and/or as a material deformation that expands the cross section.
  • the impedance of the first (hypothetical) asymmetric transmission system is more capacitive than the impedance of the second (hypothetical) asymmetric transmission system. This can result in a one-dimensional optimization problem for determining the compensation geometry, especially when both inner conductor contact elements have an identical and symmetrical cross section.
  • a capacitive asymmetry of the first asymmetrical transmission system can be compensated for with an inductively acting countermeasure or with an inductively acting compensating geometry.
  • a material recess can be formed in the outer conductor contact element in the region of the first inner conductor contact element.
  • a material deformation or bulge/curvature that expands the cross section can also be provided in the outer conductor contact element in the region of the first inner conductor contact element.
  • the compensation geometry runs in the dielectric between the first inner conductor contact element and the adjacent inner surface of the outer conductor contact element when the first inner conductor contact element is arranged closer to an adjacent inner surface of the outer conductor contact element than the second inner conductor contact element.
  • the compensation geometry can then be designed in particular as a material recess in the dielectric.
  • the second inner conductor contact element runs further away from an adjacent inner surface of the outer conductor contact element than the first inner conductor contact element. Provision can then be made for the compensating geometry in the outer conductor contact element to run along the inner surface of the outer conductor contact element adjoining the second inner conductor contact element, the compensating geometry preferably being designed as an additional material and/or as a cross-sectionally tapering material deformation.
  • a cross-section-reducing material deformation means that the cross-section of the outer conductor contact element is reduced in the direction of the longitudinal axis.
  • the outer conductor contact element can thus curve inwards, in the direction of the longitudinal axis.
  • Overall symmetry of the electrical plug connector can also be achieved by a capacitively acting countermeasure or compensating geometry.
  • the distance between the second inner conductor contact element and the adjoining inner surface of the outer conductor contact element can be reduced, preferably by said cross-sectionally tapering material deformation or an additional material within the outer conductor contact element.
  • a capacitively acting compensating geometry can alternatively or additionally also be realized in the dielectric by forming the compensating geometry in the dielectric by using different materials with different permittivities.
  • the permittivity in the dielectric can be increased adjacent to the second inner conductor contact element.
  • the compensating geometry is designed to reduce the distance between the inner conductor contact elements of the inner conductor contact element pair.
  • a reduction in the distance between the two inner conductor contact elements of a common pair of inner conductor contact elements can be particularly suitable for compensating for a complex asymmetry of the electrical plug connector.
  • a reduction in the distance between the two inner conductor contact elements can be advantageous, for example, if both inner conductor contact elements have the same rectangular cross section and are rotated by 90° or by some other angle with respect to one another.
  • a reduction in the distance between the two inner conductor contact elements can also be suitable if both inner conductor contact elements each have the same asymmetrical cross section and are not twisted relative to one another.
  • a shielding element electrically connected to the outer conductor contact element extends along the longitudinal axis between at least two pairs of inner conductor contact elements.
  • the shielding element can be, for example, one or more metal pins and/or mandrels, particularly in the center of the connector.
  • any number of inner conductor contact element pairs can be provided.
  • the connector according to the invention can be used particularly advantageously inside a vehicle, in particular inside a motor vehicle.
  • Possible areas of application are autonomous driving, driver assistance systems, navigation systems, "infotainment” systems, rear seat entertainment systems, internet connections and wireless gigabit (IEEE 802.11ad standard).
  • Possible applications include high-resolution cameras, such as 4K and 8K cameras, sensors, onboard computers, high-resolution displays, high-resolution dashboards, 3D navigation devices and mobile phones.
  • the connector according to the invention is suitable for any application within the entire field of electrical engineering and should not be understood as being limited to use in vehicle technology.
  • the electrical connector is not limited to a specific connector type, the invention being particularly suitable for connectors for high-frequency technology.
  • the compensation of the asymmetry according to the invention can in particular be transferrable to all types of differential connectors.
  • the invention can be used, for example - but not exclusively - for connectors of the type AMEC ("Automotive Modular Ethernet Connection"), MTD ("Modular Twisted-Pair Data”), H-MTD ("High Speed Modular Twisted-Pair-Data”) or HSD (“High-Speed Data”) are advantageous.
  • the invention also relates to a method for producing an electrical connector for differential signal transmission, the electrical connector having an outer conductor contact element, a dielectric and at least one inner conductor contact element pair for differential signal transmission.
  • the dielectric extends through the outer conductor contact element along a longitudinal axis.
  • the inner conductor contact element pair comprises a first inner conductor contact element and a second inner conductor contact element which extend through the dielectric along the longitudinal axis.
  • a compensation geometry is determined for the outer conductor contact element and/or for the dielectric in order to compensate for an asymmetry of the inner conductor contact element pair in relation to the longitudinal axis.
  • inner conductor contact elements with an asymmetrical cross-sectional profile can be compensated for by a defined, selected compensation geometry of the outer conductor contact element and/or the dielectric.
  • a compensation geometry is provided for the pair of inner conductor contact elements is determined in order to compensate for an asymmetry of the outer conductor contact element and/or the dielectric with respect to the longitudinal axis.
  • the compensating geometry can prevent a transition of the differential signal transmission into the “common mode” during the transmission of the electromagnetic wave.
  • Improved electromagnetic compatibility (EMC) and an improved signal-to-noise ratio (SNR) can thus be achieved by the compensation geometry according to the invention.
  • differential signal transmission in particular for high-frequency technology, can advantageously be ensured despite the use of asymmetrical structures.
  • the construction or the production of the electrical plug connector can be simplified and thus more cost-effective.
  • the compensating geometry is determined by matching the impedance of a first (hypothetical) asymmetric transmission system to the impedance of a second (hypothetical) asymmetric transmission system.
  • first asymmetrical transmission system only the first inner conductor contact element can be defined for the signal line and the outer conductor contact element for the reference line.
  • second asymmetrical transmission system only the second inner conductor contact element can be defined for the signal line and the outer conductor contact element for the reference line.
  • the compensation geometry is determined by iterative simulations in order to minimize a DC component in the differential signal transmission.
  • the size of the surface or the angle segment of the inner conductor contact element to the outer conductor contact element can also be taken into account in addition to the distance between an inner conductor contact element and the adjacent inner surface of the outer conductor contact element.
  • the equation for determining the capacitance of a plate capacitor can be used to optimize or determine the compensation geometry.
  • an inner conductor contact element with a larger surface area or angular range and with a smaller distance to the respectively adjoining inner surface of the outer conductor contact element has a higher capacitive impedance of the associated (hypothetical) asymmetrical transmission system.
  • a capacitively acting geometry of the first asymmetrical transmission system can be compensated for by an inductively acting compensating geometry of the first asymmetrical transmission system.
  • a correspondingly inductively acting compensating geometry can be realized, for example, by forming a material recess in the outer conductor contact element.
  • an inductively acting compensating geometry can be realized by holes in the dielectric.
  • a capacitively acting geometry of the first asymmetrical transmission system can be compensated alternatively or additionally by a capacitively acting compensating geometry in the second asymmetrical transmission system.
  • a corresponding compensation geometry can be formed, for example, by reducing the distance between the second inner conductor contact element and the inner surface of the outer conductor contact element adjacent to the second inner conductor contact element by tapering the material or indenting the outer conductor contact element or by another material layer within the outer conductor contact element.
  • a capacitive countermeasure can be implemented in the second asymmetrical transmission system by using sections of different permittivity in the dielectric.
  • the values and parameters described here are deviations or fluctuations of ⁇ 10% or less, preferably ⁇ 5% or less, more preferably ⁇ 1% or less, and very particularly preferably ⁇ 0.1% or less of the respectively named Include value or parameter, provided that these deviations are not excluded in the implementation of the invention in practice.
  • the specification of ranges by means of initial and final values also includes all those values and fractions that are enclosed by the range specified in each case, in particular the initial and final values and a respective mean value.
  • figure 1 1 shows a ready-made electrical cable 1 according to the prior art, equipped with a plurality of connector components of an electrical connector.
  • the cable 1 is provided with an outer conductor contact element 2, a dielectric 3 and a pair of inner conductor contact elements 4 (cf. 3 ) equipped for differential signal transmission.
  • Said connector components 2, 3, 4 are part of one in the Figures 1 to 3 not shown, differential electrical connector.
  • figure 2 shows the connector components 2, 3, 4 in a longitudinal section and figure 3 in a cross section.
  • the dielectric 3 extends along a longitudinal axis L through the outer conductor contact element 2.
  • the inner conductor contact element pair 4 includes a first inner conductor contact element 5 and a second inner conductor contact element 6, which extend along the longitudinal axis L through the dielectric 3.
  • the connector components 2, 3, 4 are only highly schematized in all figures and indicated by way of example. Insofar as a subsequent exemplary embodiment of the invention is described without a dielectric 3 (or at least without a dielectric 3 formed from a solid body), this is not to be understood as limiting. In principle, a dielectric 3 or a dielectric 3 formed from a solid body may or may not be provided for each exemplary embodiment.
  • the inner conductor contact elements 5, 6 of a common inner conductor contact element pair 4 are symmetrically and identically configured and are arranged evenly distributed within the outer conductor contact element 2 or the dielectric 3. This is intended to ensure that electrical signal transmission takes place entirely in the "differential mode".
  • an asymmetry of a connector component 2, 3, 4 is compensated for by a suitable compensation geometry 8, 9, 11, 12 in the same or in another connector component 2, 3, 4.
  • the outer conductor contact element 2 and/or the dielectric 3 has a compensation geometry 8, 9, 11, 12 in order to compensate for an asymmetry of the inner conductor contact element pair 4 with respect to the longitudinal axis L.
  • the inner conductor contact element pair 4 has a compensation geometry 8, 9, 11, 12 in order to compensate for an asymmetry of the outer conductor contact element 2 and/or the dielectric 3 with respect to the longitudinal axis L.
  • the Figures 4 to 27 show advantageous exemplary embodiments or exemplary compensation geometries 8, 9, 11, 12.
  • the features of the exemplary embodiments shown can also be combined with one another.
  • many other compensation geometries to compensate for any symmetries of any connector components 2, 3, 4 are also possible.
  • the exemplary embodiments are only intended to show some advantageous measures for producing the symmetry of an electrical connector using one or more compensation geometries according to the invention.
  • Figures 4 to 6 show a first embodiment of the invention.
  • a dielectric 3 made of at least one solid can also be provided, such as in FIGS Figures 1 to 3 or the Figures 10 to 12 shown.
  • the inner conductor contact elements 5, 6 of the inner conductor contact element pair 4 are each formed differently and asymmetrically in the first exemplary embodiment and are twisted relative to one another. Due to the asymmetrical cross-sectional geometry of the inner conductor contact elements 5, 6 and their relative rotation to one another, the second inner conductor contact element 6 offers an adjacent inner surface 7 of the outer conductor contact element 2 in the area of a central axial section along the longitudinal axis L a larger, more capacitive surface than the first inner conductor contact element 5. To compensate a compensation geometry is provided in the outer conductor contact element 2 as a material recess 8 .
  • the outer conductor contact element 2 has a corresponding window parallel to the longitudinal axis L and along the axial extent of the asymmetry of the inner conductor contact elements 5, 6.
  • the impedances of a first (hypothetical) asymmetric transmission system and a second (hypothetical) asymmetric transmission system can be matched to one another.
  • the first asymmetrical transmission system can be defined as a transmission system in which only the first inner conductor contact element 5 is used for the signal line and the outer conductor contact element 2 is used for the reference line.
  • the second asymmetrical transmission system can be defined as a transmission system in which only the second inner conductor contact element 6 is used for the signal line and the outer conductor contact element 2 is used for the reference line.
  • the Figures 7 to 9 show a second embodiment of the invention.
  • the first inner conductor contact element 5 and the second inner conductor contact element 6 have an identical, symmetrical cross-sectional geometry.
  • the inner conductor contact element pair 4 of Figures 7 to 9 is, however, offset within the outer conductor contact element 2 to the axis of symmetry of the outer conductor contact element 2 in such a way that the first inner conductor contact element 5 is arranged closer to the inner surface 7 of the outer conductor contact element 2 than the second inner conductor contact element 6.
  • the first hypothetical asymmetrical transmission system is therefore more capacitive than the second hypothetical asymmetrical transmission system .
  • the compensation geometry is determined in such a way that the impedances of the two transmission systems are matched to one another.
  • the compensation geometry in the outer conductor contact element 2 runs adjacent to the first inner conductor contact element 5 and is similar to that in FIGS Figures 4 to 6 , formed as a material recess 8.
  • a cross-section-enlarging material deformation 9 of the outer conductor contact element 2 can also be provided, for example (dashed lines in 9 indicated).
  • no dielectric 3 or no dielectric 3 formed from a solid body is provided. If a dielectric 3 is provided, a compensation geometry can also be formed in the dielectric 3 , the dielectric 3 being able to have a material recess 8 , for example between the first inner conductor contact element 5 and the inner surface 7 of the outer conductor contact element 2 .
  • a third embodiment of the invention is shown.
  • the inner conductor contact elements 5, 6 are in turn designed differently, asymmetrically and twisted relative to one another.
  • a dielectric 3 formed from a solid body is also provided.
  • the compensation geometry is formed in the dielectric 3 by suitable material recesses 8 or by two longitudinal slots/grooves.
  • a compensation geometry in the outer conductor contact element 2 can be omitted.
  • a compensating geometry can also be additionally provided in the outer conductor contact element 2 .
  • a fourth embodiment of the invention is in the Figures 13 to 15 shown.
  • the Figures 13 to 15 show an inner conductor contact element pair 4, in which the first inner conductor contact element 5 and the second inner conductor contact element 6 have an identical but asymmetrical cross-sectional geometry.
  • This variant is to form an electrical connector according to the invention (for example in the following 27 shown connector 10) particularly preferred.
  • the outer conductor contact element 2 has different compensation geometries along the longitudinal axis L, each of which is designed as a material recess 8 .
  • a material deformation 9 that widens the cross section can also be provided, as in 9 implied.
  • the asymmetry is compensated, for example, by the four material recesses 8 in the outer conductor contact element 2 in the area of the asymmetry of the inner conductor contact elements 5, 6.
  • the axial length of the material recesses 8 is different on both sides of the outer conductor contact element 2.
  • the Figures 16 to 18 show a fifth embodiment of the invention, wherein one of the embodiment of Figures 4 to 6 comparable configurations of the inner conductor contact elements 5, 6 is provided.
  • the fifth exemplary embodiment is intended to illustrate that instead of an inductively acting compensation geometry (e.g. a material recess 8) adjacent to the capacitively acting inner conductor contact element, a capacitively acting compensation geometry adjacent to the more inductively acting inner conductor contact element (in the Figures 16 to 18 the second inner conductor contact element 6) can be provided.
  • the corresponding compensation geometry can run in the outer conductor contact element 2 along the inner surface 7 of the outer conductor contact element 2 adjoining the second inner conductor contact element 6 and can be designed as a cross-sectionally tapering material deformation 11 .
  • the Figures 19 to 21 show a sixth embodiment of the invention.
  • a compensating geometry can also be realized by a material composite of different materials.
  • the dielectric 3 is formed in FIGS. 19 to 21 as a material composite of two materials 3.1, 3.2, each with a different permittivity.
  • FIG. 22 to 24 Another embodiment of the invention is in the Figures 22 to 24 shown. Based on Figures 22 to 24 should be made clear that a compensation geometry for a configuration of a pair of inner conductor contact element in the way as already in the Figures 16 to 18 shown also by an additional material 12, so for example another metal layer within the outer conductor contact element 2 can be realized.
  • the distance between the inner conductor contact elements 5, 6 of the inner conductor contact element pair 4 can also be reduced.
  • the electromagnetic field lines can advantageously be bundled.
  • FIGS Figures 1 to 24 and in 27 shown show an outer conductor contact element 2 and two inner conductor contact element pairs 4 for another electrical connector.
  • the arrangement of the two inner conductor contact element pairs 4 corresponds to a so-called star quad.
  • a connector according to the invention can in principle have exactly one inner conductor contact element pair 4, as shown in FIGS Figures 1 to 24 and in 27 shown. In principle, however, any number of inner conductor contact element pairs 4 can be provided. For example, two, three, four or even more inner conductor contact element pairs 4 can be provided.
  • Inner conductor contact elements 5, 6 shown are each identical, but asymmetrically designed and distributed around the longitudinal axis L or around the axis of symmetry of the outer conductor contact element 2.
  • the outer conductor contact element 2 has a suitable compensation geometry (material recesses 8 and additional material 12 in order to ensure symmetrical operation overall.
  • a material additive 12 can also be formed in one piece in the outer conductor contact element 2 .
  • a shielding element electrically connected to the outer conductor contact element 2 can run along the longitudinal axis L between the inner conductor contact element pairs 4 (not shown).
  • the connector components 2, 3, 4 can also be referred to as electrical connectors within the scope of the invention.
  • the electrical connector 10 of 27 a single inner conductor contact element pair 4 on.
  • a plurality of pairs of inner conductor contact elements 4 can also be provided.
  • the inner conductor contact elements 5, 6 of the common inner conductor contact element pair 4 are each identical, but formed asymmetrically. Only because of the compensating geometry according to the invention can the illustrated electrical connector 10 be advantageously suitable for use in high-frequency technology.
  • the dielectric 3 and the outer conductor contact element 2 have, for example, corresponding compensation geometries (material recesses 8 and material additives 12) in order to ensure a symmetrical signal transmission through the electrical plug connector 10 overall.
  • the dielectric 3 and/or the inner conductor contact element pair 4 have a comparatively complex geometry
  • iterative simulations can be provided in order to minimize a DC component in the differential signal transmission and to create a suitable compensation geometry 8, 9, 11, 12 to determine.
  • a first method step S1 the impedance of the first (hypothetical) asymmetrical transmission system can be determined, which uses the first inner conductor contact element 5 for signal transmission and the outer conductor contact element 2 for reference transmission, while the second inner conductor contact element 6 is not assigned a fixed potential and thus has a floating potential.
  • a second (hypothetical) asymmetrical transmission system can be determined, which uses the second inner conductor contact element 6 for the signal line and the outer conductor contact element 2 for the reference line, while the first inner conductor contact element 5 is not assigned a fixed potential and thus has a floating potential.
  • a compensation geometry 8, 9, 11, 12 in the outer conductor contact element 2, in the dielectric 3 and/or in the inner conductor contact element pair 4 can be determined and/or modified with the aim of matching the impedances of the two asymmetrical transmission systems to one another.
  • the method steps S1, S2, S3 can then be repeated or the impedances of the asymmetrical transmission systems can be newly determined and the compensation geometry(s) 8, 9, 11, 12 can be further modified if necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Claims (15)

  1. Connecteur enfichable électrique (10) pour la transmission différentielle de signaux, comportant un élément de contact de conducteur extérieur (2), un diélectrique (3) et au moins une paire d'éléments de contact de conducteur intérieur (4) pour la transmission différentielle de signaux, dans lequel le diélectrique (3) s'étend le long d'un axe longitudinal (L) à travers l'élément de contact de conducteur extérieur (2) et dans lequel la paire d'éléments de contact de conducteur intérieur (4) comprend un premier élément de contact de conducteur intérieur (5) et un deuxième élément de contact de conducteur intérieur (6) qui s'étendent le long de l'axe longitudinal (L) à travers le diélectrique (3), caractérisé
    a) en ce que l'élément de contact de conducteur extérieur (2) et/ou le diélectrique (3) présentent une géométrie de compensation (8, 9, 11, 12) pour compenser une asymétrie de la paire d'éléments de contact de conducteur intérieur (4) par rapport à l'axe longitudinal (L), et/ou
    b) que la paire d'éléments de contact de conducteur intérieur (4) présente une géométrie de compensation (8, 9, 11, 12) pour compenser une asymétrie de l'élément de contact de conducteur extérieur (2) et/ou du diélectrique (3) par rapport à l'axe longitudinal (L).
  2. Connecteur enfichable électrique (10) selon la revendication 1,
    caractérisé en ce que la géométrie de compensation (8, 9, 11, 12) est configurée pour harmoniser entre elles l'impédance d'un premier système de transmission asymétrique et l'impédance d'un deuxième système de transmission asymétrique, pour le premier système de transmission asymétrique, seul le premier élément de contact de conducteur intérieur (5) étant prévu pour le câble de signalisation et l'élément de contact de conducteur extérieur (2) pour le câble de référence, et pour le deuxième système de transmission asymétrique, seul le deuxième élément de contact de conducteur intérieur (6) étant prévu pour le câble de signalisation et l'élément de contact de conducteur extérieur (2) pour le câble de référence.
  3. Connecteur enfichable électrique (10) selon la revendication 1 ou 2,
    caractérisé en ce que la géométrie de compensation (8, 9, 11, 12) s'étend parallèlement à l'axe longitudinal.
  4. Connecteur enfichable électrique (10) selon une des revendications 1 à 3,
    caractérisé en ce que la zone axiale le long de l'axe longitudinal (L) le long de laquelle la géométrie de compensation (8, 9, 11, 12) s'étend est plus courte, aussi longue ou plus longue que la zone axiale le long de l'axe longitudinal (L) le long de laquelle l'asymétrie s'étend, la zone axiale le long de laquelle la géométrie de compensation (8, 9, 11, 12) s'étend étant entièrement, partiellement ou pas du tout superposée avec la zone axiale le long de laquelle l'asymétrie s'étend.
  5. Connecteur enfichable électrique (10) selon une des revendications 1 à 4,
    caractérisé en ce que la géométrie de compensation se présente sous la forme d'un évidement de matériau (8) et/ou d'un ajout de matériau (12) et/ou d'une déformation de matériau (9, 11) et/ou d'une association de différents matériaux (3.1, 3.2).
  6. Connecteur enfichable électrique (10) selon une des revendications 1 à 5,
    caractérisé en ce que le diélectrique (3) est constitué d'au moins un élément solide.
  7. Connecteur enfichable électrique (10) selon une des revendications 1 à 6,
    caractérisé en ce que le premier élément de contact de conducteur intérieur (5) et le deuxième élément de contact de conducteur intérieur (6) présentent une géométrie transversale symétrique identique, les éléments de contact de conducteur intérieur (5, 6) étant disposés de façon asymétrique à l'intérieur de l'élément de contact de conducteur extérieur (2) et/ou à l'intérieur du diélectrique (3).
  8. Connecteur enfichable électrique (10) selon une des revendications 1 à 6,
    caractérisé en ce que le premier élément de contact de conducteur intérieur (5) et le deuxième élément de contact de conducteur intérieur (6) présentent une géométrie transversale asymétrique identique.
  9. Connecteur enfichable électrique (10) selon une des revendications 1 à 8,
    caractérisé en ce que le premier élément de contact de conducteur intérieur (5) est plus proche d'une surface intérieure (7) adjacente de l'élément de contact de conducteur extérieur (2) que le deuxième élément de contact de conducteur intérieur (6), la géométrie de compensation
    a) courant dans l'élément de contact de conducteur extérieur (2) le long de la surface intérieure (7) de l'élément de contact de conducteur extérieur (2) adjacente au premier élément de contact de conducteur intérieur (5) et étant configurée comme un évidement de matériau (8) et/ou comme une déformation de matériau (9) élargissant la section transversale, et/ou
    b) courant dans le diélectrique (3) entre le premier élément de contact de conducteur intérieur (5) et la surface intérieure (7) adjacente de l'élément de contact de conducteur extérieur (2) et étant configurée comme un évidement de matériau (8).
  10. Connecteur enfichable électrique (10) selon une des revendications 1 à 9,
    caractérisé en ce que le deuxième élément de contact de conducteur intérieur (6) est plus proche d'une surface intérieure (7) adjacente de l'élément de contact de conducteur extérieur (2) que le premier élément de contact de conducteur intérieur (5), la géométrie de compensation courant dans l'élément de contact de conducteur extérieur (2) le long de la surface intérieure (7) de l'élément de contact de conducteur extérieur (2) adjacente au deuxième élément de contact de conducteur intérieur (6) et étant configurée comme un ajout de matériau (12) et/ou comme une déformation de matériau (11) rétrécissant la section transversale.
  11. Connecteur enfichable électrique (10) selon une des revendications 1 à 10,
    caractérisé en ce que la géométrie de compensation (8, 9, 11, 12) est configurée pour réduire la distance entre les éléments de contact de conducteur intérieur (5, 6) de la paire d'éléments de contact de conducteur intérieur (4).
  12. Connecteur enfichable électrique (10) selon une des revendications 1 à 11,
    caractérisé en ce qu'un élément de blindage relié à l'élément de contact de conducteur extérieur (2) s'étend le long de l'axe longitudinal (L) entre au moins deux paires d'éléments de contact de conducteur intérieur (4).
  13. Connecteur enfichable électrique (10) selon une des revendications 1 à 12,
    caractérisé en ce qu'il est prévu exactement une paire d'éléments de contact de conducteur intérieur (4), deux paires d'éléments de contact de conducteur intérieur (4) ou davantage, trois paires d'éléments de contact de conducteur intérieur (4) ou davantage ou quatre paires d'éléments de contact de conducteur intérieur (4) ou encore davantage.
  14. Procédé de fabrication d'un connecteur enfichable électrique (10) pour la transmission différentielle de signaux, selon lequel le connecteur enfichable électrique (10) comporte un élément de contact de conducteur extérieur (2), un diélectrique (3) et au moins une paire d'éléments de contact de conducteur intérieur (4) pour la transmission différentielle de signaux, selon lequel le diélectrique (3) s'étend le long d'un axe longitudinal (L) à travers l'élément de contact de conducteur extérieur (2) et selon lequel la paire d'éléments de contact de conducteur intérieur (4) comprend un premier élément de contact de conducteur intérieur (5) et un deuxième élément de contact de conducteur intérieur (6) qui s'étendent le long de l'axe longitudinal (L) à travers le diélectrique (3), caractérisé
    a) en ce que pour l'élément de contact de conducteur extérieur (2) et/ou pour le diélectrique (3) est déterminée une géométrie de compensation (8, 9, 11, 12) pour compenser une asymétrie de la paire d'éléments de contact de conducteur intérieur (4) par rapport à l'axe longitudinal (L), et/ou
    b) que pour la paire d'éléments de contact de conducteur intérieur (4) est déterminée une géométrie de compensation (8, 9, 11, 12) pour compenser une asymétrie de l'élément de contact de conducteur extérieur (2) et/ou du diélectrique (3) par rapport à l'axe longitudinal (L).
  15. Procédé selon la revendication 14,
    caractérisé en ce que la géométrie de compensation (8, 9, 11, 12) est déterminée en harmonisant l'impédance d'un premier système de transmission asymétrique avec l'impédance d'un deuxième système de transmission asymétrique, pour le premier système de transmission asymétrique, seul le premier élément de contact de conducteur intérieur (5) étant utilisé pour le câble de signalisation et l'élément de contact de conducteur extérieur (2) pour le câble de référence, et pour le deuxième système de transmission asymétrique, seul le deuxième élément de contact de conducteur intérieur (6) étant utilisé pour le câble de signalisation et l'élément de contact de conducteur extérieur (2) pour le câble de référence.
EP20160092.1A 2020-02-28 2020-02-28 Connecteur enfichable électrique et procédé de fabrication d'un connecteur enfichable électrique Active EP3872937B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20160092.1A EP3872937B1 (fr) 2020-02-28 2020-02-28 Connecteur enfichable électrique et procédé de fabrication d'un connecteur enfichable électrique
US17/176,556 US11545789B2 (en) 2020-02-28 2021-02-16 Electrical plug-in connector and method for producing an electrical plug-in connector
CN202110221012.7A CN113328278A (zh) 2020-02-28 2021-02-26 电插入式连接器和用于制造电插入式连接器的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20160092.1A EP3872937B1 (fr) 2020-02-28 2020-02-28 Connecteur enfichable électrique et procédé de fabrication d'un connecteur enfichable électrique

Publications (2)

Publication Number Publication Date
EP3872937A1 EP3872937A1 (fr) 2021-09-01
EP3872937B1 true EP3872937B1 (fr) 2022-02-23

Family

ID=69742948

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20160092.1A Active EP3872937B1 (fr) 2020-02-28 2020-02-28 Connecteur enfichable électrique et procédé de fabrication d'un connecteur enfichable électrique

Country Status (3)

Country Link
US (1) US11545789B2 (fr)
EP (1) EP3872937B1 (fr)
CN (1) CN113328278A (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022202848A1 (de) * 2022-03-23 2023-09-28 Yamaichi Electronics Deutschland Gmbh Kontaktelement, Kontaktelementsystem und Steckverbinder

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012015581A1 (de) * 2012-08-07 2014-02-13 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Steckverbinder
US9306312B2 (en) * 2012-10-29 2016-04-05 Carlisle Interconnect Technologies, Inc. High density sealed electrical connector with multiple shielding strain relief devices
DE202013006297U1 (de) * 2013-07-11 2013-07-25 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Steckverbinder
JP6036669B2 (ja) * 2013-12-06 2016-11-30 日立金属株式会社 差動信号用ケーブル及びその製造方法
DE202015000751U1 (de) * 2015-01-30 2015-03-06 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Steckverbinderanordnung mit Kompensationscrimp
DE202015000753U1 (de) * 2015-01-30 2015-02-16 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Steckverbinderanordnung mit Hülsenteil
EP3121909B1 (fr) * 2015-07-21 2018-09-19 Delphi Technologies, Inc. Connecteur électrique à impédance réglée
EP3319182B1 (fr) * 2016-11-04 2023-01-04 Rosenberger Hochfrequenztechnik GmbH & Co. KG Système de connecteur à fiches
EP3444907A1 (fr) * 2017-08-16 2019-02-20 Rosenberger Hochfrequenztechnik GmbH & Co. KG Système de connecteur à fiches
JP6988446B2 (ja) * 2017-12-21 2022-01-05 株式会社オートネットワーク技術研究所 コネクタ
DE102018102564A1 (de) * 2018-02-06 2019-08-08 Te Connectivity Germany Gmbh Elektrische Ferrule, elektrische Verbindungseinrichtung, sowie Verfahren zum Konfektionieren eines elektrischen Kabels
DE102018104253B4 (de) * 2018-02-26 2019-12-05 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Steckverbinderanordnung

Also Published As

Publication number Publication date
CN113328278A (zh) 2021-08-31
US20210273380A1 (en) 2021-09-02
EP3872937A1 (fr) 2021-09-01
US11545789B2 (en) 2023-01-03

Similar Documents

Publication Publication Date Title
EP2629377B1 (fr) Câble pour la transmission de signaux
EP2523275B1 (fr) Câble blindé et dispositif de fabrication d'un tel câble
EP3930111A1 (fr) Connecteur enfichable électrique et agencement de raccordement électrique
EP3869631A1 (fr) Adaptateur de connecteur enfichable de données pour un transfert de données et prise de véhicule automobile pourvue d'adaptateur de connecteur enfichable de données
EP3872937B1 (fr) Connecteur enfichable électrique et procédé de fabrication d'un connecteur enfichable électrique
EP4176490B1 (fr) Élément de contact à conducteur externe, connecteur à fiche à angle droit et procédé de production d'un connecteur à fiche à angle droit
DE202005009962U1 (de) Isolierteil für HF-Steckverbinder, insbesondere FAKRA-Steckverbinder
DE102014223119A1 (de) Datenkabel sowie Verfahren zur Herstellung eines Datenkabels
EP3847721A1 (fr) Dispositif de distribution électrique, procédé de montage et système de transmission de signaux
EP3485540B1 (fr) Câble muni d'un adaptateur
EP4097799B1 (fr) Ensemble connecteur enfichable et procédé de fabrication d'un ensemble connecteur enfichable
DE102020119282B4 (de) Kontaktvorrichtung
EP3866280B1 (fr) Connecteur enfichable de câble de données pour un transfert de données
EP3930104A1 (fr) Module de câbles extérieurs, connecteur enfichable électrique et agencement de raccordement électrique
WO2020169715A1 (fr) Cassette à ressort en spirale
EP3867981A1 (fr) Connecteur enfichable pour des débits élevés de données
WO2019223958A1 (fr) Ensemble de conducteurs et procédé de fabrication
DE102019108886A1 (de) Vorkonfektioniertes elektrisches Kabel, Steckverbinderanordnung, sowie Verfahren und Vorrichtung zur Konfektionierung eines elektrischen Kabels
EP4068530A1 (fr) Connecteur de carte de circuit imprimé
EP3905443A1 (fr) Élément de contact de conducteur extérieur, agencement de connecteur enfichable et procédé de montage pour un agencement de connecteur enfichable
EP3930112A1 (fr) Connecteur enfichable électrique et procédé de montage d'un connecteur enfichable électrique
WO2024200243A1 (fr) Élément d'étanchéité de boîtier, partie de boîtier et connecteur enfichable
EP4435981A1 (fr) Ensemble boîtier pour un connecteur enfichable et procédé de montage d'un connecteur enfichable
EP3660986A1 (fr) Procédé et dispositif de surmoulage de câble destinés au montage d'un connecteur enfichable de câble
EP3829002A1 (fr) Connecteur de modules électriques, connexion de modules électriques et agencement de modules

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H01R 24/56 20110101ALN20211013BHEP

Ipc: H01R 24/44 20110101ALI20211013BHEP

Ipc: H01R 13/6474 20110101ALI20211013BHEP

Ipc: H01R 13/6476 20110101ALI20211013BHEP

Ipc: H01R 13/6477 20110101AFI20211013BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01R 24/56 20110101ALN20211102BHEP

Ipc: H01R 24/44 20110101ALI20211102BHEP

Ipc: H01R 13/6474 20110101ALI20211102BHEP

Ipc: H01R 13/6476 20110101ALI20211102BHEP

Ipc: H01R 13/6477 20110101AFI20211102BHEP

INTG Intention to grant announced

Effective date: 20211203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020000661

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1471163

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220523

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220524

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020000661

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

26N No opposition filed

Effective date: 20221124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 5

Ref country code: GB

Payment date: 20240220

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20200228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240226

Year of fee payment: 5

Ref country code: IT

Payment date: 20240222

Year of fee payment: 5

Ref country code: FR

Payment date: 20240226

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223