EP3872299B1 - Machine de forage à bras flexible supportée par un robot pouvant excaver un tunnel avec une section transversale arbitraire - Google Patents
Machine de forage à bras flexible supportée par un robot pouvant excaver un tunnel avec une section transversale arbitraire Download PDFInfo
- Publication number
- EP3872299B1 EP3872299B1 EP19875605.8A EP19875605A EP3872299B1 EP 3872299 B1 EP3872299 B1 EP 3872299B1 EP 19875605 A EP19875605 A EP 19875605A EP 3872299 B1 EP3872299 B1 EP 3872299B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cutterhead
- robot
- arm
- cylinder
- robot arm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 claims description 31
- 238000007599 discharging Methods 0.000 claims description 13
- 238000009412 basement excavation Methods 0.000 description 29
- 230000036544 posture Effects 0.000 description 27
- 238000010586 diagram Methods 0.000 description 11
- 239000011435 rock Substances 0.000 description 10
- 238000010276 construction Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/06—Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
- E21D9/08—Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining with additional boring or cutting means other than the conventional cutting edge of the shield
- E21D9/087—Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining with additional boring or cutting means other than the conventional cutting edge of the shield with a rotary drilling-head cutting simultaneously the whole cross-section, i.e. full-face machines
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/06—Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
- E21D9/08—Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining with additional boring or cutting means other than the conventional cutting edge of the shield
- E21D9/0875—Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining with additional boring or cutting means other than the conventional cutting edge of the shield with a movable support arm carrying cutting tools for attacking the front face, e.g. a bucket
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/06—Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
- E21D9/08—Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining with additional boring or cutting means other than the conventional cutting edge of the shield
- E21D9/0874—Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining with additional boring or cutting means other than the conventional cutting edge of the shield with rotary drilling heads having variable diameter
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/06—Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
- E21D9/093—Control of the driving shield, e.g. of the hydraulic advancing cylinders
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/10—Making by using boring or cutting machines
- E21D9/11—Making by using boring or cutting machines with a rotary drilling-head cutting simultaneously the whole cross-section, i.e. full-face machines
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/10—Making by using boring or cutting machines
- E21D9/11—Making by using boring or cutting machines with a rotary drilling-head cutting simultaneously the whole cross-section, i.e. full-face machines
- E21D9/116—Making by using boring or cutting machines with a rotary drilling-head cutting simultaneously the whole cross-section, i.e. full-face machines by means of non-concentric rotary heads
- E21D9/117—Making by using boring or cutting machines with a rotary drilling-head cutting simultaneously the whole cross-section, i.e. full-face machines by means of non-concentric rotary heads mounted for orientating or sideways shifting relative to the frame
Definitions
- the present invention relates to the field of rock tunnel boring machines (TBMs) for use in tunnel construction, and in particular to a robot-supported flexible-arm boring machine (Robot-TBM) capable of excavating a tunnel with any cross-section, which realizes the excavation of a tunnel with any cross-sectional shape within a certain range.
- TBMs rock tunnel boring machines
- Robot-TBM robot-supported flexible-arm boring machine
- Rock tunnel boring machines are tunnel excavation equipment integrating multidisciplinary techniques such as optical, mechanical, electrical and hydraulic techniques, which play an important role in the construction of projects such as hydraulic tunnels, railway tunnels, urban rail transit tunnels and comprehensive pipe galleries.
- boring machines mainly utilize the rotation of a cutterhead for rock breaking and excavation
- excavation cross-sections of the boring machines are mostly circular, so the boring machines are difficult to adapt to tunnel projects with the requirements for horseshoe-shaped, rectangular-like and other diverse cross-sections.
- the boring machines may cooperate with other apparatuses in excavation to implement rectangular, horseshoe-shaped and other specially-shaped cross-sections
- these specially-shaped cross-sections are all applied to the excavation of soft ground tunnels, and are rarely reported in construction cases in rock tunnel engineering.
- the excavation cross-section of the tunnel boring machines is determined, it is difficult to change again, the excavation cross-section thereof is single in shape and is limited in application range, so that it is hard to satisfy the requirements for different cross-sections of different projects and even for different cross-sections of the same project, and an idle state of the tunnel boring machines after project completion occurs occasionally.
- cutterheads of the tunnel boring machines are all fixed, the cutterheads can only be pitched and yawed in a small range to adjust a tunneling direction, and the shape of the excavation face is limited.
- the excavation cross-section of the tunnel boring machines is determined, it is difficult to change again, the excavation cross-section thereof is single in shape and poor in excavation flexibility, and is limited in application range, so that it is hard to satisfy the requirements for different cross-sections of different projects and even for different cross-sections of the same project.
- a new boring machine needs to be redesigned to perform excavation with cross-sections in different shapes, causing that the cost is high, the period is long, and the lack of flexibility under complex geological conditions influences the construction progress.
- the boring machine works with a single cutterhead, limiting the working efficiency, and the single cutterhead structure may generate a large reactive torque during excavation, so that the boring machine always works under the action of a large stress.
- the strength of the boring machine is improved mainly by increasing the size and the thickness of key components such as a main beam thereof, wasting a large amount of manpower and material resources.
- a robot-supported multi-cutterhead torque-coupled boring machine capable of forming any cross-section is designed, which realizes excavation of a large cross-section in any shape while using coupled torques of multiple cutterheads to reduce a stress of a key component.
- Patent document US 5 890 771 A describes a tunnel boring machine which has a positioning means to rotate the support structure relative to the beam structure so as to move the head section both laterally and vertically, and also to correct roll orientation.
- Patent document US 5 915 790 A discloses a tunnel boring machine for use in excavation of a tunnel of an oval or a circular cross-section shape, which has an inclined cutterhead. It simplest structure compared to similar machines, and which is capable of reducing a friction force generated between the tunnel wall and a support member.
- Patent document JP H06 173575 A discloses an excavator for oval cross-section tunnel specially adapted to the excavating of tunnels with an inclination.
- the present invention provides a novel robot-supported multi-cutterhead boring machine capable of forming any cross-section, which realizes the excavation with a large cross-section in any shape while using coupled torques of multiple cutterheads to reduce a stress of a key component.
- a technical solution adopted by the present invention is as follows: a robot-supported flexible-arm boring machine capable of excavating a tunnel with any cross-section, comprising a cutterhead and cutter system and a main beam, a rear portion of the main beam being connected to a front portion of a rear gripper by means of a thrust cylinder, and a rear portion of the rear gripper being connected to a rear support, wherein a front portion of the main beam is flexibly connected to the cutterhead and cutter system by means of a robot.
- the cutterhead and cutter system comprises a cutterhead, and the cutterhead and cutter system is connected to a front portion of the robot by means of a cutterhead torque resisting gripper system.
- the cutterhead and cutter system comprises two cutterheads, which are arranged at the front portion of the robot in parallel.
- the cutterhead and cutter system comprises at least three cutterheads, and the cutterhead and cutter system is connected to the front portion of the robot by means of the cutterhead torque resisting gripper system.
- the robot comprises a cutterhead posture adjusting mechanism and a robot arm, the cutterhead and cutter system is provided on the cutterhead posture adjusting mechanism in parallel, the robot arm at the rear portion of the cutterhead posture adjusting mechanism is connected to the main beam, and the cutterhead torque resisting gripper system is provided on the cutterhead posture adjusting mechanism.
- the cutterhead posture adjusting mechanism comprises a connecting seat, a front end of the connecting seat is respectively movably connected to a number of cutterhead and cutter sub-systems by means of joint bearings, and pitch cylinders and yaw cylinders are provided outside the connecting seat, with a pitch cylinder and a yaw cylinder being provided between each cutterhead and cutter sub-system and the connecting seat.
- the cutterhead torque resisting gripper system comprises grippers, gripper cylinders and a support seat, wherein the support seat is provided on the cutterhead posture adjusting mechanism, and the grippers are connected to the support seat by means of the gripper cylinders.
- the robot arm is a serial robot arm.
- the serial robot arm comprises a large robot arm, a small robot arm and a rotating base, wherein the rotating base is provided on the main beam, a front end of the small robot arm is fixedly connected to the connecting seat, a rear end of the large robot arm is hinged to the rotating base by means of a movement joint, and the large robot arm is hinged to the small robot arm; and a telescopic cylinder is provided between the rotating base and the large robot arm and between the large robot arm and the small robot arm respectively.
- the robot arm is a serial-parallel robot arm, the serial-parallel robot arm comprising a rotating frame, a moving frame and a sliding rail, wherein the rotating frame is provided at an upper portion of the moving frame, one side of the moving frame matches the sliding rail, and the sliding rail is provided on the main beam; a first cylinder and a third cylinder are provided on the rotating frame in parallel, the first cylinder is connected to a second cylinder in series by means of a serial joint I, and the third cylinder is connected to a fourth cylinder in series by means of a serial joint II; and the second cylinder and the fourth cylinder are connected to the cutterhead posture adjusting mechanism by means of the connecting seat.
- a muck discharging system is provided below the cutterhead and cutter system, a front end of the muck discharging system extends to a position below the cutterhead and cutter system, and a rear end thereof is connected to a belt conveyor.
- the cutterhead and cutter system comprises a main cutterhead and a number of secondary cutterheads, wherein an outer diameter of the main cutterhead is not smaller than that of the secondary cutterheads, and the secondary cutterheads are provided outside the main cutterhead.
- the hard rock excavating cutterheads are configured, a flexible structure and a large conversion range of cross-sections are achieved by controlling the positions and the postures of the cutterheads supported by the intelligent serial robot, so that the excavation of a rock tunnel with any cross-section can be really realized.
- the robot (in the form such as series connection, parallel connection, or serial-parallel connection)-supported flexible-cutterhead excavation system of the present invention may excavate a cross-section in any shape; the structure of a combined cutterhead and cutter system with coupled torques of multiple cutterheads offsets a stress generated during working, optimizing the structure and reducing the cost.
- a novel muck discharging system (including a muck scraping and suctioning system in any form) located at a bottom of a tunnel may clear and output rock muck generated by the boring machine.
- the flexible-arm boring machine (Robot-TBM) of the present invention lies in that a number of groups of hydraulic cylinders are elastically connected between the cutterheads of the boring machine and a support girder, and distances between the cutterheads and the girder change as the excavation position changes.
- Robot-TBM flexible-arm boring machine
- the cutterhead and cutter system 1 comprises two cutterheads, which are arranged at the front portion of the robot 4 in parallel.
- the two cutterheads are respectively a cutterhead I and a cutterhead II.
- the cutterhead I and the cutterhead II are provided at a front portion of a cutterhead posture adjusting mechanism 3 in parallel, and a rear portion of the cutterhead posture adjusting mechanism 3 is connected to the main beam 6 by means of a robot arm.
- the cutterhead I and the cutterhead II are both complete and independently operable cutterhead systems as shown in FIG.
- the robot 4 may be in a serial connection structure form, a parallel connection structure form or a serial-parallel connection structure form selected according to different engineering requirements, and may plan multi-degree-of-freedom movements of the cutterheads by means of off-line preprogramming, manual teaching and other control methods.
- the cutterhead posture adjusting mechanism 3 in the present invention may be regarded as a dexterous robot hand and is mainly configured to drive the cutterheads to rotate and adjust postures of the cutterheads.
- the robot arm is a robot body, may be in a serial connection form, a parallel connection form or a serial-parallel connection form as required in the present invention, is mainly used for adjusting the positions of the cutterhead systems, and may realize the multi-degree-of-freedom movements of the cutterheads and excavation of different cross-sections by using preprogramming, human-machine interaction, or other control methods.
- the other structures are the same as those in Embodiment 1.
- the cutterhead and cutter system 1 comprises at least three cutterheads, and the cutterhead and cutter system 1 is connected to the front portion of the robot 4 by means of a cutterhead torque resisting gripper system 3.
- the front portion of the robot 4 is provided with the cutterhead torque resisting gripper system 3.
- the robot 4 comprises a cutterhead posture adjusting mechanism 3 and a robot arm, the cutterhead and cutter system 1 is provided on the cutterhead posture adjusting mechanism 3 in parallel, the robot arm at the rear portion of the cutterhead posture adjusting mechanism 3 is connected to the main beam 6, and the cutterhead torque resisting gripper system 3 is provided on the cutterhead posture adjusting mechanism 3.
- a number of cutterhead and cutter sub-systems 1 form a combined cutterhead system, the size and power of each cutterhead in the combined cutterhead are adjusted according to the desired size of cross-section and working torque, the combined cutterheads are uniformly mounted on a cutterhead support seat, and the robot controls the movements and posture adjustments of the cutterheads.
- 5 to 7 illustrate schematic diagrams of arrangement forms and directions of rotation of three cutterheads, four cutterheads and five cutterheads, respectively, in which a reactive torque generated during boring is offset by adjusting the directions of rotation of the different cutterheads.
- the excavating cutterheads of the boring machine in the form of multi-cutterhead coupling may be expanded in such a manner that torques are mutually coupled and offset.
- the cutterhead posture adjusting mechanism 3 comprises a connecting seat 204, a front end of the connecting seat 204 is respectively movably connected to a number of cutterhead and cutter sub-systems 1 by means of joint bearings 201, and pitch cylinders 202 and yaw cylinders 203 are provided outside the connecting seat 204, with a pitch cylinder 202 and a yaw cylinder 203 being provided between each cutterhead and cutter sub-system 1 and the connecting seat 204.
- the pitch cylinder performs up-down pitching actions of the cutterhead, and the yaw cylinder performs left-right yawing actions of the cutterhead.
- the pitch cylinder 302 is arranged perpendicular to the yaw cylinder 303.
- a rear portion of each cutterhead is provided with a cutterhead main driving structure, and the pitch cylinder and the yaw cylinder of the cutterhead posture adjusting mechanism 3 are perpendicular and orthogonal to each other to adjust the posture of the cutterhead.
- the cutterhead torque resisting gripper system 3 comprises grippers 301, gripper cylinders 302 and a support seat 303, wherein the support seat 303 is provided on the cutterhead posture adjusting mechanism 3, and the grippers 301 are connected to the support seat 303 by means of the gripper cylinders 302.
- the support seat 303 is provided on the connecting seat 204 of the cutterhead posture adjusting mechanism 3.
- the cutterhead torque resisting gripper system 3 is bracing devices fixed inside the cutterhead, which are symmetrically arranged on two sides of the cutterhead, the grippers 301 may be attached to a tunnel wall, the gripper cylinders 302 are telescopic cylinders and may control extension and retraction of the gripper, the number of the gripper cylinders 302 is two, the two gripper cylinders 302 may be independently controlled, and the support seat 303 is a cylinder support seat located inside the cutterhead.
- the cutterhead torque resisting gripper system 3 is started.
- a plurality of gripper cylinders 302 may be provided as required, and the extension of different gripper cylinders 302 may be controlled as required.
- the robot arm of the present invention is a serial robot arm 40.
- the serial robot arm 40 comprises a large robot arm 402, a small robot arm 405 and a rotating base 403, wherein the rotating base 403 is provided on the main beam 6, a front end of the small robot arm 405 is fixedly connected to the connecting seat 204, a rear end of the large robot arm 402 is hinged to the rotating base 403 by means of a movement joint 401, and the large robot arm 402 is hinged to the small robot arm 405; and a telescopic cylinder 404 is provided between the rotating base 403 and the large robot arm 402 and between the large robot arm 402 and the small robot arm 405 respectively.
- the serial robot arm 4 is a mechanical arm body of a serial robot, wherein the large robot arm 401 is a main force receiving mechanism, the telescopic cylinders 402 are configured to achieve the movement of the robot arm, the movement joint 404 is a rotary joint of the robot, the rotating base 403 is fixed to the main beam to achieve a rotating movement of the robot, and multi-degree-of-freedom movements of the cutterheads may be realized by means of preprogramming, human-machine interaction or other control methods.
- the robot arm of the present invention is a serial-parallel robot arm 42.
- the serial-parallel robot arm 42 comprises a rotating frame 421, a moving frame 422 and a sliding rail 423, wherein the rotating frame 421 is provided at an upper portion of the moving frame 422, one side of the moving frame 422 matches the sliding rail 423, and the sliding rail 423 is provided on the main beam 6; a first cylinder 425 and a third cylinder 428 are provided on the rotating frame 421 in parallel, the first cylinder 425 is connected to a second cylinder 427 in series by means of a serial joint I 426, and the third cylinder 428 is connected to a fourth cylinder 420 in series by means of a serial joint II 429; and the second cylinder 427 and the fourth cylinder 420 are connected to the cutterhead posture adjusting mechanism 3 by means of the connecting seat 204.
- the moving frame 422 is driven by a drive 424.
- a plurality of cylinders such as three, four or five cylinders, may be provided on the rotating frame 301 in parallel as required, facilitating better control over the cutterhead and cutter system.
- two cylinders are connected in parallel on the rotating frame 301, so that the system is easier and is convenient to control.
- the second cylinder 427 and the fourth cylinder 420 are connected to the cutterhead posture adjusting mechanism 3 by means of the connecting seat 204.
- the cutterhead posture adjusting mechanism 3 serves as a dexterous hand of the serial-parallel robot and is mainly used for adjusting the postures of the cutterheads.
- the serial-parallel robot arm 42 serves as the robot body, wherein the rotating frame 421 achieves the rotating movement of the robot, and the moving frame 422 achieves the movement of the robot along the sliding rail 423; the first cylinder 425, the serial joint I 426 and the second cylinder 427, and the third cylinder 428, the serial joint II 429 and the fourth cylinder 420 respectively form two serial mechanisms of the robot; and the first cylinder 425 and the second cylinder 428 are connected in parallel on the rotating frame, so that the multi-degree-of-freedom movements of the cutterheads can be achieved by means of preprogramming, human-machine interactive teaching or other methods to achieve different excavation cross-sections.
- the serial-parallel robot arm 42 of the present invention drives the cutterheads to move back and forth through the extension and retraction of the first cylinder 425 and the third cylinder 428, achieves the up-down movements of the cutterheads through the movement of the moving frame 422 along the sliding rail, drives the cutterheads to rotate through the rotation of the rotating frame 421 itself, and adjusts excavation angles of the cutterheads through the extension and retraction of the second cylinder 427 or the fourth cylinder 420.
- a muck discharging system 5 is provided below the cutterhead and cutter system 1, a front end of the muck discharging system 5 extends to a position below the cutterhead and cutter system 1, and a rear end thereof is connected to a belt conveyor 10.
- the muck discharging system 5 is a belt conveyor muck discharging system or a screw conveyor muck discharging system, the belt conveyor 10 is provided at a tail portion of the muck discharging system, and the muck discharging system 5 delivers muck below the cutterheads 1 to the outside of the boring machine and conveys the muck out.
- the other structures are the same as those in Embodiment 1.
- the cutterhead and cutter system 1 of the present invention comprises a main cutterhead 101 and a number of secondary cutterheads 102, wherein an outer diameter of the main cutterhead 101 is not smaller than that of the secondary cutterheads 102, and the secondary cutterheads 102 are provided outside the main cutterhead 101.
- a main cutterhead and two secondary cutterheads are provided, as shown in FIG. 3 , the two secondary cutterheads are provided outside the main cutterhead, a torque generated by the main cutterhead is offset by adjusting the rotating speeds and the directions of rotation of the secondary cutterheads, and if the torque cannot be offset completely, the cutterhead torque resisting gripper system 3 will be started.
- four cutterhead and cutter systems 1 are provided, as shown in FIG.
- the main cutterhead has the same size as the secondary cutterheads, and the rotating speeds and the directions of rotation of the various cutterheads are adjusted to correct the torque of each cutterhead.
- a main cutterhead and four secondary cutterheads are provided, as shown in FIG. 7 , the four secondary cutterheads are provided outside the main cutterhead, the torque generated by the main cutterhead is offset by adjusting the rotating speeds and directions of rotation of the secondary cutterheads, and if the torque cannot be completely offset, the cutterhead torque resisting gripper system 3 is started.
- the principle is the same as above, and the aim of offsetting the torque is achieved by adjusting the rotating speeds and directions of rotation.
- the other structures are the same as those in Embodiment 1.
- steps 1 and 2 comprised are the following steps: 1, designing the number, the size and the directions of rotation of cutterheads in a combined cutterhead and cutter system according to parameters such as excavating torque requirements; 2, pre-programming a movement trajectory of an intelligent robot according to shape requirements of a construction cross-section; 3, bringing a boring machine to a working range of the robot, which brings the cutterheads to designated positions according to the set trajectory; 4, bracing grippers against a tunnel wall, and making thrust cylinders and a main drive work; 5, making a bottom muck discharging system work and conveying out rock muck that has fallen to the bottom of a tunnel by means of a belt conveyor; and 6, after a certain excavation volume is reached, repeating steps 2-4 to perform cycling at a next station.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
- Manipulator (AREA)
Claims (10)
- Machine de forage à bras flexible portée par un robot capable de creuser un tunnel ayant une section transversale, comprenant un système à tête de molette et molette (1) et une poutre principale (6), une partie arrière de la poutre principale (6) étant reliée à une partie avant d'un élément de préhension arrière (8) au moyen d'un vérin de poussée (7), et une partie arrière de l'élément de préhension arrière (8) étant reliée à un support arrière (9), caractérisée en ce que le système à tête de molette et molette (1) comprend au moins deux têtes de molette, qui sont agencées au niveau de la partie avant du robot (4) en parallèle, une partie avant de la poutre principale (6) est reliée de manière flexible au système à tête de molette et molette (1) au moyen d'un robot (4), ledit robot est capable de réaliser des mouvements à multiples degrés de liberté de la tête de molette.
- Machine de forage à bras flexible portée par un robot capable de creuser un tunnel ayant une section transversale selon la revendication 1, caractérisée en ce que le système à tête de molette et molette (1) comprend une tête de molette, et le système à tête de molette et molette (1) est relié à une partie avant du robot (4) au moyen d'un système à élément de préhension résistant au couple de tête de molette (3).
- Machine de forage à bras flexible portée par un robot capable de creuser un tunnel ayant une section transversale selon la revendication 1, caractérisée en ce que le système à tête de molette et molette (1) comprend au moins trois têtes de molette, et le système à tête de molette et molette (1) est relié à la partie avant du robot (4) au moyen du système à élément de préhension résistant au couple de tête de molette (3).
- Machine de forage à bras flexible portée par un robot capable de creuser un tunnel ayant une section transversale selon l'une quelconque des revendications 2 à 3, caractérisée en ce que le robot (4) comprend un mécanisme de réglage de posture de tête de molette (2) et un bras de robot, le système à tête de molette et molette (1) est prévu sur le mécanisme de réglage de posture de tête de molette (2) en parallèle, le bras de robot, au niveau d'une partie arrière du mécanisme de réglage de posture de tête de molette (2), est relié à la poutre principale (6), et le système à élément de préhension résistant au couple de tête de molette (3) est prévu sur le mécanisme de réglage de posture de tête de molette (2).
- Machine de forage à bras flexible portée par un robot capable de creuser un tunnel ayant une section transversale selon la revendication 4, caractérisée en ce que le mécanisme de réglage de posture de tête de molette (2) comprend un siège de liaison (204), une extrémité avant du siège de liaison (204) est respectivement reliée de manière mobile à un certain nombre de sous-systèmes à tête de molette et molette (1) au moyen de paliers à rotule (201), et des vérins de tangage (202) et des vérins de lacet (203) sont prévus à l'extérieur du siège de liaison (204), un vérin de tangage (202) et un vérin de lacet (203) étant prévus entre chaque sous-système à tête de molette et molette (1) et le siège de liaison (204).
- Machine de forage à bras flexible portée par un robot capable de creuser un tunnel ayant une section transversale selon la revendication 2 ou 3, caractérisée en ce que le système à élément de préhension résistant au couple de tête de molette (3) comprend des éléments de préhension (301), des vérins d'élément de préhension (302) et un siège de support (303), dans laquelle le siège de support (303) est prévu sur le mécanisme de réglage de posture de tête de molette (2), et les éléments de préhension (301) sont reliés au siège de support (303) au moyen des vérins d'élément de préhension (302).
- Machine de forage à bras flexible portée par un robot capable de creuser un tunnel ayant une section transversale selon la revendication 6, caractérisée en ce que le bras de robot est un bras de robot en série (40), le bras de robot en série (40) comprenant un grand bras de robot (402), un petit bras de robot (405) et une base rotative (403), dans laquelle la base rotative (403) est prévue sur la poutre principale (6), une extrémité avant du petit bras de robot (405) est reliée de manière fixe au siège de liaison (204), une extrémité arrière du grand bras de robot (402) est articulée par rapport à la base rotative (403) au moyen d'une rotule de mouvement (401), et le grand bras de robot (402) est articulé par rapport au petit bras de robot (405) ; et un vérin télescopique (404) est prévu entre la base rotative (403) et le grand bras de robot (402) et entre le grand bras de robot (402) et le petit bras de robot (405) respectivement.
- Machine de forage à bras flexible portée par un robot capable de creuser un tunnel ayant une section transversale selon la revendication 6, caractérisée en ce que le bras de robot est un bras de robot série-parallèle (42), le bras de robot série-parallèle (42) comprenant un châssis rotatif (421), un châssis mobile (422) et un rail de coulissement (423), dans laquelle le châssis rotatif (421) est prévu au niveau d'une partie supérieure du châssis mobile (422), un côté du châssis mobile (422) concorde avec le rail de coulissement (423), et le rail de coulissement (423) est prévu sur la poutre principale (6) ; un premier vérin (425) et un troisième vérin (428) sont prévus sur le châssis rotatif (421) en parallèle, le premier vérin (425) est relié à un deuxième vérin (427) en série au moyen d'une rotule en série I (426), et le troisième vérin (428) est relié à un quatrième vérin (420) en série au moyen d'une rotule en série II (429) ; et le deuxième vérin (427) et le quatrième vérin (420) sont reliés au mécanisme de réglage de posture de tête de molette (2) au moyen du siège de liaison (204).
- Machine de forage à bras flexible portée par un robot capable de creuser un tunnel ayant une section transversale selon la revendication 1, caractérisée en ce qu'un système d'évacuation de boue (5) est prévu au-dessous du système à tête de molette et molette (1), une extrémité avant du système d'évacuation de boue (5) s'étend jusqu'à une position au-dessous du système à tête de molette et molette (1), et une extrémité arrière de celui-ci est reliée à un convoyeur à bande (10).
- Machine de forage à bras flexible portée par un robot capable de creuser un tunnel ayant une section transversale selon la revendication 3, caractérisée en ce que le système à tête de molette et molette (1) comprend une tête de molette principale (101) et un certain nombre de têtes de molette secondaires (102), dans laquelle un diamètre externe de la tête de molette principale (101) n'est pas plus petit que celui des têtes de molette secondaires (102), et les têtes de molette secondaires (102) sont prévues à l'extérieur de la tête de molette principale (101).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811259349.1A CN109209413B (zh) | 2018-10-26 | 2018-10-26 | 机器人支撑的多刀盘开挖任意断面隧道的柔臂掘进机 |
PCT/CN2019/090461 WO2020082746A1 (fr) | 2018-10-26 | 2019-06-10 | Machine de forage à bras flexible supportée par un robot pouvant excaver un tunnel avec une section transversale arbitraire |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3872299A1 EP3872299A1 (fr) | 2021-09-01 |
EP3872299A4 EP3872299A4 (fr) | 2022-01-05 |
EP3872299B1 true EP3872299B1 (fr) | 2023-10-25 |
Family
ID=64997237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19875605.8A Active EP3872299B1 (fr) | 2018-10-26 | 2019-06-10 | Machine de forage à bras flexible supportée par un robot pouvant excaver un tunnel avec une section transversale arbitraire |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3872299B1 (fr) |
CN (1) | CN109209413B (fr) |
WO (1) | WO2020082746A1 (fr) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109209413B (zh) * | 2018-10-26 | 2024-04-09 | 中铁工程装备集团有限公司 | 机器人支撑的多刀盘开挖任意断面隧道的柔臂掘进机 |
CN109653756B (zh) * | 2019-01-18 | 2024-03-15 | 中铁工程装备集团有限公司 | 一种矩形断面硬岩掘进机及其施工方法 |
CN109915162B (zh) * | 2019-03-09 | 2024-06-04 | 上海创力集团股份有限公司 | 一种硬岩截割装置 |
CN110242314A (zh) * | 2019-07-30 | 2019-09-17 | 中铁工程服务有限公司 | 一种可多自由度运动的tbm刀盘 |
CN110985035B (zh) * | 2019-12-30 | 2021-04-23 | 中铁工程装备集团有限公司 | 一种串联式柔臂tbm刀盘掘进控制方法 |
CN110966014B (zh) * | 2019-12-30 | 2024-09-20 | 中铁工程装备集团有限公司 | 一种新型柔臂tbm及其掘进方法 |
CN110905542B (zh) * | 2019-12-30 | 2024-09-13 | 中铁工程装备集团有限公司 | 一种适用于柔臂掘进机的tbm刀盘及其开挖方法 |
CN110985028B (zh) * | 2019-12-30 | 2024-09-20 | 中铁工程装备集团有限公司 | 一种新型摆动式柔臂tbm及其掘进方法 |
US11905835B1 (en) * | 2020-09-17 | 2024-02-20 | TopEng Inc. | Tunnel digging machine (TDM) |
CN113175326B (zh) * | 2021-04-09 | 2022-08-19 | 重庆文理学院 | 自动测量式tbm施工的掘进测量机及使用方法 |
CN113446019A (zh) * | 2021-07-30 | 2021-09-28 | 中铁十五局集团有限公司 | 一种泥水盾构机错开式空隙可变刀盘及泥水盾构机 |
CN113685193A (zh) * | 2021-09-16 | 2021-11-23 | 中煤科工集团重庆研究院有限公司 | 一种适用于tbm超前钻探的环形钻孔方法及钻机 |
CN116122835B (zh) * | 2023-04-14 | 2023-06-20 | 太原理工大学 | 适用于紧凑型全断面掘进机的扭矩系统及掘进机 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2909610B2 (ja) * | 1992-12-08 | 1999-06-23 | 財団法人先端建設技術センター | 斜坑トンネルの掘削工法 |
JP2895362B2 (ja) * | 1993-09-22 | 1999-05-24 | 三菱重工業株式会社 | 岩盤掘削機 |
JP3449803B2 (ja) * | 1994-11-15 | 2003-09-22 | 財団法人先端建設技術センター | トンネル掘削機 |
US5890771A (en) * | 1996-12-11 | 1999-04-06 | Cass; David T. | Tunnel boring machine and method |
JP3500082B2 (ja) * | 1998-12-21 | 2004-02-23 | 三菱重工業株式会社 | トンネル掘削機 |
CN103670420B (zh) * | 2013-12-13 | 2016-03-23 | 中铁工程装备集团有限公司 | 全断面竖井钻机 |
CN203626846U (zh) * | 2013-12-13 | 2014-06-04 | 东北大学 | 一种盾构机的变截面掘进装置 |
CN203742607U (zh) * | 2013-12-23 | 2014-07-30 | 中铁工程装备集团有限公司 | 短距离重合断面掘进机 |
CN104533435B (zh) * | 2014-11-27 | 2017-01-04 | 中铁工程装备集团有限公司 | 一种摆动刀盘式矩形断面顶管机 |
CN106640106B (zh) * | 2017-02-23 | 2018-01-16 | 淮南矿业(集团)有限责任公司 | 一种矿用全断面硬岩掘进机及其循环掘进方法 |
CN109488323B (zh) * | 2018-10-26 | 2024-07-19 | 中铁工程装备集团有限公司 | 并联机器人支撑、可开挖任意断面隧道的柔臂掘进机 |
CN208950598U (zh) * | 2018-10-26 | 2019-06-07 | 中铁工程装备集团有限公司 | 一种机器人支撑的多刀盘开挖任意断面隧道的柔臂掘进机 |
CN109236313B (zh) * | 2018-10-26 | 2024-05-10 | 中铁工程装备集团有限公司 | 串并联机器人支撑、开挖任意断面隧道的柔臂掘进机 |
CN109209413B (zh) * | 2018-10-26 | 2024-04-09 | 中铁工程装备集团有限公司 | 机器人支撑的多刀盘开挖任意断面隧道的柔臂掘进机 |
CN109236314B (zh) * | 2018-10-26 | 2024-04-09 | 中铁工程装备集团有限公司 | 串联机器人支撑、可开挖任意断面隧道的柔臂掘进机 |
CN109209420B (zh) * | 2018-10-26 | 2024-04-16 | 中铁工程装备集团有限公司 | 机器人支撑的双刀盘开挖任意断面隧道的柔臂掘进机 |
CN109236315B (zh) * | 2018-10-26 | 2024-04-12 | 中铁工程装备集团有限公司 | 机器人支撑的单刀盘开挖任意断面隧道的柔臂掘进机 |
CN109763836B (zh) * | 2018-12-29 | 2024-03-08 | 中铁工程装备集团有限公司 | 适用于柔臂掘进机的重载柔性输送机 |
-
2018
- 2018-10-26 CN CN201811259349.1A patent/CN109209413B/zh active Active
-
2019
- 2019-06-10 EP EP19875605.8A patent/EP3872299B1/fr active Active
- 2019-06-10 WO PCT/CN2019/090461 patent/WO2020082746A1/fr unknown
Also Published As
Publication number | Publication date |
---|---|
EP3872299A1 (fr) | 2021-09-01 |
CN109209413A (zh) | 2019-01-15 |
WO2020082746A1 (fr) | 2020-04-30 |
CN109209413B (zh) | 2024-04-09 |
EP3872299A4 (fr) | 2022-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3872299B1 (fr) | Machine de forage à bras flexible supportée par un robot pouvant excaver un tunnel avec une section transversale arbitraire | |
CN109209420B (zh) | 机器人支撑的双刀盘开挖任意断面隧道的柔臂掘进机 | |
CA3103086C (fr) | Systeme mecanique integre de detection, d'excavation, de support, d'ancrage et de transport pour excavation rapide de fond de puits et sonprocede d'utilisation | |
CN109488323B (zh) | 并联机器人支撑、可开挖任意断面隧道的柔臂掘进机 | |
CA3103123C (fr) | Systeme mecanique integre d`excavation, de support et d`ancrage pour excavation rapide de fond de puits et son procede d`utilisation | |
CN109236313B (zh) | 串并联机器人支撑、开挖任意断面隧道的柔臂掘进机 | |
CN110242300B (zh) | 劈裂机构和掘进设备 | |
CN109236314B (zh) | 串联机器人支撑、可开挖任意断面隧道的柔臂掘进机 | |
WO2023077792A1 (fr) | Système de creusement de tunnels routiers | |
CN109882191B (zh) | 一种全液压劈裂台车 | |
CN109236315B (zh) | 机器人支撑的单刀盘开挖任意断面隧道的柔臂掘进机 | |
CN208950597U (zh) | 一种串联机器人支撑、可开挖任意断面隧道的柔臂掘进机 | |
US11131145B2 (en) | Drilling boom and rock drilling rig | |
CN111594211B (zh) | 一种硬岩横通道掘进机及施工方法 | |
CN109630147B (zh) | 一种啮合式多刀盘开挖装置及包括该装置的掘进机 | |
CN208950598U (zh) | 一种机器人支撑的多刀盘开挖任意断面隧道的柔臂掘进机 | |
CN209129616U (zh) | 一种并联机器人支撑、可开挖任意断面隧道的柔臂掘进机 | |
CN209067217U (zh) | 一种机器人支撑的双刀盘开挖任意断面隧道的柔臂掘进机 | |
CN208982053U (zh) | 一种机器人支撑的单刀盘开挖任意断面隧道的柔臂掘进机 | |
CN208950596U (zh) | 一种串并联机器人支撑、开挖任意断面隧道的柔臂掘进机 | |
CN114575899A (zh) | 一种tbm在线多模式支护系统及施工方法 | |
CN213039284U (zh) | 一种搭载于tbm的全角度钻锚一体机 | |
CN211924170U (zh) | 一种半马盾构机的开挖装置及掘进机 | |
CN204311474U (zh) | 一种地下隧道挖掘设备 | |
CN117365534A (zh) | 一种适用于不良地质段敞开式tbm清渣支护一体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210521 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20211203 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E21D 9/11 20060101ALI20211129BHEP Ipc: E21D 9/093 20060101ALI20211129BHEP Ipc: E21D 9/08 20060101ALI20211129BHEP Ipc: E21D 9/087 20060101AFI20211129BHEP |
|
17Q | First examination report despatched |
Effective date: 20211216 |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230612 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019040303 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20231025 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1624845 Country of ref document: AT Kind code of ref document: T Effective date: 20231025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240225 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240126 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240125 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240125 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240617 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019040303 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231025 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240726 |