EP3867578B1 - Kühlsystem - Google Patents

Kühlsystem Download PDF

Info

Publication number
EP3867578B1
EP3867578B1 EP19795481.1A EP19795481A EP3867578B1 EP 3867578 B1 EP3867578 B1 EP 3867578B1 EP 19795481 A EP19795481 A EP 19795481A EP 3867578 B1 EP3867578 B1 EP 3867578B1
Authority
EP
European Patent Office
Prior art keywords
conduit
inlet
evaporator
outlet
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19795481.1A
Other languages
English (en)
French (fr)
Other versions
EP3867578A1 (de
EP3867578C0 (de
Inventor
Morten Andre ENGEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proff Investment AS
Original Assignee
Proff Investment AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proff Investment AS filed Critical Proff Investment AS
Publication of EP3867578A1 publication Critical patent/EP3867578A1/de
Application granted granted Critical
Publication of EP3867578B1 publication Critical patent/EP3867578B1/de
Publication of EP3867578C0 publication Critical patent/EP3867578C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component

Definitions

  • the present invention relates to cooling systems, more particularly direct expansion cooling systems for CO2-refrigerant media.
  • Direct expansion (DX) cooling systems are a common refrigeration system using the vapor-compression refrigeration cycle.
  • a typical prior art DX cooling system is shown in fig.1 .
  • the pressure and temperature of the liquid refrigerant provided to an evaporator 3 is commonly controlled by use of an expansion valve 25, e.g. a modulating control valve or pressure regulator, arranged between a receiver tank 2 and the evaporator 3.
  • An additional expansion valve 19 is required between a gas cooler 5 and the receiver tank 2 when the refrigerant is transcritical exiting the gas cooler 5, such that subcritical conditions are ensured in the receiver tank 2 to allow separation of the refrigerant into a gas and a liquid phase.
  • the refrigerant In a transcritical DX cooling system the refrigerant is at subcritical conditions when exiting the expansion valve 19 arranged between the receiver and the gas cooler and at transcritical conditions when exiting the compressor 4. In a subcritical DX cooling system, the refrigerant is at subcritical conditions throughout the system, and the expansion valve 19 arranged before the receiver tank 2 is not required.
  • the capacity of the evaporator 3 is controlled by regulating the effect of the compressor 4 and the expansion valve 19 arranged between the gas cooler 5 and the receiver tank 2.
  • Prior art DX cooling systems have various disadvantages with regards to the control of the cooling capacity, in particular when lower cooling capacities are required.
  • the document CN 1 441 214 A discloses a cooling system according to the preamble of claim 1.
  • the aim of the present invention is to provide a DX cooling system which alleviates or removes at least some of the disadvantages of the prior art cooling systems. More particularly, the present invention provides a DX cooling system having an improved control of the cooling capacity, an improved energy efficiency as well as an improved utilization of the evaporator.
  • the gas outlet of the receiver tank is connected to the evaporator inlet via a fifth conduit and a gas flow regulator, such that a flow of liquid refrigerant in the first conduit may be controlled by operating the gas flow regulator during use. That is, the flow of liquid refrigerant entering the evaporator inlet via the first conduit may be controlled by operating the gas flow regulator during use.
  • the gas outlet of the receiver tank is connected to the evaporator inlet via the fifth conduit and the gas flow regulator, such that a flow of gaseous refrigerant from the receiver tank may enter the evaporator during use.
  • the cooling system may be operated as a transcritical cooling system or a subcritical cooling system.
  • a transcritical cooling system the pressure and temperature conditions are arranged such that a refrigerant will be transcritical in the gas cooler and subcritical in the receiver tank.
  • the refrigerant will be subcritical throughout the cooling system.
  • the gas cooler may also be termed a gas condenser.
  • the gas flow regulator may be defined as a modulating gas control valve.
  • the pressure regulator may be a modulating fluid control valve. In a transcritical cooling system, the pressure regulator may also be termed a modulating high-pressure control valve.
  • the cooler outlet is connected to the fluid inlet of the receiver tank via a fourth conduit and a pressure regulator.
  • the gas flow regulator is arranged such that a lowering of a flow of gaseous refrigerant in the fifth conduit by operating the gas flow regulator will increase the flow of liquid refrigerant in the first conduit.
  • a lowering of a flow of gaseous refrigerant in the fifth conduit by operating the gas flow regulator will increase the pressure in the receiver tank and thus increase the flow of liquid refrigerant in the first conduit.
  • the gas outlet of the receiver tank is connected to the evaporator inlet via the fifth conduit and the gas flow regulator, such that a mixture of gaseous refrigerant from the fifth conduit and liquid refrigerant from the first conduit may enter the evaporator inlet during use.
  • the fifth conduit comprises a first end connected to the gas outlet of the receiver tank and a second end connected to the first conduit, such that gaseous refrigerant from the gas outlet of the receiver tank may be mixed with a liquid refrigerant from the liquid outlet of the receiver tank before entering the evaporator inlet during use.
  • the liquid outlet of the receiver tank is arranged such that an increased pressure of gaseous refrigerant in the receiver tank will force liquid out of the receiver tank via the liquid outlet during use.
  • the first conduit and the fifth conduit are connected to the evaporator inlet via a sixth conduit.
  • the fifth conduit is connected to the evaporator inlet via the first conduit.
  • the sixth conduit has an inner cross-sectional area larger than the cross-sectional area of the first conduit.
  • the gas flow regulator is a two-way valve.
  • the two-way valve may be a modulating control valve.
  • the two-way valve is arranged in, or constitutes a part of, the fifth conduit.
  • the first conduit, the fifth conduit and the sixth conduit is interconnected by a three-way coupling featuring a first inlet connected to the fifth conduit, a second inlet connected to the first conduit and an outlet connected to the evaporator inlet or the sixth conduit, wherein the second inlet is arranged at an angle relative to the outlet, such that an ejector effect of a gaseous refrigerant flow from the fifth conduit acting on a liquid refrigerant in the first conduit is minimized during use.
  • the angle may be about 90°.
  • the gas flow regulator is a three-way valve.
  • the three-way valve may be a modulating control valve.
  • the three-way valve comprises a first inlet connected to the first conduit, a second inlet connected to the fifth conduit and an outlet connected to the evaporator inlet or the sixth conduit.
  • the cooling system comprises a first pressure sensor, arranged in the second conduit, and a second pressure sensor and a second temperature sensor arranged in the fourth conduit.
  • the second pressure sensor and the second temperature sensor may be arranged in the fourth conduit upstream a pressure regulator in the fourth conduit.
  • the second pressure sensor and the second temperature sensor may be replaced by a pressure transmitter.
  • the cooling system may be a subcritical cooling system.
  • the pressure transmitter may be connected to any of a gas cooler/condenser fan or a gas cooler/condenser pump.
  • the present invention provides a method of controlling a cooling system according to claim 12.
  • the method also comprises the step of:
  • the step of increasing the flow of gaseous refrigerant provides a reduced flow of liquid refrigerant in the first conduit by lowering the pressure of the gaseous refrigerant in the receiver tank.
  • the step of reducing the flow of gaseous refrigerant provides an increased flow of liquid refrigerant in the first conduit by raising the pressure of the gaseous refrigerant in the receiver tank.
  • the method of the second aspect may also be termed a method of regulating the cooling capacity of a cooling system.
  • the fourth conduit comprises a pressure regulator and the step of increasing the flow of gaseous refrigerant comprises a step of controlling the pressure regulator to decrease the pressure fall between the cooler outlet and the fluid inlet of the receiver tank.
  • the step of increasing the flow of gaseous refrigerant comprises controlling the pressure regulator to increase the flow of refrigerant from the gas cooler to the receiver tank.
  • the first conduit comprises a pressure regulator and the step of increasing the flow of gaseous refrigerant comprises controlling the pressure regulator to increase the pressure fall over the first conduit.
  • the method according to the second aspect comprises an initial step of:
  • the cooling system is a direct expansion cooling system, preferably for direct expansion of CO 2 as refrigerant.
  • the cooling system operates at transcritical conditions and the fourth conduit comprises a pressure regulator.
  • evaporator inlet is intended to mean an inlet through which a refrigerant must pass to enter a heat-transfer area of an evaporator.
  • the evaporator inlet may be an internally arranged inlet of an evaporator unit, to which unit the first and second conduit are connected, or an external inlet to which the sixth conduit is connected.
  • the present invention provides a highly advantageous DX cooling system, wherein the cooling capacity of an evaporator may be regulated/controlled in an improved manner.
  • a particularly preferred refrigerant for use in the inventive cooling system is CO 2 .
  • Corresponding or similar features of the cooling systems shown in figs. 1-5 are denoted by the same reference numbers.
  • a first exemplary cooling system according to the invention is shown in fig. 2 .
  • the cooling system features a receiver tank 2, an evaporator 3, a compressor 4 and a gas cooler 5.
  • the receiver tank 2 has a fluid inlet 6, a liquid outlet 7 and a gas outlet 8.
  • the evaporator 3 has an evaporator inlet 9 and an evaporator outlet 10.
  • the compressor 4 has a compressor inlet 11 and a compressor outlet 12
  • the gas cooler 5 has a cooler inlet 13 and a cooler outlet 14.
  • the liquid outlet 7 of the receiver tank 2 is connected to the evaporator inlet 9 via a first conduit 15, the evaporator outlet 10 is connected to the compressor inlet 11 via a second conduit 16, the compressor outlet 12 is connected to the cooler inlet 13 via a third conduit 17, and the cooler outlet 14 is connected to the fluid inlet 6 of the receiver tank via a fourth conduit 18 and a pressure regulator 19.
  • a refrigerant of the cooling system When the cooling system is a transcritical system, a refrigerant of the cooling system will be at transcritical conditions between the compressor outlet 12 and the pressure regulator 19.
  • the pressure regulator 19 is a modulating control valve arranged to lower the pressure of the transcritical refrigerant flow exiting the gas cooler 5. In this manner, the refrigerant will obtain subcritical conditions and separate into a gas and a liquid phase in the receiver tank 2.
  • the cooling system may also be operated under subcritical conditions throughout the cooling system.
  • the function of the pressure regulator 19 is to optimize the heat removal in the gas cooler in relation to the remaining parts of the cooling system by regulating the high-pressure in the gas cooler. Further, the pressure regulator 19 ensures that the refrigerant in the receiver tank 2 is subcritical.
  • the receiver tank functions as a refrigerant buffer, which is a requirement since the amount of refrigerant in the gas cooler 5 and the evaporator 3 will vary.
  • the gas outlet 8 of the receiver tank is connected to the evaporator inlet 9 via a fifth conduit 20 and a two-way gas valve 21 (i.e. a gas flow regulator).
  • a two-way gas valve 21 i.e. a gas flow regulator
  • a significant advantage of using the two-way gas valve 21 to control the flow of liquid refrigerant to the evaporator 2, optionally in combination with controlling the pressure regulator 19, is that the cooling system may operate at a higher evaporation temperature and pressure than in the prior art. In this manner, the suction pressure, i.e. the pressure on the suction side of the compressor, is upheld, and the high-pressure side, i.e. the section of the cooling system between the compressor outlet and the pressure regulator 19, may have a lower pressure.
  • the inventive cooling system also ensures an optimal energy efficiency since the refrigerant gas in the receiver tank 2 is utilized as refrigerant in the evaporator 3.
  • the gaseous refrigerant provides a minor additional cooling effect, about 2-5%, which is not possible to obtain in the prior art cooling systems.
  • the turbulence caused by combining the liquid and the gaseous refrigerant prior to entering the evaporator 3 provides an optimal distribution of the refrigerant in the evaporator and an optimal utilization of the heat transfer area of the evaporator 3.
  • the turbulence provides a significant advantage compared to the prior art systems.
  • the lower cooling capacity commonly leads to an uneven distribution of the liquid refrigerant, which in turn lowers the evaporation temperature and pressure.
  • the lowered evaporation temperature may be problematic as it may cause temperatures at an external side of the evaporator being too low for its intended use, e.g. goods to be cooled may freeze.
  • the gas flow in the fifth conduit 20 may have on the liquid refrigerant in the first conduit 15, the fifth and first conduit are connected at an angle ⁇ of about 90°.
  • the combined refrigerant flow is connected to the evaporator 3 via a common conduit 23 (i.e. a sixth conduit).
  • the fifth and first conduit 20,15 are connected to a mixing chamber 26 to obtain an optimum mixing of the gaseous and liquid refrigerant before entering the evaporator.
  • the mixing chamber 26 is a three-way pipe connection having a cross-sectional area larger than a cross-sectional area of the first conduit 15.
  • the differences in the cross-sectional areas provides a slight pressure drop of the liquid refrigerant to ensure optimum evaporation conditions in the evaporator.
  • the slight pressure drop may be obtained by ensuring that the cross-sectional area of the common conduit is larger than the cross-sectional area of the first conduit. It is noted that it is not essential to have a dedicated arrangement or device to obtain the slight pressure drop in the refrigerant before it enters the evaporator. Depending on the operating conditions, the slight pressure drop caused by the flow resistance in the first and/or common conduit may be sufficient.
  • the cooling system according to the invention is also more cost-efficient in that an expansion valve arranged between the liquid outlet 7 and the evaporator 3 is not required. Expansion valves are expensive and constitutes a significant percentage of the total system cost.
  • the condition of the refrigerant in the cooling system is monitored by a pressure sensor 27a and a temperature sensor 28a arranged close to the evaporator outlet 10, and a pressure sensor 27b and a temperature sensor 28b arranged between the cooler outlet 14 and the pressure regulator 19.
  • the cooling system according to the invention is provided with a control system which, depending on the input from the pressure sensors 27a,b, the temperature sensors 28a,b and any optional external temperature data, may control the pressure regulator 19 and the gas valve 21.
  • the cooling system is controlled by measuring the refrigerant temperature in the second conduit 16 to obtain a differential temperature curve relative to the boiling temperature of the liquid refrigerant within the evaporator 3.
  • the flow of gaseous refrigerant in the fifth conduit 15 may be increased or reduced, and the flow of liquid refrigerant respectively reduced or increased, by regulating the two-way gas valve and/or the pressure regulator 19.
  • the flow of liquid refrigerant is also increased when the differential temperature curve increases (i.e. shows an increased overheating of the refrigerant) and decreased when the differential temperature curve decreases, but a flow of gaseous refrigerant entering the evaporator may not be controlled.
  • the evaporator 3 may be used to cool any suitable external medium, such as air or a liquid. Similarly, any suitable external medium may be used to obtain the required cooling effect in the gas cooler 5.
  • the operating conditions may vary within a large temperature and pressure range dependent on the type of refrigerant. Suitable operating conditions will be apparent to the skilled person based on the present disclosure.
  • a second exemplary cooling system according to the invention is shown in fig. 3 .
  • the second exemplary cooling system is substantially similar to the cooling system in fig. 2 and provides the same advantages as described above.
  • the second exemplary cooling system features a second modulating control valve 25 in the first conduit 15.
  • the second control valve is not essential for controlling the cooling system but may provide an additional control strategy in that the pressure and temperature of the liquid refrigerant may be controlled before being mixed with the gaseous refrigerant from the fifth conduit. Further, the second modulating control valve 25 may be used to prevent condensation of refrigerant in the evaporator when the cooling system is shut down.
  • a third exemplary cooling system according to the invention is shown in fig. 4 .
  • the function of the third exemplary cooling system is substantially similar to the cooling system in fig. 3 and provides the same advantages as described above.
  • the two-way gas valve 21 and the second modulating control valve 25 in fig. 3 are replaced by a single three-way control valve 22.
  • a fourth exemplary cooling system according to the invention is shown in fig. 5 .
  • Most features of the cooling system are similar to the cooling system shown in fig. 3 , except that the pressure regulator 19 has been removed and the second pressure sensor and the second temperature sensor are replaced by a pressure transmitter 29.
  • the cooling system is adapted for use with a refrigerant having subcritical conditions throughout the cooling system, and the pressure regulator 19 shown in figs. 2-4 is consequently not required to lower the pressure of the refrigerant before entering the receiver tank 2.
  • the pressure transmitter 29 may be arranged to control a gas cooler (or gas condenser) valve or pump to regulate the cooling capacity of the gas cooler.
  • a required pressure drop in the liquid refrigerant may be provided by a modulating control valve 25 (i.e.
  • the cooling system may be controlled as described for the cooling systems in figs. 2 and 3 by regulating the gas flow in the fifth conduit 20 by use of the two-way gas valve 21, and optionally by use of the modulating control valve 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Claims (14)

  1. Kühlsystem (1), umfassend einen Sammelbehälter (2), einen Verdampfer (3), einen Verdichter (4) und einen Gaskühler (5), wobei
    - der Sammelbehälter (2) einen Fluideinlass (6), einen Flüssigkeitsauslass (7) und einen Gasauslass (8) umfasst;
    - der Verdampfer (3) einen Verdampfereinlass (9) und einen Verdampferauslass (10) umfasst,
    - der Verdichter (4) einen Verdichtereinlass (11) und einen Verdichterauslass (12) umfasst;
    - der Gaskühler (5) einen Kühlereinlass (13) und einen Kühlerauslass (14) umfasst; und
    der Flüssigkeitsauslass (7) des Sammelbehälters (2) über eine erste Leitung (15) mit dem Verdampfereinlass (9) verbunden ist, der Verdampferauslass (10) über eine zweite Leitung (16) mit dem Verdichtereinlass (11) verbunden ist, der Verdichterauslass (12) über eine dritte Leitung (17) mit dem Kühlereinlass (13) verbunden ist und der Kühlerauslass (14) über eine vierte Leitung (18) mit dem Fluideinlass (6) des Sammelbehälters verbunden ist, wobei
    mindestens eine von der ersten Leitung (15) und der vierten Leitung (18) einen Druckregler (19, 25) umfasst, und
    der Gasauslass (8) des Sammelbehälters über eine fünfte Leitung (20) und einen Gasstromregler (21, 22) mit dem Verdampfereinlass (9) verbunden ist, sodass ein Strom von flüssigem Kältemittel in der ersten Leitung (15) durch Betreiben des Gasstromreglers (21, 22) während des Gebrauchs gesteuert werden kann, dadurch gekennzeichnet, dass es ferner Folgendes umfasst:
    einen ersten Temperatursensor (28a), der in der zweiten Leitung (16) angeordnet ist;
    ein Steuersystem, das dazu konfiguriert ist, eine Differenztemperaturkurve relativ zu der Siedetemperatur des flüssigen Kältemittel innerhalb des Verdampfers (3) auf der Grundlage der durch den ersten Temperatursensor (28a) gemessenen Temperatur zu erhalten; und den Gasstromregler (21, 22) zu steuern, um einen Strom von gasförmigem Kältemittel in der fünften Leitung (15) in Abhängigkeit davon, ob die Differenztemperaturkurve eine fallende oder steigende Differenztemperatur zeigt, zu erhöhen bzw. zu reduzieren.
  2. Kühlsystem nach Anspruch 1, wobei der Gasstromregler so angeordnet ist, dass ein Absenken eines Stroms von gasförmigem Kältemittel in der fünften Leitung (20) durch Betreiben des Gasstromreglers den Strom von flüssigem Kältemittel in der ersten Leitung (15) erhöht.
  3. Kühlsystem nach Anspruch 1 oder 2, wobei der Gasauslass (8) des Sammelbehälters über die fünfte Leitung (20) und den Gasstromregler (21, 22) so mit dem Verdampfereinlass (9) verbunden ist, dass ein Gemisch aus gasförmigem Kältemittel aus der fünften Leitung (20) und flüssigem Kältemittel aus der ersten Leitung (15) während des Gebrauchs in den Verdampfereinlass (9) eintreten kann.
  4. Kühlsystem nach einem der vorhergehenden Ansprüche, wobei die fünfte Leitung (20) ein erstes Ende, das mit dem Gasauslass (8) des Sammelbehälters verbunden ist, und ein zweites Ende umfasst, das mit der ersten Leitung (15) verbunden ist, sodass gasförmiges Kältemittel aus dem Gasauslass (8) des Sammelbehälters mit einem flüssigen Kältemittel aus dem Flüssigkeitsauslass (7) des Sammelbehälters gemischt werden kann, bevor es während des Gebrauchs in den Verdampfereinlass (9) eintritt.
  5. Kühlsystem nach einem der vorhergehenden Ansprüche, wobei die erste Leitung und die fünfte Leitung über eine sechste Leitung (23) mit dem Verdampfereinlass verbunden sind.
  6. Kühlsystem nach einem der vorhergehenden Ansprüche, wobei der Gasstromregler ein Zweiwegeventil (21) ist.
  7. Kühlsystem nach einem der vorhergehenden Ansprüche, wobei die erste Leitung, die fünfte Leitung und der Verdampfereinlass (9) durch eine Dreiwegekupplung (26) miteinander verbunden sind, die über einen ersten Einlass, der mit der fünften Leitung (20) verbunden ist, einen zweiten Einlass, der mit der ersten Leitung (15) verbunden ist, und einen Auslass verfügt, der mit dem Verdampfereinlass (9) verbunden ist, wobei der zweite Einlass relativ zu dem Auslass so in einem Winkel (α) angeordnet ist, dass ein Ejektoreffekt eines Stroms von gasförmigem Kältemittel aus der fünften Leitung (20), der auf ein flüssiges Kältemittel in der ersten Leitung (15) einwirkt, während des Gebrauchs minimiert ist.
  8. Kühlsystem nach Anspruch 7, wobei der Winkel (α) etwa 90° beträgt.
  9. Kühlsystem nach einem der Ansprüche 1-5, wobei der Gasstromregler ein Dreiwegeventil (22) ist.
  10. Kühlsystem nach Anspruch 9, wobei das Dreiwegeventil (22) einen ersten Einlass, der mit der ersten Leitung (15) verbunden ist, einen zweiten Einlass, der mit der fünften Leitung (20) verbunden ist, und einen Auslass umfasst, der mit dem Verdampfereinlass (9) verbunden ist.
  11. Kühlsystem nach einem der vorhergehenden Ansprüche, umfassend einen ersten Drucksensor (27a), der in der zweiten Leitung (16) angeordnet ist, und einen zweiten Drucksensor (27b) und einen zweiten Temperatursensor (28b) oder einen Drucktransmitter (29), die in der vierten Leitung stromaufwärts eines Druckreglers (19, 25) angeordnet sind.
  12. Verfahren zum Steuern eines Kühlsystems, wobei das Kühlsystem einen Sammelbehälter (2), einen Verdampfer (3), einen Verdichter (4) und einen Gaskühler (5) umfasst, wobei
    der Sammelbehälter (2) einen Fluideinlass (6), einen Flüssigkeitsauslass (7) und einen Gasauslass (8) umfasst;
    der Verdampfer (3) einen Verdampfereinlass (9) und einen Verdampferauslass (10) umfasst,
    der Verdichter (4) einen Verdichtereinlass (11) und einen Verdichterauslass (12) umfasst;
    der Gaskühler (5) einen Kühlereinlass (13) und einen Kühlerauslass (14) umfasst; und
    der Flüssigkeitsauslass (7) des Sammelbehälters (2) über eine erste Leitung (15) mit dem Verdampfereinlass (9) verbunden ist, der Verdampferauslass (10) über eine zweite Leitung (16) mit dem Verdichtereinlass (11) verbunden ist, der Verdichterauslass (12) über eine dritte Leitung (17) mit dem Kühlereinlass (13) verbunden ist und der Kühlerauslass (14) über eine vierte Leitung (18) mit dem Fluideinlass (6) des Sammelbehälters verbunden ist, wobei
    mindestens eine von der ersten Leitung (15) und der vierten Leitung (18) einen Druckregler (19, 25) umfasst, und
    der Gasauslass (8) des Sammelbehälters über eine fünfte Leitung (20) und einen Gasstromregler (21, 22) mit dem Verdampfereinlass (9) verbunden ist und das Verfahren die folgenden Schritte umfasst
    - Messen der Kältemitteltemperatur in der zweiten Leitung (16), um eine Differenztemperaturkurve relativ zu der Siedetemperatur des flüssigen Kältemittels in dem Verdampfer (3) zu erhalten; und
    - Erhöhen eines Stroms von gasförmigem Kältemittel in der fünften Leitung (20) durch Steuern des Gasstromreglers (21, 22), um einen reduzierten Strom von flüssigem Kältemittel in der ersten Leitung (15) und eine reduzierte Kühlkapazität in dem Verdampfer (3) zu erhalten, wenn die Differenztemperaturkurve eine fallende Differenztemperatur zeigt; oder
    - Reduzieren eines Stroms von gasförmigem Kältemittel in der fünften Leitung (20) durch Steuern des Gasstromreglers (21, 22), um einen erhöhten Strom von flüssigem Kältemittel in der ersten Leitung (15) und eine erhöhte Kühlkapazität in dem Verdampfer (3) zu erhalten, wenn die Differenztemperaturkurve eine steigende Differenztemperatur zeigt.
  13. Verfahren nach Anspruch 12, wobei die vierte Leitung (18) einen Druckregler (19) umfasst und der Schritt zum Erhöhen des Stroms von gasförmigem Kältemittel Steuern des Druckreglers (19) umfasst, um den Druckabfall zwischen dem Kühlerauslass (14) und dem Fluideinlass (6) des Sammelbehälters (2) zu verringern.
  14. Verfahren nach Anspruch 12, wobei die erste Leitung (15) einen Druckregler (25) umfasst und der Schritt zum Erhöhen des Stroms von gasförmigem Kältemittel Steuern des Druckreglers (25) umfasst, um den Druckabfall über der ersten Leitung (15) zu erhöhen.
EP19795481.1A 2018-10-21 2019-10-21 Kühlsystem Active EP3867578B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20181346 2018-10-21
PCT/EP2019/078537 WO2020083823A1 (en) 2018-10-21 2019-10-21 Cooling system

Publications (3)

Publication Number Publication Date
EP3867578A1 EP3867578A1 (de) 2021-08-25
EP3867578B1 true EP3867578B1 (de) 2023-11-22
EP3867578C0 EP3867578C0 (de) 2023-11-22

Family

ID=68392953

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19795481.1A Active EP3867578B1 (de) 2018-10-21 2019-10-21 Kühlsystem

Country Status (6)

Country Link
US (1) US20210372678A1 (de)
EP (1) EP3867578B1 (de)
JP (1) JP7496817B2 (de)
CN (1) CN113227678B (de)
NO (1) NO345588B1 (de)
WO (1) WO2020083823A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900021534A1 (it) * 2019-11-19 2021-05-19 Carel Ind Spa Apparato frigorifero monovalvola a co2 e metodo di regolazione dello stesso
US11885544B2 (en) * 2019-12-04 2024-01-30 Whirlpool Corporation Adjustable cooling system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317478A (ja) * 1989-06-14 1991-01-25 Nippondenso Co Ltd 冷凍サイクル装置
JPH07198215A (ja) * 1993-12-28 1995-08-01 Mitsubishi Heavy Ind Ltd 冷凍装置
JPH07190423A (ja) * 1993-12-28 1995-07-28 Ebara Corp 氷蓄熱式冷凍機
US6385980B1 (en) * 2000-11-15 2002-05-14 Carrier Corporation High pressure regulation in economized vapor compression cycles
JP2002228282A (ja) * 2001-01-29 2002-08-14 Matsushita Electric Ind Co Ltd 冷凍装置
JP3903342B2 (ja) * 2003-03-13 2007-04-11 株式会社日立製作所 空気調和機
CN1162667C (zh) * 2003-04-10 2004-08-18 上海交通大学 跨临界二氧化碳制冷系统节流控制机构
JP4365378B2 (ja) * 2006-02-21 2009-11-18 三菱電機株式会社 除霜運転制御装置および除霜運転制御方法
US20130098086A1 (en) * 2011-04-19 2013-04-25 Liebert Corporation Vapor compression cooling system with improved energy efficiency through economization
EP3023713A1 (de) * 2014-11-19 2016-05-25 Danfoss A/S Verfahren zur Steuerung eines Dampfkompressionsverfahrens mit einem Auswerfer
US11656005B2 (en) * 2015-04-29 2023-05-23 Gestion Marc-André Lesmerises Inc. CO2 cooling system and method for operating same
WO2017029011A1 (en) * 2015-08-14 2017-02-23 Danfoss A/S A vapour compression system with at least two evaporator groups
BR112018007503B1 (pt) * 2015-10-20 2023-03-21 Danfoss A/S Método para controlar um sistema de compressão a vapor em um estado inundado
JP6692715B2 (ja) 2016-08-04 2020-05-13 三菱重工サーマルシステムズ株式会社 冷凍装置及びその制御方法
US10208985B2 (en) * 2016-12-30 2019-02-19 Heatcraft Refrigeration Products Llc Flash tank pressure control for transcritical system with ejector(s)
US10830499B2 (en) * 2017-03-21 2020-11-10 Heatcraft Refrigeration Products Llc Transcritical system with enhanced subcooling for high ambient temperature
US11397032B2 (en) * 2018-06-05 2022-07-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling

Also Published As

Publication number Publication date
EP3867578A1 (de) 2021-08-25
CN113227678A (zh) 2021-08-06
EP3867578C0 (de) 2023-11-22
CN113227678B (zh) 2023-06-02
JP2022504987A (ja) 2022-01-13
NO20191249A1 (en) 2020-04-22
NO345588B1 (en) 2021-04-26
JP7496817B2 (ja) 2024-06-07
US20210372678A1 (en) 2021-12-02
WO2020083823A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
EP2417406B1 (de) Kühlungsdampf-kompressionssystem mit heissgasumleitung
US7426837B2 (en) Refrigerator
EP2182304B1 (de) Kältekreislaufvorrichtungs-betriebssteuerungsverfahren
EP2718642B1 (de) Kältekreislauf mit mehreren verdampfern
RU2414654C2 (ru) Регулирование расхода хладагента
EP3867578B1 (de) Kühlsystem
US5826433A (en) Refrigeration system with heat reclaim and efficiency control modulating valve
JP2010526985A (ja) フラッシュタンクエコノマイザを備えた冷媒蒸気圧縮システム
US20220003473A1 (en) Method for controlling ejector capacity in a vapour compression system
US9303909B2 (en) Apparatus for improving refrigeration capacity
US3939668A (en) Balanced liquid level head pressure control systems
KR20180045797A (ko) 공기조화기
US20150027149A1 (en) Electric expansion valve control for a refrigeration system
EP3601907B1 (de) Dampfkompressionssystem mit einem saugleitungsflüssigkeitsabscheider
JP2002228282A (ja) 冷凍装置
EP3628942B1 (de) Verfahren zur steuerung eines dampfkompressionssystems bei reduziertem saugdruck
CN116499149A (zh) 制冷循环系统和空调系统
EP2959240B1 (de) Heizung, lüftung und klimaanlage (hlk) und verfahren zur regelung des kältemittelflusses zum rieselfilmverdampfer der hlk-anlage
US20120132399A1 (en) Method of operating an assembly of heat exchangers for subcritical and transcritical conditions, and an assembly of heat exchangers
JPS62200153A (ja) 冷凍機の冷媒液面制御装置
US10941966B2 (en) Hot gas bypass energy recovery
CA2199929C (en) Refrigeration system with heat reclaim and efficiency control modulating valve
US20120312041A1 (en) Suction compressor temperature regulator device for transcritical and subcritical r-744 compressors
AU2019238571A1 (en) An air-conditioning integrated parallel compression transcritical refrigeration rack system and control methods thereof
JPS622675B2 (de)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602019041969

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F25B0041000000

Ipc: F25B0041200000

Ref legal event code: R079

Ipc: F25B0041200000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 41/20 20210101AFI20230524BHEP

INTG Intention to grant announced

Effective date: 20230616

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019041969

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

U01 Request for unitary effect filed

Effective date: 20231206

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240222

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019041969

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20240902

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240905

Year of fee payment: 6

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20240911