EP3849714B1 - Sifting wheel with flat sail elements and method of sifting with such a sifting wheel - Google Patents

Sifting wheel with flat sail elements and method of sifting with such a sifting wheel Download PDF

Info

Publication number
EP3849714B1
EP3849714B1 EP20804601.1A EP20804601A EP3849714B1 EP 3849714 B1 EP3849714 B1 EP 3849714B1 EP 20804601 A EP20804601 A EP 20804601A EP 3849714 B1 EP3849714 B1 EP 3849714B1
Authority
EP
European Patent Office
Prior art keywords
classifier wheel
wheel
surface elements
classifier
sifting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20804601.1A
Other languages
German (de)
French (fr)
Other versions
EP3849714A1 (en
EP3849714C0 (en
Inventor
Michael Betz
Florian GEHRKE
Burkhard Kraft
Werner Hollstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gebr Pfeiffer Se
Original Assignee
Gebr Pfeiffer Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebr Pfeiffer Se filed Critical Gebr Pfeiffer Se
Publication of EP3849714A1 publication Critical patent/EP3849714A1/en
Application granted granted Critical
Publication of EP3849714B1 publication Critical patent/EP3849714B1/en
Publication of EP3849714C0 publication Critical patent/EP3849714C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/083Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C2015/002Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs combined with a classifier

Definitions

  • the present invention relates to a sifting wheel for a sifting device for sifting ground comminution products, in particular particulate bulk material, the sifting wheel comprising sifting wheel lamellae which are arranged in the radially outer area of the sifting wheel.
  • the WO 2017/067913 A1 discloses a sifting device with a rotor basket which can be rotated about a substantially vertically aligned axis of rotation and whose lateral surface is formed by rotor blades.
  • the rotor blades are followed by a plurality of guide elements, which extend in the radial direction, in particular with a tangential component, inward in the direction of the rotor axis into the rotor basket.
  • the guide elements extend as far as the axis of rotation of the rotor basket, but not in the radially inner area near the opening of the fines discharge.
  • the EP 0 645 196 A1 discloses a classifying wheel according to the preamble of claim 1 and a method according to the preamble of claim 11.
  • the EP 0 983 802 A2 discloses a classifying wheel with a circular disc carrying a classifying wheel hub and an annular cover disc.
  • the object of the present invention is to provide an advantageous arrangement of sail surface elements in a classifying wheel, in particular with regard to separation efficiency and energy efficiency.
  • a sifting wheel for a sifting device for sifting ground comminution products in particular particulate bulk material, which comprises sifting wheel lamellae, which are arranged in the radially outer area of the sifting wheel, and sail surface elements which are radially spaced from the sifting wheel lamellae in the are arranged radially inner region of the classifying wheel.
  • an air stream carrying the ground comminution products of different particle sizes flows from radially outside to radially inside into the rotating sifting wheel and through the sifting wheel lamellae, in order to then be drawn off in the axial direction of the sifting wheel.
  • the sail surface elements are designed to break up an otherwise generated potential vortex in the classifier wheel and thereby reduce the pressure loss in the classifying air flow. Since, in particular, a different number of canopy elements and classifying wheel lamellae is provided, the arrangement of canopy surface elements relative to the classifying wheel lamellae is not always uniform. This can lead to different flow resistances for the flow of the classifying air through the classifying wheel lamellae in the circumferential direction of the classifying wheel. Due to the radial spacing of the sail surface elements in the radial direction of the classifying wheel from the classifying wheel lamellae, a substantially rotationally symmetrical flow profile can be achieved in the classifying wheel lamellae.
  • a gap can be created between the canopy elements and the classifying wheel elements are present, which ensures that the influence of the sail surface elements on the flow profile is kept low by the classifying wheel lamellae.
  • a substantially rotationally symmetrical flow profile can be generated in the classifying space radially outside the classifying wheel lamellae despite the sail surface elements inside the classifying wheel, as a result of which good separation and thus in particular very high levels of selectivity can be achieved.
  • a high selectivity ensures that ground comminution products above a certain grain size are essentially separated in the sifting chamber and can thus be fed into a new grinding process.
  • the particulate bulk material is ground rock material, for example limestone, gypsum, coal or claystone, mineral bulk material, for example cement or cement material, or recycled bulk material, for example recycled gypsum concrete panel material, blast furnace slag, flue gas desulfurization gypsum or fly ash.
  • ground rock material for example limestone, gypsum, coal or claystone
  • mineral bulk material for example cement or cement material
  • recycled bulk material for example recycled gypsum concrete panel material, blast furnace slag, flue gas desulfurization gypsum or fly ash.
  • the sifting wheel can be used for a bulk material mill, in particular for a rock mill, advantageously in a vertical roller mill.
  • the grinding is effected in particular by rotating a grinding table relative to grinding rollers about a central axis of the grinding table, so that the grinding rollers roll on a grinding track of the grinding table about a roller axis of rotation in order to grind the particulate bulk material and reduce its grain sizes.
  • other bulk material mills can also be used in combination with the classifying wheel, in particular bulk material mills that initially produce particle size distributions that do not yet correspond to the desired particle size distribution of the end product.
  • a sifting device with the sifting wheel according to the invention is then used in order to separate particles with too large grain sizes in the comminution product and to feed them back into the grinding process.
  • the angle of inclination of the canopy surface elements is constant relative to the axial direction of the classifying wheel in the area spanned by the axial direction and circumferential direction of the classifying wheel along the entire axial extent of the canopy surface elements.
  • a radial turbulent flow generated by the rotation of the classifying wheel can thus be broken up more efficiently.
  • the sail surface elements extend straight in the axial direction of the classifying wheel.
  • the canopy surface elements extend in a surface spanned by the axial direction and radial direction of the classifying wheel.
  • the radial distance between the radially inner end of the sifting wheel lamellae and the radially outer end of the sail surface elements is constant along the entire axial extent of the sifting wheel.
  • the radial distance between the radially inner end of the classifying wheel lamellae and the radially outer end of the sail surface elements is at least 3% of the diameter of the classifying wheel, advantageously at least 5%.
  • the radial distance is at most 30%, advantageously at most 20%, of the diameter of the classifying wheel.
  • the sail surface elements extend straight in the radial direction of the classifying wheel.
  • the sail surface elements are at least partially curved and/or inclined with respect to the radial direction of the classifying wheel.
  • the radially outer edge of the canopy element is set back in relation to the intended direction of rotation of the classifying wheel, ie in particular in the circumferential direction counter to the direction of rotation.
  • the curved and/or inclined design of the canopy elements enables the flow behavior to be optimized in order to reduce the flow resistance in the direction of the discharge opening of the classifier wheel. In particular, potential vortices can be further reduced as a result.
  • the classifying wheel lamellae are at least partially curved and/or inclined relative to the radial direction of the classifying wheel, with the inclination of the canopy surface elements relative to the radial direction at least at their radially outer edge being greater than the inclination of the classifying wheel lamellae relative to the radial direction at least on their radially inner edge edge.
  • the radially outer edge of the sail surface elements is at least partially curved and/or inclined with respect to the axial direction of the classifying wheel. In this way, the flow in the direction of the discharge opening can be promoted or reduced in the axial direction in order to provide the desired flow condition in the sifting chamber and inside the sifting wheel.
  • the canopy elements are in particular formed from a rigid, flat material, for example sheet steel.
  • the sail surface elements can also have a varying thickness along their extent, for example in order to optimize the flow conditions thereon.
  • the sail surface elements can be arranged at least partially at their radially inner end on a central shaft in the classifying wheel.
  • the classifying wheel can be mounted on the central shaft.
  • the central shaft can be solid or hollow. The provision of the central shaft and the direct connection of the canopy elements to it has the effect, in particular, that no vortices can arise in the center of the classifying wheel.
  • the sail surface elements can be guided up to the radial center of the classifying wheel. This allows the size of the sail surface elements to be maximized.
  • a distance can be provided between a centrally arranged shaft and the sail surface elements. A flow between the areas separated by the sail surface elements in the radially inner area of the classifying wheel can thus be made possible.
  • the canopy elements are distributed uniformly in the circumferential direction in the classifying wheel.
  • uniform flow conditions can be achieved in the sifter wheel, which in turn promotes uniform flow conditions in the sifting chamber.
  • At least four canopy elements are provided. In some embodiments, more than 6, 8, 10, 12, 14 or 16 canopy elements can also be provided. The larger the diameter of the classifying wheel, the more canopy elements make sense.
  • the sail surface elements extend at least partially over the entire height of the interior of the classifying wheel. As a result, the formation of vortices can be prevented, particularly in the area of the axial discharge opening.
  • the distance between the radially inner end of the classifying wheel lamellae and the radially outer end of the sail surface elements is adjustable. This can be made possible in particular by a radial displaceability of the classifying wheel lamellae and/or canopy surface elements.
  • the classifying wheel lamellae and/or sail surface elements can be slidably provided in slots in support plates at the axial ends of the classifying wheel. In particular, it can be attached by screwing. In some embodiments, it is also possible to adjust the classifying wheel lamellae and/or canopy elements in the circumferential direction.
  • the sail surface elements can only extend as far as an area of the classifying wheel that is adjacent to a discharge opening.
  • the invention also provides a sifting device for sifting ground comminution products, in particular for sifting particulate bulk material, which has the sifting wheel according to the invention and a vane ring, within which the sifting wheel is rotatably arranged, with a sifting space being formed between the vane ring and the sifting wheel.
  • coarse material is primarily separated from the sifting air, in that it falls out of the sifting air flow under the influence of gravity.
  • the invention further provides a plant for grinding feed material in the form of particulate bulk material, comprising a bulk material mill, in particular a vertical roller mill, and a sifting device, as defined above.
  • the sifting device is arranged in particular above the bulk material mill, with particulate bulk material being transported from the bulk material mill to the sifting device by means of the sifting air.
  • a discharge line is advantageously arranged centrally above the classifying wheel.
  • the sifting wheel has a discharge opening in its radially inner region, so that the interior of the sifting wheel is connected to the discharge line and the sifting air can convey fines out of the sifting wheel into the discharge line.
  • the discharge line can also be arranged under the sifting wheel.
  • the invention provides a method for classifying ground comminution products, in particular particulate bulk material, wherein ground comminution product is fed into a classifying chamber surrounding a rotating classifying wheel, and an air flow is provided which flows radially inwards into the rotating classifying wheel and then in the axial direction is discharged through a discharge opening in the classifying wheel, with the air flow in the region of the classifying wheel adjacent to the discharge opening carrying part of the comminution product along in the axial direction along canopy surface elements, with the angle of inclination of the canopy surface elements relative to the axial direction of the classifying wheel being in a direction spanned by the axial direction and circumferential direction of the classifying wheel area is constant.
  • sail wheel surfaces are provided in the area of the classifying wheel adjacent to the discharge opening, so that no vortices can arise within the classifying wheel that would impair the removal of the fines in the classifying air from the classifying wheel.
  • the radial distance between the radially outer end of the canopy surface elements and the radially inner end of classifying wheel lamellae of the classifying wheel can optionally be adjusted as a function of the speed and/or diameter of the classifying wheel. This can be done by automatically adjusting the canopy surface elements and/or the classifying wheel lamellae in the radial and/or circumferential direction by actuators controlled by a controller. This can take place in particular during operation and as a function of the operating states, in particular the speed and/or the flow rate. Alternatively, an adjustment can also be made manually during breaks in operation.
  • the air flow between the classifying wheel lamellae is rotationally symmetrical.
  • FIG 1 a viewing device 1 according to an embodiment of the invention is shown.
  • the sifting device 1 enables coarse material to be separated from fine material in a sifting air stream, the coarse material to be resupplied to a grinding process and the fine material to be transported away for further processing.
  • a classifying wheel 2 is provided for this purpose, which can be rotated about a vertical axis by means of a motor 3 .
  • the classifying wheel 2 is arranged within a ring of guide vanes 4 .
  • An outer ring of classifying wheel lamellae 5 of the classifying wheel is spaced radially from the guide vane ring 4 so that a classifying space 6 is formed between the classifying wheel lamellae 5 and the guide vane ring 4 .
  • the rotation of the classifying wheel lamellae 5 together with the classifying wheel 2 creates flow conditions in the classifying chamber that cause coarse Portions of the ground comminution products fall down and only comminution products that have at least a certain degree of fineness are transported radially inward into the sifting wheel 2 .
  • the sifting air flows through the sifting wheel lamellae 5 into the inside of the sifting wheel and then through a discharge opening 7 into a downstream processing device.
  • the downstream processing device can simply consist in the fact that the fines are heaped up, transported further and/or packaged.
  • a radial distance 100 is provided between the sail surface elements 8 and the classifying wheel lamellae 5 .
  • the effect of the sail surface elements 8 on the flow of the sifting air through the sifting wheel lamellae 5 can be reduced, so that a more uniform flow profile is present in the sifting chamber 6 .
  • the canopy elements prevent unwanted potential vortices from developing inside the classifying wheel 2 and can advantageously contribute to energy recovery with regard to the flow of classifying air by reducing the necessary drive power of the motor 3 .
  • the sail surface elements 8 are attached to the shaft 9 of the classifying wheel or at least connected to it.
  • a fines removal line 10 is provided above the discharge opening 7, with which the fines with the desired grain sizes are transported away in an air stream.
  • the discharge line 10 is arranged in particular above the sifting wheel.
  • a hopper 11 can be arranged under the sifting wheel 2, which collects coarse material falling from the sifting chamber 6 and feeds it to a grinding process.
  • a grinding table can be arranged centrally under the funnel 11 so that the material to be ground is fed centrally to the rotating grinding table and then crushed again by grinding rollers before it is gripped again by a sifting air stream and fed to the sifting device 1 .
  • the material to be ground or the comminution products is thus guided through the sifting device 1 until the desired comminution stage is reached, so that the corresponding fine material can pass through the sifting chamber 6 into the interior of the sifting wheel and can then be discharged via the discharge line 10 .
  • the canopy elements 8 extend right up to the discharge opening 7 of the classifying wheel 2.
  • the classifying air flow in the classifying wheel 2 is thus guided through the canopy surface elements 8 up to its discharge opening 7. This prevents the emergence of unwanted air turbulence in the classifying wheel 2 and improves energy recovery from the visual airflow.
  • the sail surface elements 8 extend over the entire height of the sifting wheel 2.
  • FIG 2 is the in figure 1 Drawn horizontal sectional view AA represented by the embodiment of the classifying wheel 2 according to the invention.
  • the classifying wheel 2 has a central shaft 9 with sail surface elements 8 extending therefrom in the radial direction.
  • the classifying wheel lamellae 5 are arranged at a radial distance 100 from the radially outer ends 8 of the canopy surface elements 8 .
  • the classifying wheel lamellae 5 are slightly inclined here in pairs in opposite directions with respect to the radial direction. Furthermore, a higher number of classifying wheel elements 5 than of sail surface elements 8 is provided.
  • FIG 3 another embodiment of a classifying wheel 2 is shown in a horizontal sectional view.
  • the sail surface elements 8 are designed with a corrugated profile.
  • the canopy elements 8 are curved counter to the intended direction of rotation. That is, the canopy elements each have different angles to the radial direction over their extent.
  • the classifying wheel lamellae 5 are inclined relative to the radial direction.
  • the angle 200 of the radially outer end of the sail surface element 8 with respect to the radial direction is greater than the angle 300 of the classifying wheel lamellae 5. This enables an advantageous flow profile in the classifying chamber 6, i.e. radially outside of the classifying wheel lamellae 5.
  • Vortices can still arise between the sail surface elements 8, as in figure 3 is shown as an example. However, these vortices are locally limited and thus cause a significantly lower pressure loss than the vortices in classifier wheels according to the prior art.
  • an increased number of sail surface elements 8 is provided in order to further reduce the formation of vortices inside the classifying wheel 2 . Furthermore, in figure 4 shown by way of example how the sail surface elements can be guided up to the radial center of the sifting wheel. This is possible in particular if no shaft 9 is provided in this area, but instead the shaft is only flanged axially outside of the classifying wheel 2 .
  • FIG 5 a classifying wheel 2 is shown, in which a radial distance between the centrally arranged shaft 9 and the sail surface elements 8 is provided.
  • the canopy elements arranged in the radially central area nevertheless enable an effective reduction of vortices, but it can be advantageous if the canopy elements 8 are guided at least in the area adjoining the discharge opening 7 up to the central shaft 9 .
  • the sail panel elements 8 in Figures 2 to 5 each extend straight in the axial direction of the classifying wheel 2.
  • the radially outer edge of the sail surface elements is inclined with respect to the axial direction.
  • the area of the sail surface elements 8 increases toward the discharge opening, so that in these areas where a increased air flow is present, effective suppression of air vortices is possible.
  • the canopy elements 8 can not only be used to suppress eddy currents, but can also be driven by the air flow, and thus at least reduce the power input via the motor 3 for driving the classifying wheel.
  • a reaction of the canopy surface elements on the classifying space 6 can be reduced. In particular, it can be prevented that there is an uneven air flow in the circumferential direction depending on the canopy elements 8 in the viewing space 6 .

Description

Die vorliegende Erfindung betrifft ein Sichtrad für eine Sichteinrichtung zum Sichten von gemahlenen Zerkleinerungsprodukten, insbesondere von partikelförmigem Schüttgut, wobei das Sichtrad Sichtradlamellen umfasst, die im radial äußeren Bereich des Sichtrads angeordnet sind.The present invention relates to a sifting wheel for a sifting device for sifting ground comminution products, in particular particulate bulk material, the sifting wheel comprising sifting wheel lamellae which are arranged in the radially outer area of the sifting wheel.

Die WO 2017/067913 A1 offenbart eine Sichteinrichtung mit einem Rotorkorb, der um eine im Wesentlichen vertikal ausgerichtete Rotationsachse rotierbar ist, und dessen Mantelfläche durch Rotorschaufeln gebildet wird. An die Rotorschaufeln schließen sich eine Mehrzahl von Leitelementen an, die sich in radialer Richtung insbesondere mit einer tangentialen Komponente einwärts in Richtung der Rotorachse in den Rotorkorb erstrecken. Dabei erstrecken sich in manchen Ausführungsformen die Leitelemente bis zur Rotationsachse des Rotorkorbs, nicht aber in den radial inneren Bereich nahe der Öffnung des Feingutaustrags. Die EP 0 645 196 A1 offenbart ein Sichtrad gemäß dem Oberbegriff des Anspruchs 1 und ein Verfahren gemäß dem Oberbegriff des Anspruchs 11. Die EP 0 983 802 A2 offenbart ein Sichtrad mit einer eine Sichtradnabe tragenden Kreisscheibe und einer ringförmigen Deckscheibe.The WO 2017/067913 A1 discloses a sifting device with a rotor basket which can be rotated about a substantially vertically aligned axis of rotation and whose lateral surface is formed by rotor blades. The rotor blades are followed by a plurality of guide elements, which extend in the radial direction, in particular with a tangential component, inward in the direction of the rotor axis into the rotor basket. In some embodiments, the guide elements extend as far as the axis of rotation of the rotor basket, but not in the radially inner area near the opening of the fines discharge. The EP 0 645 196 A1 discloses a classifying wheel according to the preamble of claim 1 and a method according to the preamble of claim 11. The EP 0 983 802 A2 discloses a classifying wheel with a circular disc carrying a classifying wheel hub and an annular cover disc.

Die vorliegende Erfindung hat die Aufgabe, eine vorteilhafte Anordnung von Segelflächenelementen in einem Sichtrad bereitzustellen, insbesondere hinsichtlich Trenneffizienz und Energieeffizienz.The object of the present invention is to provide an advantageous arrangement of sail surface elements in a classifying wheel, in particular with regard to separation efficiency and energy efficiency.

Die Erfindung stellt, gemäß Anspruch 1, ein Sichtrad für eine Sichteinrichtung zum Sichten von gemahlenen Zerkleinerungsprodukten, insbesondere von partikelförmigem Schüttgut, bereit, das Sichtradlamellen umfasst, die im radial äußeren Bereich des Sichtrads angeordnet sind, sowie Segelflächenelemente, die radial beabstandet von den Sichtradlamellen im radial inneren Bereich des Sichtrads angeordnet sind. Bei einem Sichtvorgang strömt ein Luftstrom mit darin getragenen gemahlenen Zerkleinerungsprodukten verschiedener Korngröße von radial außen nach radial innen in das rotierende Sichtrad und durch die Sichtradlamellen, um dann in axialer Richtung des Sichtrades abgezogen zu werden. Die Segelflächenelemente sind ausgelegt, einen ansonsten erzeugten Potentialwirbel im Sichtrad aufzubrechen und dadurch den Druckverlust in der Sichtluftströmung zu reduzieren. Nachdem insbesondere eine unterschiedliche Anzahl von Segelflächenelementen und Sichtradlamellen vorgesehen ist, ist die Anordnung von Segelflächenelementen zu den Sichtradlamellen nicht immer gleichmäßig. Dies kann zu in Umfangsrichtung des Sichtrades unterschiedlichen Strömungswiderständen für den Fluss der Sichtluft durch die Sichtradlamellen führen. Durch die radiale Beabstandung der Segelflächenelemente in radialer Richtung des Sichtrades von den Sichtradlamellen kann ein im Wesentlichen rotationssymmetrisches Strömungsprofil in den Sichtradlamellen erreicht werden. Insbesondere kann durch die radiale Beabstandung der Segelflächenelemente von den Sichtradlamellen ein Spalt zwischen den Segelflächenelementen und den Sichtradelementen vorliegen, wodurch gewährleistet wird, dass der Einfluss der Segelflächenelemente auf das Strömungsprofil durch die Sichtradlamellen gering gehalten wird. Folglich kann im Sichtraum radial außerhalb der Sichtradlamellen trotz der Segelflächenelemente innerhalb des Sichtrads ein im Wesentlichen rotationssymmetrisches Strömungsprofil erzeugt werden, wodurch eine gute Trennung und damit insbesondere sehr hohe Trennschärfen erreicht werden. Eine hohe Trennschärfe gewährleistet, dass gemahlene Zerkleinerungsprodukte ab einer gewissen Korngröße im Wesentlichen im Sichtraum abgetrennt werden, und somit einem erneuten Mahlvorgang zugeführt werden können.The invention provides, according to claim 1, a sifting wheel for a sifting device for sifting ground comminution products, in particular particulate bulk material, which comprises sifting wheel lamellae, which are arranged in the radially outer area of the sifting wheel, and sail surface elements which are radially spaced from the sifting wheel lamellae in the are arranged radially inner region of the classifying wheel. During a sifting process, an air stream carrying the ground comminution products of different particle sizes flows from radially outside to radially inside into the rotating sifting wheel and through the sifting wheel lamellae, in order to then be drawn off in the axial direction of the sifting wheel. The sail surface elements are designed to break up an otherwise generated potential vortex in the classifier wheel and thereby reduce the pressure loss in the classifying air flow. Since, in particular, a different number of canopy elements and classifying wheel lamellae is provided, the arrangement of canopy surface elements relative to the classifying wheel lamellae is not always uniform. This can lead to different flow resistances for the flow of the classifying air through the classifying wheel lamellae in the circumferential direction of the classifying wheel. Due to the radial spacing of the sail surface elements in the radial direction of the classifying wheel from the classifying wheel lamellae, a substantially rotationally symmetrical flow profile can be achieved in the classifying wheel lamellae. In particular, due to the radial spacing of the canopy elements from the classifying wheel lamellae, a gap can be created between the canopy elements and the classifying wheel elements are present, which ensures that the influence of the sail surface elements on the flow profile is kept low by the classifying wheel lamellae. As a result, a substantially rotationally symmetrical flow profile can be generated in the classifying space radially outside the classifying wheel lamellae despite the sail surface elements inside the classifying wheel, as a result of which good separation and thus in particular very high levels of selectivity can be achieved. A high selectivity ensures that ground comminution products above a certain grain size are essentially separated in the sifting chamber and can thus be fed into a new grinding process.

Insbesondere handelt es sich bei dem partikelförmigem Schüttgut um gemahlenes Gesteinsmaterial, beispielsweise um Kalkstein, Gips, Kohle oder Tonstein, mineralisches Schüttgut, beispielsweise Zement oder Zementmaterial, oder recyceltes Schüttgut, beispielweise recyceltes Gipsbetonplattenmaterial, Hochofenschlacke, Rauchgasentschwefelungsgips oder Flugasche.In particular, the particulate bulk material is ground rock material, for example limestone, gypsum, coal or claystone, mineral bulk material, for example cement or cement material, or recycled bulk material, for example recycled gypsum concrete panel material, blast furnace slag, flue gas desulfurization gypsum or fly ash.

Insbesondere kann das Sichtrad für eine Schüttgutmühle, insbesondere für eine Gesteinsmühle, eingesetzt werden, vorteilhafterweise in einer Walzenschüsselmühle. Darin wird das Mahlen insbesondere durch Rotation eines Mahltellers relativ zu Mahlwalzen um eine Mittelachse des Mahltellers bewirkt, sodass die Mahlwalzen auf einer Mahlbahn des Mahltellers um eine Walzendrehachse abrollen, um dabei das partikelförmige Schüttgutmaterial zu mahlen und dessen Korngrößen zu reduzieren. Es sind allerdings auch andere Schüttgutmühlen in Kombination mit dem Sichtrad einsetzbar, insbesondere Schüttgutmühlen, die initial Korngrößenverteilungen erzeugen, die noch nicht der gewünschten Korngrößenverteilung des Endproduktes entsprechen. Dann wird eine Sichteinrichtung mit dem erfindungsgemäßen Sichtrad eingesetzt, um Partikel mit zu großen Korngrößen im Zerkleinerungsprodukt abzutrennen und dem Mahlvorgang erneut zuzuführen. Der Neigungswinkel der Segelflächenelemente ist gegenüber der Axialrichtung des Sichtrads in der durch die Axialrichtung und Umfangsrichtung des Sichtrads aufgespannten Fläche entlang der gesamten axialen Erstreckung der Segelflächenelemente konstant. Damit kann eine durch das Drehen des Sichtrads erzeugte radiale Wirbelströmung effizienter aufgebrochen werden. Insbesondere erstrecken sich die Segelflächenelemente gerade in Axialrichtung des Sichtrads. Weiter insbesondere erstrecken sich die Segelflächenelemente in einer durch Axialrichtung und Radialrichtung des Sichtrads aufgespannten Fläche.In particular, the sifting wheel can be used for a bulk material mill, in particular for a rock mill, advantageously in a vertical roller mill. Therein, the grinding is effected in particular by rotating a grinding table relative to grinding rollers about a central axis of the grinding table, so that the grinding rollers roll on a grinding track of the grinding table about a roller axis of rotation in order to grind the particulate bulk material and reduce its grain sizes. However, other bulk material mills can also be used in combination with the classifying wheel, in particular bulk material mills that initially produce particle size distributions that do not yet correspond to the desired particle size distribution of the end product. A sifting device with the sifting wheel according to the invention is then used in order to separate particles with too large grain sizes in the comminution product and to feed them back into the grinding process. The angle of inclination of the canopy surface elements is constant relative to the axial direction of the classifying wheel in the area spanned by the axial direction and circumferential direction of the classifying wheel along the entire axial extent of the canopy surface elements. A radial turbulent flow generated by the rotation of the classifying wheel can thus be broken up more efficiently. In particular, the sail surface elements extend straight in the axial direction of the classifying wheel. In particular, the canopy surface elements extend in a surface spanned by the axial direction and radial direction of the classifying wheel.

Um einen in axialer Richtung gewünschten gleichmäßigen Strömungszustand im Sichtraum sowie innerhalb des Sichtrads zu fördern ist es besonders vorteilhaft, wenn der radiale Abstand zwischen dem radial inneren Ende der Sichtradlamellen und dem radial äußeren Ende der Segelflächenelemente entlang der gesamten axialen Erstreckung des Sichtrads konstant ist.In order to promote a desired uniform flow condition in the axial direction in the sifting chamber and within the sifting wheel, it is particularly advantageous if the radial distance between the radially inner end of the sifting wheel lamellae and the radially outer end of the sail surface elements is constant along the entire axial extent of the sifting wheel.

In einer bevorzugten Ausführungsform ist der radiale Abstand zwischen dem radial inneren Ende der Sichtradlamellen und dem radial äußeren Ende der Segelflächenelemente mindestens 3% des Durchmessers des Sichtrads, vorteilhafterweise mindestens 5%. Insbesondere beträgt der radiale Abstand höchstens 30%, vorteilhafterweise höchstens 20% des Durchmessers des Sichtrads. Diese Größenverhältnisse stellen einen vorteilhaften Kompromiss zwischen einer Reduktion des Potentialwirbels und einem im Wesentlichen rotationssymmetrischen Strömungsprofil im Sichtradspalt dar.In a preferred embodiment, the radial distance between the radially inner end of the classifying wheel lamellae and the radially outer end of the sail surface elements is at least 3% of the diameter of the classifying wheel, advantageously at least 5%. In particular, the radial distance is at most 30%, advantageously at most 20%, of the diameter of the classifying wheel. These proportions represent an advantageous compromise between a reduction in the potential vortex and an essentially rotationally symmetrical flow profile in the classifier wheel gap.

In einer Ausführungsform erstrecken sich die Segelflächenelemente gerade in radialer Richtung des Sichtrads.In one embodiment, the sail surface elements extend straight in the radial direction of the classifying wheel.

In einer bevorzugten Ausführungsform sind die Segelflächenelemente wenigstens teilweise gegenüber der radialen Richtung des Sichtrads gekrümmt und/oder geneigt ausgeführt. Dabei ist insbesondere die radial äußere Kante des Segelflächenelements nachlaufend bezüglich der vorgesehenen Drehrichtung des Sichtrads, also insbesondere in Umfangsrichtung entgegen der Drehrichtung rückversetzt. Die gekrümmte und/oder geneigte Ausführung der Segelflächenelemente ermöglicht die Optimierung des Strömungsverhaltens zur Reduzierung des Strömungswiderstandes in Richtung der Austragsöffnung des Sichtrads. Insbesondere können dadurch Potentialwirbel weitergehend reduziert werden.In a preferred embodiment, the sail surface elements are at least partially curved and/or inclined with respect to the radial direction of the classifying wheel. In particular, the radially outer edge of the canopy element is set back in relation to the intended direction of rotation of the classifying wheel, ie in particular in the circumferential direction counter to the direction of rotation. The curved and/or inclined design of the canopy elements enables the flow behavior to be optimized in order to reduce the flow resistance in the direction of the discharge opening of the classifier wheel. In particular, potential vortices can be further reduced as a result.

In einer Ausführungsform sind die Sichtradlamellen wenigstens teilweise gegenüber der radialen Richtung des Sichtrads gekrümmt und/oder geneigt ausgeführt, wobei die Neigung der Segelflächenelemente gegenüber der Radialrichtung wenigstens an deren radial äußerer Kante größer ist als die Neigung der Sichtradlamellen gegenüber der Radialrichtung wenigstens an deren radial innerer Kante. Dadurch kann ein vorteilhaftes Strömungsprofil zwischen den Sichtradlamellen erzeugt werden.In one embodiment, the classifying wheel lamellae are at least partially curved and/or inclined relative to the radial direction of the classifying wheel, with the inclination of the canopy surface elements relative to the radial direction at least at their radially outer edge being greater than the inclination of the classifying wheel lamellae relative to the radial direction at least on their radially inner edge edge. As a result, an advantageous flow profile can be generated between the classifying wheel lamellae.

In einer Ausführungsform ist die radial äußere Kante der Segelflächenelemente wenigstens teilweise gegenüber der axialen Richtung des Sichtrads gekrümmt und/oder geneigt ausgeführt. Damit kann die Strömung in Richtung der Austragsöffnung in axialer Richtung gefördert oder reduziert werden, um den gewünschten Strömungszustand im Sichtraum, sowie innerhalb des Sichtrads bereitzustellen.In one embodiment, the radially outer edge of the sail surface elements is at least partially curved and/or inclined with respect to the axial direction of the classifying wheel. In this way, the flow in the direction of the discharge opening can be promoted or reduced in the axial direction in order to provide the desired flow condition in the sifting chamber and inside the sifting wheel.

Die Segelflächenelemente sind insbesondere aus einem starren, flächigen Material geformt, beispielsweise Stahlblech. Die Segelflächenelemente können aber auch entlang ihrer Erstreckung variierende Dicke aufweisen, beispielsweise um die Strömungszustände daran zu optimieren.The canopy elements are in particular formed from a rigid, flat material, for example sheet steel. However, the sail surface elements can also have a varying thickness along their extent, for example in order to optimize the flow conditions thereon.

Insbesondere können die Segelflächenelemente wenigstens teilweise an ihrem radial inneren Ende an einer zentralen Welle im Sichtrad angeordnet sein. Insbesondere ist das Sichtrad über die zentrale Welle lagerbar. Bei der zentralen Welle kann es sich um eine Voll- oder Hohlwelle handeln. Das Vorsehen der zentralen Welle und der direkte Anschluss der Segelflächenelemente daran bewirkt insbesondere, dass im Zentrum des Sichtrads kein Wirbel entstehen kann.In particular, the sail surface elements can be arranged at least partially at their radially inner end on a central shaft in the classifying wheel. In particular, the classifying wheel can be mounted on the central shaft. The central shaft can be solid or hollow. The provision of the central shaft and the direct connection of the canopy elements to it has the effect, in particular, that no vortices can arise in the center of the classifying wheel.

In einer Ausführungsform können die Segelflächenelemente bis hin zur radialen Mitte des Sichtrads geführt werden. Damit kann die Größe der Segelflächenelemente maximiert werden.In one embodiment, the sail surface elements can be guided up to the radial center of the classifying wheel. This allows the size of the sail surface elements to be maximized.

Alternativ kann ein Abstand zwischen einer zentral angeordneten Welle und den Segelflächenelementen vorgesehen sein. Damit kann eine Strömung zwischen den durch die Segelflächenelemente abgetrennten Bereichen im radial inneren Bereich des Sichtrads ermöglicht werden.Alternatively, a distance can be provided between a centrally arranged shaft and the sail surface elements. A flow between the areas separated by the sail surface elements in the radially inner area of the classifying wheel can thus be made possible.

Vorteilhafterweise sind die Segelflächenelemente gleichmäßig in Umfangsrichtung im Sichtrad verteilt. Dadurch können gleichmäßige Strömungsbedingungen im Sichtrad erreicht werden, wodurch wiederum gleichmäßige Strömungsbedingungen im Sichtraum gefördert werden.Advantageously, the canopy elements are distributed uniformly in the circumferential direction in the classifying wheel. As a result, uniform flow conditions can be achieved in the sifter wheel, which in turn promotes uniform flow conditions in the sifting chamber.

Insbesondere sind mindestens vier Segelflächenelemente vorgesehen. In manchen Ausführungsformen können auch mehr als 6, 8, 10, 12, 14 oder 16 Segelflächenelemente vorgesehen sein. Dabei sind insbesondere umso mehr Segelflächenelemente sinnvoll, je größer der Durchmesser des Sichtrads ist.In particular, at least four canopy elements are provided. In some embodiments, more than 6, 8, 10, 12, 14 or 16 canopy elements can also be provided. The larger the diameter of the classifying wheel, the more canopy elements make sense.

In einer Ausführungsform erstrecken sich die Segelflächenelemente wenigstens teilweise über die gesamte Höhe des Inneren des Sichtrads. Dadurch kann insbesondere im Bereich der axialen Austragsöffnung die Entstehung von Wirbeln verhindert werden.In one embodiment, the sail surface elements extend at least partially over the entire height of the interior of the classifying wheel. As a result, the formation of vortices can be prevented, particularly in the area of the axial discharge opening.

Vorteilhafterweise ist der Abstand zwischen dem radial inneren Ende der Sichtradlamellen und dem radial äußeren Ende der Segelflächenelemente einstellbar. Dies kann insbesondere durch eine radiale Verschiebbarkeit der Sichtradlamellen und/oder Segelflächenelemente ermöglicht werden. Insbesondere können die Sichtradlamellen und/oder Segelglächenelemente verschiebbar in Schlitzen in Trägerplatten an den axialen Enden des Sichtrads vorgesehen sein. Insbesondere kann eine Befestigung durch Verschrauben erfolgen. In manchen Ausführungsformen ist es auch möglich, die Sichtradlamellen und/oder Segelflächenelemente in Umfangsrichtung zu verstellen.Advantageously, the distance between the radially inner end of the classifying wheel lamellae and the radially outer end of the sail surface elements is adjustable. This can be made possible in particular by a radial displaceability of the classifying wheel lamellae and/or canopy surface elements. In particular, the classifying wheel lamellae and/or sail surface elements can be slidably provided in slots in support plates at the axial ends of the classifying wheel. In particular, it can be attached by screwing. In some embodiments, it is also possible to adjust the classifying wheel lamellae and/or canopy elements in the circumferential direction.

Insbesondere können die Segelflächenelemente sich nur bis zu einem an eine Austragsöffnung angrenzenden Bereich des Sichtrads erstrecken.In particular, the sail surface elements can only extend as far as an area of the classifying wheel that is adjacent to a discharge opening.

Die Erfindung stellt weiterhin eine Sichteinrichtung zum Sichten von gemahlenen Zerkleinerungsprodukten bereit, insbesondere zum Sichten von partikelförmigem Schüttgut, die das erfindungsgemäße Sichtrad und einen Leitschaufelkranz aufweist, innerhalb dessen das Sichtrad rotierbar angeordnet ist, wobei ein Sichtraum zwischen dem Leitschaufelkranz und dem Sichtrad ausgebildet wird. Im Sichtraum erfolgt dabei vornehmlich die Abtrennung von grobem Material aus der Sichtluft, indem dieses unter Schwerkrafteinfluss nach unten aus dem Sichtluftstrom ausfällt.The invention also provides a sifting device for sifting ground comminution products, in particular for sifting particulate bulk material, which has the sifting wheel according to the invention and a vane ring, within which the sifting wheel is rotatably arranged, with a sifting space being formed between the vane ring and the sifting wheel. In the sifting room, coarse material is primarily separated from the sifting air, in that it falls out of the sifting air flow under the influence of gravity.

Die Erfindung stellt weiterhin eine Anlage zum Mahlen von Aufgabematerial in Form von partikelförmigem Schüttgut bereit, umfassend eine Schüttgutmühle, insbesondere eine Walzenschüsselmühle, und eine Sichteinrichtung, wie vorangehend definiert. Die Sichteinrichtung ist dabei insbesondere über der Schüttgutmühle angeordnet, wobei partikelförmiges Schüttgut mittels der Sichtluft von der Schüttgutmühle zu der Sichteinrichtung transportiert wird.The invention further provides a plant for grinding feed material in the form of particulate bulk material, comprising a bulk material mill, in particular a vertical roller mill, and a sifting device, as defined above. The sifting device is arranged in particular above the bulk material mill, with particulate bulk material being transported from the bulk material mill to the sifting device by means of the sifting air.

Vorteilhafterweise ist eine Abführleitung zentral über dem Sichtrad angeordnet. Vorteilhafterweise weist das Sichtrad in seinem radial inneren Bereich eine Austragsöffnung auf, sodass das Innere des Sichtrads mit der Abführleitung verbunden ist, und die Sichtluft Feingut entsprechend aus dem Sichtrad in die Abführleitung fördern kann. In alternativen Ausführungsformen kann die Abführleitung auch unter dem Sichtrad angeordnet sein.A discharge line is advantageously arranged centrally above the classifying wheel. Advantageously, the sifting wheel has a discharge opening in its radially inner region, so that the interior of the sifting wheel is connected to the discharge line and the sifting air can convey fines out of the sifting wheel into the discharge line. In alternative embodiments, the discharge line can also be arranged under the sifting wheel.

Die Erfindung stellt ein Verfahren zum Sichten von gemahlenen Zerkleinerungsprodukten, insbesondere von partikelförmigem Schüttgut bereit, wobei gemahlenes Zerkleinerungsprodukt in einen ein rotierendes Sichtrad umgebenden Sichtraum zugeführt wird, und ein Luftstrom bereitgestellt wird, der radial nach innen in das rotierende Sichtrad strömt und dann in axialer Richtung durch eine Austragsöffnung im Sichtrad abgeführt wird, wobei der Luftstrom im an die Austragsöffnung angrenzenden Bereich des Sichtrads einen Teil des Zerkleinerungsprodukts in axialer Richtung entlang von Segelflächenelementen mitführt, wobei der Neigungswinkel der Segelflächenelemente gegenüber der Axialrichtung des Sichtrads in einer durch Axialrichtung und Umfangsrichtung des Sichtrads aufgespannten Fläche konstant ist. Insbesondere sind Segelradflächen im an die Austragsöffnung angrenzenden Bereich des Sichtrads vorgesehen, sodass innerhalb des Sichtrads kein Wirbel entstehen kann, der die Abfuhr des Feinguts in der Sichtluft aus dem Sichtrad verschlechtern würde.The invention provides a method for classifying ground comminution products, in particular particulate bulk material, wherein ground comminution product is fed into a classifying chamber surrounding a rotating classifying wheel, and an air flow is provided which flows radially inwards into the rotating classifying wheel and then in the axial direction is discharged through a discharge opening in the classifying wheel, with the air flow in the region of the classifying wheel adjacent to the discharge opening carrying part of the comminution product along in the axial direction along canopy surface elements, with the angle of inclination of the canopy surface elements relative to the axial direction of the classifying wheel being in a direction spanned by the axial direction and circumferential direction of the classifying wheel area is constant. In particular, sail wheel surfaces are provided in the area of the classifying wheel adjacent to the discharge opening, so that no vortices can arise within the classifying wheel that would impair the removal of the fines in the classifying air from the classifying wheel.

Bei dem Verfahren kann optional der radiale Abstand zwischen dem radial äußeren Ende der Segelflächenelemente und dem radial inneren Ende von Sichtradlamellen des Sichtrads in Abhängigkeit von Drehzahl und/oder Durchmesser des Sichtrads eingestellt werden. Dies kann durch eine automatische Verstellung der Segelflächenelemente und/oder der Sichtradlamellen in Radial- und/oder Umfangsrichtung durch von einer Steuerung gesteuerte Aktoren erfolgen. Dies kann insbesondere während des Betriebs und in Abhängigkeit der Betriebszustände, insbesondere der Drehzahl und/oder der Fördermenge erfolgen. Alternativ kann eine Einstellung auch manuell in Betriebspausen erfolgen.In the method, the radial distance between the radially outer end of the canopy surface elements and the radially inner end of classifying wheel lamellae of the classifying wheel can optionally be adjusted as a function of the speed and/or diameter of the classifying wheel. This can be done by automatically adjusting the canopy surface elements and/or the classifying wheel lamellae in the radial and/or circumferential direction by actuators controlled by a controller. This can take place in particular during operation and as a function of the operating states, in particular the speed and/or the flow rate. Alternatively, an adjustment can also be made manually during breaks in operation.

In einer bevorzugten Ausführungsform ist der Luftstrom zwischen den Sichtradlamellen rotationssymmetrisch ausgebildet. Insbesondere liegt jeweils in allen Zwischenräumen zwischen in gleichem Abstand nebeneinander angeordneten Sichtradlamellen ein identischer Strömungszustand vor. Damit wird eine gleichmäßige Abtrennung von Grobgut im Sichtraum ermöglicht.In a preferred embodiment, the air flow between the classifying wheel lamellae is rotationally symmetrical. In particular, there is an identical flow condition in each case in all intermediate spaces between separating wheel lamellae arranged next to one another at the same distance. This enables an even separation of coarse material in the sifting chamber.

Im Folgenden wird die Erfindung anhand von beispielhaften Ausführungsformen weitergehend erläutert, die in den folgenden Figuren dargestellt sind. Dabei zeigt:

  • Fig. 1 eine seitliche Schnittansicht einer Sichteinrichtung gemäß eines Ausführungsbeispiels der vorliegenden Erfindung;
  • Fig. 2 eine horizontale Schnittansicht durch das Sichtrad gemäß Figur 1;
  • Fig. 3 eine Schnittansicht durch ein Sichtrad gemäß einer Ausführungsform der Erfindung;
  • Fig. 4 eine Schnittansicht durch ein Sichtrad gemäß einer weiteren Ausführungsform der Erfindung;
  • Fig. 5 eine Schnittansicht durch ein Sichtrad gemäß einer weiteren Ausführungsform der Erfindung;
  • Fig. 6 eine seitliche Schnittansicht durch eine Sichteinrichtung gemäß einer weiteren Ausführungsform der Erfindung.
The invention is explained in more detail below using exemplary embodiments which are illustrated in the following figures. It shows:
  • 1 a side sectional view of a viewing device according to an embodiment of the present invention;
  • 2 a horizontal sectional view through the classifying wheel according to FIG figure 1 ;
  • 3 a sectional view through a classifying wheel according to an embodiment of the invention;
  • 4 a sectional view through a classifying wheel according to a further embodiment of the invention;
  • figure 5 a sectional view through a classifying wheel according to a further embodiment of the invention;
  • 6 a side sectional view through a viewing device according to a further embodiment of the invention.

In Figur 1 ist eine Sichteinrichtung 1 gemäß einer Ausführungsform der Erfindung dargestellt. Die Sichteinrichtung 1 ermöglicht Grobgut von Feingut in einem Sichtluftstrom abzutrennen, das Grobgut wieder einem Mahlvorgang zuzuführen und das Feingut zur weiteren Verarbeitung abzutransportieren. Dafür ist ein Sichtrad 2 vorgesehen, das mittels eines Motors 3 um eine vertikale Achse rotiert werden kann. Das Sichtrad 2 ist innerhalb eines Leitschaufelkranzes 4 angeordnet. Dabei ist ein äußerer Kranz von Sichtradlamellen 5 des Sichtrads radial von dem Leitschaufelkranz 4 beabstandet, sodass zwischen Sichtradlamellen 5 und Leitschaufelkranz 4 ein Sichtraum 6 gebildet wird. Ein gemahlenes Zerkleinerungsprodukt, insbesondere partikelförmiges Schüttgut, wird durch einen Luftstrom von radial außerhalb durch einen Leitschaufelkranz 4 mitgenommen und gelangt dann in den Sichtraum 6. Durch die Rotation der Sichtradlamellen 5 zusammen mit dem Sichtrad 2 werden Strömungsverhältnisse im Sichtraum erzeugt, die bewirken, dass grobe Anteile der gemahlenen Zerkleinerungsprodukte nach unten ausfallen und lediglich Zerkleinerungsprodukte, die mindestens eine gewisse Feinheit aufweisen, radial nach innen in das Sichtrad 2 transportiert werden. Die Sichtluft strömt durch die Sichtradlamellen 5 in das Innere des Sichtrads und dann durch eine Austragsöffnung 7 in eine nachgeordnete Verarbeitungsvorrichtung. Die nachgeordnete Verarbeitungsvorrichtung kann lediglich darin bestehen, dass das Feingut aufgeschüttet, weitertransportiert und/oder verpackt wird.In figure 1 a viewing device 1 according to an embodiment of the invention is shown. The sifting device 1 enables coarse material to be separated from fine material in a sifting air stream, the coarse material to be resupplied to a grinding process and the fine material to be transported away for further processing. A classifying wheel 2 is provided for this purpose, which can be rotated about a vertical axis by means of a motor 3 . The classifying wheel 2 is arranged within a ring of guide vanes 4 . An outer ring of classifying wheel lamellae 5 of the classifying wheel is spaced radially from the guide vane ring 4 so that a classifying space 6 is formed between the classifying wheel lamellae 5 and the guide vane ring 4 . A ground crushed product, in particular particulate bulk material, is entrained by an air flow from radially outside through a ring of guide vanes 4 and then enters the classifying chamber 6. The rotation of the classifying wheel lamellae 5 together with the classifying wheel 2 creates flow conditions in the classifying chamber that cause coarse Portions of the ground comminution products fall down and only comminution products that have at least a certain degree of fineness are transported radially inward into the sifting wheel 2 . The sifting air flows through the sifting wheel lamellae 5 into the inside of the sifting wheel and then through a discharge opening 7 into a downstream processing device. The downstream processing device can simply consist in the fact that the fines are heaped up, transported further and/or packaged.

Zwischen den Segelflächenelementen 8 und den Sichtradlamellen 5 ist ein radialer Abstand 100 vorgesehen. Dadurch kann die Wirkung der Segelflächenelemente 8 auf die Strömung der Sichtluft durch die Sichtradlamellen 5 reduziert werden, sodass ein gleichmäßigeres Strömungsprofil im Sichtraum 6 vorliegt. Dennoch verhindern die Segelflächenelemente, dass unerwünschte Potentialwirbel im Inneren des Sichtrads 2 entstehen, und können vorteilhafterweise zur Energierückgewinnung hinsichtlich der Strömung der Sichtluft beitragen, indem sie die notwendige Antriebsleistung des Motors 3 reduzieren.A radial distance 100 is provided between the sail surface elements 8 and the classifying wheel lamellae 5 . As a result, the effect of the sail surface elements 8 on the flow of the sifting air through the sifting wheel lamellae 5 can be reduced, so that a more uniform flow profile is present in the sifting chamber 6 . Nevertheless, the canopy elements prevent unwanted potential vortices from developing inside the classifying wheel 2 and can advantageously contribute to energy recovery with regard to the flow of classifying air by reducing the necessary drive power of the motor 3 .

Insbesondere sind die Segelflächenelemente 8 an der Welle 9 des Sichtrads angebracht oder zumindest daran angeschlossen. Über der Austragsöffnung 7 ist eine Feingutabführleitung 10 vorgesehen, mit der Feingut mit den gewünschten Korngrößen in einem Luftstrom abtransportiert wird. Die Abführleitung 10 ist insbesondere über dem Sichtrad angeordnet.In particular, the sail surface elements 8 are attached to the shaft 9 of the classifying wheel or at least connected to it. A fines removal line 10 is provided above the discharge opening 7, with which the fines with the desired grain sizes are transported away in an air stream. The discharge line 10 is arranged in particular above the sifting wheel.

Unter dem Sichtrad 2 kann ein Trichter 11 angeordnet sein, der aus dem Sichtraum 6 herabfallendes Grobgut sammelt und einem Mahlvorgang zuführt. Insbesondere kann ein Mahlteller zentral unter dem Trichter 11 angeordnet sein, sodass das Mahlgut dem rotierenden Mahlteller zentral zugeführt wird, und dann von Mahlwalzen erneut zerkleinert wird, bevor es wieder von einem Sichtluftstrom ergriffen und der Sichteinrichtung 1 zugeführt wird. Somit wird das Mahlgut bzw. die Zerkleinerungsprodukte solange durch die Sichteinrichtung 1 geführt, bis die gewünschte Zerkleinerungsstufe erreicht ist, sodass das entsprechende Feingut den Sichtraum 6 in das Innere des Sichtrades passieren und dann über die Abführleitung 10 abgeführt werden kann.A hopper 11 can be arranged under the sifting wheel 2, which collects coarse material falling from the sifting chamber 6 and feeds it to a grinding process. In particular, a grinding table can be arranged centrally under the funnel 11 so that the material to be ground is fed centrally to the rotating grinding table and then crushed again by grinding rollers before it is gripped again by a sifting air stream and fed to the sifting device 1 . The material to be ground or the comminution products is thus guided through the sifting device 1 until the desired comminution stage is reached, so that the corresponding fine material can pass through the sifting chamber 6 into the interior of the sifting wheel and can then be discharged via the discharge line 10 .

Wie in Figur 1 dargestellt ist, erstrecken sich die Segelflächenelemente 8 bis direkt an die Austragsöffnung 7 des Sichtrads 2. Somit wird der Sichtluftstrom im Sichtrad 2 bis zu dessen Austragsöffnung 7 hin durch die Segelflächenelemente 8 geführt. Dies verhindert das Entstehen von unerwünschten Luftwirbeln im Sichtrad 2 und verbessert die Energierückgewinnung aus der Sichtluftströmung. Die Segelflächenelemente 8 erstrecken sich über die komplette Höhe des Sichtrads 2.As in figure 1 is shown, the canopy elements 8 extend right up to the discharge opening 7 of the classifying wheel 2. The classifying air flow in the classifying wheel 2 is thus guided through the canopy surface elements 8 up to its discharge opening 7. This prevents the emergence of unwanted air turbulence in the classifying wheel 2 and improves energy recovery from the visual airflow. The sail surface elements 8 extend over the entire height of the sifting wheel 2.

In Figur 2 ist die in Figur 1 eingezeichnete horizontale Schnittansicht A-A durch die erfindungsgemäße Ausführungsform des Sichtrads 2 dargestellt. Das Sichtrad 2 weist eine zentrale Welle 9 mit sich davon in radialer Richtung erstreckenden Segelflächenelementen 8 auf. In einem radialen Abstand 100 von den radial äußeren Enden 8 der Segelflächenelemente 8 sind die Sichtradlamellen 5 angeordnet. Die Sichtradlamellen 5 sind hier jeweils paarweise leicht in entgegengesetzte Richtungen gegenüber der Radialrichtung geneigt. Weiterhin ist eine höhere Anzahl von Sichtradelementen 5 als von Segelflächenelementen 8 vorgesehen.In figure 2 is the in figure 1 Drawn horizontal sectional view AA represented by the embodiment of the classifying wheel 2 according to the invention. The classifying wheel 2 has a central shaft 9 with sail surface elements 8 extending therefrom in the radial direction. The classifying wheel lamellae 5 are arranged at a radial distance 100 from the radially outer ends 8 of the canopy surface elements 8 . The classifying wheel lamellae 5 are slightly inclined here in pairs in opposite directions with respect to the radial direction. Furthermore, a higher number of classifying wheel elements 5 than of sail surface elements 8 is provided.

In Figur 3 ist eine weitere Ausführungsform eines Sichtrades 2 in horizontaler Schnittansicht dargestellt. Hier sind die Segelflächenelemente 8 mit einem gewellten Profil ausgestaltet. Dabei sind die Segelflächenelemente 8 entgegen der vorgesehenen Drehrichtung gekrümmt. D.h., die Segelflächenelemente weisen über ihre Erstreckung jeweils unterschiedliche Winkel zur Radialrichtung auf. Weiterhin sind die Sichtradlamellen 5 gegenüber der Radialrichtung geneigt. Dabei ist der Winkel 200 des radial äußeren Endes des Segelflächenelemente 8 gegenüber der Radialrichtung größer als der Winkel 300 der Sichtradlamellen 5. Dies ermöglicht ein vorteilhaftes Strömungsprofil im Sichtraum 6, d.h. radial außerhalb der Sichtradlamellen 5.In figure 3 another embodiment of a classifying wheel 2 is shown in a horizontal sectional view. Here the sail surface elements 8 are designed with a corrugated profile. The canopy elements 8 are curved counter to the intended direction of rotation. That is, the canopy elements each have different angles to the radial direction over their extent. Furthermore, the classifying wheel lamellae 5 are inclined relative to the radial direction. The angle 200 of the radially outer end of the sail surface element 8 with respect to the radial direction is greater than the angle 300 of the classifying wheel lamellae 5. This enables an advantageous flow profile in the classifying chamber 6, i.e. radially outside of the classifying wheel lamellae 5.

Zwischen den Segelflächenelementen 8 können noch Wirbel entstehen, wie in Figur 3 beispielshaft eingezeichnet ist. Allerdings sind diese Wirbel lokal begrenzt und bedingen so einen erheblich geringeren Druckverlust als die Wirbel in Sichträdern gemäß dem Stand der Technik.Vortices can still arise between the sail surface elements 8, as in figure 3 is shown as an example. However, these vortices are locally limited and thus cause a significantly lower pressure loss than the vortices in classifier wheels according to the prior art.

In Figur 4 ist eine erhöhte Anzahl an Segelflächenelementen 8 vorgesehen, um die Wirbelentstehung im Inneren des Sichtrads 2 weitergehend zu reduzieren. Weiterhin ist in Figur 4 beispielhaft gezeigt, wie die Segelflächenelemente bis hin zur radialen Mitte des Sichtrads geführt werden können. Dies ist insbesondere möglich, wenn in diesem Bereich keine Welle 9 vorgesehen ist, sondern die Welle beispielsweise nur axial außerhalb am Sichtrad 2 angeflanscht ist.In figure 4 an increased number of sail surface elements 8 is provided in order to further reduce the formation of vortices inside the classifying wheel 2 . Furthermore, in figure 4 shown by way of example how the sail surface elements can be guided up to the radial center of the sifting wheel. This is possible in particular if no shaft 9 is provided in this area, but instead the shaft is only flanged axially outside of the classifying wheel 2 .

In Figur 5 ist ein Sichtrad 2 dargestellt, in dem ein radialer Abstand zwischen der zentral angeordneten Welle 9 und den Segelflächenelementen 8 vorgesehen ist. Die im radial mittleren Bereich angeordneten Segelflächenelemente ermöglichen dennoch eine wirksame Reduzierung von Wirbeln, dabei kann es aber vorteilhaft sein, wenn die Segelflächenelemente 8 wenigstens im Bereich der an die Austragsöffnung 7 angrenzt bis hin zur zentralen Welle 9 geführt sind.In figure 5 a classifying wheel 2 is shown, in which a radial distance between the centrally arranged shaft 9 and the sail surface elements 8 is provided. The canopy elements arranged in the radially central area nevertheless enable an effective reduction of vortices, but it can be advantageous if the canopy elements 8 are guided at least in the area adjoining the discharge opening 7 up to the central shaft 9 .

Die Segelflächenelemente 8 in Fig. 2 bis 5 erstrecken sich jeweils gerade in Axialrichtung des Sichtrads 2.The sail panel elements 8 in Figures 2 to 5 each extend straight in the axial direction of the classifying wheel 2.

In Figur 6 ist schließlich eine Ausführungsform gezeigt, in der die radial äußere Kante der Segelflächenelemente gegenüber der Axialrichtung geneigt ist. Insbesondere vergrößert sich die Fläche der Segelflächenelemente 8 hin zur Austragsöffnung, sodass in diesen Bereichen, wo eine erhöhte Luftströmung vorliegt, eine wirksame Unterdrückung von Luftwirbeln möglich ist. Wie vorangehend gezeigt wurde, können die Segelflächenelemente 8 nicht nur zur Unterdrückung von Wirbelströmungen eingesetzt werden, sondern auch durch den Luftstrom angetrieben werden, und somit zumindest den Leistungseintrag über den Motor 3 zum Antrieb des Sichtrads reduzieren. Zudem kann durch die Beabstandung der Segelflächenelemente 8 von den Sichtradlamellen 5 eine Rückwirkung der Segelflächenelemente auf den Sichtraum 6 reduziert werden. Insbesondere kann verhindert werden, dass eine ungleichmäßige Luftströmung in Umfangsrichtung in Abhängigkeit der Segelflächenelemente 8 im Sichtraum 6 vorliegt.In figure 6 Finally, an embodiment is shown in which the radially outer edge of the sail surface elements is inclined with respect to the axial direction. In particular, the area of the sail surface elements 8 increases toward the discharge opening, so that in these areas where a increased air flow is present, effective suppression of air vortices is possible. As shown above, the canopy elements 8 can not only be used to suppress eddy currents, but can also be driven by the air flow, and thus at least reduce the power input via the motor 3 for driving the classifying wheel. In addition, by spacing the canopy surface elements 8 from the classifying wheel lamellae 5, a reaction of the canopy surface elements on the classifying space 6 can be reduced. In particular, it can be prevented that there is an uneven air flow in the circumferential direction depending on the canopy elements 8 in the viewing space 6 .

Claims (15)

  1. Classifier wheel (2) for a classifier device for classifying milled comminuted products, in particular particulate bulk material, comprising:
    classifier wheel blades (5), which are arranged in the radially outer region of the classifier wheel (2), and vane surface elements (8), which are arranged radially spaced apart from the classifier wheel blades (5) in the radially inner region of the classifier wheel (2),
    characterized in that
    the angle of inclination of the vane surface elements (8) is constant with respect to the axial direction of the classifier wheel (2) in an area spanned by the axial direction and the circumferential direction of the classifier wheel (2).
  2. Classifier wheel according to claim 1, wherein the vane surface elements (8) extend linearly in the axial direction of the classifier wheel (2).
  3. Classifier wheel according to one of the preceding claims, wherein the radial distance between the radially inner end of the classifier wheel blades (5) and the radially outer end of the vane surface elements (8) is constant along the entire axial extension of the classifier wheel (2).
  4. Classifier wheel according to one of the preceding claims, wherein the radial distance between the radially inner end of the classifier wheel blades (5) and the radially outer end of the vane surface elements (8) is at least 3%, preferably at least 5%, and at most 30%, advantageously at most 20%, of the diameter of the classifier wheel (2).
  5. Classifier wheel according to one of the preceding claims, wherein the vane surface elements (8) are designed to be at least partially curved and/or inclined with respect to the radial direction of the classifier wheel (2).
  6. Classifier wheel according to one of claims 1, 2, 4 or 5, wherein the radially outer edge of the vane surface elements (8) is designed to be at least partially curved and/or inclined with respect to the axial direction of the classifier wheel (2).
  7. Classifier wheel according to one of the preceding claims, wherein the vane surface elements (8) are at their radially inner ends at least partially arranged at a central shaft (9) in the classifier wheel (2).
  8. Classifier wheel according to one of claims 1 to 6, wherein the vane surface elements (8) extend up to the radial center of the classifier wheel (2).
  9. Classifier wheel according to one of the preceding claims, wherein the vane surface elements (8) only extend to a region of the classifier wheel (2) adjacent to a discharge opening (7).
  10. Classifier device for classifying milled comminuted products, in particular for classifying particulate bulk material, comprising:
    a classifier wheel (2) according to one of the preceding claims,
    a vane ring (4) inside of which the classifier wheel (2) is rotatably arranged, wherein a classifying space (6) is arranged between the vane ring (4) and the classifier wheel (2).
  11. Method for classifying milled comminuted products, in particular particulate bulk material, including the steps of
    - feeding the milled comminuted product into a classifier space (6) surrounding a rotating classifier wheel (2), and
    - providing an airflow which flows radially inward into the rotating classifier wheel (2) and is then discharged in the axial direction through a discharge opening (7) in the classifier wheel (2), wherein the airflow carries along a portion of the comminuted product in the axial direction along vane surface elements (8) in the region of the classifier wheel (2) adjacent to the discharge opening (7),
    characterized in that
    the angle of inclination of the vane surface elements (8) is constant with respect to the axial direction of the classifier wheel (2) in an area spanned by the axial direction and the circumferential direction of the classifier wheel (2).
  12. Method according to claim 11, wherein the radial distance between the radially inner end of the classifier wheel blades (5) and the radially outer end of the vane surface elements (8) is constant along the entire axial extension of the classifier wheel (2).
  13. Method according to claim 11 or 12, wherein the vane surface elements (8) extend linearly in the axial direction of the classifier wheel (2).
  14. Method according to one of claims 11 to 13, wherein the classifier wheel (2) comprises classifier wheel blades (5), the classifier wheel blades (5) are arranged in the radially outer region of the classifier wheel (2), and the vane surface elements (8) are arranged radially spaced apart from the classifier wheel blades (5) in the radially inner region of the classifier wheel (2), and wherein the radial distance between the radially outer end of the vane surface elements (8) and the radially inner end of classifier wheel blades (5) of the classifier wheel (2) is adjusted depending on the rotational speed and/or diameter of the classifier wheel (2).
  15. Method according to one of claims 11 to 14, wherein the airflow between the classifier wheel blades (5) is designed to be rotationally symmetrical.
EP20804601.1A 2019-11-22 2020-11-18 Sifting wheel with flat sail elements and method of sifting with such a sifting wheel Active EP3849714B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19210946 2019-11-22
PCT/EP2020/082550 WO2021099396A1 (en) 2019-11-22 2020-11-18 Sifting wheel with flat sail elements

Publications (3)

Publication Number Publication Date
EP3849714A1 EP3849714A1 (en) 2021-07-21
EP3849714B1 true EP3849714B1 (en) 2023-08-23
EP3849714C0 EP3849714C0 (en) 2023-08-23

Family

ID=68654388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20804601.1A Active EP3849714B1 (en) 2019-11-22 2020-11-18 Sifting wheel with flat sail elements and method of sifting with such a sifting wheel

Country Status (4)

Country Link
US (1) US11826786B2 (en)
EP (1) EP3849714B1 (en)
CN (1) CN114728312A (en)
WO (1) WO2021099396A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1229371B (en) 1966-02-04 1966-11-24 Polysius Gmbh Air separator
CA2134456A1 (en) 1993-03-31 1994-10-13 Mitsuhiro Ito Vortex pneumatic classifier
AT401741B (en) * 1993-08-19 1996-11-25 Thaler Horst Dipl Ing WINDSIGHTER
DE19606672A1 (en) * 1996-02-22 1997-08-28 Krupp Polysius Ag Classifier
DE19840344C2 (en) 1998-09-04 2002-04-04 Hosokawa Alpine Ag & Co Classifying wheel for a centrifugal air classifier
US6902126B2 (en) * 2002-11-04 2005-06-07 Alstom Technology Ltd Hybrid turbine classifier
NO321643B1 (en) * 2004-05-18 2006-06-19 Comex As particle
DE102006044833B4 (en) * 2006-09-20 2010-01-21 Babcock Borsig Service Gmbh Centrifugal separator and method for sifting
FR2941389B1 (en) 2009-01-29 2011-10-14 Fives Fcb SELECTIVE GRANULOMETRIC SEPARATION DEVICE FOR SOLID PULVERULENT MATERIALS WITH CENTRIFUGAL ACTION AND METHOD OF USING SUCH A DEVICE
JP2010227924A (en) * 2009-03-03 2010-10-14 Ricoh Co Ltd Classifier and classifying method
DE102015220269A1 (en) 2015-10-19 2017-04-20 Thyssenkrupp Ag Visual device for viewing a material flow
DE102016106588B4 (en) * 2016-04-11 2023-12-14 Neuman & Esser Process Technology Gmbh Sifter

Also Published As

Publication number Publication date
US11826786B2 (en) 2023-11-28
EP3849714A1 (en) 2021-07-21
US20220410212A1 (en) 2022-12-29
CN114728312A (en) 2022-07-08
WO2021099396A1 (en) 2021-05-27
EP3849714C0 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
EP2851122B1 (en) Comminuting device
DE3621221C2 (en)
EP2785472B1 (en) Device for classifying grainy products
DE4423815C2 (en) Mill classifier
EP2637790B1 (en) Process of grinding and grinding mill
EP1948360B1 (en) Roller mill
EP2632598B2 (en) Roller mill
EP0460490B1 (en) Air classifier
WO2013167398A1 (en) Disintegrating device
WO1992003227A1 (en) Device for crushing and sorting loose materials
DE102016106588B4 (en) Sifter
EP2142312B1 (en) Apparatus and method for sifting feedstock including grinding mill
DE102010010752A1 (en) roller mill
EP0350616B1 (en) Pneumatic classifier for granular or agglomerated material
EP3849714B1 (en) Sifting wheel with flat sail elements and method of sifting with such a sifting wheel
EP1027161B1 (en) Method and device for wet-grinding and dispersing solids in fluids
DE4014342C2 (en) Air classifier
DE4005031C1 (en) Dynamic wind sifter for roller mill - has central, restricted riser for air material mixt. flow with downwards deflection in top region of sifter rotor
DE1607536A1 (en) Blinds viewer
DE10018005A1 (en) Method and device for reducing splinter material to powder feeds material to be processed through an inlet in an external wall into a processing chamber for shredding by a rotor.
EP3541534B1 (en) Separator, separator mill and method for separating a gas-solids mixture
DE10122644B4 (en) sifter
DE4132339A1 (en) TURBO SLEEPER
DE1134264B (en) Drum mill with air sifting
DE1871056U (en) SECURING MILL.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230315

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020004904

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20230901

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230911

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230907

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20231128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231113

Year of fee payment: 4

Ref country code: CH

Payment date: 20231202

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823