EP3848578A1 - Pumpe und odoriersystem mit einer solchen pumpe - Google Patents

Pumpe und odoriersystem mit einer solchen pumpe Download PDF

Info

Publication number
EP3848578A1
EP3848578A1 EP20215661.8A EP20215661A EP3848578A1 EP 3848578 A1 EP3848578 A1 EP 3848578A1 EP 20215661 A EP20215661 A EP 20215661A EP 3848578 A1 EP3848578 A1 EP 3848578A1
Authority
EP
European Patent Office
Prior art keywords
armature
pump
electromagnet
liquid
pump chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20215661.8A
Other languages
English (en)
French (fr)
Other versions
EP3848578B1 (de
Inventor
Gerhard Sartorius
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bilfinger Engineering & Maintenance GmbH
Original Assignee
Bilfinger EMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bilfinger EMS GmbH filed Critical Bilfinger EMS GmbH
Publication of EP3848578A1 publication Critical patent/EP3848578A1/de
Application granted granted Critical
Publication of EP3848578B1 publication Critical patent/EP3848578B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0076Piston machines or pumps characterised by having positively-driven valving the members being actuated by electro-magnetic means

Definitions

  • the invention relates to a pump, in particular an odorant pump.
  • the invention also relates to a metering system with a target fluid line and a metering device for metering a liquid to the target fluid.
  • the metering system is an odorizing device for metering an odorant to a target fluid in the form of natural gas in a target fluid line in the form of a natural gas line.
  • Natural gas is odorized so that if a leak occurs in the natural gas pipeline, this will be noticed quickly. Odorants are very odorous and therefore only need to be added in very small quantities. This makes it possible to manage with a comparatively small supply of odorant for a long operating time. However, this assumes that the pump requires as little maintenance as possible.
  • the DE 10 2014 215 110 A1 discloses a linear actuator in which a hydraulic cylinder is hydraulically connected to a solenoid pump.
  • the solenoid pump has a pump coil, a pump armature and a multi-way valve, it being possible for the multi-way valve to be energized together with the pump coil.
  • the DE 1 088 684 B discloses an electro-hydraulic reciprocator whose pump is driven by an electromagnet.
  • the U.S. 4,274,407 A relates to a dosing system, in particular for fluids in the dispensing of drugs.
  • a pump and valve device has an electromagnetic generator.
  • the DE 693 11 525 T2 relates to a pump with a movable magnet in which moving magnet bodies can be made to reciprocate directly electromagnetically.
  • the DE 199 61 852 A1 relates to a pump for conveying pressure media in controlled braking systems of vehicles.
  • the valves are controlled electromechanically and therefore largely independent of pressure and temperature.
  • the DE 196 23 162 A1 relates to a solenoid valve with an electromagnetic coil, the armature of which is designed to be stationary, thus bringing about improved dynamics and requiring no seals.
  • the DE 195 44 029 A1 relates to an electromagnetic oscillating piston pump, the suction opening of which is located halfway up the side of the housing.
  • the DE 39 33 125 A1 discloses an electromagnetically actuated pump for conveying liquid media with a coil and an armature which serves as a pump piston.
  • the EP 2 971 902 B1 discloses a mechanically locking solenoid valve.
  • the invention is based on the object of reducing disadvantages in the prior art.
  • the invention solves the problem by a pump with (a) a cylinder that has a cylinder interior, (b) an armature that runs in the cylinder interior and is at least partially ferromagnetic, (c) a first electromagnet and a second electromagnet that is connected to the Armature form a reluctance linear motor, by means of which the armature can be moved in the cylinder, (d) a position sensor for the contactless determination of an armature position of the armature relative to the cylinder and (e) a pump chamber that can be enlarged and reduced in size by actuating the armature , is connected to a feed line for filling with liquid to be pumped and has a dispensing opening for dispensing pumped liquid.
  • the feed line has a magnetically switchable valve.
  • the invention also solves the problem by means of a generic odorization system in which the odorization device has a pump according to the invention. It is favorable if the odorization device has a reservoir which contains the odorant.
  • the advantage of the pump is that it can be hermetically sealed.
  • the liquid, in particular the odorant, can therefore only escape from the pump in exceptional circumstances.
  • all areas of the pump that come into contact with the liquid, in particular the odorant form a continuous wall.
  • the pump has a comparatively simple structure. It is thus possible to position the armature by means of the electromagnets, which preferably do not come into contact with the liquid. In this case, undesirable reactions between the liquid, in particular the odorant, and the material of the electromagnet cannot occur.
  • an armature mass of the armature is at most approximately ten percent of the mass of the ferromagnetic material of the magnetic circuit causing the armature movement.
  • electromagnets form a reluctance linear motor with the armature is understood in particular to mean that an oscillating movement of the armature can be brought about by alternately energizing the first electromagnet and the second electromagnet.
  • the feature that the pump chamber can be enlarged and reduced in size by actuating the armature is understood in particular to mean that the pump chamber is enlarged and reduced in size by moving the armature along a longitudinal axis of the armature becomes.
  • the liquid can be moved into and out of the pump chamber by moving the armature along its armature longitudinal axis, which causes the liquid to be pumped.
  • a ferromagnetic material is understood to mean a material that can be magnetized, although it does not have to be magnetized. It is favorable if the armature is soft magnetic where it is ferromagnetic.
  • a coercive field strength of the material of the armature, in particular in the area where it is at least partially ferromagnetic, is preferably at most 1,000 amperes per meter.
  • the armature can also be referred to as a piston.
  • the armature preferably has liquid channels through which liquid flows when the armature moves in the cylinder along its armature longitudinal axis.
  • the electromagnets are separated from the cylinder interior in a liquid-tight manner. This prevents the electromagnet from being influenced by liquids, in particular odorants, in the cylinder interior.
  • the feed line runs through the armature. This generally results in a pump that is easy to assemble. It is also beneficial if the feed line connects the cylinder interior with the pump chamber. It is particularly favorable if the feed line connects the pump chamber with the area of the cylinder which is remote from the pump chamber with respect to the ferromagnetic section. If the armature moves in such a way that the pump chamber enlarges, this movement leads to an increased pressure at an inflow opening of the feed line, so that the liquid flows quickly into the pump chamber.
  • the armature has an armature element which is ferromagnetic and which is spaced apart from an inner surface of the cylinder by an annular gap.
  • the anchor preferably also comprises a shaft to which the anchor element is attached.
  • the anchor is preferably on two sides over the anchor element over. It is favorable if the armature is guided in an axial guide at its protruding ends.
  • the pump is preferably designed to deliver the liquid at a pressure of at least 3 bar, in particular at least 5 bar.
  • the pressure is preferably at most 30 bar, in particular at most 20 bar.
  • valve In order to achieve the highest levels of accuracy when metering the liquid, the presence of gas, in particular gas bubbles, in the liquid should be largely ruled out. For this purpose, it is advantageous if the valve can be switched without contact.
  • the valve is preferably magnetically switchable.
  • the magnetically switchable valve has a magnetic valve body.
  • the valve can be brought from an open position into a closed position by changing a magnetic field, in particular a magnetic field in which the valve is arranged.
  • the valve body In the open position, the valve body is spaced apart from a valve seat so that liquid can flow through the valve.
  • the valve body rests against the valve seat so that the valve is closed.
  • the valve has a resetting device, in particular a spring, which biases the valve body into the open position or into the closed position. It is then possible and preferred to (i) move the valve from the closed position to the open position by changing a magnetic field applied to the valve, then (ii) energize the first electromagnet so that the armature moves, then ( iii) changing the magnetic field (which previously brought the valve from the closed position to the open position), in particular switching off the magnetic field so that the reset device closes the valve, and then (iv) actuating the armature so that the pump Releases liquid.
  • a resetting device in particular a spring, which biases the valve body into the open position or into the closed position.
  • the controller is preferably designed to automatically carry out a method with the following steps: (i) changing a magnetic field applied to the valve so that the valve comes from the closed position into the open position, then (ii) energizing the first electromagnet so that the Anchor moves, then (iii) changing the Magnetic field (which previously brought the valve from the closed position to the open position), in particular switching off the magnetic field so that the reset device closes the valve, and then (iv) actuation of the armature by energizing at least one electromagnet so that the Pump dispenses liquid.
  • the magnetically switchable valve can preferably be switched by reversing the polarity of at least one of the electromagnets.
  • the valve body is influenced by the magnetic field of at least one of the electromagnets, in particular both electromagnets.
  • the magnetic valve body is brought into the open position or the closed position. In other words, the valve is designed to change its open state from the open position to the closed position and / or from the closed position to the open position.
  • the magnetic valve body is permanently magnetic. This results in a particularly strong closing force of the valve.
  • the armature preferably has a shaft which is ferromagnetic.
  • the valve body is preferably designed in such a way that it rotates by at least 1 ° when the valve is closed and / or opened. This has the advantage that the valve body and the valve seat wear uniformly with respect to a radial component. In this way, the tightness of the valve is guaranteed, even if it wears out.
  • the pump has at least one permanent magnet which is arranged such that the armature is held in its rest position, even when the electromagnets are not energized.
  • the at least one permanent magnet is preferably arranged between the electromagnets.
  • the valve body has a structured jacket surface.
  • the surface of the lateral surface can have grooves, grooves or recesses which extend along curves, in particular lines, which do not run parallel to a valve body longitudinal axis of the valve body. When the valve body moves along its longitudinal axis, a torque acting on the valve body is produced.
  • valve body can have an inclined end face which is asymmetrical with respect to a radial component and which results in a torque acting on the valve body when the valve body moves along its longitudinal axis of the valve body.
  • the pump has a first magnetic field shaping element which is arranged to shape a first magnetic field of the first electromagnet. It is favorable if the first magnetic field shaping element is arranged at least partially, preferably completely, radially inside the first electromagnet.
  • the pump also has a second magnetic field shaping element which is arranged for shaping a second magnetic field of the second electromagnet. It is favorable if the second magnetic field shaping element is arranged at least partially radially inside the second electromagnet.
  • the magnetic field shaping elements are designed in such a way that the armature can be positioned by energizing the electromagnets, in particular can be positioned steplessly.
  • the magnetic field shaping elements are preferably designed in such a way that they have an air gap.
  • An air gap is understood to be an area in which the magnetic field is at most a tenth as strong as on the other side of the air gap.
  • the air gap leads to an inhomogeneity of the magnetic field, so that the reluctance depends on the position of the armature along its armature longitudinal axis. In particular, it is not necessary for the air gap to be formed by air. Instead of an air gap, the term ferromagnet-free zone could also be used.
  • the magnetic field shaping elements are preferably designed such that a movement of the armature in the direction of its armature longitudinal axis in one direction increases the reluctance with respect to the first electromagnet, but reduces a second reluctance with respect to the second electromagnet.
  • the result is a position of the armature with respect to its armature longitudinal axis which minimizes the reluctance. In this way, the position of the armature can be continuously adjusted by the current intensities through the first electromagnet and / or the second electromagnet
  • the anchor can preferably be so pronounced that it has at least three anchor elements. These are arranged in such a way that the armature can be positioned along its armature longitudinal axis by alternately energizing the first electromagnet and the second electromagnet.
  • control is preferably designed to automatically carry out a method in which a first armature segment is initially positioned adjacent to a ferromagnet-free zone of the second electromagnet by energizing the second electromagnet, and as a result a second armature segment is in the effective area of the ferromagnet-free zone of the first electromagnet.
  • the second armature element is positioned adjacent to the ferromagnet-free zone of the first electromagnet by energizing the first electromagnet and as a result a third armature segment is in the effective area of the ferromagnet-free zone of the second electromagnet.
  • the third armature segment is positioned adjacent to the ferromagnet-free zone of the first electromagnet by energizing the first electromagnet, with a fourth armature segment consequently being in the effective area of the ferromagnet-free zone of the first electromagnet.
  • the electromagnets are energized alternately and the armature segments are arranged in such a way that each time the energized electromagnet changes, the armature moves a predetermined path along its armature longitudinal axis.
  • the result is a position of the armature with respect to its armature longitudinal axis which minimizes the reluctance. In this way, the position of the armature can be continuously adjusted by the current intensities through the first electromagnet and / or the second electromagnet.
  • the result is a position of the armature with respect to its armature longitudinal axis which minimizes the reluctance. In this way, the position of the armature can be continuously adjusted by the current intensities through the first electromagnet and / or the second electromagnet.
  • the armature can of course only be continuously positioned within a predetermined interval.
  • the position sensor is preferably a magnetic sensor which has a magnet attached to the armature and a magnetic field sensor element.
  • the magnetic field sensor element is preferably attached to the shaft of the armature.
  • a distance between the magnetic field sensor element and the electromagnet is preferably selected to be so large that the magnetic field of the electromagnet does not significantly influence the position measurement of the position sensor.
  • a magnetic sensor is understood to mean, in particular, a sensor that measures a magnetic field strength and uses it to determine the position of the armature relative to the cylinder.
  • the magnetic sensor preferably contains a processor and a digital memory in which calibration data are stored, on the basis of which the processor determines the position from the measured magnetic field strength. These calibration data are determined, for example, in preliminary tests.
  • the position of the armature is determined by measuring the inductance of the magnet coils, which is dependent on the position of the armature.
  • the position of the armature is determined by measuring the flux density that is dependent on the position of the armature.
  • the feed line has an inflow opening for liquids to flow in from the cylinder interior.
  • the pump preferably has a controller which is designed to automatically carry out a method with the steps of (i) detecting a target stroke of the armature, (ii) continuously measuring an actual stroke, (iii) energizing the first electromagnet so that the Actual stroke approaches the target stroke and the liquid flows into the pump chamber and (iv) then energizes the second electromagnet so that the liquid is pumped out of the pump chamber through the dispensing opening. Because the actual stroke is adapted to the target stroke, the amount of liquid that is pumped through the dispensing opening per pump stroke can be set with high accuracy.
  • the controller is preferably designed to automatically carry out a method with the following step: After energizing the first electromagnet, so that the actual stroke approaches the target stroke and liquid flows into the pump chamber, and before energizing the second electromagnet, reversing the polarity of one of the electromagnets so that the valve closes.
  • This has the advantage that immediately after the armature begins to move, the pumping space is reduced in size and liquid is dispensed through the dispensing opening. If, for example, a check valve were used whose valve body is not spring-loaded, the pressure in the pump chamber would first have to rise in order to press the valve body against the valve seat. During this time, an unknown amount of liquid can flow past the valve body. It is therefore not clear what amount of liquid per Armature stroke is actually delivered. This is avoided by the switchable valve.
  • the control is preferably designed to automatically carry out a method with the following steps: After pumping the liquid from the pump chamber through the dispensing opening, energizing the second electromagnet so that the armature is in its rest position.
  • the pump chamber is minimally filled with liquid in the rest position of the armature.
  • the rest position is the position in which the anchor is for the majority of the time. It corresponds to a preferred embodiment that the armature is preloaded into its rest position, in particular by means of a spring.
  • At least one of the electromagnets is subjected to an electrical current which has a high-frequency component in such a way that the armature oscillates.
  • This oscillation has an oscillation stroke which is smaller than the stroke of the armature for pumping, in particular a maximum of one tenth, preferably a maximum of one twentieth of the stroke.
  • This oscillation prevents a seal, which is preferably present and which seals the armature against the pump chamber, from sticking. The breakaway force that is necessary to move the armature out of a position in which the armature has previously rested becomes small.
  • the arrangement can preferably be operated in such a way that the oscillation of the armature is used for the precise setting of the specified target stroke during the filling phase and then with maximum force by energizing the second electromagnet without armature oscillation, the liquid from the pump chamber through the dispensing opening with a defined force is pumped (pressure stroke).
  • the pump has a temperature detection device which is set up to detect a temperature measured value that correlates to a pump chamber temperature in the pump chamber.
  • the measured temperature value is a measured value that indicates the pump chamber temperature.
  • the measured temperature value can be present, for example, as an electrical signal, but it is it is also possible for the temperature measured value to be, for example, an electrical resistance that changes with the pump chamber temperature. It is only important that an exceeding of a predetermined temperature threshold value can be detected.
  • the temperature detection device can be a temperature-dependent resistor. If this resistor is an NTC thermistor, if the resistance falls below a threshold, it can be concluded that the pump chamber temperature is above a pump chamber temperature threshold value.
  • the controller is preferably designed to energize a heating element and / or at least one of the electromagnets to increase the pump chamber temperature when the pump chamber temperature falls below a predetermined minimum pump chamber temperature. In this way, for example, freezing or crystallization of the liquid is avoided.
  • the pump preferably comprises a cooling device for cooling the pump chamber. It can be a Peltier element, for example.
  • the controller is preferably set up to automatically cool the pump chamber when the pump chamber temperature exceeds a predetermined maximum pump chamber temperature.
  • an odorization system is also provided with (a) a target fluid line, in particular a gas line, for example a natural gas line, for a target fluid, in particular a gas, for example natural gas, and (b) a metering device for metering a liquid to the target fluid, with (c ) the metering device has a pump and a reservoir which contains the liquid.
  • a target fluid line in particular a gas line, for example a natural gas line
  • a target fluid in particular a gas, for example natural gas
  • a metering device for metering metering a liquid to the target fluid
  • the metering device has a pump and a reservoir which contains the liquid.
  • the cylinder and / or the reservoir is preferably filled with odorant.
  • the pump chamber is arranged below the cylinder. Any gases that may develop in the pump chamber are hardly released from the pump chamber, but escape upwards, in particular into the cylinder.
  • the invention also relates to a cold disinfection system with (a) a target fluid line in the form of a liquid line and (b) a metering device in the form of a disinfection device for metering a liquid in the form of a disinfectant into the liquid line, with (c) the disinfection device having a pump and a Reservoir that contains the disinfectant.
  • the cylinder and / or the reservoir is preferably filled with disinfectant.
  • FIG. 1 shows a metering system 10 according to the invention for metering a liquid 12 into a target fluid line 14 in which a target fluid 16 flows.
  • the metering system 10 has a pump 18 which has a cylinder 20 which surrounds a cylinder interior 22.
  • An armature 26, which runs in the cylinder interior 22, is arranged in the cylinder interior 22.
  • the armature 26 has an armature element 28 made of soft magnetic material, in the present case made of soft iron, and a shaft 30.
  • An annular gap 34 is formed between the armature element 28 and an inner surface 32 of the cylinder 20.
  • the anchor 26 can have connecting channels 35 which run along the anchor longitudinal axis L.
  • the cylinder interior 22 is connected to a reservoir 36 via a line 37 in which the liquid 12 is contained.
  • the liquid 12 is, for example, an odorant or a cold disinfectant.
  • the cylinder interior 22 is therefore filled with liquid 12.
  • the pump 18 has a first electromagnet 38 and a second electromagnet 40, which are arranged one behind the other with respect to an armature longitudinal axis L.
  • the armature 26 can be positioned along the armature longitudinal axis L. This position is measured along an x-axis that runs along the anchor longitudinal axis L.
  • a magnet 42 is arranged on the shaft 30 and, together with a magnetic field sensor element 44, forms a position sensor 46.
  • the position of the armature 26 can be determined by means of the position sensor 46. It is favorable if a measurement uncertainty when determining the positions of the armature 26 is at most 0.2 ⁇ m.
  • the pump 18 has a pump chamber 48, which can also be referred to as a pump chamber.
  • the pump chamber 48 preferably has a volume of at most 100 milliliters.
  • the pump chamber 48 is connected to the cylinder interior 22 via a feed line 50.
  • a magnetically switchable valve 54 which is shown enlarged in the right partial image, is arranged at an outlet end 52.
  • the valve 54 has a valve seat 56 and a valve body 58 which is ferromagnetic.
  • the valve body 58 is magnetized.
  • the valve body 58 can be made of magnetized steel.
  • the pump chamber has a discharge opening 60 for discharging pumped liquid 12, for example to a nozzle 62.
  • the pump 18 has a first magnetic field shaping element 64 and a second magnetic field shaping element 66.
  • the first magnetic field shaping element 64 is arranged for shaping a first magnetic field B 1 , which is generated by energizing the first electromagnet 38.
  • the first magnetic field shaping element 64 adjoins a first air gap element 68 made of non-magnetic, non-magnetizable material, for example non-magnetic stainless steel.
  • the air gap element 68 has the same effect as an air gap at the same point and causes an inhomogeneity of the first magnetic field B 1 in its surroundings.
  • the air gap element 68 has a thickness that decreases in the axial direction with respect to the armature longitudinal axis L.
  • the second magnetic field shaping element 66 adjoins a second air gap element 70 and acts like the first air gap element 68 for the second magnetic field B 2 , which is built up by energizing the second electromagnet 40.
  • the electromagnets 38, 40 are connected to a controller 72, which is possibly connected to the position sensor 46.
  • the pump 18 carries out the method according to the invention described below. If, for example, on the basis of an external signal that is transmitted to the controller 72, a specified volume flow V is requested, the controller 72 calculates a setpoint stroke H setpoint from this and energizes the first electromagnet 38.
  • the armature 26 then moves along the armature longitudinal axis L towards the first electromagnet 38, since the reluctance is reduced in this way.
  • the embodiment shown moves the armature 26 upwards.
  • a pressure p 48 in the pump chamber 48 is reduced.
  • liquid 12 flows out of the cylinder interior 22 through an inflow opening 76 of the feed line 50, into the feed line 50 and reaches the valve 54.
  • the valve 54 is open, so that the liquid 12 flows into the pump chamber 48.
  • the position sensor 46 continuously measures the position x and regulates an electrical current I 1 (t) through the first electromagnet 38 and the current I 2 (t) through the second electromagnet 40 so that the armature 26 moves along a predetermined target trajectory X target (t) moves.
  • the controller 72 reverses the polarity of the current I 1 .
  • the position x of the armature 26 does not change.
  • the magnetic field B 54 changes in the vicinity of the valve body 58, so that the latter moves towards its valve seat 56 and the valve 54 closes.
  • the controller 72 then energizes the second electromagnet 40 in such a way that the armature 26 moves in an opposite direction.
  • the volume of the The pump chamber 48 thereby decreases and the liquid 12 flows under pressure through the dispensing opening 60.
  • the shaft 30 is sealed against the surrounding wall by means of a seal 78.
  • the controller 72 energizes the first electromagnet 38 and / or the second electromagnet 40 so that the armature 26 performs an oscillating movement before the armature 26 is moved for pumping .
  • the controller 72 brings the armature 26 into its rest position, in which the volume of the pump chamber 48 is minimal. This reduces any gas bubbles that could arise as liquid 12 evaporates. If gas bubbles nevertheless form, they can escape upwards through the feed line 50 and thus do not lead to a corruption of the volume flow V.
  • the pump 18 in the shape of a thermometer, a temperature sensing device 80 which is connected to the controller 72 and is arranged for measuring a pump chamber temperature T 48 48.
  • the controller 72 controls the first electromagnet 38 and / or the second electromagnet 40 in such a way that the liquid 12 in the cylinder interior 22 is heated.
  • the electromagnets 38, 40 are in thermal contact with the cylinder interior 22.
  • the pump 18 can have an outlet 82 through which the liquid 12 in the cylinder interior 22 can be lowered.
  • valve 54 is arranged as an extension of the shaft 30.
  • the two magnetic field shaping elements 64, 66 are arranged between two non-magnetic and non-magnetizable side parts 84, 86 with respect to the armature longitudinal axis L.
  • the magnet 42 is radially surrounded by the second side part 86, so that the magnetic field of the first electromagnet 38 is as small as possible.
  • the valve 54 is surrounded by the first side part 84, so that the magnetic field of the second electromagnet 40 is as weak as possible at this point.
  • the shaft 30 is made of ferromagnetic material so that the magnetic field in the area of the valve body 58 can be changed by reversing the polarity of the first electromagnet 38 and / or the second electromagnet 40.
  • Figure 2 shows a second embodiment of a pump according to the invention, in which the valve 54 is arranged.
  • FIG 3a shows a further embodiment of a pump 18 according to the invention in which - unlike the embodiments according to FIGS Figures 1 and 2 - A direction of movement of the valve body 58 does not run along the armature longitudinal axis L, but transversely thereto.
  • FIG. 11 shows a further embodiment of a pump 18 according to the invention, in which the air gap elements 68, 70 are not as in the embodiments according to FIG Figures 1 , 2 and 3a are arranged adjacent to one another, but on opposite sides of the respective magnetic field shaping element 64 or 66.
  • Figure 4a shows a further embodiment of a pump 18 according to the invention, in which the armature is so pronounced that it consists of several elements.
  • FIG. 4b shows a further embodiment of a pump 18 according to the invention, in which permanent magnets are present in addition to the electromagnets, which are positioned between the two magnet coils so that a magnetic flux is created even when both magnet coils are not energized. This causes the pump to remain in a defined position when de-energized.
  • Figure 1 shows that the pump 18 can have a heating and / or cooling device 87 for cooling the pump chamber 48.
  • the heating and / or cooling device 87 is a Peltier element that is energized by the controller 72. Depending on the polarity of the current direction, the Peltier element heats or cools. It can therefore also be referred to as a heating element when it is operated in a heating manner.
  • the controller 72 is designed to energize first the second electromagnet 40, so that a first armature segment 88.1 is positioned adjacent to the second air gap element 70, that is, in the ferromagnet-free zone.
  • a second armature segment 88.2 stands adjacent to the first air gap element 68 and thus in the effective area of the ferromagnet-free zone.
  • the first electromagnet 38 is then energized, as a result of which the second armature element 88.2 is positioned adjacent to the first air gap element 68. As a result, a third anchor segment 88.3 is in the effective area of the second air gap element 70.
  • the third armature segment 88.3 is then positioned in the ferromagnet-free zone of the second air gap element 70, that is to say adjacent to it, by energizing the second electromagnet 40.
  • a fourth armature segment 88.4 is in the effective area of the ferromagnet-free zone of the first air gap element 68. If the armature 26 would comprise more armature segments, the alternating current flow could be continued until the last armature segment, which is required for the maximum stroke length, is positioned in the corresponding ferromagnet-free zone is.
  • the result is a position of the armature 26 with respect to its armature longitudinal axis L, which is the Reluctance minimized. In this way, the position of the armature 26 can be continuously adjusted by the current intensities through the first electromagnet and / or the second electromagnet I 38 , I 40.
  • FIG. 4b shows a further embodiment of a pump 18 according to the invention, in which permanent magnets 90.1, 90.2 are arranged between the electromagnets 38, 40.
  • the permanent magnets 90.1, 90.2 are positioned between the two electromagnets 38, 40 in such a way that a magnetic flux is created, even if both magnet coils are not energized. This has the effect that the pump 18 remains in a defined position in the de-energized state.
  • Figure 5a shows a valve body 58 which has a structured jacket surface 92.
  • the curves K1, K2, .. run around the valve body longitudinal axis L of the valve body 58.
  • Figure 5b shows an alternative valve body 58, the end face 96 of which has an asymmetrical, oblique structure 98.
  • FIG. 6 shows a further embodiment of a pump 18 according to the invention, in which the armature 26 is arranged between the first electromagnet 38 and the second electromagnet 40. This represents a preferred embodiment - regardless of other features of the pump 18 according to the present embodiment.
  • the air gap elements 68, 70 are at a distance from the armature longitudinal axis L which is greater than the inner radius of the electromagnets 38, 40 (that is to say of the coils).
  • the distance from the armature longitudinal axis L is at least as large as the mean value of the inner radius and the outer radius of the electromagnets 38, 40
  • the advantage of this embodiment is the lower power loss of the electromagnets.
  • the usually comparatively small winding diameter is also advantageous.
  • the pump 18 and the reservoir 36 form a metering device 100.
  • the target fluid line 14 can be, for example, a gas line, in particular a natural gas line.
  • the metering device 100 is preferably designed as an odorizing device, in whose reservoir 36 a substance 102 to be metered in is contained in the form of an odorant 102.
  • the odorant 102 can be, for example, tetrahydrothiophene, a mercaptan or a mixture of ethyl acrylate (over 50%), methyl acrylate and 2-ethyl-3-methylpyrazine.
  • the entirety of gas line 14 and odorization device 100 forms an odorization system 104.
  • the target fluid line 14 can be a liquid line.
  • the metering device 100 is preferably designed as a disinfection device.
  • the substance 102 to be metered is in this case a disinfectant.
  • Metering system 64 first magnetic field shaping element 12th liquid 14th Target fluid line 66 second magnetic field shaping element 16 Target fluid 18th pump 68 first air gap element 20th cylinder 70 second air gap element 22nd Cylinder interior 72 control 26th anchor 74 digital storage 28
  • Anchor element 76 Inflow opening 78 poetry 30th shaft 32 Cylinder inner surface 80 thermometer 34 Annular gap 82 procedure 35 lower flow chamber 84 first side part 36 reservoir 86 second side part 37 management 87
  • Cooling device 38 first electromagnet 88
  • Anchor segment 40 second electromagnet 90 Permanent magnet 42 magnet 92 Outer surface 44 Magnetic field sensor element 94 Recess 46 Position sensor 96 Face 48 Pumping room 98 structure 50 Feed line 100 Dosing device, odorization device 52 Outlet end 54 Val

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)
  • Reciprocating Pumps (AREA)
  • Magnetically Actuated Valves (AREA)
  • Treating Waste Gases (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Die Erfindung betrifft eine Pumpe (18) für das Dosieren einer Flüssigkeit (12), mit (a) einem Zylinder (20), der einen Zylinderinnenraum (22) hat, (b) einem Anker (26), der im Zylinderinnenraum (22) läuft und zumindest abschnittsweise ferromagnetisch ist, (c) einem ersten Elektromagneten (38) und einem zweiten Elektromagneten (40), die mit dem Anker (26) einen Reluktanz-Linearmotor bilden, mittels dem der Anker (26) im Zylinder (20) bewegbar ist, (d) einem Pumpraum (48), der durch Betätigen des Ankers (26) vergrößer- und verkleinerbar ist, mit einer Speiseleitung (50) zum Füllen mit der zu pumpenden Flüssigkeit (12) verbunden ist und eine Abgabeöffnung (60) zum Abgeben der gepumpten Flüssigkeit (12) aufweist, (e) wobei die Speiseleitung (50) ein, insbesondere magnetisch, schaltbares Ventil (54) aufweist, und wobei (f) die Pumpe einen Positionssensor (46) zum berührungslosen Bestimmen einer Anker-Position des Ankers (26) relativ zum Zylinder (20) aufweist.

Description

  • Die Erfindung betrifft eine Pumpe, insbesondere eine Odoriermittelpumpe. Die Erfindung betrifft zudem ein Zudosiersystem mit einer Zielfluid-Leitung und einer Zudosiervorrichtung zum Zudosieren einer Flüssigkeit zum Zielfluid.
  • Beispielsweise handelt es sich beim Zudosiersystem um eine Odoriervorrichtung zum Zudosieren eines Odoriermittels zu einem Ziel-Fluid in Form von Erdgas in einer Zielfluid-Leitung in Form einer Erdgasleitung.
  • Erdgas wird odoriert, um beim Auftreten eines Lecks in der Erdgasleitung dieses schnell zu bemerken. Odoriermittel sind sehr geruchsintensiv und müssen daher nur in sehr kleinen Mengen zugesetzt werden. Das ermöglicht es, mit einem vergleichsweise geringen Vorrat an Odoriermittel für eine lange Betriebszeit auszukommen. Das allerdings setzt voraus, dass die Pumpe möglichst wenig Wartung erfordert.
  • Die DE 10 2014 215 110 A1 offenbart einen Linearaktor, bei dem ein Hydraulikzylinder hydraulisch mit einer Solenoidpumpe verbunden ist. Die Solenoidpumpe weist dabei eine Pumpspule, einen Pumpanker und ein Mehrwegeventil auf, wobei das Mehrwegeventil zusammen mit der Pumpspule bestromt werden kann.
  • Die DE 1 088 684 B offenbart ein elektrohydraulisches Hubgerät, dessen Pumpe durch einen Elektromagneten angetrieben wird.
  • Die US 4 274 407 A betrifft ein Dosiersystem, insbesondere für Fluide bei der Medikamentenvergabe. Eine Pumpen- und Ventilvorrichtung weist dabei einen elektromagnetischen Generator auf.
  • Die DE 693 11 525 T2 betrifft eine Pumpe mit bewegbarem Magneten, bei der sich bewegende Magnetkörper direkt elektromagnetisch zur Hin- und Herbewegung veranlasst werden können.
  • Die DE 199 61 852 A1 betrifft eine Pumpe zur Förderung von Druckmitteln in geregelten Bremssystemen von Fahrzeugen. Die Ansteuerung der Ventile erfolgt elektromechanisch und damit weitestgehend unabhängig von Druck und Temperatur.
  • Die DE 196 23 162 A1 betrifft ein Magnetventil mit elektromagnetischer Spule, dessen Anker ortsfest ausgebildet ist, somit eine verbesserte Dynamik bewirkt und keine Dichtungen benötigt.
  • Die DE 195 44 029 A1 betrifft eine elektromagnetische Schwingkolbenpumpe, deren Ansaugöffnung auf halber Höhe seitlich am Gehäuse angeordnet ist.
  • Die DE 39 33 125 A1 offenbart eine elektromagnetisch betätigbare Pumpe zur Förderung flüssiger Medien mit einer Spule und einem Anker, der als Pumpkolben dient.
  • Die EP 2 971 902 B1 offenbart ein mechanisch verriegelndes Magnetventil.
  • Der Erfindung liegt die Aufgabe zugrunde, Nachteile im Stand der Technik zu vermindern.
  • Die Erfindung löst das Problem durch eine Pumpe mit (a) einem Zylinder, der einen Zylinderinnenraum hat, (b) einem Anker, der im Zylinderinnenraum läuft und zumindest abschnittsweise ferromagnetisch ist, (c) einem ersten Elektromagneten und einem zweiten Elektromagneten, die mit dem Anker einen Reluktanz-Linearmotor bilden, mittels dem der Anker im Zylinder bewegbar ist, (d) einem Positionssensor zum berührungslosen Bestimmen einer Anker-Position des Ankers relativ zum Zylinder und (e) einem Pumpraum, der durch Betätigen des Ankers vergrößer- und verkleinerbar ist, mit einer Speiseleitung zum Füllen mit zu pumpender Flüssigkeit verbunden ist und eine Abgabeöffnung zum Abgeben gepumpter Flüssigkeit aufweist. Vorzugsweise weist (f) die Speiseleitung ein magnetisch schaltbares Ventil auf.
  • Die Erfindung löst das Problem zudem durch ein gattungsgemäßes Odoriersystem, bei dem die Odoriervorrichtung eine erfindungsgemäße Pumpe aufweist. Günstig ist es, wenn die Odoriervorrichtung ein Reservoir besitzt, das das Odoriermittel enthält.
  • Vorteilhaft an der Pumpe ist, dass sie hermetisch abgedichtet sein kann. Die Flüssigkeit, insbesondere das Odoriermittel, kann daher nur in außergewöhnlichen Umständen aus der Pumpe austreten.
  • Besonders günstig ist es dazu, wenn, gemäß einer bevorzugten Ausführungsform vorgesehen, alle Bereiche der Pumpe, die mit der Flüssigkeit, insbesondere dem Odoriermittel in Kontakt kommen, eine durchgehende Wand bilden.
  • Günstig ist es zudem, dass die Pumpe vergleichsweise einfach aufgebaut ist. So ist ein Positionieren des Ankers mittels der Elektromagneten möglich, die vorzugsweise nicht mit der Flüssigkeit in Berührung kommen. Es kann in diesem Fall nicht zu unerwünschten Reaktionen zwischen der Flüssigkeit, insbesondere dem Odoriermittel, und dem Material des Elektromagneten kommen.
  • Günstig ist es zudem, dass der Anker mit vergleichsweise einfachen Mitteln relativ leichtgewichtig ausgebildet werden kann. Gemäß einer bevorzugten Ausführungsform beträgt eine Ankermasse des Ankers höchstens circa zehn Prozent der Masse des ferromagnetischen Materials des die Ankerbewegung bewirkenden Magnetkreises.
  • Unter dem Merkmal, dass die Elektromagneten mit dem Anker einen Reluktanz-Linearmotor bilden, wird insbesondere verstanden, dass durch alternierendes Bestromen des ersten Elektromagneten und des zweiten Elektromagneten eine oszillierende Bewegung des Ankers bewirkt werden kann.
  • Unter dem Merkmal, dass der Pumpraum durch Betätigen des Ankers vergrößerbar und verkleinerbar ist, wird insbesondere verstanden, dass durch Bewegen des Ankers entlang einer Längsachse des Ankers der Pumpraum vergrößert und verkleinert wird. In anderen Worten kann die Flüssigkeit durch Bewegen des Ankers entlang seiner Anker-Längsachse in den Pumpraum hinein und wieder heraus bewegt werden, was ein Pumpen der Flüssigkeit bewirkt.
  • Unter einem ferromagnetischen Material wird ein Material verstanden, dass magnetisierbar ist, wenngleich es nicht magnetisiert sein muss. Günstig ist es, wenn der Anker dort, wo er ferromagnetisch ist, weichmagnetisch ist. Vorzugsweise beträgt eine Koerzitivfeldstärke des Materials des Ankers, insbesondere in dem Bereich, wo er zumindest abschnittsweise ferromagnetisch ist, höchstens 1.000 Ampere pro Meter.
  • Da der Anker mittels der Elektromagnete innerhalb des Zylinders bewegt werden kann, kann der Anker auch als Kolben bezeichnet werden. Der Anker weist vorzugsweise Flüssigkeitskanäle auf, durch die Flüssigkeit strömt, wenn der Anker sich im Zylinder entlang seiner Anker-Längsachse bewegt.
  • Günstig ist es, wenn die Elektromagneten flüssigkeitsdicht vom Zylinderinnenraum getrennt sind. Das verhindert eine Beeinflussung der Elektromagneten durch Flüssigkeit, insbesondere Odoriermittel, im Zylinderinnenraum.
  • Günstig ist es, wenn die Speiseleitung durch den Anker verläuft. So wird in der Regel eine einfach montierbare Pumpe erhalten. Günstig ist es zudem, wenn die Speiseleitung den Zylinderinnenraum mit dem Pumpraum verbindet. Besonders günstig ist es, wenn die Speiseleitung den Pumpraum mit dem Bereich des Zylinders verbindet, der bezüglich des ferromagnetischen Abschnitts vom Pumpraum abgewandt liegt. Bewegt sich der Anker so, dass sich der Pumpraum vergrößert, führt diese Bewegung zu einem erhöhten Druck an einer Einström-Öffnung der Speiseleitung, sodass die Flüssigkeit schnell in den Pumpraum einströmt.
  • Gemäß einer bevorzugten Ausführungsform besitzt der Anker ein Ankerelement, das ferromagnetisch ist und das durch einen Ringspalt von einer Zylinderinnenfläche des Zylinders beabstandet ist. Vorzugsweise umfasst der Anker zudem einen Schaft, an dem das Ankerelement befestigt ist. Der Anker steht vorzugsweise an zwei Seiten über das Ankerelement über. Günstig ist es, wenn der Anker an seinen überstehenden Enden in einer Axialführung geführt ist.
  • Vorzugsweise ist die Pumpe ausgebildet zum Abgeben der Flüssigkeit mit einem Druck von zumindest 3 bar, insbesondere zumindest 5 bar. Vorzugsweise beträgt der Druck höchstens 30 bar, insbesondere höchstens 20 bar.
  • Um höchste Genauigkeiten beim Zudosieren der Flüssigkeit zu erhalten, sollte das Vorhandensein von Gas, insbesondere von Gasblasen, in der Flüssigkeit weitgehend ausgeschlossen sein. Es ist dazu vorteilhaft, wenn das Ventil berührungslos schaltbar ist. Vorzugsweise ist das Ventil magnetisch schaltbar.
  • Gemäß einer bevorzugten Ausführungsform besitzt das magnetisch schaltbare Ventil einen magnetischen Ventilkörper. Hierunter wird insbesondere verstanden, dass das Ventil durch Ändern eines Magnetfelds, insbesondere eines Magnetfelds, in dem das Ventil angeordnet ist, aus einer Offen-Stellung in eine Geschlossen-Stellung bringbar ist. In der Offen-Stellung ist der Ventilkörper von einem Ventilsitz beabstandet, sodass das Ventil von Flüssigkeit durchströmt werden kann. In seiner Geschlossen-Stellung liegt der Ventilkörper am Ventilsitz an, sodass das Ventil geschlossen ist.
  • Es ist günstig, dass das Ventil einen Rücksteller hat, insbesondere eine Feder, der den Ventilkörper in die Offen-Stellung oder in die Geschlossen-Stellung vorspannt. Es ist dann möglich und bevorzugt, (i) das Ventil durch Verändern eines am Ventil anliegenden Magnetfelds aus der Geschlossen-Stellung in die Offen-Stellung zu bringen, dann (ii) den ersten Elektromagneten zu bestromen, sodass der Anker sich bewegt, dann (iii) Verändern des Magnetfelds (das vorher das Bringen des Ventils aus der Geschlossen-Stellung in die Offen-Stellung bewirkt hat), insbesondere Abschalten des Magnetfelds, sodass der Rücksteller das Ventil schließt, und danach (iv) Betätigen des Ankers, sodass die Pumpe Flüssigkeit abgibt. Vorzugsweise ist die Steuerung ausgebildet zum automatischen Durchführen eines Verfahrens mit den Schritten: (i) Verändern eines am Ventil anliegenden Magnetfelds, sodass das Ventil aus der Geschlossen-Stellung in die Offen-Stellung kommt, danach (ii) Bestromen des ersten Elektromagneten, sodass der Anker sich bewegt, dann (iii) Verändern des Magnetfelds (das vorher das Bringen des Ventils aus der Geschlossen-Stellung in die Offen-Stellung bewirkt hat), insbesondere Abschalten des Magnetfelds, sodass der Rücksteller das Ventil schließt, und danach (iv) Betätigen des Ankers durch Bestromen zumindest eines Elektromagneten, sodass die Pumpe Flüssigkeit abgibt.
  • Vorzugsweise ist das magnetisch schaltbare Ventil durch Umpolen zumindest eines der Elektromagneten schaltbar. Beim Umpolen kommt es nicht zu einer Lageveränderung des Ankers relativ zu den Elektromagneten, da die Anziehungskraft zwischen dem Elektromagneten und dem Anker unabhängig von der Polarität des Elektromagneten ist. Insbesondere wenn das magnetisch schaltbare Ventil am Anker befestigt ist, was eine bevorzugte Ausführungsform der Erfindung darstellt, wird der Ventilkörper durch das Magnetfeld zumindest eines der Elektromagneten, insbesondere beide Elektromagneten, beeinflusst. Je nach Polarität des Magnetfelds des entsprechenden Elektromagneten wird der magnetische Ventilkörper in die Offen-Stellung oder die Geschlossen-Stellung gebracht. In anderen Worten ist das Ventil zum Ändern seines Öffnungszustands von der Offen-Stellung in die Geschlossen-Stellung und/oder von der Geschlossen-Stellung in die Offen-Stellung ausgebildet.
  • Günstig ist es, wenn der magnetische Ventilkörper permanentmagnetisch ist. Es ergibt sich so eine besonders starke Schließkraft des Ventils.
  • Vorzugsweise besitzt der Anker einen Schaft, der ferromagnetisch ist.
  • Vorzugsweise ist der Ventilkörper so ausgebildet, dass er sich beim Schließen und/ oder Öffnen des Ventils um zumindest 1° dreht. Das hat den Vorteil, dass der Ventilkörper und der Ventilsitz bezüglich einer radialen Komponente gleichmäßig verschleißen. Auf diese Weise ist die Dichtheit des Ventils gewährleistet, auch wenn dieses verschleißt.
  • Gemäß einer bevorzugten Ausführungsform besitzt die Pumpe zumindest einen Permanentmagneten, der so angeordnet ist, dass der Anker in seiner Ruhestellung gehalten wird, auch wenn die Elektromagneten nicht bestromt sind. Vorzugsweise ist der zumindest eine Permanentmagnet zwischen den Elektromagneten angeordnet.
  • Beispielsweise besitzt der Ventilkörper eine strukturierte Mantelfläche. So kann die Oberfläche der Mantelfläche gemäß einer bevorzugten Ausführungsform Nuten, Rillen oder Ausnehmungen aufweisen, die sich entlang von Kurven, insbesondere Linien, erstrecken, die nicht parallel zu einer Ventilkörper-Längsachse des Ventilkörpers verlaufen. So entsteht bei einer Bewegung des Ventilkörpers entlang seiner Ventilkörper-Längsachse ein auf den Ventilkörper wirkendes Drehmoment.
  • Alternativ oder zusätzlich kann der Ventilkörper eine bezüglich einer Radialkomponente asymmetrische, schiefe Stirnfläche aufweisen, die dazu führt, dass bei Bewegung des Ventilkörpers entlang seiner Ventilkörper-Längsachse ein Drehmoment auf den Ventilkörper wirkt.
  • Gemäß einer bevorzugten Ausführungsform besitzt die Pumpe ein erstes Magnetfeldformungselement, das zum Formen eines ersten Magnetfelds des ersten Elektromagneten angeordnet ist. Günstig ist es, wenn das erste Magnetfeldformungselement zumindest teilweise, vorzugsweise vollständig, radial innerhalb des ersten Elektromagneten angeordnet ist.
  • Vorzugsweise besitzt die Pumpe zudem ein zweites Magnetfeldformungselement, das zum Formen eines zweiten Magnetfelds des zweiten Elektromagneten angeordnet ist. Günstig ist es, wenn das zweite Magnetfeldformungselement zumindest teilweise radial innerhalb des zweiten Elektromagneten angeordnet ist. Die Magnetfeldformungselemente sind so ausgebildet, dass der Anker durch Bestromen der Elektromagnete positionierbar ist, insbesondere stufenlos positionierbar ist.
  • Vorzugsweise sind die Magnetfeldformungselemente so ausgebildet, dass sie einen Luftspalt aufweisen. Unter einem Luftspalt wird ein Bereich verstanden, in dem das Magnetfeld höchstens ein Zehntel so stark ist wie jenseits des Luftspalts. Der Luftspalt führt zu einer Inhomogenität des Magnetfelds, sodass die Reluktanz von der Stellung des Ankers entlang seiner Anker-Längsachse abhängt. Insbesondere ist es nicht notwendig, dass der Luftspalt durch Luft gebildet ist. Statt Luftspalt könnte auch der Begriff ferromagnetfreie Zone verwendet werden.
  • Die Magnetfeldformungselemente sind vorzugsweise so ausgebildet, dass eine Bewegung des Ankers in Richtung seiner Anker-Längsachse in eine Richtung die Reluktanz bezüglich des ersten Elektromagneten erhöht, jedoch eine zweite Reluktanz bezüglich des zweiten Elektromagneten verringert. Je nach Stromstärke des Elektrostroms, der durch den ersten Elektromagneten bzw. den zweiten Elektromagneten fließt, ergibt sich so eine Position des Ankers bezüglich seiner Anker-Längsachse, die die Reluktanz minimiert. Auf diese Weise kann durch die Stromstärken durch den ersten Elektromagneten und/oder den zweiten Elektromagneten die Position des Ankers stufenlos eingestellt werden
  • Weiterhin kann der Anker vorzugsweise so ausgeprägt sein, dass er zumindest drei Ankerelemente aufweist. Diese sind so angeordnet, dass durch alternierendes Bestromen des ersten Elektromagneten und des zweiten Elektromagneten der Anker entlang seiner Anker-Längsachse positionierbar ist.
  • In diesem Fall ist die Steuerung vorzugsweise ausgeprägt zum automatischen Durchführen eines Verfahrens, bei dem zunächst ein erstes Ankersegment durch Bestromen des zweiten Elektromagneten benachbart zu einer ferromagnetfreien Zone des zweiten Elektromagneten positioniert wird und infolgedessen ein zweites Ankersegment im Wirkungsbereich der ferromagnetfreie Zone des ersten Elektromagneten steht.
  • Dann wird das zweite Ankerelement durch Bestromen des ersten Elektromagneten benachbart zur ferromagnetfreien Zone des ersten Elektromagneten positioniert und infolgedessen steht ein drittes Ankersegment im Wirkungsbereich der ferromagnetfreien Zone des zweiten Elektromagneten. Danach wird das dritte Ankersegment durch Bestromen des ersten Elektromagneten benachbart zur ferromagnetfreien Zone des ersten Elektromagneten positioniert, wobei infolgedessen ein viertes Ankersegment im Wirkungsbereich der ferromagnetfreien Zone des ersten Elektromagneten steht.
  • In anderen Worten werden die Elektromagneten alternierend bestromt und die Ankersegmente sind so angeordnet, dass bei jedem Wechsel des bestromten Elektromagneten der Anker sich einen vorgegebenen Weg entlang seiner Anker-Längsachse weiterbewegt.
  • Je nach Stromstärke des Elektrostroms, der durch den ersten Elektromagneten bzw. den zweiten Elektromagneten fließt, ergibt sich so eine Position des Ankers bezüglich seiner Anker-Längsachse, die die Reluktanz minimiert. Auf diese Weise kann durch die Stromstärken durch den ersten Elektromagneten und/oder den zweiten Elektromagneten die Position des Ankers stufenlos eingestellt werden.
  • Je nach Stromstärke des Elektrostroms, der durch den ersten Elektromagneten bzw. den zweiten Elektromagneten fließt, ergibt sich so eine Position des Ankers bezüglich seiner Anker-Längsachse, die die Reluktanz minimiert. Auf diese Weise kann durch die Stromstärken durch den ersten Elektromagneten und/oder den zweiten Elektromagneten die Position des Ankers stufenlos eingestellt werden.
  • Es sei darauf hingewiesen, dass der Anker selbstverständlich nur innerhalb eines vorgegebenen Intervalls stufenlos positionierbar ist.
  • Vorzugsweise ist der Positionssensor ein Magnetsensor, der einen am Anker befestigten Magneten und ein Magnetfeldsensorelement aufweist. Vorzugsweise ist das Magnetfeldsensorelement am Schaft des Ankers befestigt. Ein Abstand des Magnetfeldsensorelements von dem Elektromagneten ist vorzugsweise so groß gewählt, dass das Magnetfeld der Elektromagneten die Positionsmessung des Positionssensors nicht signifikant beeinflusst. Unter einem Magnetsensor wird insbesondere ein Sensor verstanden, der eine Magnetfeldstärke misst und daraus die Position des Ankers relativ zum Zylinder bestimmt. Vorzugsweise enthält der Magnetsensor einen Prozessor und einen digitalen Speicher, in dem Kalibrierdaten gespeichert sind, anhand derer der Prozessor aus der gemessen Magnetfeldstärke die Position bestimmt. Diese Kalibrierdaten werden beispielsweise in Vorversuchen ermittelt.
  • In einer zweiten Ausführungsform der Anker-Positionserfassung wird die Position des Ankers durch Messung der von der Lage des Ankers abhängigen Induktivität der Magnetspulen ermittelt.
  • In einer dritten Ausführungsform der Anker-Positionserfassung wird die Position des Ankers durch Messung der von der Position des Ankers abhängigen Flussdichte ermittelt.
  • Günstig ist es, wenn die Einspeiseleitung eine Einström-Öffnung zum Einströmen von Flüssigkeiten aus dem Zylinderinnenraum aufweist.
  • Vorzugsweise besitzt die Pumpe eine Steuerung, die ausgebildet ist zum automatischen Durchführen eines Verfahrens mit den Schritten (i) Erfassen eines Soll-Hubs des Ankers, (ii) kontinuierliches Messen eines Ist-Hubs, (iii) Bestromen des ersten Elektromagneten, sodass sich der Ist-Hub dem Soll-Hub annähert und die Flüssigkeit in den Pumpraum strömt und (iv) danach Bestromen des zweiten Elektromagneten, sodass die Flüssigkeit aus dem Pumpraum durch die Ausgabeöffnung gepumpt wird. Dadurch, dass der Ist-Hub an den Soll-Hub angepasst wird, ist die Menge an Flüssigkeit, die pro Pumphub durch die Abgabeöffnung gepumpt wird, mit hoher Genauigkeit einstellbar.
  • Vorzugsweise ist die Steuerung ausgebildet zum automatischen Durchführen eines Verfahrens mit dem Schritt: Nach dem Bestromen des ersten Elektromagneten, sodass sich der Ist-Hub dem Soll-Hub annähert und Flüssigkeit in den Pumpraum strömt, und vor dem Bestromen des zweiten Elektromagneten Umpolen eines der Elektromagneten, sodass das Ventil schließt. Das hat den Vorteil, dass sich unmittelbar nach dem Beginnen der Bewegung des Ankers der Pumpraum verkleinert und Flüssigkeit durch die Abgabeöffnung abgegeben wird. Würde beispielsweise ein Rückschlagventil verwendet, dessen Ventilkörper nicht federbelastet ist, so müsste der Druck im Pumpraum erst ansteigen, um den Ventilkörper gegen den Ventilsitz zu drücken. Während dieser Zeit kann eine nicht bekannte Menge an Flüssigkeit am Ventilkörper vorbeiströmen. Es ist daher nicht klar, welche Menge an Flüssigkeit pro Ankerhub tatsächlich abgegeben wird. Dies wird durch das schaltbare Ventil vermieden.
  • Vorzugsweise ist die Steuerung ausgebildet zum automatischen Durchführen eines Verfahrens mit den Schritten: Nach dem Pumpen der Flüssigkeit aus dem Pumpraum durch die Abgabeöffnung, Bestromen des zweiten Elektromagneten, sodass der Anker in seiner Ruhestellung ist. In anderen Worten ist der Pumpraum in der Ruhestellung des Ankers minimal mit Flüssigkeit gefüllt. Die Ruhestellung ist diejenige Stellung, in der der Anker die überwiegende Zeit ist. Es entspricht einer bevorzugten Ausführungsform, dass der Anker in seine Ruhestellung vorgespannt ist, insbesondere mittels einer Feder.
  • Günstig ist es, wenn zumindest einer der Elektromagneten so mit einem elektrischen Strom, der einen hochfrequenten Anteil hat, beaufschlagt wird, dass der Anker oszilliert. Diese Oszillation besitzt einen Oszillationshub, der kleiner ist als der Hub des Ankers zum Pumpen, insbesondere höchstens ein Zehntel, vorzugsweise höchstens ein Zwanzigstel des Hubs beträgt. Durch dieses Oszillieren wird verhindert, dass eine vorzugsweise vorhandene Dichtung, die den Anker gegen den Pumpraum abdichtet, haften bleibt. Die Losbrechkraft, die notwendig ist, um den Anker aus einer Position herauszubewegen, in der der Anker vorher geruht hat, wird damit klein.
  • Weiterhin kann die Anordnung vorzugsweise so betrieben werden, dass die Oszillation des Ankers zur präzisen Einstellung des vorgegebenen Soll-Hubs während der Füllphase genutzt wird und danach mit maximaler Kraft durch Bestromen des zweiten Elektromagneten ohne Ankeroszillation die Flüssigkeit aus dem Pumpraum durch die Ausgabeöffnung mit definierter Kraft gepumpt wird (Druckhub).
  • Günstig ist es, wenn die Pumpe eine Temperaturerfassungsvorrichtung aufweist, die eingerichtet ist zum Erfassen eines Temperaturmesswerts, der zu einer Pumpraum-Temperatur im Pumpraum korreliert. Beispielsweise handelt es sich bei dem Temperaturmesswert um einen Messwert, der die Pumpraum-Temperatur angibt. Der Temperaturmesswert kann beispielsweise als elektrisches Signal vorliegen, es ist aber auch möglich, dass der Temperaturmesswert beispielsweise ein elektrischer Widerstand ist, der sich mit der Pumpraumtemperatur ändert. Maßgeblich ist lediglich, dass ein Überschreiten eines vorgegebenen Temperaturschwellenwerts detektierbar ist. Beispielsweise kann die Temperaturerfassungsvorrichtung ein temperaturabhängiger Widerstand sein. Handelt es sich bei diesem Widerstand um einen Heißleiter, kann beim Unterschreiten eines Schwellen-Widerstands darauf geschlossen werden, dass die Pumpraum-Temperatur oberhalb eines Pumpraum-Temperaturschwellenwerts liegt.
  • Vorzugsweise ist die Steuerung ausgebildet zum Bestromen eines Heizelements und/oder zumindest eines der Elektromagneten zum Erhöhen der Pumpraum-Temperatur, wenn die Pumpraum-Temperatur eine vorgegebene Pumpraum-Mindesttemperatur unterschreitet. Auf diese Weise wird beispielsweise ein Einfrieren oder ein Auskristallisieren der Flüssigkeit vermieden.
  • Vorzugsweise umfasst die Pumpe eine Kühlvorrichtung zum Kühlen des Pumpraums. Es kann sich dabei beispielsweise um ein Peltier-Element handeln. Vorzugsweise ist die Steuerung eingerichtet zum automatischen Kühlen des Pumpraums, wenn die Pumpraum-Temperatur eine vorgegebene Pumpraum-Maximaltemperatur überschreitet.
  • Erfindungsgemäß ist zudem ein Odoriersystem mit (a) einer Zielfluid-Leitung, insbesondere einer Gasleitung, beispielsweise einer Erdgasleitung, für ein Zielfluid, insbesondere ein Gas, beispielsweise Erdgas, und (b) einer Zudosiervorrichtung zum Zudosieren einer Flüssigkeit zum Zielfluid vorgesehen, wobei (c) die Zudosiervorrichtung eine Pumpe und ein Reservoir, das die Flüssigkeit enthält, aufweist.
  • Vorzugsweise ist der Zylinder und/oder das Reservoir mit Odoriermittel gefüllt.
  • Günstig ist es ganz allgemein, wenn der Pumpraum unterhalb des Zylinders angeordnet ist. Etwaig im Pumpraum entstehende Gase werden so kaum aus dem Pumpraum abgegeben, sondern entweichen nach oben, insbesondere in den Zylinder.
  • Die Erfindung betrifft zudem ein Kaltentkeimungssystem mit (a) einer Zielfluid-Leitung in Form einer Flüssigkeitsleitung und (b) einer Zudosiervorrichtung in Form einer Entkeimungsvorrichtung zum Zudosieren einer Flüssigkeit in Form eines Entkeimungsmittels in die Flüssigkeitsleitung, wobei (c) die Entkeimungsvorrichtung eine Pumpe und ein Reservoir, das das Entkeimungsmittel enthält, aufweist.
  • In diesem Fall ist der Zylinder und/oder das Reservoir vorzugsweise mit Entkeimungsmittel gefüllt.
  • Im Folgenden wir die Erfindung anhand der beigefügten Zeichnungen näher erläutert. Dabei zeigt
  • Figur 1
    ein erfindungsgemäßes Zudosiersystem mit einer erfindungsgemäßen Pumpe zum Durchführen eines erfindungsgemäßen Verfahrens,
    Figur 2
    eine zweite Ausführungsform eines erfindungsgemäßen Zudosiersystems mit einer erfindungsgemäßen Pumpe,
    Figur 3a
    eine dritte Ausführungsform eines erfindungsgemäßen Zudosiersystems mit einer erfindungsgemäßen Pumpe,
    Figur 3b
    eine vierte Ausführungsform eines erfindungsgemäßen Zudosiersystems mit einer erfindungsgemäßen Pumpe,
    Figur 4a
    eine weitere Ausführungsform eines erfindungsgemäßen Zudosiersystems mit einer erfindungsgemäßen Pumpe mit einem segmentierten Anker,
    Figur 4b
    eine weitere Ausführungsform eines erfindungsgemäßen Zudosiersystems mit einer erfindungsgemäßen Pumpe, bei der zusätzlich zu den Elektromagneten Dauermagnete eingebaut sind, die so zwischen den beiden Magnetspulen positioniert sind, das ein magnetischer Fluss entsteht, auch wenn beide Magnetspulen nicht bestromt sind.
    Figur 5a
    zeigt einen Ventilkörper einer erfindungsgemäßen Pumpe gemäß einer ersten Ausführungsform,
    Figur 5b
    einen Ventilkörper einer erfindungsgemäßen Pumpe gemäß einer zweiten Ausführungsform und
    Figur 6
    eine weitere Ausführungsform einer erfindungsgemäßen Pumpe.
  • Figur 1 zeigt ein erfindungsgemäßes Zudosiersystem 10 zum Zudosieren einer Flüssigkeit 12, in eine Zielfluid-Leitung 14, in der ein Zielfluid 16 fließt. Das Zudosiersystem 10 besitzt eine Pumpe 18, die einen Zylinder 20 besitzt, der einen Zylinderinnenraum 22 umgibt.
  • Im Zylinderinnenraum 22 ist ein Anker 26 angeordnet, der im Zylinderinnenraum 22 läuft. Der Anker 26 besitzt ein Ankerelement 28 aus weichmagnetischem Material, im vorliegenden Fall aus Weicheisen, sowie einen Schaft 30. Zwischen dem Ankerelement 28 und einer Zylinderinnenfläche 32 des Zylinders 20 ist ein Ringspalt 34 ausgebildet. Eine lichte Weite w des Ringspalts 34 liegt beispielsweise zwischen w = 0,1 mm und 1 mm. Der Anker 26 kann Verbindungskanäle 35 aufweisen, die entlang der Anker-Längsachse L verlaufen.
  • Der Zylinderinnenraum 22 steht mit einem Reservoir 36 über eine Leitung 37 in Verbindung, in dem die Flüssigkeit 12 enthalten ist. Bei der Flüssigkeit 12 handelt es sich beispielsweise um ein Odoriermittel oder ein Kaltentkeimungsmittel. Der Zylinderinnenraum 22 ist daher mit Flüssigkeit 12 gefüllt.
  • Die Pumpe 18 besitzt einen ersten Elektromagneten 38 und einen zweiten Elektromagneten 40, die bezüglich einer Anker-Längsachse L hintereinander angeordnet sind. Durch Bestromen der Elektromagnete 38, 40 kann der Anker 26 entlang der Anker-Längsachse L positioniert werden. Diese Position wird entlang einer x-Achse gemessen, die entlang der Anker-Längsachse L verläuft.
  • Am Schaft 30 ist ein Magnet 42 angeordnet, der zusammen mit einem Magnetfeldsensorelement 44 einen Positionssensor 46 bildet. Mittels des Positionssensors 46 kann die Position des Ankers 26 bestimmt werden. Günstig ist es, wenn eine Messunsicherheit bei der Bestimmung der Positionen des Ankers 26 höchstens 0,2 µm beträgt.
  • Die Pumpe 18 besitzt einen Pumpraum 48, der auch als Pumpenkammer bezeichnet werden kann. Der Pumpraum 48 hat vorzugsweise ein Volumen von höchstens 100 Milliliter. Der Pumpraum 48 ist über eine Speiseleitung 50 mit dem Zylinderinnenraum 22 verbunden. An einem Auslassende 52 ist ein magnetisch schaltbares Ventil 54 angeordnet, das im rechten Teilbild vergrößert dargestellt ist.
  • Das Ventil 54 besitzt einen Ventilsitz 56 und einen Ventilkörper 58, der ferromagnetisch ausgebildet ist. Im vorliegenden Fall ist der Ventilkörper 58 magnetisiert. Beispielsweise kann der Ventilkörper 58 aus magnetisiertem Stahl bestehen.
  • Der Pumpraum besitzt eine Abgabeöffnung 60, zum Abgeben von gepumpter Flüssigkeit 12, beispielsweise an eine Düse 62.
  • Die Pumpe 18 besitzt ein erstes Magnetfeldformungselement 64 und ein zweites Magnetfeldformungselement 66. Das erste Magnetfeldformungselement 64 ist angeordnet zum Formen eines ersten Magnetfelds B1, das durch Bestromen des ersten Elektromagnets 38 erzeugt wird.
  • Das erste Magnetfeldformungselement 64 grenzt an ein erstes Luftspaltelement 68 aus unmagnetischem, nicht magnetisierbarem Material, beispielsweise nicht magnetischem rostfreiem Stahl. Das Luftspaltelement 68 hat die gleiche Wirkung wie ein Luftspalt an der gleichen Stelle und bewirkt eine Inhomogenität des ersten Magnetfelds B1 in seiner Umgebung. Das Luftspaltelement 68 hat dazu eine in axialer Richtung bezüglich der Anker-Längsachse L eine abnehmende Dicke.
  • Das zweite Magnetfeldformungselement 66 grenzt an ein zweites Luftspaltelement 70 und wirkt wie das erste Luftspaltelement 68 für das zweite Magnetfeld B2, das durch Bestromen des zweiten Elektromagneten 40 aufgebaut wird.
  • Die Elektromagneten 38, 40 sind mit einer Steuerung 72 verbunden, die ggf. mit dem Positionssensor 46 in Verbindung steht. Die Pumpe 18 führt das im Folgenden beschriebene erfindungsgemäße Verfahren aus. Wird, beispielsweise aufgrund eines externen Signals, das an die Steuerung 72 übermittelt wird, ein vorgegebener Volumenstrom V angefordert, so berechnet die Steuerung 72 daraus einen Soll-Hub HSoll und bestromt den ersten Elektromagneten 38.
  • Daraufhin bewegt sich der Anker 26 entlang der Anker-Längsachse L auf den ersten Elektromagneten 38 zu, da so die Reluktanz vermindert wird. Im in Figur 1 gezeigten Ausführungsbeispiel bewegt sich der Anker 26 nach oben. Dadurch vermindert sich ein Druck p48 im Pumpraum 48. Dadurch strömt Flüssigkeit 12 aus dem Zylinderinnenraum 22 durch eine Einström-Öffnung 76 der Speiseleitung 50, in die Speiseleitung 50 ein und gelangt zum Ventil 54. Das Ventil 54 ist geöffnet, sodass die Flüssigkeit 12 in den Pumpraum 48 einströmt.
  • Bei Bewegung des Ankers 26 misst der Positionssensor 46 kontinuierlich die Position x und regelt einen elektrischen Strom I1(t) durch den ersten Elektromagneten 38 und den Strom I2(t) durch den zweiten Elektromagneten 40 so, dass sich der Anker 26 entlang einer vorgegebenen Soll-Trajektorie XSoll(t) bewegt.
  • Hat der Anker 26 seinen oberen Totpunkt erreicht, ist also die Pumpkammer 48 mit einem vorgegebenen Soll-Volumen VSoll gefüllt, polt die Steuerung 72 den Strom I1 um. Dadurch ändert sich die Position x des Ankers 26 nicht. Hingegen ändert sich das Magnetfeld B54 in der Umgebung des Ventilkörpers 58, sodass dieser sich auf seinen Ventilsitz 56 zu bewegt und das Ventil 54 schließt.
  • Nachfolgend bestromt die Steuerung 72 den zweiten Elektromagneten 40 so, dass sich der Anker 26 in eine entgegengesetzte Richtung bewegt. Das Volumen des Pumpraums 48 nimmt dadurch ab und die Flüssigkeit 12 strömt unter Druck durch die Abgabeöffnung 60.
  • Diese Bewegung erfolgt erneut entlang der Soll-Trajektorie XSoll(t), sodass der Volumenstrom V der aus dem Pumpraum 48 ausströmt, dem vorgegebenen Soll-Volumenstrom VSoll entspricht. Befindet sich der Anker 26 an seinem unteren Totpunkt, sodass keine weitere Flüssigkeit mehr abgegeben wird und danach eine Gegenbewegung in die entgegengesetzte Richtung erfolgt, polt die Steuerung 72 den zweiten Elektromagneten 40 um, sodass das Magnetfeld B54 seine Richtung ändert und der Ventilkörper 58 vom Ventilsitz 56 abgehoben wird. Die Steuerung 72 kann einen digitalen Speicher 74 aufweisen, in dem das entsprechende Programm gespeichert ist.
  • Der Schaft 30 ist mittels einer Dichtung 78 gegen die umgebende Wand abgedichtet. Um beim Bewegen des Ankers 26 den sogenannten Stick-Slip-Effekt zu minimieren, bestromt die Steuerung 72 den ersten Elektromagneten 38 und/oder den zweiten Elektromagneten 40 so, dass der Anker 26 eine oszillierende Bewegung ausführt, bevor der Anker 26 zum Pumpen bewegt wird. Dadurch kommt es zu keiner Haftreibung zwischen der Dichtung und dem Schaft 30, sondern lediglich zu Gleitreibung. Es ist jedoch auch möglich, die Pumpe 18 zu betreiben, ohne dass der Anker 26 oszilliert wird.
  • Besteht keine Anforderung an Flüssigkeit 12, so bringt die Steuerung 72 den Anker 26 in seine Ruhelage, in der das Volumen des Pumpraums 48 minimal ist. Das vermindert etwaige Gasblasen, die entstehen könnten, indem Flüssigkeit 12 verdampft. Kommt es dennoch zur Bildung von Gasblasen, so können diese nach oben durch die Speiseleitung 50 entweichen und führen damit nicht zu einer Verfälschung des Volumenstroms V.
  • Es ist möglich, dass die Pumpe 18 eine Temperaturerfassungsvorrichtung 80 in Form eines Thermometers aufweist, das mit der Steuerung 72 verbunden ist und angeordnet ist zum Messen einer Pumpraumtemperatur T48 im Pumpraum 48. Unterschreitet die Pumpraum-Temperatur T48 eine vorgegebene Pumpraum-Mindesttemperatur T48,min, so steuert die Steuerung 72 den ersten Elektromagneten 38 und/oder den zweiten Elektromagneten 40 so an, dass die Flüssigkeit 12 im Zylinderinnenraum 22 erwärmt wird. Dazu stehen die Elektromagneten 38, 40 in thermischem Kontakt mit dem Zylinderinnenraum 22.
  • Die Pumpe 18 kann einen Ablauf 82 aufweisen, durch den die Flüssigkeit 12 im Zylinderinnenraum 22 herabgelassen werden kann.
  • In Figur 1 ist das Ventil 54 in Verlängerung des Schafts 30 angeordnet.
  • Die beiden Magnetfeldformungselemente 64, 66 sind bezüglich der Anker-Längsachse L zwischen zwei unmagnetischen und nicht magnetisierbaren Seitenteilen 84, 86 angeordnet. Der Magnet 42 ist radial vom zweiten Seitenteil 86 umgeben, sodass das Magnetfeld des ersten Elektromagneten 38 möglichst gering ist. Das Ventil 54 ist vom ersten Seitenteil 84 umgeben, sodass das Magnetfeld des zweiten Elektromagneten 40 an dieser Stelle möglichst schwach ist. Der Schaft 30 ist aus ferromagnetischem Material aufgebaut, sodass das Magnetfeld im Bereich des Ventilkörpers 58 durch Umpolen des ersten Elektromagneten 38 und/oder des zweiten Elektromagneten 40 veränderbar ist.
  • Figur 2 zeigt eine zweite Ausführungsform einer erfindungsgemäßen Pumpe, bei der das Ventil 54 angeordnet ist.
  • Figur 3a zeigt eine weitere Ausführungsform einer erfindungsgemäßen Pumpe 18, bei der - anders als bei den Ausführungsformen gemäß den Figuren 1 und 2 - eine Bewegungsrichtung des Ventilkörpers 58 nicht entlang der Anker-Längsachse L verläuft, sondern quer dazu.
  • Figur 3b zeigt eine weitere Ausführungsform einer erfindungsgemäßen Pumpe 18, bei der die Luftspaltelemente 68, 70 nicht wie bei den Ausführungsformen gemäß der Figuren 1, 2 und 3a benachbart zueinander angeordnet sind, sondern auf voneinander abliegenden Seiten des jeweiligen Magnetfeldformungselements 64 bzw. 66. Figur 4a zeigt eine weitere Ausführungsform einer erfindungsgemäßen Pumpe 18, bei der der Anker so ausgeprägt ist, dass er aus mehreren Elementen besteht.
  • Figur 4b zeigt eine weitere Ausführungsform einer erfindungsgemäßen Pumpe 18, bei der zusätzlich zu den Elektromagneten Dauermagnete vorhanden sind, die so zwischen den beiden Magnetspulen positioniert sind, dass ein magnetischer Fluss entsteht, auch wenn beide Magnetspulen nicht bestromt sind. Dies bewirkt, dass die Pumpe im unbestromten Zustand in einer definierten Position verharrt.
  • Figur 1 zeigt, dass die Pumpe 18 eine Heiz-und/oder Kühlvorrichtung 87 zum Kühlen des Pumpraums 48 aufweisen kann. Die Heiz-und/oder Kühlvorrichtung 87 ist im vorliegenden Fall ein Peltier-Element, das von der Steuerung 72 bestromt wird. Je nach Polarität der Stromrichtung heizt oder kühlt das Peltier-Element. Es kann daher, wenn es heizend betrieben wird, auch als Heizelement bezeichnet werden.
  • Figur 4a zeigt eine Ausführungsform, bei der der Anker 26 mehrere Ankersegmente 88.j (hier: j = 1, ...,4) aufweist. Die Steuerung 72 ist ausgebildet zum Bestromen von zuerst dem zweiten Elektromagneten 40, sodass ein erstes Ankersegment 88.1 benachbart zum zweiten Luftspaltelement 70, also in der ferromagnetfreien Zone, positioniert wird. Dadurch steht ein zweites Ankersegment 88.2 benachbart zum ersten Luftspaltelement 68 und damit im Wirkungsbereich der ferromagnetfreien Zone.
  • Dann wird der erste Elektromagnet 38 bestromt, wodurch das zweite Ankerelement 88.2 sich benachbart zum ersten Luftspaltelement 68 positioniert. Infolgedessen steht ein drittes Ankersegment 88.3 im Wirkungsbereich des zweiten Luftspaltelements 70.
  • Daraufhin wird das dritte Ankersegment 88.3 durch Bestromen des zweiten Elektromagneten 40 in der ferromagnetfreien Zone des zweiten Luftspaltelements 70, also benachbart zu diesem, positioniert.
  • Infolgedessen steht ein viertes Ankersegment 88.4 im Wirkungsbereich der ferromagnetfreien Zone des ersten Luftspaltelements 68. Würde der Anker 26 mehr Ankersegmente umfassen, könnte das alternierende Bestromen fortgesetzt werden, bis das letzte Ankersegment, das für die maximale Hublänge benötigt wird, in der entsprechenden ferromagnetfreien Zone positioniert ist.
  • Je nach Stromstärke I38 des elektrischen Stroms, der durch den ersten Elektromagneten 38 fließt und der Stromstärke I40 des elektrischen Stroms, der durch den zweiten Elektromagneten 40 fließt, ergibt sich so eine Position des Ankers 26 bezüglich seiner Anker-Längsachse L, die die Reluktanz minimiert. Auf diese Weise kann durch die Stromstärken durch den ersten Elektromagneten und/oder den zweiten Elektromagneten I38, I40 die Position des Ankers 26 stufenlos eingestellt werden.
  • Figur 4b zeigt eine weitere Ausführungsform einer erfindungsgemäßen Pumpe 18, bei der zwischen den Elektromagneten 38, 40 Dauermagnete 90.1, 90.2 angeordnet sind. Die Dauermagnete 90.1, 90.2 sind so zwischen den beiden Elektromagneten 38, 40 positioniert, dass ein magnetischer Fluss entsteht, auch wenn beide Magnetspulen nicht bestromt sind. Dies bewirkt, dass die Pumpe 18 im unbestromten Zustand in einer definierten Position verharrt.
  • Figur 5a zeigt einen Ventilkörper 58, der eine strukturierte Mantelfläche 92 hat. Im vorliegenden Fall hat die Mantelfläche 92 Ausnehmungen 94.i (i = 1, 2, ...), die sich entlang von helikalen Kurven K1, K2, .. erstrecken. Die Kurven K1, K2, .. verlaufen um die Ventilkörper-Längsachse L des Ventilkörpers 58. So entsteht bei einer Bewegung des Ventilkörpers entlang seiner Ventilkörper-Längsachse L ein auf den Ventilkörper wirkendes Drehmoment und der Ventilkörper 58 dreht sich um einen Drehwinkel α.
  • Figur 5b zeigt einen alternativen Ventilkörper 58, dessen Stirnfläche 96 eine asymmetrische, schiefe Struktur 98 aufweist. Der Blick von oben, der im oberen Teilbild dargestellt ist, zeigt, dass die Struktur 98 eine 180°-Drehsymmetrie hat, was bevorzugt, nicht aber notwendig ist.
  • Figur 6 zeigt eine weitere Ausführungsform einer erfindungsgemäßen Pumpe 18, bei der der Anker 26 zwischen dem ersten Elektromagneten 38 und dem zweiten Elektromagneten 40 angeordnet ist. Dies stellt - unabhängig von anderen Merkmalen der Pumpe 18 gemäß der vorliegenden Ausführungsform - eine bevorzugte Ausgestaltung dar.
  • Zudem haben die Luftspaltelemente 68,70 einen Abstand von der Anker-Längsachse L, der größer ist als der Innenradius der Elektromagnete 38, 40 (also der Spulen). Dies stellt - unabhängig von anderen Merkmalen der Pumpe 18 gemäß der vorliegenden Ausführungsform - eine bevorzugte Ausgestaltung dar. Gemäß einer bevorzugten Ausführungsform ist der Abstand von der Anker-Längsachse L zumindest so groß wie der Mittelwert aus dem Innenradius und dem Außenradius der Elektromagnete 38, 40. Vorteilhaft an dieser Ausführungsform ist die geringere Verlustleistung der Elektromagnete. Vorteilhaft ist zudem der in der Regel vergleichsweise kleine Wicklungsdurchmesser.
  • Die Pumpe 18 und das Reservoir 36 bilden eine Zudosiervorrichtung 100.
  • Die Zielfluid-Leitung 14 kann beispielsweise eine Gasleitung, insbesondere eine Erdgasleitung sein. In diesem Fall ist die Zudosiervorrichtung 100 vorzugsweise als Odoriervorrichtung ausgebildet, in deren Reservoir 36 ein zuzudosierender Stoff 102 in Form eines Odoriermittels 102 enthalten ist. Das Odoriermittel 102 kann beispielsweise Tetrahydrothiophen, ein Mercaptan oder Gemisch aus Acrylsäureethylester (über 50 %), Acrylsäuremethylester und 2-Ethyl-3-methylpyrazin sein. Die Gesamtheit aus Gasleitung 14 und Odoriervorrichtung 100 bildet ein Odoriersystem 104.
  • Alternativ kann die Zielfluid-Leitung 14 eine Flüssigkeitsleitung sein. In diesem Fall ist die Zudosiervorrichtung 100 vorzugsweise als Entkeimungsvorrichtung ausgebildet. Der zuzudosierende Stoff 102 ist in diesem Fall ein Entkeimungsmittel. Bezugszeichenliste:
    10 Zudosiersystem 64 erstes Magnetfeldformungselement
    12 Flüssigkeit
    14 Zielfluid-Leitung 66 zweites Magnetfeldformungselement
    16 Zielfluid
    18 Pumpe 68 erstes Luftspaltelement
    20 Zylinder 70 zweites Luftspaltelement
    22 Zylinderinnenraum 72 Steuerung
    26 Anker 74 digitaler Speicher
    28 Ankerelement 76 Einström-Öffnung
    78 Dichtung
    30 Schaft
    32 Zylinderinnenfläche 80 Thermometer
    34 Ringspalt 82 Ablauf
    35 untere Vorlaufkammer 84 erstes Seitenteil
    36 Reservoir 86 zweites Seitenteil
    37 Leitung 87 Kühlvorrichtung
    38 erster Elektromagnet 88 Ankersegment
    40 zweiter Elektromagnet 90 Dauermagnet
    42 Magnet 92 Mantelfläche
    44 Magnetfeldsensorelement 94 Ausnehmung
    46 Positionssensor 96 Stirnfläche
    48 Pumpraum 98 Struktur
    50 Speiseleitung 100 Zudosiervorrichtung, Odoriervorrichtung
    52 Auslass-Ende
    54 Ventil 102 zuzudosierender Stoff: Odoriermittel, Entkeimungsmittel
    56 Ventilsitz
    58 Ventilkörper 104 Odoriersystem
    60 Abgabeöffnung
    62 Düse
    α Drehwinkel
    T48 Pumpraum-Temperatur
    L Anker-Längsachse
    w lichte Weite
    B Magnetfeld
    V Volumenstrom
    H Hub
    i Laufindex
    HSoll Soll-Hub
    P Druck
    I1(t) elektrischer Strom
    XSoll(t) Soll-Trajektorie
    t Zeit
    T48,min Pumpraum-Mindesttemperatur
    VSoll Soll-Volumenstrom
    Vsoll Soll-Volumen

Claims (15)

  1. Pumpe (18) für das Dosieren einer Flüssigkeit (12), mit
    (a) einem Zylinder (20), der einen Zylinderinnenraum (22) hat,
    (b) einem Anker (26), der
    - im Zylinderinnenraum (22) läuft und
    - zumindest abschnittsweise ferromagnetisch ist,
    (c) einem ersten Elektromagneten (38) und einem zweiten Elektromagneten (40), die mit dem Anker (26) einen Reluktanz-Linearmotor bilden, mittels dem der Anker (26) im Zylinder (20) bewegbar ist,
    (d) einem Pumpraum (48), der
    - durch Betätigen des Ankers (26) vergrößer- und verkleinerbar ist,
    - mit einer Speiseleitung (50) zum Füllen mit der zu pumpenden Flüssigkeit (12) verbunden ist und
    - eine Abgabeöffnung (60) zum Abgeben der gepumpten Flüssigkeit (12) aufweist,
    (e) wobei die Speiseleitung (50) ein, insbesondere magnetisch, schaltbares Ventil (54) aufweist,
    dadurch gekennzeichnet, dass
    (f) die Pumpe einen Positionssensor (46) zum berührungslosen Bestimmen einer Anker-Position des Ankers (26) relativ zum Zylinder (20) aufweist.
  2. Pumpe (18) nach Anspruch 1, dadurch gekennzeichnet, dass die Speiseleitung (50) durch den Anker (26) verläuft und den Zylinderinnenraum (22) mit dem Pumpraum (48) verbindet.
  3. Pumpe (18) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass
    (a) das magnetisch schaltbare Ventil (54)
    einen permanentmagnetischen Ventilkörper (58) aufweist und durch Umpolen zumindest eines der Elektromagneten (38, 40) schaltbar ist und dass
    (b) der Anker (26) ferromagnetisch ist.
  4. Pumpe (18) nach Anspruch 2, dadurch gekennzeichnet, dass der Ventilkörper (58)
    (a) so ausgebildet ist, dass er sich beim Schließen und/oder Öffnen des Ventils (54) um zumindest 1° dreht und
    (b) eine strukturierte Mantelfläche, insbesondere schräge Nuten, und/oder ein Leitelement an einer Stirnfläche des Ventilkörpers (58) aufweist.
  5. Pumpe (18) nach einem der vorstehenden Ansprüche, gekennzeichnet durch
    (a) ein erstes Magnetfeldformungselement (64), das zum Formen eines ersten Magnetfelds (B1) des ersten Elektromagneten (38) angeordnet ist, und
    (b) ein zweites Magnetfeldformungselement (66), das zum Formen eines zweiten Magnetfelds (B2) des zweiten Elektromagneten (40) angeordnet ist,
    (c) wobei die Magnetfeldformungselemente (64, 66) so ausgebildet sind, dass der Anker (26) durch Bestromen der Elektromagnete (38, 40), insbesondere stufenlos, positionierbar ist.
  6. Pumpe (18) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass
    (a) der Anker (26) zumindest drei Ankersegmente (88) aufweist, die so angeordnet sind, dass durch alternierendes Bestromen des ersten Elektromagneten (38) und des zweiten Elektromagneten (40) der Anker (26) entlang seiner Anker-Längsachse (L), insbesondere stufenlos, positionierbar ist und dass
    (b) der Positionssensor (46)
    (i) ein Magnetsensor ist, der einen am Anker (26) befestigten Magneten (42) und ein Magnetfeldsensorelement (44) aufweist oder
    (ii) ausgebildet ist zum Messen der Induktivität zumindest eines der Elektromagneten (38, 40) und Ermitteln der Position des Ankers (26) aus der Induktivität oder
    (iii) ausgebildet ist zum Messen einer magnetischen Flussdichte und Ermitteln der Position des Ankers (26) aus der magnetischen Flussdichte.
  7. Pumpe (18) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Speiseleitung (50) eine Einström-Öffnung (76) zum Einströmen von Flüssigkeit (12) aus dem Zylinderinnenraum (22) aufweist.
  8. Pumpe (18) nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine Steuerung (72), die ausgebildet ist zum automatischen Durchführen eines Verfahrens mit den Schritten:
    (i) Erfassen eines Soll-Hubs (HSoll) des Ankers (26),
    (ii) kontinuierlich Messen eines Ist-Hubs,
    (iii) Bestromen des ersten Elektromagneten (38) so, dass sich der Ist-Hub dem Soll-Hub (HSoll) annähert und Flüssigkeit (12) in den Pumpraum (48) strömt, und
    (iv) danach Bestromen des zweiten Elektromagneten (40), sodass die Flüssigkeit (12) aus dem Pumpraum (48) durch die Abgabeöffnung (60) gepumpt wird.
  9. Pumpe (18) nach Anspruch 8, dadurch gekennzeichnet, dass die Steuerung (72) ausgebildet ist zum automatischen Durchführen eines Verfahrens mit den Schritten:
    (i) nach dem Bestromen des ersten Elektromagneten (38), sodass sich der Ist-Hub dem Soll-Hub (HSoll) annähert und Flüssigkeit (12) in den Pumpraum (48) strömt, und vor Bestromen des zweiten Elektromagneten (40) Umpolen eines der Elektromagneten (38, 40), sodass das Ventil (54) schließt und/oder
    (ii) nach dem Pumpen der Flüssigkeit (12) aus dem Pumpraum (48) durch die Abgabeöffnung (60), Bestromen des zweiten Elektromagneten (40), sodass der Anker (26) in einer Ruhestellung ist.
  10. Pumpe (18) nach einem der vorstehenden Ansprüche, gekennzeichnet durch
    (a) eine Temperaturerfassungsvorrichtung (80), die eingerichtet ist zum Erfassen eines Temperaturmesswerts, der zu einer Pumpraum-Temperatur (T48) im Pumpraum (48) korreliert,
    (b) wobei die Steuerung (72) ausgebildet ist zum Bestromen eines Heizelements (87) und/oder zumindest eines der Elektromagneten (38, 40) zum Erhöhen der Pumpraum-Temperatur (T48), wenn die Pumpraum-Temperatur (T48) eine vorgegebene Pumpraum-Mindesttemperatur (T48,min) unterschreitet.
  11. Zudosiersystem (10) mit
    (a) einer Zielfluid-Leitung (14) für ein Zielfluid (16) und
    (b) einer Zudosiervorrichtung (100) zum Zudosieren einer Flüssigkeit (12) zum Zielfluid (16),
    dadurch gekennzeichnet, dass
    (c) die Zudosiervorrichtung (100)
    (i) eine Pumpe (18) nach einem der vorstehenden Ansprüche und
    (ii) ein Reservoir (36), das die Flüssigkeit (12) enthält, aufweist.
  12. Odoriersystem (104) mit
    (a) einer Gasleitung (14), insbesondere einer Erdgasleitung, und
    (b) einer Odoriervorrichtung (100) zum Zudosieren einer Flüssigkeit (12) in Form eines Odoriermittels (102) in die Gasleitung (14),
    dadurch gekennzeichnet, dass
    (c) die Odoriervorrichtung (100)
    (i) eine Pumpe (18) nach einem der vorstehenden Ansprüche und
    (ii) ein Reservoir (36), das das Odoriermittel (102) enthält, aufweist.
  13. Kaltentkeimungssystem mit
    (a) einer Flüssigkeitsleitung (14) und
    (b) einer Entkeimungsvorrichtung (100) zum Zudosieren eines Entkeimungsmittels (102) in die Flüssigkeitsleitung (14),
    dadurch gekennzeichnet, dass
    (c) die Entkeimungsvorrichtung
    (i) eine Pumpe (18) nach einem der Ansprüche 1 bis 10 und
    (ii) ein Reservoir (36), das das Entkeimungsmittel enthält, aufweist.
  14. Verfahren zum Zudosieren einer Flüssigkeit (12) in eine Zielfluid-Leitung (14) mittels einer Pumpe (18) nach einem der Ansprüche 1 bis 10, mit den Schritten:
    (i) Erfassen eines Soll-Hubs (HSoll) eines Ankers (26) der Pumpe (18),
    (ii) kontinuierlich Messen eines Ist-Hubs des Ankers (26),
    (iii) Bestromen des ersten Elektromagneten (38) und/oder des zweiten Elektromagneten (40), sodass sich der Ist-Hub dem Soll-Hub (HSoll) annähert und Flüssigkeit (12) in den Pumpraum (48) strömt, und
    (iv) danach Bestromen des zweiten Elektromagneten (40), sodass die Flüssigkeit (12) aus dem Pumpraum (48) durch die Abgabeöffnung (60) gepumpt wird.
  15. Verfahren nach Anspruch 14, gekennzeichnet durch den Schritt:
    nach dem Bestromen des ersten Elektromagneten (38), sodass sich der Ist-Hub dem Soll-Hub (HSoll) annähert und Flüssigkeit (12) in den Pumpraum (48) strömt, und vor Bestromen des zweiten Elektromagneten (40) Umpolen eines der Elektromagneten (38, 40), sodass das Ventil (54) schließt.
EP20215661.8A 2020-01-08 2020-12-18 Pumpe und odoriersystem mit einer solchen pumpe Active EP3848578B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020100240.8A DE102020100240A1 (de) 2020-01-08 2020-01-08 Pumpe und Odoriersystem mit einer solchen Pumpe

Publications (2)

Publication Number Publication Date
EP3848578A1 true EP3848578A1 (de) 2021-07-14
EP3848578B1 EP3848578B1 (de) 2022-11-23

Family

ID=74184351

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20215661.8A Active EP3848578B1 (de) 2020-01-08 2020-12-18 Pumpe und odoriersystem mit einer solchen pumpe

Country Status (4)

Country Link
EP (1) EP3848578B1 (de)
DE (1) DE102020100240A1 (de)
ES (1) ES2937973T3 (de)
PT (1) PT3848578T (de)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1088684B (de) 1955-09-19 1960-09-08 Ernst Thielenhaus Jun Elektrohydraulisches Hubgeraet
US4274407A (en) 1979-11-13 1981-06-23 Med Pump, Inc. Fluid injection system
EP0161429A1 (de) * 1984-04-02 1985-11-21 Hitachi, Ltd. Kolbenhubkontrolleinrichtung für Schwingverdichter des Freikolbentyps
US4966533A (en) * 1987-07-14 1990-10-30 Kabushiki Kaisha Nagano Keiki Seisakusho Vacuum pump with rotational sliding piston support
DE3933125A1 (de) 1989-10-04 1991-04-11 Schienle Manfred Dipl Ing Grad Elektromagnetisch betaetigbare pumpe
DE19544029A1 (de) 1995-11-25 1997-05-28 Keller Kg Wilhelm Elektromagnetische Schwingkolbenpumpe
DE69311525T2 (de) 1993-01-07 1997-10-02 Tdk Corp Elektromagnetpumpe mit beweglichem Magnetkolben
DE19623162A1 (de) 1996-05-29 1997-12-04 Mannesmann Ag Magnetventil
WO2000063075A1 (en) * 1999-04-16 2000-10-26 Tokheim Corporation Electro-mechanical piston meter
DE19961852A1 (de) 1999-12-22 2001-06-28 Continental Teves Ag & Co Ohg Pumpe mit geregeltem Ventil
RU2224944C1 (ru) * 2003-01-17 2004-02-27 Наумейко Анатолий Васильевич Газораспределительная станция и способ использования перепада давления узла редуцирования газораспределительной станции
EP1460261A1 (de) * 2001-11-29 2004-09-22 Mikuni Corporation Verfahren zum antrieb einer kraftstoffeinspritzpumpe
DE102004022111A1 (de) * 2004-05-05 2005-11-24 Robert Bosch Gmbh Kolbenpumpe mit aktiv betätigbarem Verschlusselement
US20060013704A1 (en) * 2004-06-30 2006-01-19 Teruya Sawada Liquid aeration delivery apparatus
WO2009083179A1 (de) * 2008-01-02 2009-07-09 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Fluidikvorrichtung für kontrolliertes handhaben von flüssigkeiten und fluidiksystem mit einer fluidikvorrichtung
US20110020143A1 (en) * 2009-07-22 2011-01-27 Van Brunt Nicholas P Method of controlling gaseous fluid pump
ITRM20090537A1 (it) * 2009-10-19 2011-04-20 Etatron D S Spa "dispositivo di controllo della corsa del pistone di una pompa dosatrice"
EP2650539A1 (de) * 2012-04-11 2013-10-16 TI Automotive Fuel Systems SAS Elektromagnetische Kolbenpumpe zur Injektion eines Additivs mit integriertem Umkehrflussmodus und der Fähigkeit zur Erzeugung und Regulierung von hohem Druck
DE102014215110A1 (de) 2014-07-31 2016-02-04 Siemens Aktiengesellschaft Linearaktor und Verfahren zum Betrieb eines solchen Linearaktors
EP2971902B1 (de) 2013-03-14 2017-06-28 Paccar Inc Mechanisch verriegelndes magnetventil
EP3546746A1 (de) * 2018-03-29 2019-10-02 Magneti Marelli S.p.A. Kolbenpumpe und relatives steuerungsverfahren

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1088684B (de) 1955-09-19 1960-09-08 Ernst Thielenhaus Jun Elektrohydraulisches Hubgeraet
US4274407A (en) 1979-11-13 1981-06-23 Med Pump, Inc. Fluid injection system
EP0161429A1 (de) * 1984-04-02 1985-11-21 Hitachi, Ltd. Kolbenhubkontrolleinrichtung für Schwingverdichter des Freikolbentyps
US4966533A (en) * 1987-07-14 1990-10-30 Kabushiki Kaisha Nagano Keiki Seisakusho Vacuum pump with rotational sliding piston support
DE3933125A1 (de) 1989-10-04 1991-04-11 Schienle Manfred Dipl Ing Grad Elektromagnetisch betaetigbare pumpe
DE69311525T2 (de) 1993-01-07 1997-10-02 Tdk Corp Elektromagnetpumpe mit beweglichem Magnetkolben
DE19544029A1 (de) 1995-11-25 1997-05-28 Keller Kg Wilhelm Elektromagnetische Schwingkolbenpumpe
DE19623162A1 (de) 1996-05-29 1997-12-04 Mannesmann Ag Magnetventil
WO2000063075A1 (en) * 1999-04-16 2000-10-26 Tokheim Corporation Electro-mechanical piston meter
DE19961852A1 (de) 1999-12-22 2001-06-28 Continental Teves Ag & Co Ohg Pumpe mit geregeltem Ventil
EP1460261A1 (de) * 2001-11-29 2004-09-22 Mikuni Corporation Verfahren zum antrieb einer kraftstoffeinspritzpumpe
RU2224944C1 (ru) * 2003-01-17 2004-02-27 Наумейко Анатолий Васильевич Газораспределительная станция и способ использования перепада давления узла редуцирования газораспределительной станции
DE102004022111A1 (de) * 2004-05-05 2005-11-24 Robert Bosch Gmbh Kolbenpumpe mit aktiv betätigbarem Verschlusselement
US20060013704A1 (en) * 2004-06-30 2006-01-19 Teruya Sawada Liquid aeration delivery apparatus
WO2009083179A1 (de) * 2008-01-02 2009-07-09 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Fluidikvorrichtung für kontrolliertes handhaben von flüssigkeiten und fluidiksystem mit einer fluidikvorrichtung
US20110020143A1 (en) * 2009-07-22 2011-01-27 Van Brunt Nicholas P Method of controlling gaseous fluid pump
ITRM20090537A1 (it) * 2009-10-19 2011-04-20 Etatron D S Spa "dispositivo di controllo della corsa del pistone di una pompa dosatrice"
EP2650539A1 (de) * 2012-04-11 2013-10-16 TI Automotive Fuel Systems SAS Elektromagnetische Kolbenpumpe zur Injektion eines Additivs mit integriertem Umkehrflussmodus und der Fähigkeit zur Erzeugung und Regulierung von hohem Druck
EP2971902B1 (de) 2013-03-14 2017-06-28 Paccar Inc Mechanisch verriegelndes magnetventil
DE102014215110A1 (de) 2014-07-31 2016-02-04 Siemens Aktiengesellschaft Linearaktor und Verfahren zum Betrieb eines solchen Linearaktors
EP3546746A1 (de) * 2018-03-29 2019-10-02 Magneti Marelli S.p.A. Kolbenpumpe und relatives steuerungsverfahren

Also Published As

Publication number Publication date
ES2937973T3 (es) 2023-04-03
DE102020100240A1 (de) 2021-07-08
PT3848578T (pt) 2023-02-14
EP3848578B1 (de) 2022-11-23

Similar Documents

Publication Publication Date Title
DE19933329C1 (de) Magnetische Stellvorrichtung für ein Magnetventil
EP2562773B1 (de) Hydraulisches Getriebeventil
EP1262639A2 (de) Verfahren zur Steuerung einer elektromagnetisch betätigten Stellvorrichtung, insbesondere zur Steuerung eines Gaswechselventils einer Brennkraftmaschine
DE3738877A1 (de) Elektromagnetisches kraftstoffeinspritzventil
DE1934212A1 (de) Impulsgesteuertes Doppelsitzmagnetventil
DE3503471A1 (de) Foerdermengen-steuervorrichtung fuer einen kuehlmittelverdichter mit foerdermengen-einstellvorrichtung
EP3140202B1 (de) Füllnadel zum befüllen eines behälters mit einem fluid
DE19700980A1 (de) Elektromagnetventil
EP1959178A2 (de) Elektromagnetisch zu betätigendes Ventil
EP1599696B1 (de) Expansionsorgan für eine klimaanlage
DE102010041320A1 (de) Bestimmung des Schließzeitpunkts eines Steuerventils eines indirekt angetriebenen Kraftstoffinjektors
EP1819566A1 (de) Elektromagnetisch ansteuerbares stellgerät und verfahren zu dessen herstellung und/oder justage
DE3718490C2 (de) Kälteerzeugungskreis für Kühlanlagen mit mehreren Kühlräumen
EP3848578B1 (de) Pumpe und odoriersystem mit einer solchen pumpe
EP0557294B1 (de) Ventil
EP0503357A1 (de) Durchflussregelventil
DE19804225C1 (de) Elektromagnetischer Aktuator
EP2010784B1 (de) Pumpelement und pumpe mit einem solchen pumpelement
DE102013220047B4 (de) Hydraulikventil
DE10225171B3 (de) Verfahren und Vorrichtung zur Dosierung von Fluiden
EP2689432B1 (de) Antriebseinrichtung für ein ventil, ventil zur steuerung eines gas- und/oder flüssigkeitsstroms
DE102015007424A1 (de) Druckregelvorrichtung
DE19502671A1 (de) Elektromagnetantrieb, insbesondere für Elektromagnetventile als Stellglieder für Fluide
EP0466018B1 (de) Verfahren zur Montage eines Proportionalmagnetventils
EP3545271A1 (de) Messvorrichtung und messverfahren für kleine gasvolumen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220110

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220708

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BILFINGER ENGINEERING & MAINTENANCE GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1533284

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020002051

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3848578

Country of ref document: PT

Date of ref document: 20230214

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20230207

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2937973

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221218

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020002051

Country of ref document: DE

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221218

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20231214

Year of fee payment: 4

Ref country code: IE

Payment date: 20231218

Year of fee payment: 4

Ref country code: FR

Payment date: 20231220

Year of fee payment: 4

Ref country code: DE

Payment date: 20231221

Year of fee payment: 4

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240102

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123