EP3844250B1 - Verwendung spezieller copolymere zur verbesserung der kälteeigenschaften von kraftstoffen oder brennstoffen - Google Patents

Verwendung spezieller copolymere zur verbesserung der kälteeigenschaften von kraftstoffen oder brennstoffen Download PDF

Info

Publication number
EP3844250B1
EP3844250B1 EP19755939.6A EP19755939A EP3844250B1 EP 3844250 B1 EP3844250 B1 EP 3844250B1 EP 19755939 A EP19755939 A EP 19755939A EP 3844250 B1 EP3844250 B1 EP 3844250B1
Authority
EP
European Patent Office
Prior art keywords
copolymer
ethylene
copolymers
vinyl
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19755939.6A
Other languages
English (en)
French (fr)
Other versions
EP3844250A1 (de
Inventor
Ana Maria CENACCHI-PEREIRA
Julie Prevost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Onetech SAS
Original Assignee
TotalEnergies Onetech SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TotalEnergies Onetech SAS filed Critical TotalEnergies Onetech SAS
Publication of EP3844250A1 publication Critical patent/EP3844250A1/de
Application granted granted Critical
Publication of EP3844250B1 publication Critical patent/EP3844250B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2368Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing heterocyclic compounds containing nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • C10L10/16Pour-point depressants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0476Biodiesel, i.e. defined lower alkyl esters of fatty acids first generation biodiesel

Definitions

  • the present invention relates to the use of particular copolymers to improve the cold resistance properties of fuels and combustibles during their storage and/or use at low temperatures.
  • the present invention also relates to additive compositions (or “additive packages”) containing these copolymers, as well as fuel and fuel compositions additived with such copolymers, preferably in combination with at least one cold-thinning additive. (CFI) and/or at least one paraffin anti-sedimentation additive (WASA).
  • CFI cold-thinning additive
  • WASA paraffin anti-sedimentation additive
  • Fuels or combustibles containing paraffinic compounds are known to exhibit deteriorated flow properties at low temperatures, typically below 0°C.
  • the middle distillates obtained by distillation from crude oils of petroleum origin such as diesel or domestic fuel oil, contain different quantities of n-alkanes or n-paraffins depending on their origin. These compounds tend to crystallize at low temperatures, blocking pipes, pipes, pumps and filters, for example in the fuel circuits of motor vehicles.
  • CFI cold flow improvers
  • TLF Filterability Limit Temperature
  • PE pour point
  • TLF additives polymers of ethylene and vinyl acetate and/or vinyl propionate
  • EVA or EVP vinyl propionate
  • This type of additive very widely known to those skilled in the art, is systematically added to conventional middle distillates leaving the refinery. These additive distillates are used as diesel engine fuel or as heating fuel. Additional quantities of these additives can be added to fuels sold at service stations, in particular to meet so-called Extreme Cold specifications.
  • the document EP0857776 proposes to use alkylphenol-aldehyde resins resulting from the condensation of alkylphenol and aldehyde in association with ethylene/vinyl ester copolymers or terpolymers, to improve the fluidity of mineral oils.
  • the patent application WO 2008/006965 describes the use of a combination of a homopolymer obtained from an olefinic ester of a carboxylic acid of 3 to 12 carbon atoms and a fatty alcohol comprising a chain of more than 16 carbon atoms and optionally a double olefinic bond and a cold fluidizing additive (CFI) of EVA or EVP type, to increase the effectiveness of the CFI additives by amplifying their effect on the TLF.
  • CFI cold fluidizing additive
  • This additive is particularly useful as a TLF booster in combination with a cold fluidizing additive (CFI).
  • CFI cold fluidizing additive
  • Another purpose of cold resistance additives is to ensure the dispersion of paraffin crystals, so as to delay or prevent the sedimentation of such crystals and avoid the formation of a layer rich in paraffins at the bottom of containers, tanks or storage tanks; these paraffin dispersing additives are called anti-sedimentation additives or WASA (acronym for the English term “Wax Anti-Settling Additive”).
  • WASA anti-sedimentation additives
  • Modified alkylphenol-aldehyde resins have been described in the document FR2969620 as an anti-sedimentation additive in combination with a TLF additive.
  • This need is particularly important for fuels comprising one or more paraffinic compounds, for example compounds containing n-alkyl, iso-alkyl or n-alkenyl groups having a tendency to crystallize at low temperatures.
  • the distillates used in fuels increasingly come from more complex refining operations than those from the direct distillation of petroleum, and can come in particular from cracking, hydrocracking, catalytic cracking and visbreaking processes.
  • the refiner tends to introduce into these fuels cuts that are more difficult to exploit, such as the heaviest cuts from cracking and visbreaking processes which are rich in long-chain paraffins.
  • the present invention applies to fuels and combustibles containing not only conventional distillates such as those resulting from the direct distillation of crude oils, but also to bases derived from other sources, such as those described above.
  • the aim of the present invention is to propose new additives and concentrates containing them which can advantageously be used as additives to improve the cold resistance properties, in particular the cold flow properties of these fuels or combustibles, during their storage and/or use at low temperatures, typically below 0°C.
  • the object of the present invention is further to propose new additives for fuels and combustibles, and concentrates containing such additives, acting on the Filterability Limit Temperature (TLF), the pour point (PE), and retarding and /or preventing the sedimentation of crystals of hydrocarbon compounds, in particular paraffins.
  • TEZ Filterability Limit Temperature
  • PE pour point
  • Another object of the invention is to propose a fuel composition having improved cold resistance properties, in particular at temperatures below 0°C, preferably below -5°C.
  • the polymer defined above is used as a so-called “TLF booster” additive, that is to say in combination with a flow improvement additive or cold fluidizing additive (in English “cold flow improvers” or CFI) of which it improves the performance.
  • TEZ booster flow improvement additive or cold fluidizing additive
  • the invention also relates to an additive composition
  • an additive composition comprising such a copolymer in association with at least one cold resistance additive different from the copolymers according to the invention, as well as an additive concentrate containing such a composition.
  • the cold resistance additive is chosen from copolymers and terpolymers of ethylene and vinyl ester(s) and/or acrylic(s), alone or as a mixture.
  • C N compound or group denotes a compound or group containing N carbon atoms in its chemical structure.
  • copolymer The copolymer:
  • the group X of formula (I) is preferably the -O-CO- group.
  • the group X of formula (I) is chosen from: -CO-O- and -CO-NH-, it being understood that the group In this embodiment, the group X of the formula (I) is preferably the -CO-O- group.
  • the group X is a -CO-O- group, X being connected to the vinyl carbon via the carbon atom.
  • the R 2 group of formula (I) is a linear or branched C 8 to C 14 acyclic alkyl radical, more preferably still C 12 to C 14 .
  • alkyl groups such as octyl, decyl, dodecyl, ethyl-2-hexyl, isooctyl, isodecyl and isododecyl, alkyl groups in C14 .
  • the group X is a -CO-O- group , C 14 , preferably C 10 to C 14 , and even more preferably C 12 to C 14 .
  • the units according to this embodiment correspond to those derived from monomers chosen from alkyl acrylates and methacrylates having a C 8 to C 14 alkyl group, preferably a C 10 to C 14 alkyl group, and even more preferably a C 12 alkyl group. at C 14 .
  • the R 2 group of formula (I) is a linear or branched C 14 to C 24 acyclic alkyl radical, preferably C 16 to C 22 , even more preferably C 18 to C22.
  • the group X is a -CO-O- group , C 24 , preferably C 16 to C 22 , even more preferably C 18 to C 22 .
  • the units according to this embodiment correspond to those derived from monomers chosen from alkyl acrylates and methacrylates having a C 14 to C 24 alkyl group, preferably C 16 to C 22 , even more preferably C 18 to C 24. C22 .
  • the copolymer used in the present invention also comprises at least one unit of formula (II): in which R represents a substituted or unsubstituted imidazole ring.
  • the substituent(s) optionally present on the imidazole ring(s) may be saturated or unsaturated, and in particular be chosen from hydrocarbon, oxygenated, nitrogenous, halogenated substituents.
  • the units of formula (II) come from one or more vinyl monomers carrying an R group as described above.
  • the copolymer used in the present invention may or may not be crosslinked. Preferably, it is not crosslinked.
  • the copolymer used in the present invention can advantageously be a random copolymer, or a block copolymer. According to a particularly preferred embodiment, it is a random copolymer.
  • the copolymer according to the invention contains from 70 to 95 mol% of units of formula (I), preferably from 70 to 90 mol%, and better still from 75 to 90 mol%.
  • the copolymer according to the invention contains from 5 to 30 mol% of units of formula (II), preferably from 10 to 30 mol%, and better still from 10 to 25 mol%.
  • the copolymer used in the present invention contains only units of formula (I) and units of formula (II).
  • alkyl vinyl esters having a C 12 to C 14 or C 18 to C 22 alkyl group.
  • the alkyl radical of the alkyl vinyl ester is linear or branched, cyclic or acyclic, preferably acyclic.
  • alkyl vinyl ester monomers mention may be made, by way of non-limiting example, of vinyl octanoate, vinyl decanoate, vinyl dodecanoate, vinyl tetradecanoate, vinyl 2-ethylhexanoate.
  • alkyl acrylates and methacrylates having a C 6 to C 24 alkyl group and more preferably from alkyl acrylates and methacrylates having a C 12 to C 14 or C 18 to C alkyl group 22 .
  • alkyl (meth)acrylates capable of being used as monomers in the manufacture of the copolymer of the invention, mention may be made in particular, by way of non-limiting examples: n-octyl acrylate, n-octyl methacrylate, n-octyl, n-decyl acrylate, n-decyl methacrylate, n-dodecyl acrylate, n-dodecyl methacrylate, ethyl-2-hexyl acrylate, ethyl methacrylate -2-hexyl, isooctyl acrylate, isooctyl methacrylate, isodecyl acrylate, isodecyl methacrylate, C 12 to C 14 alkyl acrylates and C alkyl methacrylates 12 to C 14 , C 18 to C 22 alkyl acrylates and C 18 to C 22 alkyl methacrylate
  • the monomers of formula (IIA) are vinyl monomers carrying an R group as described above.
  • the polymer according to the invention can be prepared according to any known polymerization process.
  • the different polymerization and crosslinking techniques and conditions are widely described. in the literature and fall within the general knowledge of those skilled in the art.
  • Such polymerization is advantageously chosen from controlled radical polymerization; for example, by atom transfer radical polymerization (ATRP); radical polymerization by nitroxide (NMP in English “Nitroxide-mediated polymerization”); degenerative transfer processes such as degenerative iodine transfer polymerization (ITRP-iodine transfer radical polymerization) or reversible chain transfer polymerization by addition-fragmentation (RAFT in English “Reversible Addition-Fragmentation Chain Transfer”); polymerizations derived from ATRP such as polymerizations using initiators for continuous activator regeneration (ICAR -Initiators for continuous activator regeneration) or using activators regenerated by electron transfer (ARGET in English "activators regenerated by electron transfer”).
  • ATRP atom transfer radical polymerization
  • NMP nitroxide
  • degenerative transfer processes such as degenerative iodine transfer polymerization (ITRP-iodine transfer radical polymerization) or reversible chain transfer polymerization by addition-fragment
  • the copolymer according to the invention advantageously has a weight average molar mass (Mw) of between 1,000 and 50,000 g.mol -1 , more preferably between 1,000 and 20,000, even more preferably between 3,000 and 15,000. g.mol -1 .
  • the copolymer according to the invention advantageously has a number average molar mass (Mn) of between 1,000 and 50,000 g.mol -1 , more preferably between 1,000 and 20,000, even more preferably between 2,000 and 10,000. g.mol -1 .
  • the number and weight average molar masses are measured by size exclusion chromatography (SEC).
  • the copolymer described above is used to improve the cold resistance properties of a fuel or combustible composition, in particular, of a composition chosen from gas oils, biodiesels, type B x gas oils and fuel oils. , preferably, domestic fuel oils (FOD).
  • a fuel or combustible composition in particular, of a composition chosen from gas oils, biodiesels, type B x gas oils and fuel oils.
  • FOD domestic fuel oils
  • the fuel composition is as described below and advantageously comprises at least one cut of hydrocarbons from one or more sources chosen from the group consisting of mineral sources, preferably petroleum, animal sources , vegetable and synthetic.
  • said copolymer is used to improve the low temperature flow properties of the fuel or fuel during its storage and/or its use at low temperature, by lowering its filterability limit temperature (or TLF, measured according to the NF standard EN 116) and/or its pour point (or PE, measured according to standard ASTM D 7346) and/or by delaying or preventing the sedimentation of crystals, and preferably by lowering its limit filterability temperature (TLF, measured according to standard NF EN 116).
  • TLF filterability limit temperature
  • PE pour point
  • the copolymer according to the invention can be used to delay or prevent the sedimentation of paraffin crystals and more particularly of n-alkanes, preferably n-alkanes containing at least 12 carbon atoms, more preferably at least 20 carbon atoms. , even more preferably preferably at least 24.
  • the copolymer according to the invention is used as a TLF booster additive, that is to say in combination with at least one flow improvement additive or cold flow additive. improvers” or CFI).
  • the cold fluidizing additive is preferably chosen from copolymers and terpolymers of ethylene and vinyl ester(s) and/or acrylic(s), alone or as a mixture.
  • the copolymer according to the invention is used to amplify the fluidizing effect of the cold fluidizing additive, in particular by lowering the filterability limit temperature. (TLF) and/or the pour point, and/or by delaying or preventing the sedimentation of crystals, such as those containing paraffins.
  • TLF filterability limit temperature
  • the pour point delaying or preventing the sedimentation of crystals, such as those containing paraffins.
  • TLF booster This effect is usually called the “TLF booster” effect insofar as the presence of the copolymer according to the invention improves the fluidizing character of the CFI additive.
  • This improvement results, in particular, in a significant reduction in the TLF of the fuel composition or fuel additived with this combination compared to the same fuel composition or fuel additived only with the CFI additive, at the same treatment rate.
  • a significant drop in TLF results in a reduction of at least 3°C in TLF according to standard NF EN 116.
  • the copolymer is used to amplify the fluidizing (flow) effect of the cold fluidizing additive (CFI) by improving the Filterability Limit Temperature (TLF) of the fuel or combustible, the TLF being measured according to standard NF EN 116.
  • CFI cold fluidizing additive
  • TLF Filterability Limit Temperature
  • the copolymer can be added to fuels within the refinery, and/or be incorporated downstream of the refinery, possibly mixed with other additives, in the form of an additive concentrate, also called according to the use of “additive package”.
  • the copolymer is advantageously used in the fuel at a content of at least 0.0001% by weight, relative to the total weight of the fuel composition.
  • the content of said copolymer ranges from 0.0001 to 0.01% by weight, preferably from 0.0002 to 0.005% by weight, and better still from 0.0003 to 0.003% by weight, relative to the total weight. of the fuel or fuel composition.
  • composition of additives is a composition of additives:
  • the invention also relates to an additive composition
  • an additive composition comprising a copolymer as described above and one or more cold fluidizing additive(s) different from the copolymers comprising units of formula (I) and units of formula (II) as described above, chosen from copolymers and terpolymers of ethylene and of vinyl ester(s) and/or acrylic(s), alone or in a mixture, the weight ratio between the content of copolymer(s) according to the invention on the one hand, and the content of copolymer(s) ) of ethylene and vinyl ester(s) on the other hand, being included in the range from 0.1: 100 to 10: 100.
  • CFI cold fluidizing additives
  • EVA ethylene/vinyl acetate
  • EVE ethylene/vinyl ethanoate
  • EMMA ethylene/methacrylate methyl
  • terpolymers of ethylene, vinyl acetate and another vinyl ester for example vinyl neodecanoate.
  • the composition contains at least one cold fluidizing additive (CFI) chosen from ethylene/vinyl acetate copolymers (EVA), ethylene/vinyl propionate copolymers (EVP) and ethylene terpolymers, vinyl acetate and another vinyl ester; more preferably ethylene/vinyl acetate copolymers (EVA) and their mixtures with a terpolymer of ethylene, vinyl acetate and another vinyl ester, such as in particular vinyl neodecanoate.
  • CFI cold fluidizing additive
  • the weight ratio between the content of copolymer(s) according to the invention on the one hand, and the content of copolymer(s) of ethylene and vinyl ester(s) on the other hand, is preferably included in the range from 0.5:100 to 5:100.
  • a particularly preferred weight ratio is 1:100 ⁇ 10%.
  • the additive composition may further comprise one or more anti-sedimentation additives and/or paraffin dispersants (WASA) which may be in particular, but not limited to, chosen from the group consisting of (meth)acrylic acid/copolymers. polyamine amidated alkyl (meth)acrylate, polyamine alkenyl succinimides, phthalamic acid and double chain fatty amine derivatives; optionally grafted alkylphenol resins. Examples of such additives are given in the following documents: EP261959 , EP593331 , EP674689 , EP327423 , EP512889 , EP832172 ; US2005/0223631 ; US5998530 ; WO93/14178 .
  • WASA paraffin dispersants
  • WASA paraffin dispersants
  • the additive composition may also comprise one or more other additives commonly used in fuels or combustibles, different from the copolymer according to the invention and from the cold resistance additives described previously.
  • the additive composition may, typically, comprise one or more other additives chosen from detergents, anti-corrosion agents, dispersants, demulsifiers, biocides, reodorants, procetane additives, friction modifiers, additives of lubrication or lubricity additives, combustion aiding agents (catalytic combustion and soot promoters), anti-wear agents and/or conductivity modifying agents.
  • additives chosen from detergents, anti-corrosion agents, dispersants, demulsifiers, biocides, reodorants, procetane additives, friction modifiers, additives of lubrication or lubricity additives, combustion aiding agents (catalytic combustion and soot promoters), anti-wear agents and/or conductivity modifying agents.
  • the additive composition may advantageously comprise from 0.1 to 50% by weight of copolymer as described above, relative to the total weight of the additive composition.
  • the present invention also relates to an additive concentrate comprising an additive composition as described above, mixed with an organic liquid.
  • the organic liquid is advantageously inert with respect to the constituents of the additive composition, and miscible with fuels or combustibles, in particular those coming from one or more sources chosen from the group consisting of mineral sources, preferably mineral sources. petroleum, animal, vegetable and synthetic.
  • the organic liquid is preferably chosen from aromatic hydrocarbon solvents such as the solvent marketed under the name “SOLVESSO”, alcohols, ethers and other oxygenated compounds, and paraffinic solvents such as hexane, pentane or isoparaffins, alone. or mixed.
  • aromatic hydrocarbon solvents such as the solvent marketed under the name “SOLVESSO”
  • alcohols such as the solvent marketed under the name “SOLVESSO”
  • ethers and other oxygenated compounds such as hexane, pentane or isoparaffins, alone. or mixed.
  • composition of fuel or fuel is a composition of fuel or fuel:
  • Mineral sources are preferably petroleum.
  • the fuel composition according to the invention preferably comprises said copolymer(s) (2) in a content ranging from 0.0002 to 0.005% by weight, and better still from 0.0003 to 0.003% by weight. , relative to the total weight of the fuel composition.
  • the cold fluidizing additives are advantageously chosen from those described above.
  • the composition preferably contains between 50 and 1,000 ppm in total of cold fluidizing additive(s).
  • the fuels or combustibles can be chosen from liquid hydrocarbon fuels or fuels, alone or in a mixture.
  • Liquid hydrocarbon fuels or fuels include in particular middle distillates with a boiling temperature of between 100 and 500°C. These distillates can for example be chosen from distillates obtained by direct distillation of crude hydrocarbons, vacuum distillates, hydrotreated distillates, distillates resulting from catalytic cracking and/or hydrocracking of distillates under vacuum, distillates resulting from ARDS type conversion processes (by desulfurization of atmospheric residue) and/or visbreaking, distillates resulting from the valorization of Fischer Tropsch cuts, distillates resulting from BTL (biomass to liquid) conversion of plant and/or animal biomass, taken alone or in combination, and/or biodiesels of animal and/or vegetable origin and/or oils and/or esters of vegetable and/or animal oils.
  • the sulfur content of the fuels or combustibles is preferably less than 5000 ppm, preferably less than 500 ppm, and more preferably less than 50 ppm, or even less than 10 ppm, and advantageously without sulfur.
  • the fuel or combustible is preferably chosen from gas oils, biodiesel, type B x gas oils and fuel oils, preferably domestic fuel oils (FOD).
  • FOD domestic fuel oils
  • type B x diesel fuel for Diesel engine we mean a diesel fuel which contains x% (v/v) of esters of vegetable or animal oils (including used cooking oils) transformed by a process chemical called transesterification making react this oil with an alcohol to obtain fatty acid esters (FAE). Methanol and ethanol produce fatty acid methyl esters (FAME) and fatty acid ethyl esters (FAFA), respectively.
  • FAME fatty acid methyl esters
  • FFA fatty acid ethyl esters
  • type B diesel fuels which do not contain oxygenated compounds
  • type Bx diesel fuels which contain x% (v/v) of esters of vegetable or animal oils or fatty acids, most often methyl esters (EMHV or FAME).
  • EAG methyl esters
  • FAME methyl esters
  • the fuel may also contain hydrogenated vegetable oils, known to those skilled in the art under the name HVO (from English “hydrogenated vegetable oil”) or HDRD (from English “hydrogenation-derived renewable diesel”). .
  • HVO from English “hydrogenated vegetable oil”
  • HDRD from English “hydrogenation-derived renewable diesel”.
  • the fuel or combustible is chosen from gas oils, biodiesel and gas oils of type B x , hydrogenated vegetable oils (HVO), and their mixtures.
  • the fuel composition may also contain one or more additional additives, different from the copolymers and cold resistance additives described above.
  • additives may be chosen in particular from detergents, anti-corrosion agents, dispersants, demulsifiers, anti-foaming agents, biocides, reodorants, procetane additives, friction modifiers, lubricating additives or additives. lubricity, combustion aiding agents (catalytic combustion and soot promoters), anti-wear agents and/or conductivity modifying agents.
  • Additional additives may generally be present in quantities ranging from 50 to 1,000 ppm (each).
  • the process for improving cold resistance properties is typically intended for a fuel composition as described above.
  • Step a) is carried out according to any known process and is part of current practice in the field of fuel additives. This step involves defining a characteristic representative of the cold resistance properties of the fuel, for example low temperature flow characteristics, setting the target value and then determining the improvement that is required to achieve the specification.
  • a specification relating to cold resistance may be a European Extreme Cold specification defining, in particular, a maximum TLF according to standard NF EN 116. Determination of the quantity of additive composition(s) to be added to the fuel composition to achieve the specification will typically be carried out by comparison with the fuel composition without said additive composition(s).
  • the quantity of copolymer necessary to treat the fuel or combustible composition may vary depending on the nature and origin of the fuel or combustible, in particular depending on the level and nature of the paraffinic compounds which it contains. The nature and origin of the fuel can therefore also be a factor to take into account for step a).
  • the process for improving cold resistance properties can also include an additional step after step b) of verifying the target achieved and/or adjusting the treatment rate with the composition of additive(s).
  • the flask containing the reaction medium is heated and once the target temperature is reached (70°C), the initiator solution is introduced to start the polymerization.
  • the reaction is left for 6 hours at 70°C.
  • the heating is turned off and the medium is exposed to air in order to stop the polymerization.
  • the solvent is then evaporated under vacuum in order to recover the polymer.
  • the polymers were characterized by size exclusion chromatography (SEC), in order to determine the composition and molar mass of each copolymer.
  • SEC size exclusion chromatography
  • Example 1 The polymers described in Example 1 were tested as cold resistance additives in a composition G of diesel type fuel that is particularly difficult to process, and whose characteristics are detailed in Table II below: Characteristic Method Value Density at 15°C ISO 12185 831.2 kg/m 3 Viscosity at 20°C ISO 3104 5.1 mm 2 /s Viscosity at 40°C ISO 3104 3.5mm 2 /s Cloud point (PTR)° EN 23015 -3°C Filterability limit temperature (TLF) EN 116 -2°C Pour point (PTE) ASTM D7346 -12°C Paraffin content 21.42% by weight C16+ n-paraffin content 11.30% by weight Distillation profile D86 ISO 3405 Initial point 173.0°C Point at 5% vol.
  • This package was incorporated into the diesel composition G at a content of 300 ppm by weight of active material (i.e. 150 ppm by weight of each additive) relative to the total weight of the diesel composition.
  • the additive diesel composition G1 was thus obtained. This has a Filterability Limit Temperature (TLF, standard EN 116) of -6°C.
  • TEZ Filterability Limit Temperature
  • composition G1 Each polymer was added at a content of 3 ppm by weight (0.0003% by weight) to composition G1, to give gas oil G2, the TLF of which was then measured, in accordance with standard EN 116.
  • This package was incorporated into the diesel composition G at a content of 300 ppm by weight of active material (i.e. 150 ppm by weight of each additive) relative to the total weight of the diesel composition.
  • the additive diesel composition G1 was thus obtained. This has a Filterability Limit Temperature (TLF, standard EN 116) of -6°C.
  • TEZ Filterability Limit Temperature
  • composition G1 Each polymer was added at a content of 3 ppm by weight (0.0003% by weight) to composition G1, to give gas oil G2, the TLF of which was then measured, in accordance with standard EN 116.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Claims (15)

  1. Verwendung eines oder mehrerer Copolymere zur Verbesserung der Kälteeigenschaften einer Kraftstoffzusammensetzung oder eines Brennstoffes, umfassend:
    - 70 bis 95 Mol-% mindestens eines Motivs der folgenden Formel (I):
    Figure imgb0011
    in der
    R1 ein Wasserstoffatom oder eine Methylgruppe darstellt,
    X -O-CO-, oder -CO-O- oder -NH-CO- oder -CO-NH- darstellt, und
    R2 ein lineares oder verzweigtes azyklisches C8 bis C24-Alkyl-Radikal darstellt; und
    - 5 bis 30 Mol-% mindestens eines Motivs der folgenden Formel (II):
    Figure imgb0012
    in der R einen substituierten oder nicht substituierten Imidazol-Zyklus darstellt.
  2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass die X-Gruppe der Formel (I) ausgewählt ist aus: -CO-O- und -CO-NH-, vorausgesetzt, dass die X-Gruppe durch das Kohlenstoffatom mit dem Vinylkohlenstoff verbunden ist, und die X-Gruppe der Formel (I) vorzugsweise die -CO-O-Gruppe ist.
  3. Verwendung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die R2 Gruppe der Formel (I) ein lineares oder verzweigtes azyklisches C8 bis C14- oder C16 bis C22-, bevorzugter ein C12 bis C14- oder C18 bis C22-, und noch besser ein C18 bis C22-Alkyl-Radikal ist.
  4. Verwendung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Motiv der Formel (II) das N-Vinylimidazol ist.
  5. Verwendung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Copolymer 10 bis 30 Mol-% an Motiven der Formel (II), und noch besser 10 bis 25 Mol-% enthält.
  6. Verwendung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Copolymer nur Motive der Formel (I) und Motive der Formel (II) enthält.
  7. Verwendung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Copolymer ein statistisches Copolymer oder ein Block-Copolymer ist, und das Copolymer vorzugsweise ein statistisches Copolymer ist.
  8. Verwendung eines Copolymers nach einem der vorstehenden Ansprüche, um die Filterbarkeitsgrenztemperatur einer Kraftstoffzusammensetzung oder eines Brennstoffes, gemäß der Norm NF EN 116 gemessen, und/oder den Stockpunkt, gemäß der Norm ASTM D 7346 gemessen, zu senken, und/oder um die Sedimentation von Kristallen zu verzögern oder zu verhindern, und um vorzugsweise die Filterbarkeitsgrenztemperatur, gemäß der Norm NF EN 116 gemessen, zu senken.
  9. Verwendung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Copolymer in Kombination mit mindestens einem Kaltverdünnungszusatz, vorzugsweise ausgewählt aus den Ethylen- und Vinyl- und/oder Acrylester-Copolymeren und Terpolymeren, alleine oder in einem Gemisch eingesetzt wird.
  10. Zusammensetzung von Zusätzen, umfassend ein Copolymer nach einem der Ansprüche 1 bis 7, und einen oder mehrere verschiedene Kaltverdünnungszusatz (-zusätze) der Copolymere, die Motive der Formel (I) und Motive der Formel (II) umfassen, ausgewählt aus (den) Ethylen- und Vinylester (n), alleine oder in einem Gemisch, wobei das Gewichtsverhältnis zwischen dem Gehalt an Copolymer(en) nach einem der Ansprüche 1 bis 7 einerseits, und dem Gehalt an (den) Ethylen- und Vinylester(n) andererseits im Bereich enthalten ist, der von 0,1:100 bis 10:100 reicht.
  11. Zusammensetzung von Zusätzen nach dem vorstehenden Anspruch, dadurch gekennzeichnet, dass sie mindestens einen Kaltverdünnungszusatz enthält, der aus den Ethylen-/Vinylacetat-Copolymeren (EVA), Ethylen-/Vinylpropionat-Copolymeren (EVP) und Terpolymeren aus Ethylen, Vinylacetat und einem anderen Vinylester ausgewählt ist; bevorzugter aus den Ethylen-/Vinylacetat-Copolymeren (EVA) und deren Gemischen mit einem Terpolymer aus Ethylen, Vinylacetat und einem anderen Vinylester wie insbesondere Vinylneodecanoat, ausgewählt wird.
  12. Zusammensetzung von Zusätzen nach dem vorstehenden Anspruch, dadurch gekennzeichnet, dass das Gewichtsverhältnis zwischen dem Gehalt an Copolymer(en) nach einem der Ansprüche 1 bis 7 einerseits und dem Gehalt an Ethylen- und Vinylester-Copolymer(en) andererseits im Bereich enthalten ist, der von 0,5:100 bis 5:100 reicht.
  13. Kraftstoff- oder Brennstoffzusammensetzung, umfassend:
    (1) mindestens einen Verschnitt von Kohlenwasserstoffen aus einer oder mehreren Quellen, ausgewählt aus der Gruppe bestehend aus mineralischen, tierischen, pflanzlichen und synthetischen Quellen,
    (2) mindestens ein Copolymer nach einem der Ansprüche 1 bis 7, in einem Gehalt, der von 0,0001 bis 0,005 Gew.-% in Bezug auf das Gesamtgewicht der Zusammensetzung reicht, und
    (3) mindestens einen Kaltverdünnungszusatz, ausgewählt aus den Ethylen- und Vinylester-Copolymeren, mit einem Gesamtgehalt, der zwischen 20 und 1000 ppm liegt.
  14. Zusammensetzung nach dem vorstehenden Anspruch, dadurch gekennzeichnet, dass sie das oder die Copolymer(e) (2) in einem Gehalt enthält, der von 0,0002 bis 0,005 Gew.-%, und noch besser von 0,0003 bis 0,003 Gew.-% in Bezug auf das Gesamtgewicht der Zusammensetzung reicht.
  15. Zusammensetzung nach einem der Ansprüche 13 und 14, dadurch gekennzeichnet, dass der Kaltverdünnungszusatz (3) ausgewählt ist aus den Ethylen-/Vinylacetat-Copolymeren (EVA), Ethylen-/Vinylpropionat-Copolymeren (EVP) und Terpolymeren aus Ethylen, Vinylacetat und einem anderen Vinylester ausgewählt ist; bevorzugter aus den Ethylen-/Vinylacetat-Copolymeren (EVA) und deren Gemischen mit einem Terpolymer aus Ethylen, Vinylacetat und einem anderen Vinylester wie insbesondere Vinylneodecanoat, ausgewählt wird.
EP19755939.6A 2018-08-28 2019-08-23 Verwendung spezieller copolymere zur verbesserung der kälteeigenschaften von kraftstoffen oder brennstoffen Active EP3844250B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857716A FR3085384B1 (fr) 2018-08-28 2018-08-28 Utilisation de copolymeres specifiques pour ameliorer les proprietes a froid de carburants ou combustibles
PCT/EP2019/072598 WO2020043618A1 (fr) 2018-08-28 2019-08-23 Utilisation de copolymères spécifiques pour améliorer les propriétés à froid de carburants ou combustibles

Publications (2)

Publication Number Publication Date
EP3844250A1 EP3844250A1 (de) 2021-07-07
EP3844250B1 true EP3844250B1 (de) 2024-04-03

Family

ID=65201180

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19755939.6A Active EP3844250B1 (de) 2018-08-28 2019-08-23 Verwendung spezieller copolymere zur verbesserung der kälteeigenschaften von kraftstoffen oder brennstoffen

Country Status (4)

Country Link
US (1) US20210348073A1 (de)
EP (1) EP3844250B1 (de)
FR (1) FR3085384B1 (de)
WO (1) WO2020043618A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0448166B1 (de) * 1990-03-21 1995-10-04 Shell Internationale Researchmaatschappij B.V. Polymerzusammensetzungen
US5743923A (en) * 1992-10-26 1998-04-28 Exxon Chemical Patents Inc. Oil additives and compositions
CN101691508B (zh) * 2009-10-20 2012-10-03 济南开发区星火科学技术研究院 一种柴油低温流动性改进剂及其制备方法
WO2017109370A1 (fr) * 2015-12-22 2017-06-29 Total Marketing Services Utilisation d'un additif detergent pour carburant

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3048479A (en) 1959-08-03 1962-08-07 Exxon Research Engineering Co Ethylene-vinyl ester pour depressant for middle distillates
US3275427A (en) 1963-12-17 1966-09-27 Exxon Research Engineering Co Middle distillate fuel composition
US3627838A (en) 1964-12-11 1971-12-14 Exxon Research Engineering Co Process for manufacturing potent pour depressants
US3790359A (en) 1969-03-17 1974-02-05 Exxon Research Engineering Co Middle distillate fuel having increased low temperature flowability
US3961961A (en) 1972-11-20 1976-06-08 Minnesota Mining And Manufacturing Company Positive or negative developable photosensitive composition
GB8307522D0 (en) * 1983-03-18 1983-04-27 Shell Int Research Wax-containing crude oil
IN184481B (de) 1986-09-24 2000-08-26 Exxon Chemical Patents Inc
EP0261959B1 (de) 1986-09-24 1995-07-12 Exxon Chemical Patents Inc. Brennstoffezusätze
FR2626578B1 (fr) 1988-02-03 1992-02-21 Inst Francais Du Petrole Polymeres amino-substitues et leur utilisation comme additifs de modification des proprietes a froid de distillats moyens d'hydrocarbures
TW215106B (de) * 1990-09-25 1993-10-21 Shell Internat Res Schappej B V
FR2676062B1 (fr) 1991-05-02 1993-08-20 Inst Francais Du Petrole Polymere amino-substitues et leur utilisation comme additifs de modification des proprietes a froid de distillats moyens d'hydrocarbures.
GB9200694D0 (en) 1992-01-14 1992-03-11 Exxon Chemical Patents Inc Additives and fuel compositions
GB9219962D0 (en) 1992-09-22 1992-11-04 Exxon Chemical Patents Inc Additives for organic liquids
EP0593331B1 (de) 1992-10-09 1997-04-16 Institut Francais Du Petrole Aminephosphate mit einem Imid Endring, deren Herstellung, und deren Verwendung als Zusätze für Motorkraftstoffe
FR2699550B1 (fr) 1992-12-17 1995-01-27 Inst Francais Du Petrole Composition de distillat moyen de pétrole contenant des additifs azotés utilisables comme agents limitant la vitesse de sédimentation des paraffines.
GB9301119D0 (en) 1993-01-21 1993-03-10 Exxon Chemical Patents Inc Fuel composition
US5684108A (en) * 1993-10-02 1997-11-04 Basf Aktiengesellschaft Ethylene-based copolymers and their use as flow improvers in mineral oil middle distillates
FR2735494B1 (fr) 1995-06-13 1997-10-10 Elf Antar France Additif bifonctionnel de tenue a froid et composition de carburant
FR2751982B1 (fr) 1996-07-31 2000-03-03 Elf Antar France Additif d'onctuosite pour carburant moteurs et composition de carburants
FR2753455B1 (fr) 1996-09-18 1998-12-24 Elf Antar France Additif detergent et anti-corrosion pour carburants et composition de carburants
ATE223953T1 (de) 1997-01-07 2002-09-15 Clariant Gmbh Verbesserung der fliessfähigkeit von mineralölen und mineralöldestillaten unter verwendung von alkylphenol-aldehydharzen
JPH10237467A (ja) 1997-02-26 1998-09-08 Tonen Corp ディーゼルエンジン用燃料油組成物
US5730029A (en) 1997-02-26 1998-03-24 The Lubrizol Corporation Esters derived from vegetable oils used as additives for fuels
FR2772783A1 (fr) 1997-12-24 1999-06-25 Elf Antar France Additif d'onctuosite pour carburant
FR2772784B1 (fr) 1997-12-24 2004-09-10 Elf Antar France Additif d'onctuosite pour carburant
US20050223631A1 (en) 2004-04-07 2005-10-13 Graham Jackson Fuel oil compositions
FR2903418B1 (fr) 2006-07-10 2012-09-28 Total France Utilisation de composes revelateurs d'efficacite des additifs de filtrabilite dans des distillats hydrocarbones, et composition synergique les contenant.
WO2012004300A1 (de) 2010-07-06 2012-01-12 Basf Se Säurefreie quaternisierte stickstoffverbindungen und deren verwendung als additive in kraft- und schmierstoffen
US20120010112A1 (en) 2010-07-06 2012-01-12 Basf Se Acid-free quaternized nitrogen compounds and use thereof as additives in fuels and lubricants
FR2969620B1 (fr) 2010-12-23 2013-01-11 Total Raffinage Marketing Resines alkylphenol-aldehyde modifiees, leur utilisation comme additifs ameliorant les proprietes a froid de carburants et combustibles hydrocarbones liquides
EP3056526A1 (de) 2015-02-11 2016-08-17 Total Marketing Services Block-Copolymere und ihre Anwendung zur Verbesserung der Eigenschaften von Brenn- oder Kraftstoffen in kaltem Zustand

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0448166B1 (de) * 1990-03-21 1995-10-04 Shell Internationale Researchmaatschappij B.V. Polymerzusammensetzungen
US5743923A (en) * 1992-10-26 1998-04-28 Exxon Chemical Patents Inc. Oil additives and compositions
CN101691508B (zh) * 2009-10-20 2012-10-03 济南开发区星火科学技术研究院 一种柴油低温流动性改进剂及其制备方法
WO2017109370A1 (fr) * 2015-12-22 2017-06-29 Total Marketing Services Utilisation d'un additif detergent pour carburant

Also Published As

Publication number Publication date
FR3085384A1 (fr) 2020-03-06
EP3844250A1 (de) 2021-07-07
WO2020043618A1 (fr) 2020-03-05
US20210348073A1 (en) 2021-11-11
FR3085384B1 (fr) 2021-05-28

Similar Documents

Publication Publication Date Title
CA2710839C (fr) Terpolymere comme additif ameliorant la tenue a froid des hydrocarbures liquides
EP2231728B1 (de) Verwendung von pfropfmodifizierten copolymeren aus ethylen und/oder propylen und vinylestern als bifunktionelle schmierfähige und kältebeständige zusätze für flüssige kohlenwasserstoffe
EP2989185B1 (de) Additiv zur verbesserung der oxidationsstabilität von kraftstoffe oder flüssigen hydrokarbonkraftstoffe
CA2874572C (fr) Compositions d'additifs et leur utilisation pour ameliorer les proprietes a froid de carburants et combustibles
EP2449063B2 (de) Terpolymer mit ethylen/vinylacetat/ungesättigten estern als zusatz für erhöhte kälteresistenz von flüssigen kohlenwasserstoffen wie mitteldestillate und brennstoffe
WO2016128379A1 (fr) Copolymeres a blocs et leur utilisation pour ameliorer les proprietes a froid de carburants ou combustibles
CA2975028A1 (fr) Copolymeres a blocs et leur utilisation pour ameliorer les proprietes a froid de carburants ou combustibles
EP3844250B1 (de) Verwendung spezieller copolymere zur verbesserung der kälteeigenschaften von kraftstoffen oder brennstoffen
EP3844251A1 (de) Zusammensetzung von additiven mit mindestens einem copolymer, einem kaltfliessverbesserer und einem antiabsetzadditiv
WO2019121485A1 (fr) Utilisation de polymères réticulés pour abaisser la température limite de filtrabilité de carburants ou combustibles
WO2020141126A1 (fr) Utilisation de copolymères spécifiques pour abaisser la température limite de filtrabilité de carburants ou combustibles
EP4045618A1 (de) Verwendung von bestimmten kationischen polymeren als kältebeständige additive für kraftstoffe
EP4189048A1 (de) Verwendung von copolymeren mit spezifischer molmassenverteilung zur senkung des kaltfilter-stopfenpunktes von kraftstoffen
EP4065672B1 (de) Verwendung von diolen als waschmittelzusätze
FR3054240A1 (fr) Utilisation de copolymeres pour ameliorer les proprietes a froid de carburants ou combustibles
WO2024084136A1 (fr) Composition de carburant marin a basse teneur en soufre
FR3103812A1 (fr) Utilisation de composés alkyl phénol comme additifs de détergence
FR3000102A1 (fr) Utilisation d'un compose viscosifiant pour ameliorer la stabilite au stockage d'un carburant ou combustible hydrocarbone liquide

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20210315

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TOTALENERGIES ONETECH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231117

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240229

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019049529

Country of ref document: DE